
Copyright

by

Anna Yesypenko

2024

1

The Dissertation Committee for Anna Yesypenko
certifies that this is the approved version of the following dissertation:

Randomized Algorithms for the Efficient Solution of Elliptic

PDEs on Modern Architectures

Committee:

Per-Gunnar Martinsson, Supervisor

George Biros, Co-supervisor

Bjorn Engquist

Omar Ghattas

Karen Willcox

2

Randomized Algorithms for the Efficient Solution of Elliptic

PDEs on Modern Architectures

by

Anna Yesypenko

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2024

3

Dedicated to my grandparents,

Mr. Stanislav Ivanovich and Mrs. Nadezhda Pavlovna.

4

Acknowledgments

I am grateful to my advisor Per-Gunnar Martinsson and my co-advisor George

Biros for their invaluable guidance through this PhD. Their mentorship has played

a pivotal role in shaping my research endeavors, and for that, I extend my heartfelt

appreciation. I would also like to express my gratitude to my committee members,

whose insights and feedback have been instrumental in shaping the direction of my

research. The collective wisdom and support provided by my committee have enriched

the quality of my work.

In particular, I want to express thanks to Gunnar for his unwavering support in

encouraging me to explore and tackle complex, thought-provoking problems that align

with my passions and intellectual curiosities. His guidance has not only fostered my

intellectual growth but has also inspired me to push the boundaries of my capabilities.

In addition, I am deeply grateful to Chao Chen for his mentorship and support

throughout various stages of my PhD. His guidance has been a source of wisdom and

encouragement.

A special and extended mention is due to Tom O’Leary-Roseberry. His unwa-

vering encouragement and understanding have been the cornerstone of my support

system. He has provided me with both intellectual insights and the stability needed

to navigate the challenges of academia. Tom’s belief in my capabilities and his un-

wavering dedication have been indispensible.

The combined efforts of these remarkable mentors, colleagues, family, and

Tom, along with the nurturing environment at the Oden Institute, have been fun-

damental to completing this PhD. I am truly fortunate to have been surrounded by

such dedicated individuals who have helped shape my academic and personal devel-

opment.

5

Abstract

Randomized Algorithms for the Efficient Solution of Elliptic

PDEs on Modern Architectures

Anna Yesypenko, PhD
The University of Texas at Austin, 2024

SUPERVISORS: Per-Gunnar Martinsson, George Biros

This thesis describes techniques for efficiently and robustly computing ap-

proximate solutions to elliptic partial differential equations (PDEs). It presents novel

algorithms for solving linear systems that exploit randomized methods in linear al-

gebra to attain high computational efficiency and scalability. These algorithms are

designed to leverage a variety of compute kernels, such as vectorization and special-

ized hardware acceleration features found on modern architectures. The ideas in this

thesis demonstrate viable paths to re-envisioning classical linear solvers in a changing

hardware landscape.

The unifying theme of the work is the use of hierarchical matrices (H-matrices)

to accelerate key compute kernels. The term H-matrix refers to a matrix that can

hierarchically be tessellated into submatrices in such a way that each submatrix is

either of low numerical rank, or small enough that it can be stored densely. Using

H-matrix representation for a matrix of size N ×N allows the complexity of matrix-

vector products and matrix inversion to have linear, or close to linear, complexity

when dense linear algebra would require O(N2) and O(N3) operations, respectively.

In this thesis, H-matrix structure is used to represent discretized integral equations,

as well as to represent large dense matrices that arise in sparse direct solvers for

6

discretized PDEs.

The thesis contains three key contributions. First, a novel fast multipole

method (FMM) is presented. This is a fast algorithm for applying an H-matrix to a

vector, with applications in the numerical solution of integral equation formulations

of PDEs using iterative methods. The method is based on linear algebraic tools such

as randomized low rank approximation, and “skeleton representations” of far-field

interactions. Its key feature is significantly simplified data structure compared to the

original FMM.

Second, a sparse direct solver for discretized PDEs is presented, which is com-

patible with a variety of PDE discretizations. This work addresses a critical limitation

of sparse direct solvers, which is that techniques such as LU and Cholesky lead to

factors that are far less sparse than the original matrix; we ameliorate this “fill-in”

effect by exploiting H-matrix structure in the dense blocks that arise. This solver

distinguishes itself from related work by using a decomposition of the computational

domain into slabs. This approach leads to simplified data structures, which facilitate

parallelization and also makes the scheme more amenable to using GPU acceleration

for improved performance.

Third, a novel algorithm for the simultaneous compression and LU factoriza-

tion of a particular class of H-matrices is presented. This process is achieved in linear

time from black-box matrix-vector products of an operator with H-matrix structure.

The work builds upon a previously proposed algorithm for “strong recursive skele-

tonization” but provides significant simplifications and accelerations. The work has

applications in the direct solution of boundary integral equations and in sparse direct

solvers for discretized PDEs.

7

Table of Contents

Chapter 1: Introduction . 11

1.1 Problem formulation . 11

1.1.1 Integral equation formulation 12

1.1.2 Sparse Direct Solvers for PDEs 14

1.2 H-matrices in the context of PDE solvers 14

1.2.1 Fast Solvers for Discretized Integral Equations 15

1.2.2 Fast Sparse Direct Solvers for Discretized PDEs 17

1.3 Randomized compression for H-matrices 19

1.3.1 Low rank . 19

1.3.2 Randomized Black-Box Algorithms for H-matrices 20

1.4 Overview of Chapters . 23

1.4.1 SkelFMM: A Simplified Fast Multipole Method 23

1.4.2 SlabLU: A Two-Level Sparse Direct Solver 24

1.4.3 Randomized Strong Recursive Skeletonization: Simultaneous Com-
pression and Factorization of H2 Matrices 25

1.5 Contributions by Area . 26

Chapter 2: SkelFMM: A Simplified Fast Multipole Method Based on Recursive
Skeletonization . 29

2.1 Introduction . 30

2.2 Methodology . 32

2.2.1 Skeletonization of a single box 34

2.2.2 Matrix Sparsification . 36

2.2.3 Multi-Level Algorithm for a Simple Geometry 39

2.3 Algorithm . 42

2.3.1 Adaptive tree data structure 42

2.3.2 Build stage . 43

2.3.3 FMM apply . 45

2.3.4 Parallel Implementation . 47

2.4 Complexity analysis . 50

2.5 Numerical results . 52

2.5.1 2D Experiments . 55

2.5.2 3D Experiments . 56

2.6 Conclusions . 58

8

Chapter 3: SlabLU: A Two-Level Sparse Direct for Elliptic PDEs 60

3.1 Introduction . 61

3.1.1 Problem setup . 61

3.1.2 Overview of proposed solver . 61

3.1.3 Context and related work . 64

3.1.4 Extensions and limitations . 65

3.2 Discretization and node ordering . 66

3.2.1 A model problem based on the five point stencil 66

3.2.2 Clustering of the nodes . 67

3.2.3 High order discretizations . 67

3.3 Stage one: Elimination of nodes interior to each slab 69

3.3.1 Schur complements . 69

3.3.2 Rank structure in the reduced blocks 70

3.3.3 Recovering H-matrix structure from matrix-vector products . . 72

3.4 Stage Two: Factorizing the reduced block tridiagonal coefficient matrix 72

3.5 Algorithm and complexity costs . 74

3.5.1 Ease of Parallelism and Acceleration with Batched Linear Algebra 75

3.5.2 Choosing the buffer size b. 76

3.5.3 Complexity Analysis for SlabLU with HPS discretization 78

3.6 Numerical experiments . 79

3.6.1 Description of Benchmark PDEs and Accuracies Reported . . . 80

3.6.2 Benchmark Experiments using Low-Order Discretization 81

3.6.3 Benchmark Experiments using High-Order Discretization . . . 85

3.6.4 Solving Challenging Scattering Problems with High Order Dis-
cretization . 89

3.7 Conclusion . 93

Chapter 4: Randomized Strong Recursive Skeletonization: Simultaneous Com-
pression and Factorization of H-matrices in the Black-Box Setting 95

4.1 Introduction . 96

4.2 Randomized compression and factorization of rank structured matrices 98

4.2.1 Review of randomized sketching for a low rank matrix 100

4.2.2 Block Nullification . 101

4.2.3 Block Extraction . 103

4.2.4 Factorizing Rank-Structured Matrices using Randomized Sam-
pling Techniques . 105

4.3 The interpolative decomposition and recursive skeletonization 106

9

4.3.1 Gaussian elimination and block elimination matrices 107

4.3.2 The interpolatory decomposition 108

4.3.3 Classical skeletonization (weak admissibility) 109

4.4 Strong recursive skeletonization . 111

4.4.1 Hierarchical tree structure . 112

4.4.2 Strong skeletonization for a single box 112

4.4.3 Recursive Algorithm . 115

4.4.4 How to compress the far-field interactions 119

4.5 Randomized strong recursive skeletonization 120

4.6 Numerical experiments . 122

4.6.1 3D Sparse Direct Solvers . 123

4.7 Conclusions . 125

Chapter 5: Conclusion . 127

Appendix A: Rank Properties . 128

A.1 Rank Property of Thin Slabs . 128

Works Cited . 130

Vita . 143

10

Chapter 1: Introduction

1.1 Problem formulation

The dissertation describes numerical methods for solving boundary value prob-

lem of the form {Au(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ,
(1.1)

where A is a second order elliptic differential operator, and Ω is a rectangular domain

in two or three dimensions with boundary Γ. For the sake of concreteness, we will for

the most part focus on the case where A is a variable coefficient Helmholtz operator

with appropriate boundary conditions

Au(x) = −∆u(x)− κ2b(x)u(x), (1.2)

where κ is a reference (“typical”) wavenumber and b(x) is a smooth non-negative

function. This equation governs the phenomena of acoustic and electromagnetic scat-

tering and has a wide variety of applications (e.g. medical imaging, sonar, seismology).

There are a number of challenges to numerically solving (1.2); we highlight a few of

them. First, the solutions u are highly oscillatory, and the number of discretization

points needed grows as N ∼ κd, where d = {2, 3} is the spatial dimension of the

domain Ω. Second, the discretized system (1.2) is indefinite, which causes issues

for many numerical methods which are effective for coercive elliptic PDEs. Because

the discretization of (1.2) is sparse, iterative methods are a natural choice; however,

iterative methods often struggle to converge, especially in the presence of challeng-

ing wave phenomena (e.g. multiple reflections, trapped rays). This thesis focuses on

direct solvers for computing solutions to (1.1).

Although a differential operator is local, the solution operator which maps

given data f, g to the solution u is inherently global. A small perturbation in the

given data causes the solution to change at every point in Ω. Solution operators (or

11

direct solvers) are often dense; however, they often have structure that allow them

to be computed and applied to given boundary data efficiently. Direct solvers are

particularly compelling for applications where the same PDE needs to be solved for

many boundary data. The methods in this dissertation work for a broad range of

elliptic PDEs, but are particularly competitive for (1.2), for which the solution is

classically challenging to compute using iterative methods.

We describe fast methods for computing solvers for elliptic PDEs in two set-

tings. In the first setting, we formulate (1.1) as an integral equation where the solution

u appears implicitly. In the second setting, we discretize the PDE using a sparse dis-

cretization (e.g. finite differences) and factorize the resulting system to form a sparse

direct solver.

1.1.1 Integral equation formulation

In this section, we describe how to formulate the elliptic BVP (1.1) using an

integral equation formulation. For simplicity, consider Ω a simply connected set and

Γ a smooth boundary. Consider as well that the body load f = 0 and that b ≡ 1 in

Ω. We start with an ansatz that the solution u could be expressed as convolution of

the following form

u(x) =

∫
Γ

K(x− y)σ(y)ds(y), x ∈ Ω, (1.3)

where K is the known analytic Green’s function for the PDE and σ is an unknown

function on the boundary Γ. The solution u(x) is continuous on Ω, including up to

the boundary. In order for the given boundary data g(x) to be satisfied, the following

boundary integral equation (BIE) must be satisfied

g(x) =

∫
Γ

K(x− y)σ(y)ds(y) x ∈ Γ. (1.4)

The equations (1.4) and (1.3) together provide a means of solving the elliptic BVP.

First, solve the BIE in (1.4) for the unknown σ(x) on the boundary Γ. Then, the

solution u(x) can be computed by evaluating the ansatz (1.3).

12

This formulation significantly reduces the dimensionality of the problem be-

cause we need to solve the BIE (1.4) on the boundary Γ instead solving the PDE (1.1)

in the domain Ω. There are, however, a number of challenges to integral equation

formulations. First, the Green’s function K is often singular at the origin, and special

quadrature rules are required to discretize (1.4) accurately. Second (and importantly,

a focus of this dissertation), the discretized equations (1.3) and (1.4) are dense. Luck-

ily, there are rank-deficiencies in the discretized system which allow the fast solution

of (1.4); these approaches are discussed further in Section 1.2.1.

Among the benefits of boundary integral equations, is that the formulation can

lead to better conditioned systems than discretizations of PDEs. For example, dis-

cretizing (1.1) using finite differences for mesh size h leads to a system with condition

number O(h−2). Poor conditioning leads to a number of issues, among them, that it

may cause a loss of accuracy when solving the discretized system. The formulation of

the boundary integral equation in (1.4) leads to a discretized system with condition

number O(h−1), which is already an improvement. Using what is called a ‘second-

kind Fredholm’ integral equation formulation can lead to a condition number which

is independent of the discretization parameter h [68, Ch.10], allowing the discretized

system to be solved to very high accuracy.

Remark 1.1. Note that we have made a number of assumptions that there is no

body load and that the elliptic PDE has constant coefficients to formulate the BIE in

(1.4). Solving PDEs using integral equations is possible without these assumptions,

but the formulation in (1.4) will instead involve solving an integral equation over Ω,

leading to a dense discretized system to solve on a volume. When BIE formulations

are possible, they provide an compelling means for efficiently solving elliptic PDEs

because the dimensionality of the problem is reduced (e.g. from a 3D volume to a 2D

surface).

13

1.1.2 Sparse Direct Solvers for PDEs

Discretizing (1.1) using a local discretization such as finite differences, finite

elements, finite volume, etc., results in a sparse linear system

Au = f. (1.5)

The Helmholtz equation (1.2) discretized with low-order elements can suffer from

the effects of pollution [7] for large κ, leading to large errors. This, however, can

be overcome with the use of high order discretization, which we incorporate as a

part of this thesis. There are a number of challenges in solving (1.5) using iterative

methods [34, 39], especially when challenging scattering phenomena are present. The

system (1.5) can instead be solved by first computing a sparse factorization of A of

the following form

A = LU (1.6)

where L is lower triangular and U is upper triangular, and both factors are sparse.

Once (1.6) has been computed, the solution u can be computed using forward and

backward substitution u = U−1L−1f, and the computed factorization can be reused

for multiple right hand sides f.

A challenge of sparse direct solvers is the cost of computing and storing the

factorization (1.6). The factorization is a representation of a dense solution operator,

and as a result, the factors L and U are often much less sparse than the original

system A. Luckily, the dense “fill-in” of the factorization (1.6) has structure that

allows for the factorization to be computed and stored efficiently.

1.2 H-matrices in the context of PDE solvers

The unifying theme of this thesis is the use of H-matrices, both in the context

of Section 1.1.1 and in the context of Section 1.1.2, to accelerate key compute kernels.

The term H-matrix refers to a matrix that can hierarchically be tessellated into

submatrices in such a way that each submatrix is either of low numerical rank, or

14

small enough that it can be stored densely. Using this representation for a matrix

of size N ×N allows the complexity of matrix-vector products and matrix inversion

to have linear, or close to linear, complexity when dense linear algebra would require

O(N2) and O(N3) operations, respectively. For a simple example of an H-matrix,

see Figure 1.1.

k

k

k

k

k

k

k
k

k
k

k
k

k
k

Figure 1.1: Hierarchically Off-Diagonal Low-Rank (HODLR) matrix [8] of size n× n
with off-diagonal rank k. The matrix can be applied in O (n log n) time and factorized
in O

(
n(log n)2

)
time.

In this section, we describe how H-matrices arise in the context of integral

equations, as well as in the context of sparse direct solvers, providing a brief literature

review as well as contextualizing the contributions of this thesis.

1.2.1 Fast Solvers for Discretized Integral Equations

For a constant coefficient elliptic PDE in the absence of a body load, the

elliptic BVP (1.1) on a domain Ω can be formulated as an integral equation (1.4) on

the boundary Γ. As discussed in Section 1.1.1, integral equations can be formulated

to be very well conditioned, so the condition number is independent of the number of

discretization points. This leads to a number of benefits, including that the discretized

equation could be solved using iterative methods. The challenge, however, is that

discretizing (1.4) leads to a dense system of equations.

Suppose that (1.4) is discretized using N collocation points on the boundary.

In order to solve (1.4) using an iterative method, we need to evaluate an N -body sum

15

of the following form

ui =
N∑

j=1,i ̸=j

K(xi − xj) qj, i = 1, . . . N, (1.7)

where {xi}Ni=1 is a set of points on the boundary Γ at which the functions u and q are

collocated. The function K is a given kernel function that is associated with a stan-

dard elliptic PDE of mathematical physics. For instance, K may be the fundamental

solution of Helmholtz equation,

K(r) =

{
i
4
H

(1)
0 (κ∥r∥), xi ̸= xj ∈ R2

−1
4
eiκ∥r∥

∥r∥ , xi ̸= xj ∈ R3,
(1.8)

where H
(1)
0 is the Hankel function of the first kind of order zero. It is often convenient

to formulate the summation problem (1.7) as the matrix-vector product

u = Aq (1.9)

where A is the N ×N matrix with off-diagonal entries Aij = K(xi, xj) and zeros on

the diagonal, and where u = [u1, . . . , uN] and q = [q1, . . . , qN].

The fast multipole method (FMM) is a general framework for computing (1.9)

approximately within a given tolerance ε using only O(N) operations. The method

partitions the problem domain hierarchically into subdomains of different scales and

exploits the multi-scale decomposition in the evaluation of (1.7). In particular, the

method evaluates exactly the calculation associated with adjacent subdomains at the

finest scale, and approximately evaluates the calculation between non-adjacent sub-

domains at every scale. Overall, the procedure requires O(N) operations to compute

an approximation within a given tolerance ε.

The FMM is an analytic method has been derived for specific kernels that ap-

pear frequently in computational physics [37, 38, 48, 51, 102], however the framework

is general and analytic function expansions are not necessarily needed to evaluate

(1.9) quickly. There is a vast literature of similar methods developed using linear

16

algebraic tools [64, 70, 101, 103], including the method of Chapter 2 which we sum-

marize in Section 1.4.1. The FMM led to the development of a more general algebraic

framework for H-matrices [12, 53, 94], which are applicable to a wide set of problems

in computational science.

1.2.2 Fast Sparse Direct Solvers for Discretized PDEs

In this section, we summarize some key facts about direct solvers for a linear

system such as (1.5), resulting from the discretization of (1.1) using finite differences,

finite elements, etc. The objective is often to calculate an LU factorization

PAQT = LU, (1.10)

where P,Q are a permutation matrices, L is lower triangular, and U is upper trian-

gular. For dense LU factorizations, the rows are pivoted to avoid instability in the

factorization. For sparse LU, permutations are selected to balance numerical stability

on the one hand, with the need to maintain sparsity in L and U on the other.

I1I2 I3

Figure 1.2: Mesh partitioning for a 3D cube of size N = n3.

Suppose that a mesh of I = (1 : N) points is partitioned into index sets

I = [I1, I2, I3], as shown in Figure 1.2. For an appropriate permutation of A, we can

compute a sparse factorization of A of the following form

A =

A33 A31

A22 A21

A13 A12 A11

 =

L33

L22

L13 L12 L11

U33 U31

U22 U21

U11

 , (1.11)

17

where L11U11 is an LU factorization of Schur complement

L11U11 = S11
n2×n2

:= A11 − A12A
−1
22 A21 − A13A

−1
33 A31. (1.12)

Though the factors in (1.12) are sparse, their composition is dense. The cost to

factorize S11 is O(n6) = O(N2) flops, and the memory requirements to store the

factors L11,U11 are O(n4) = O(N4/3). In order to efficiently compute A22 and A33,

the mesh can be partitioned recursively in a “nested dissection” ordering [31, 40];

however, the dominant costs are factoring and storing S11. The nested dissection

ordering is discussed further in Section 1.4.2 to contextualize the work of Chapter 3.

The compute and memory requirements of sparse LU limit the scalability of

the method, especially for 3D problems. The dense fill-in is rich in rank-structure,

which allows us to factorize dense matrices efficiently. Leveraging rank-structured

matrix algebra in the context of sparse LU gives rise to a class of “accelerated sparse

direct methods” [5, 15, 95], which can scale to larger problem sizes than sparse direct

solvers. To give physical intuition on the rank structures, we give an interpretation

of the Schur complement S11. Consider the following matrix

A12 A−1
22 A21, (1.13)

where |I1| = n2 and |I2| = n3/2. Consider that Dirichlet data g is on interface I1.

Then the operator

u := A−1
22 A21g

maps Dirichlet data to the solution of the PDE on the interior. Applying h := A12u

to the solution on the interior differentiates the solution and produces Neumann data

h that is consistent with the given Dirichlet data g. We call (1.13) a Dirichlet-to-

Neumann operator. Surface-to-surface operators of this type are dense but often have

H-matrix structure that allow them to be applied and inverted quickly.

18

1.3 Randomized compression for H-matrices

Dense matrices with H-matrix structure arise in solution of elliptic PDEs in

many contexts. In the setting of integral equations, there are often efficient means

to compress H-matrix structure because the matrix A of equation (1.9) arises from

the evaluation of a known Green’s function. In the setting of sparse direct solvers,

however, compressing H-matrix structure is not as straightforward because accessing

individual matrix entries of (1.12) is computationally expensive.

In this section, we provide an overview of methods to recover structure of a

matrix A via the action of the matrix and its adjoint on vectors, e.g. v 7→ Av and

v 7→ A∗v. In situations where a fast matrix-vector product is available, A can often be

recovered using a small number of samples. These algorithms are particularly useful

in the setting of direct solvers because the Schur complement (1.12) is a composition

of sparse matrices. In Section 1.3.1, we discuss fairly well known algorithms for low

rank approximation. These techniques can be generalized to H-matrix structure, as

we discuss in Section 1.3.2.

1.3.1 Low rank

Consider a matrix A ∈ Rm×n which has exact rank k. We can compute a low

rank approximation using random sketching. First, generate the sketch

Y
m×k

:= A
m×n

Ω
n×k

(1.14)

where Ω is a Gaussian random matrix. With high probability, the sketch Y spans

the column space of A. We then orthonormalize the sample Q = orth(Y) to form an

orthonormal basis. The remaining steps use classical techniques, by calculating the

QR of the smaller matrix B := A∗Q as

Q̂R = qr(B).

The resulting QR factorization of A is

A =
(
QQ̂

)
R.

19

The complexity is Tmultk+O(k
2n), where Tmult is the complexity of multiplying A by

a vector. In the case that the rank is not exact but decays quickly, we can recover

the factorization to high accuracy by sampling with a Gaussian random matrix with

k+p columns, where p is a small oversampling parameter. In practice, setting p = 10

often yields good numerical results.

1.3.2 Randomized Black-Box Algorithms for H-matrices

If A is compressible as a rank-structured matrix, there are efficient algorithms

to recover the factorization using similar operations to those described above, by

post-processing random samples

Y
N×p

= A
N×N

Ω
N×p

, Z
N×p

= A∗
N×N

Ψ
N×p

(1.15)

where Ω,Ψ are random matrices and p ≪ N . Different rank-structures require

different choices of Ω,Ψ and post-processing steps [63, 73]. Some algorithms may also

require direct access to a small number of matrix entries, which may be prohibitively

expensive or inconvenient to compute efficiently, e.g. for A which is represented as

a composition of sparse matrices. In this thesis, we focus on compression algorithms

which are truly ‘black-box’ in that they only access the matrix through matrix-vector

products.

To demonstrate how these methods work, we will briefly describe one of the

techniques for black-box H-matrix sampling from [59, 60]. Consider a ‘hierarchically

block-separable’ matrix (HBS) A, which in spirit, is similar to the HODLR matrix

of Figure 1.1. Tessellate the N × N matrix into b × b blocks of size m × m, where

mb = N , so that

A =


D1 A12 . . . A1b

A21 D2 . . . A2b
...

...
...

Ab1 Ab2 . . . Db

 (1.16)

20

and each off-diagonal block admits the factorization

Aij
m×m

= Ui
m×k

Ãij
k×k

Vj
k×m

∗, i, j ∈ {1, . . . , b}, i ̸= j. (1.17)

When (1.17) holds, the matrix admits a block factorization

A
N×N

= U
N×bk

Ã
bk×bk

V∗
bk×N

+ D
N×N

,

where
U = diag(U1, . . . ,Ub),

V = diag(V1, . . . ,Vb),

D = diag(D1, . . . ,Db)

Ã =


0 Ã12 . . . Ã1b

Ã21 0 . . . Ã2b
...

...
...

Ãb1 Ãb2 . . . 0

 . (1.18)

To achieve linear storage costs for this representation of A, the matrix Ã can be tessel-

lated into a coarser block partitioning and compressed as (1.16). Once a hierarchical

decomposition of A is available, linear-time algorithms for computing A−1 are also

available.

Consider that we would like to recover the structure (1.16) in the black-box

setting of (1.15). In particular, our aim is to recover the basis Ui for the column

space for each block i = 1, . . . , b. Ideally, the test matrix Ω would have structure

that corresponds to the block we would like to sample. As an example, let us design

structured test matrix Ω′ for block i = 2 of the form

Ω′
N×k

=


Ω′

1
m×k

0
Ω′

3
...
Ωb

 (1.19)

applying the test matrix to A and extracting the I2 block would give a basis for U2:

U2 = orth(Y′
2), where Y′

N×k
= A

N×N
Ω′
N×k

. (1.20)

Designing structured test matrices of the form in equation (1.19) would lead to high

sampling costs. Instead, we use another approach that uses far fewer samples and

21

slightly higher post-processing costs. Consider that we draw instead p = (m + k)

samples with a fully dense Gaussian random matrix Ω ∈ RN×p and post-process Ω

to compute a structured test matrix of the form in (1.19). Let

N
p×k

= null(Ω2
m×p

) (1.21)

be an orthogonal basis for the null-space of Ω2. Then applying N on the right of Ω

gives

Ω
N×p

N
p×k

=


Ω1
m×p

N
p×k

0
Ω3 N

...
Ωb N

 := Ω′
N×k

(1.22)

This observation gives an efficient means of computing bases for all blocks i = 1, . . . , b

using a sketch of the form

Y
N×p

= A
N×N

Ω
N×p

, where Ω ∼ N (0, I) and p = m+ k. (1.23)

Note that to compute a basis for U2 in equation (1.20), only the Y′
2 block needs to

be used. Then the desired bases for all blocks i = 1, . . . , b can be computed as

Ui = orth(Y′
i), where Y′

i
m×k

= Yi
m×p

null(Ωi)
p×k

. (1.24)

This technique is called block nullification. This technique, in conjunction with others,

allows H-matrices can be efficiently recovered in the fully black-box setting. The

algorithm presented in [60] is applied to represent dense Schur complements with

much less storage for a 2D sparse direct solver. This solver is the subject of Chapter

3; a brief overview is provided in Section 1.4.2.

The H-matrix structure presented in (1.16), however, not expressive enough

to efficiently represent dense structures which arise on 3D surfaces. The represen-

tation needed instead, is called an H2 matrix with strong admissibility, and can be

seen as a linear-algebraic formalism for the FMM. A substantial challenge for this

22

representation is in computing a sparse representation of the inverse A−1. Section

1.4.3 provides an overview for a black-box algorithm which simultaneous compresses

and factorizes an H2 matrix using black-box samples in the setting (1.15); this work

is the subject of Chapter 4.

1.4 Overview of Chapters

1.4.1 SkelFMM: A Simplified Fast Multipole Method

The fast multipole method (FMM) is a framework for the efficient computa-

tion of N -body sums of the form (1.7). The FMM can be used to solve discretized

boundary integral equation (1.4) using an iterative method, which is a particularly

effective approach when a well-conditioned formulation is used. Though the FMM

has been derived for a variety of kernels using analytic techniques, the derivation

may be tedious and difficult for an arbitrary kernel function. Therefore, algebraic

approaches have been developed, which require only the evaluation of a given ker-

nel function [64, 70, 101, 103]. SkelFMM is based on linear algebraic tools such as

randomized low rank approximation and “skeleton representations” of far-field inter-

actions.

The work is related to previously proposed linear algebraic reformulations of

the FMM, but is distinguished by relying on simpler data structures. In particular,

skelFMM does not require an “interaction list”, as it relies instead on algebraically-

modified kernel interactions between near-neighbors at every level. (The “W-list”

and the “X-list” of classical FMMs [49] are not needed either.) The simplicity of

the algorithm makes it particularly amenable to parallel implementation on heteroge-

neous hardware architectures. After a precomputation stage which builds a tailored

representation for a given set of points, the matrix-vector product achieves high speed

on the GPU, leveraging highly-tuned batched BLAS primitives.

23

1.4.2 SlabLU: A Two-Level Sparse Direct Solver

Sparse direct solvers, for which we provided an overview in Section 1.2.2, often

rely on a nested dissection ordering to achieve competitive complexity for the cost

of factorizing and storing (1.10). The nested dissection order is often multi-level

and defined on a quad-tree or oct-tree data structure. Our approach is based on

decomposing the domain into thin “slabs” of width b, as illustrated in Figure 1.3,

instead yielding a two-level scheme.

Slab-based solvers are an alternative to multi-level nested dissection schemes

[31, 40]. Multi-level nested dissection schemes attain better asymptotic complexity,

while two-level slab based schemes can often attain higher practical performance

since they are simple to parallelize and optimize for high performance on modern

CPU/GPU architectures. A key finding of our work is that even basic optimizations

of a two-level scheme attain practical speed that compares favorably to state-of-the-

art nested dissection methods. Our slab-based scheme is also closely related to domain

decomposition (DD) methods [17, 85, 88].

I1 I3 I5 I7 I9I2 I4 I6 I8

n

b

(a) Slab decomposition for 2D mesh.

I1 I3 I5 I7 I9I2 I4 I6 I8

n

b

(b) Slab decomposition for 3D mesh.

Figure 1.3

Slab-based schemes have a two-stage structure. In the first stage, we “elimi-

nate” the even-numbered index sets by constructing sparse direct solvers that allow

us to implicitly apply the operators

A−1
22 , A

−1
44 , . . . , A

−1
2n/b.

24

We exploit the sparsity of these blocks, and also that this step is trivially paralleliz-

able.

The elimination of the even-numbered nodes are eliminated results in a linear

system with a “reduced matrix” T that encodes the interactions on the remaining slab

interfaces. In the second stage of the solver, we compute an LU factorization of the

block tridiagonal matrix T. Observe that the blocks of T are dense. However, they

typically have internal structure that can be exploited to accelerate the factorization

process. In particular, the sub-blocks of T are compressible as a ‘hierarchically block

separable’ matrices of the form (1.16) for the 2D mesh in Figure 1.3a and are recovered

using the black-box algorithm of [60]. This H-matrix structure, however, is not

expressive enough to efficiently store dense structures for the 3D mesh in Figure 1.3b,

motivating the work in Section 1.4.3.

1.4.3 Randomized Strong Recursive Skeletonization: Simultaneous Com-
pression and Factorization of H2 Matrices

As described in Sections 1.2.1 and 1.2.2, dense structured matrices often arise

in the context of PDE solvers. Techniques such as the FMM exploit mathematical

properties of the kernel function directly to enable the fast application of dense matri-

ces to vectors. The H2-matrix methodology is a reinterpretation of the FMM in linear

algebraic terms, where a matrix is tessellated into blocks in such as way that each

block is either small or of numerically low rank. This reinterpretation opened the door

to linear complexity algorithms for a wider range of algebraic operations, including

the matrix-matrix multiplication, and the construction of invertible factorizations.

Randomized Strong Recursive Skeletonization (RSRS) is an algorithm for si-

multaneously compressing and inverting an H2-matrix, given a means of applying

the matrix and its adjoint to vectors. The precise problem formulation is this: Sup-

pose that A is an H2-matrix, and that you are given a fast method for applying A

and its adjoint A∗ to vectors. We then seek to build two “test-matrices” Ω and Ψ

with the property that the H2 representation of A−1 can be constructed from the set

25

{Y,Z,Ω,Ψ}, where
Y = AΩ and Z = A∗Ψ.

RSRS is immediately applicable in a range of important environments. First,

it can be used to derive a rank-structured representation of any integral operator

for which a fast matrix-vector multiplication algorithm, such as the Fast Multipole

Method [48, 50], is available. In this context, RSRS will directly output an invertible

factorization, which is useful for the direct solver for boundary integral equations, cf.

1.2.1. Second, it can greatly simplify algebraic operations involving products of rank-

structured or sparse matrices, as they arise in the context of sparse direct solvers, cf.

1.2.2.

1.5 Contributions by Area

Area A

• The work reported in Chapter 2 contains a complexity analysis that draws on

results of mathematical physics to bound the (numerical) rank of matrices that

represent interactions between different parts of the computational domain. It

also relies on results from potential theory to execute the low rank compression

step efficiently.

• We analyzed rank structure of sparse Schur complements of the form

T11 = A11 − A11A
−1
22 A21

arising from the slab decomposition of Figure 1.3. This allows us to justify the

complexity of the algorithm in Section 3; see Appendix A.1 for this analysis.

• Randomized linear algebra plays a large role in the black-box algorithm of Chap-

ter 4. Compression schemes apply statistical and linear algebraic techniques to

estimate the error at various stages of the compression and adaptively change

26

the compression rank to meet the desired accuracy of the computed factoriza-

tion. Properties of Gaussian matrices are exploited to reconstruct matrices that

were probed through randomized sketching.

Area B

• SkelFMM, cf. Chapter 2, is a linear algebraic framework for the N-body problem

which builds on previously proposed linear algebraic Fast multipole methods

(FMMs). The novelty of skelFMM is that it operates on much simpler data

structures. In particular, it does not involve the “interaction list” of the classical

FMM and operates only on the “neighbor list” at every level. The simplicity

of the new algorithm allows for the straightforward implementation on modern

hardware.

• SlabLU, cf. Chapter 3, presents an effective sparse direct solver for a variety of

PDE discretizations. The method uses a domain decomposition into slabs, as

opposed to a multi-level nested dissection approach. The resulting algorithm

has slightly higher flop count but is far simpler to parallelize and implement on

modern architectures, as the numerical results demonstrate.

• The work of Chapter 4 is an algorithm for compressing and factorizing an im-

portant class of H-matrices, called H2 matrices with strong admissibility. These

matrices can be seen as a linear algebraic formulation of the FMM. This algo-

rithm is completely black-box in that it only relies on accessing the operator

through its action and the action of its adjoint. The algorithm is immediately

applicable to direct solvers for boundary integral equations and to sparse direct

solvers.

• Experimental results demonstrate the accuracy and scalability of each algo-

rithm. The work of Chapters 2 and 3 incorporate parallelism and implementa-

tion on GPUs with batched linear algebra.

27

Area C

• SkelFMM, cf. Chapter 2, can be used as an efficient iterative solver for exterior

scattering problems for boundary integral discretizations. We have conducted

numerical experiments for the low-frequency Helmholtz equation which demon-

strate that the method is particularly effective on 3D surfaces.

• We have conducted numerical experiments for variable-coefficient Helmholtz

problems of physical relevance to electromagnetic and acoustic scattering; this

is a large portion of the work of Chapter 3 which includes high order dis-

cretizations. We have demonstrated that the solver can attain high accuracy

for applications with strong back-scattering. In particular, we have investigated

applications to photonic crystals and resonant cavities.

• Randomized strong recursive skeletonization, cf. Chapter 4, is a black-box algo-

rithm that enables the efficient solution of boundary integral equations and the

acceleration of sparse direct solvers. We demonstrate in our numerical experi-

ments that it is effective at factorizing sparse Schur complements arising from

3D PDE discretizations.

28

Chapter 2: SkelFMM: A Simplified Fast Multipole

Method Based on Recursive Skeletonization 1

This work introduces the kernel-independent multi-level algorithm “skelFMM”

for evaluating all pairwise interactions between N points connected through a kernel

such as the fundamental solution of the Laplace or the Helmholtz equations. The

method is based on linear algebraic tools such as randomized low rank approximation

and “skeleton representations” of far-field interactions. The work is related to previ-

ously proposed linear algebraic reformulations of the fast multipole method (FMM),

but is distinguished by relying on simpler data structures. In particular, skelFMM

does not require an “interaction list”, as it relies instead on algebraically-modified

kernel interactions between near-neighbors at every level. Like other kernel inde-

pendent algorithms, it only requires evaluation of the kernel function, allowing the

methodology to easily be extended to a range of different kernels in 2D and 3D. The

simplicity of the algorithm makes it particularly amenable to parallel implementation

on heterogeneous hardware architectures.

The performance of the algorithm is demonstrated through numerical exper-

iments conducted on uniform and non-uniform point distributions in 2D and 3D,

involving Laplace and (low frequency) Helmholtz kernels. The algorithm relies on a

precomputation stage that constructs a tailored representation for a given geometry

of points. Once the precomputation has completed, the matrix-vector multiplication

attains high speed through GPU acceleration that leverages batched linear algebra.

1This work was completed in collaboration with Per-Gunnar Martinsson and Chao Chen. It has
appeared in preprint [99].

29

2.1 Introduction

We present an algorithm for evaluating a sum of the form

ui =
N∑

j=1,i ̸=j

K(xi, xj) qj, i = 1, . . . N (2.1)

where X = {xi}Ni=1 is a given set of points in R2 or R3, and where K is a given kernel

function that is associated with a standard elliptic PDE of mathematical physics. For

instance, K may be the fundamental solution of Laplace’s equation,

K(xi, xj) =

{ − 1
2π

log (∥xi − xj∥) xi ̸= xj ∈ R2

− 1
4π∥xi−xj∥ xi ̸= xj ∈ R3.

(2.2)

The task of evaluating a sum such as (2.1) arises frequently in particle simulations,

in computational chemistry, in solving boundary integral equations [48, 50, 84] using

iterative methods, and in many other contexts. It is often convenient to formulate

the summation problem (2.1) as the matrix-vector product

u = A q, (2.3)

where A is the N ×N matrix with off-diagonal entries Aij = K(xi, xj) and zeros on

the diagonal, and where u = [u1, . . . , uN] and q = [q1, . . . , qN].

The fast multipole method (FMM) is a general framework for computing (2.3)

approximately within a given tolerance ε using only O(N) operations. The method

partitions the problem domain hierarchically into subdomains of different scales and

exploit the multi-scale decomposition in the evaluation of (2.1). In particular, the

method evaluates exactly the calculation associated with adjacent subdomains at the

finest scale, and approximately evaluates the calculation between non-adjacent sub-

domains at every scale. Overall, the procedure requires O(N) operations to compute

an approximation within a given tolerance ε. The FMM has been derived for specific

kernels that appear frequently in computational physics [37, 38, 48, 51, 102], including

the Green’s function for the Helmholtz equation [22, 81, 82] which is parameterized

30

by wavenumber κ > 0 and governs the phenomena of electromagnetic and acoustic

scattering

K(xi, xj) =

{
i
4
H

(1)
0 (κ∥xi − xj∥), xi ̸= xj ∈ R2

−1
4
eiκ∥xi−xj∥

∥xi−xj∥ , xi ̸= xj ∈ R3,
(2.4)

where H
(1)
0 is the Hankel function of the first kind of order zero.

Though the FMM has been derived for a variety of kernels using analytic tech-

niques, the derivation may be tedious and difficult for an arbitrary kernel function.

Therefore, black-box algorithms have been developed, which require only the eval-

uation of a given kernel function. Such methods can be classified into two groups.

The first consists of methods that approximate the kernel function (away from the

origin) with polynomials, such as Legendre polynomials or Chebyshev polynomi-

als [20, 32, 35, 47]. The other group consists of methods that compute the so-called

equivalent densities or the so-called skeletons for every subdomain to efficiently rep-

resent the contained source points and their weights [64, 70, 101, 103]. Theoretically,

this approach is justified by the potential theory for kernel functions that are associ-

ated with fundamental solutions of elliptic PDEs.

The contributions of the work are the following:

1. The algorithm is kernel-independent and can be extended to a variety of constant-

coefficient kernels. Like other kernel-independent approaches, it replaces ana-

lytic expansions by using an equivalent set of source points (‘skeleton points’)

that replicates the effect of the original source points in the far field. This rep-

resentation is particularly effective for highly non-uniform point distributions

(as results, for instance, when discretizing a boundary integral equation on a

surface).

2. A novel description of a kernel-independent FMM that relies on simpler data

structures, compared to traditional FMM approaches. The algorithm is multi-

level, compatible with adaptive trees, and does not require the interaction list,

31

c.f. Remark 2.2. (The “W-list” and the “X-list” of classical FMMs [49] are

not needed either.) Instead, the algorithm only involves calculations between

near-neighbors at every level of the algorithm.

3. A parallel implementation of the proposed algorithm on modern architectures.

The preprocessing stage is optimized for CPU computations and parallelized

through OpenMP; the matrix-vector product is implemented using the GPU,

leveraging highly-tuned batched BLAS primitives.

2.2 Methodology

In this section, the summation problem and general methodology used for the

FMM are discussed. As a simple example, consider the points X in R2 shown in Figure

2.1. The points are partitioned in a uniform tree T , and the geometry is described by

some simple terminology. Boxes on the same level are called colleagues. Colleagues

that share a corner or edge (e.g. are adjacent) are called neighbors. Colleagues which

are not adjacent are called well-separated. For a box B, the set of neighbor boxes is

called N (B), and the far-field F(B) is the set of all well-separated boxes. The parent

P(B) of a box B is the box on the next coarsest level which contains B. Likewise, the
children C(B) of a box B are the set of boxes whose parent is B. A box B without

children is called a leaf.

Points X

Level 1 B2 B3

Level 2 B4 B5 B6 B7

Level 3 B8 B9 B10 B11 B12 B13 B14 B15

Figure 2.1: Points X partitioned into multi-level tree T . For a box B, the set of
neighbors is called N (B), and the set of well-separated boxes is called the far field
F(B). As an example N (B9) = {B8,B10} and F(B9) = {B10, . . . ,B15}.

32

Consider the partitioning of points on level 3 into n3 = 8 boxes of m := N/n3 points.

The kernel matrix A has the following property for index sets IBi
, IBj

corresponding

to well-separated boxes

ABi,Bj

m×m

= LBi

m×k

ÃBi,Bj

k×k

RBj

k×m

+O(ϵ), Bi,Bj well-separated. (2.5)

That is, the interaction between a box Bi and its far field F(Bi) is low rank to

accuracy ϵ. In particular, the numerical rank kmax is k ∼ O(log(1/ϵ)), independent
of the problem size N , for a smooth non-oscillatory kernel such as the the free-

space Green’s function for the Laplace equation (2.2) in 2D (see, e.g., [48]). For

non-oscillatory kernels on 3D point distributions, the numerical rank kmax is also

independent of N but has slower decay with ϵ, in particular, k ∼ O(log(1/ϵ)2). The
low-rank property may deteriorate for oscillatory kernels. In particular, for a box of

diameter D, the numerical rank is O(κD); however, for fixed κ and increasing N , the

rank is still independent of N , and the techniques described in this work apply.

full rank
low rank

Figure 2.2: The structure of A corresponding to geometry in Figure 2.1 for the boxes
on level 3. Interactions between neighbors are full rank. Interactions between a box
and its far field are approximately rank kmax.

The next subsections describe how the structure (2.5) can be used to construct

a sparse factorization of A. First, Section 2.2.1 describes a process known as skele-

tonization, where a set of source points in box B is replaced with an equivalent set

of source points that replicates the effect in the far field of B. Skeletonization can

be applied to all boxes on a single level, leading to a sparse factorization of A, which

is discussed in Section 2.2.2. Finally, Section 2.2.3 discuss how this process can be

applied recursively on a tree T to produce a multi-level algorithm that involves only

near-neighbor calculations. The key differences between our approach and traditional

FMM algorithms are highlighted as well.

33

2.2.1 Skeletonization of a single box

Consider a box B with near neighbors N and far-field F . For an appropriate

permutation matrix P, we write A as

P⊤AP =

ABB ABN ABF
AN B AN N AN F
AF B AF N AF F

 . (2.6)

The observation is that the off-diagonal block ABF (or AF B) for an arbitrary box

B can be approximated efficiently by a low-rank approximation for a prescribed ac-

curacy ε. Next, a specific type of low-rank approximation named the interpolative

decomposition (ID) [21] is explained. This technique is applied to the submatrix ABF .

Definition 2.1. Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} be the row and column

indices of a matrix AI J ∈ Cm×n. A (column) interpolative decomposition (ID) for

a prescribed accuracy ε finds the so-called skeleton indices S ⊂ J , the redundant

indices R = J \S, and an interpolation matrix T ∈ C|S|×|R| such that

∥AI R − AI S T∥ ≤ ε ∥AI J ∥.

While the strong rank-revealing QR factorization of Gu and Eisenstat [52] is

the most robust method for computing an ID, this work employs the column-pivoting

QR factorization as a greedy approach [21], which has better computational efficiency

and behaves well in practice. The cost to compute an ID using the aforementioned

deterministic methods is O(mn |S|), which can be further reduced to O(mn log(|S|)+
|S|2n) using randomized algorithms that may incur some loss of accuracy [27].

As stated earlier, the aim is to compress the two off-diagonal blocks ABF and

AF B using their IDs. Instead of compressing each block independently, it is more

convenient to conduct column ID compression of the concatenation,(
AF B
A∗

BF

)
=

(
AF R AF S
A∗

RF A∗
S F

)
≈
(
AF S
A∗

S F

)(
T I

)
(2.7)

34

IB = IR ∪ IS

Xproxy

IF

Figure 2.3: For a box B, skeleton indices IS ⊆ IB (shown in red) can be computed
efficiently using a proxy surface Xproxy, which are fictitious points replicating the effect
of the far-field points IF . In our implementation of proxy surfaces, we use Chebyshev
points on a box of length 3a centered at c, where a and c are the length and center
of box B, respectively.

which leads to a slightly larger set of skeleton indices but makes the implementation

easier. Notice that the computational cost would be O(N) if the full matrix in (2.7) is

formed, which turns out to be unnecessary. In the literature, there are a few techniques

that require only O(1) operations such as the (analytical) multipole expansion (see,

e.g., [22, 48, 50]), the Chebyshev interpolation (see, e.g., [35, 92]), and the proxy

method (see, e.g., [57, 69, 100, 101]). This work uses on the proxy method, which

introduces points Xproxy which replicate the effect of far-field points IF [68, Sec. 17.1].

Instead of using the matrix in equation (2.7), smaller matrix with O(1) rows and

columns is formed and compressed(
Aproxy,B
A∗

B,proxy

)
, where (Aproxy,B)i,j = K

(
(Xproxy)i , (XB)j

)
. (2.8)

With the appropriate choice of proxy surface, the matrix Aproxy,B spans the row

space of AF ,B, and likewise, AB,proxy spans the column space of AB,F for any point

distribution in the far-field. Therefore, the indices IB = IR ∪ IS and interpolative

matrix T computed by forming and factorizing the matrix (2.8) will satisfy (2.7).

Figure 2.3 shows a proxy surface Xproxy for a box B as well as the chosen skeleton

indices IS ⊆ IB.

35

2.2.2 Matrix Sparsification

In this subsection, the discussion centers on sparse algebraic operators that,

when applied to the dense kernel matrix A, lead to a sparser system. For a box B,
the ID compression of 2.8 gives skeleton indices IS , redundant indices IR = IB \ IS ,
and an interpolation matrix T such that (2.7) holds. For an appropriate permutation

matrix P, rewrite (2.6) as

P⊤AP =


ARR ARS ARN ARF
AS R AS S AS N AS F
AN R AN S AN N AN F
AF R AF S AF N AF F

 (2.9)

(2.7)≈


ARR ARS ARN T∗AS F
AS R AS S AS N AS F
AN R AN S AN N AN F
AF ST AF S AF N AF F

 , (2.10)

Define the sparsification operators

RN×N ∋ SB ≜


I
T I

I
I

 (2.11)

where the partitioning of row and column indices is the same as that of P⊤AP and

the diagonal blocks are identity matrices of appropriate sizes.

Remark 2.1. The inverse of a sparsification operator SB is simple to compute.

RN×N ∋ S−1
B =


I
−T I

I
I

 (2.12)

Applying sparsification operators to the right and left of A, the modified sys-

tem is

S−∗
B
(
P⊤AP

)
S−1
B ≈


XRR XRS XRN
XS R AS S AS N AS F
XN R AN S AN N AN F

AF S AF N AF F

 , (2.13)

36

where the coupling (submatrices) between R and F disappears. Here, the notation X

denotes a modified block. Notice that the process of skeletonizing box B only modifies

rows and columns of indices IR ⊂ IB. This means all boxes (at the same level) can

be skeletonized in parallel.

Consider two boxes Bi and Bj on the same level of tree T . Then applying

sparsification operators on the left and right of A, the resulting matrix X is much

sparser

X := S−∗
Bj

S−∗
Bi

(
P⊤AP

)
S−1
Bi

S−1
Bj
. (2.14)

The following is true about X:

1. The interaction between RBi
and the far field of box Bi, denoted as FBi

, is

approximately zero. The same is true of the interaction between RBj
and the

far field of box Bj.

2. If the two boxes Bi and Bj are not neighbors, applying sparsification operators

does not modify the original interaction, i.e. XBi,Bj
= ABi,Bj

.

3. If the two boxes Bi and Bj are neighbors or if Bi = Bj, XBi,Bj
will have modified

interactions, defined as follows:

XRi Sj
= ARi Sj

− T∗
iASi Sj

XSi Rj
= ASi Rj

− ASi Sj
Tj

XRi Rj
= ARi Rj

− T∗
iASi Rj

− ARi Sj
Tj + T∗

iASi Sj
Tj

(2.15)

4. Unconditionally, the interactions between skeleton nodes of boxes Si,Sj are not
modified, i.e. XSi,Sj

= ASi,Sj
.

As mentioned, the sparsification operators can be computed and applied for a single

level in parallel. It is straightforward to verify that the composition of operators SB

37

for boxes B on leaf level ℓ of tree T has the following form

RN×N ∋ S(ℓ) ≜ SB1 SB2 . . .SBnℓ
=



I
T1 I

I
T2 I

. . .

I
Tnℓ

I


, (2.16)

where Ti is the interpolation matrix, Si defined in (2.11) is the sparsification operator

associated with every box B, and nℓ is the number of boxes on level ℓ. Define the

index set I(ℓ) as the set of of all skeleton indices from boxes B on level ℓ

I(ℓ) ≜
nℓ⋃
i=1

SBi
, (2.17)

and I(ℓ) as the sparse matrix which selects the index set I(ℓ)

Rnlk×N ∋ I(ℓ) ≜


I

I
. . .

I

 . (2.18)

Following the claims made earlier in this section, applying sparsification oper-

ator S(ℓ) to A does not modify the submatrix A(ℓ),(ℓ). Then applying S(ℓ) to the left

and right of A, the resulting sparse system is

S−∗
(ℓ)

N×N

(
P⊤ A P

)
N×N

S−1
(ℓ)

N×N

≜ X(ℓ)
N×N

(2.19)

≜ [X(ℓ)]mod
N×N

+ I∗(ℓ)
N×nℓk

A(ℓ),(ℓ)
nℓk×nℓk

I(ℓ)
nℓk×N

, (2.20)

where [X(ℓ)]mod has algebraically modified kernel interactions. The interactions be-

tween near neighbors are modified, as described in equation (2.15). Crucially, in-

teractions between S(l) are not modified and appear as the second term in the sum

(2.20). Applying the inverse of S(ℓ) to the left and right of equation (2.20), the

resulting sparse factorization of A has the following form

P⊤ A P = S∗
(ℓ)

(
[X(ℓ)]mod + I∗(ℓ) A(ℓ),(ℓ) I(ℓ)

)
S(ℓ). (2.21)

38

2.2.3 Multi-Level Algorithm for a Simple Geometry

Using the operators defined in previous sections, this section generalizes to

a multi-level algorithm to compute the matrix-vector product (2.3). Consider the

simple geometry in Figure 2.1 on a uniform tree T with n3 = 8 boxes on Level 3. As

discussed previously, the low-rank property in equation (2.5) holds for well-separated

boxes on the same level. Using the skeletonization process described in Section 2.2.1,

ABi,Bj
=

(
ARi,Rj

ARi,Sj

ASi,Rj
ASi,Sj

)
≈
(
T∗

i

I

)
ASi,Sj

(
Tj I

)
(2.22)

where Bi,Bj are well-separated colleagues. Equivalently,

ABi,Bj
≈
(
I T∗

i

I

)(
ASi,Sj

)(
I
Tj I

)
(2.23)

For colleagues Bi,Bj which are neighbors, one can write a similar form of decompo-

sition with modified interactions

ABi,Bj
=

(
I T∗

i

I

)(
XRi,Rj

XRi,Sj

XSi,Rj
ASi,Sj

)(
I
Tj I

)
(2.24)

where the modified interactions have the form described in equation (2.15). Note

that (2.24) is exact equality. Using the sparsification operator S(3) defined in (2.16),

A has the sparse factorization

P⊤ A P = S∗
(3)

(
[X(3)]mod + I∗(3) A(3),(3) I(3)

)
S(3) (2.25)

Figure 2.4 depicts the sparsity pattern of each matrix. Importantly, the matrix A(3),(3)

is a dense kernel matrix of interactions between a smaller set of points X(3). These

points can be partitioned according the tree decomposition on level 2, and a recursive

approach can be applied to calculate a sparse factorization of A(3),(3).

Remark 2.2. This brief remark highlights the difference between the approach in

this work and previous algorithms [58, 70]. Consider again the simple geometry of

Figure 2.1. For the boxes on level 3, the matrix A written as a sum of near and far

interactions on level 3 as

A = Anear + Afar, (2.26)

39

A

=

S(3)
∗ X(3) S(3)

(a) A sparse factorization of A using sparsification operators S(3).

A

=

S∗
(3) [X(3)]mod

+ I∗(3) I(3)

A(3),(3)
S(3)

(b) The matrix X(3) is a sum of modified near neighbor interactions [X(3)]mod
and unmodified

interactions between the skeleton indices I(3).

Figure 2.4: In our approach, we apply operators to all of the matrix A, as shown in
Figure 2.4a. The operators S(3) algebraically modify the kernel interactions between
near neighbors, shown in dark gray, but do not modify kernel interactions between
skeleton indices I(3). Figure 2.4b shows that the matrix X(3) can be separated into
a sparse matrix of modified interactions and a dense matrix of unmodified kernel
interactions A(3),(3). A multi-level algorithm is derived by coarsening the matrix
A(3),(3) into 4 blocks, as shown in level 2 of tree T , of Figure 2.1. This leads to
a multi-level algorithm involving only modified near neighbor interactions at every
level.

where Anear = tridiag(A). Using (2.22), Afar can be factorized using a sparsification

operator of the following form

Rn3k×N ∋


T1 I

T2 I
. . .

Tn3 I

 =
(
I(3)S(3)

)
(2.27)

The resulting factorization of Afar has the following form

Afar
N×N

=
(
I(3)S(3)

)∗
N×n3k

Ã
n3k×n3k

(
I(3)S(3)

)
n3k×N

(2.28)

where Ã = A(3),(3) − tridiag
(
A(3),(3)

)
consists of sub-blocks of original kernel interac-

tions of A.

40

A

=

Anear

+

(
I(3)S(3)

)∗
Ã

(
I(3)S(3)

)
(a) Sparsity pattern of A = Anear+Afar, where Afar is factorized using sparsification operator(
I(3)S(3)

)
. Note that Ã consists of sub-blocks of original kernel interactions of A.

Ã

=

Ãinteraction

+

Ãfar

(b) Sparsity pattern of Ã = Ãinteraction + Ãfar.

Figure 2.5: Previous approaches for the FMM separate the matrix A into near and far
interactions and factorize only the far-field interactions, as shown in Figure 2.5a. The
approach can be applied recursively to Ã, leading to the interaction list in Ãinteraction,
shown in Figure 2.5b. For the simple geometry of Figure 2.1, the interaction list for a
box B is of size at most 3; generally, interaction list is much larger for uniform point
distributions in a square (at most size 27) or in a cube (at most size 189).

See Figure 2.5a for the sparsity pattern of Ã. In order to use a similar approach

recursively for Ã, the matrix is coarsened into 4 × 4 blocks according to the tree

decomposition on level 2. However, the structure of Ã is significantly different from

the fully-dense matrix A. Instead, Ã can be expressed as a sum

Ã = Ãinteraction + Ãfar, (2.29)

where the sparsity pattern is shown in Figure 2.5b.

The matrix Ãinteraction has the so-called interaction list, which involves non-

zero blocks between the skeleton indices ASi,Sj
of level 3 colleagues Bi,Bj where the

following conditions are met (1) the parents of Bi and Bj are neighbors and (2) boxes

Bi and Bj are not neighbors. In 2D, the interaction list for a box B has size 27 for

a fully populated tree, and in 3D, it has size 189. The interaction list for B contains

only well-separated boxes and may be challenging to manipulate. For traditional

41

FMMs, additional data structures (e.g. W-list and X-list) are needed for adaptive

trees. These lists, like the interaction list, require additional bookkeeping and make

the FMM difficult to implement.

The decomposition presented in this work instead operates on much simpler

data structures, requiring only the list of neighbor boxes. Additionally, the extension

to adaptive trees is simple and does not involve much additional machinery beyond

what has already been described.

2.3 Algorithm

This section describes the algorithm for adaptive quad-trees and oct-trees,

which extend the proposed methodology to non-uniform point distributions. While

Section 2.2 describes a sparse factorization of A, this section instead uses matrix-

free notation which is more amenable to parallel implementation. Additionally, the

implementation of the pre-computation stage (on the CPU with OpenMP [23]) and

the FMM apply (on the GPU with batched linear algebra [1, 28]) are discussed.

2.3.1 Adaptive tree data structure

The FMM relies on a hierarchical decomposition of the points X = {xi}Ni=1 into

an adaptive quad-tree or oct-tree. Much of the terminology is the same as discussed

earlier for the simple geometry in Figure 2.1 which is defined on a uniform tree. An

adaptive tree can be formed using a recursive approach. First, the root box B0 which
contains all the points is defined. A parameter b is also defined, for the maximum

number of points a box may have. Then B0 is split into 4 (or 8 for 3D) subdomains.

Any box which is empty is pruned from the tree, and only boxes containing more

than b points are subdivided recursively. The top-down construction produces a tree

which is unbalanced. There may be adjacent leaf boxes that vary tremendously in

their size, leading to a possibly unbounded number of near neighbors for a large box

adjacent to very refined box. To limit the number of interactions, adaptive trees are

42

constrained to satisfy a 2:1 balance constraint, that is, adjacent leaf boxes must be

within one level of each other. Given an unbalanced tree, additional leaves may be

added in a sequential procedure that produces a balanced tree; as described in [64],

this requires O(nboxes log nboxes), where nboxes are the number of total boxes in the

tree.

The near-field of box B of length a and center c contains points within an

area defined by a box of length 3a centered at c. For uniform trees, the near-field

IN (B) only has adjacent colleagues of B, that is boxes on the same level as B which

share a point or an edge. For adaptive trees, the near-field IN (B) may contain a coarse

neighbor on a level above. For box B to have a coarse neighbor B′, the parent P(B)
must be adjacent colleagues with B′, and B′ must be a leaf. Figure 2.6 shows a box

B whose near-field IN includes a coarse neighbor. For T a perfect quad-tree, it is

obvious that no box has more than 9 neighbor boxes (including itself). For T an

adaptive quad-tree, the number of boxes in the near-field is bounded as well by 9.

For 3D point distributions, T is a uniform or adaptive oct-tree, and the number of

neighbor boxes is bounded by 27.

2.3.2 Build stage

As described in Section 2.2.1, each leaf box B can be skeletonized into redun-

dant and skeleton indices IB = IR ∪ IS so that equation (2.7) holds. The skeleton

nodes IS and interpolation matrix TB can be efficiently computed using proxy sur-

faces by performing the column ID on the matrix in equation (2.8). After the skeleton

nodes are computed for leaf boxes, skeleton indices are computed for the remaining

tree boxes (i.e. boxes with children) by traversing the tree upwards. For tree boxes

B, the nodes IB are set to be the union of skeleton indices of C(B).

43

IB

IN

IF

far box

neighbor box

Figure 2.6: The figure shows the leaf boxes of an adaptive quadtree for a non-uniform
distribution of points. The tree is adaptive, with reasonable restrictions on the adap-
tivity (e.g. adjacent leaf boxes are within one level of each other). For box B with
corresponding index set IB, we also show neighbor boxes in green and far boxes in
gray. The corresponding index sets for points in the near field and far-field are IN
and IF , respectively. For adaptive trees, a neighbor box of B may be on the level
above; we call this a coarse neighbor.

Algorithm 1 Recursive skeletonization

Input: Kernel function K and tree decomposition T of points X .
Output: Indices IB = IS ∪ IR and interpolation matrix TB for each box B.

1: for ℓ = L,L− 1, . . . , 1 do
2: for all boxes B at level ℓ do // in parallel
3: if box B is a leaf then
4: Set IB according to tree decomposition T .
5: else
6: Accumulate IB from children as

IB :=
⋃

B′∈C(B)

ISB′ .

7: Compute IB = IR ∪ IS and TB using column ID of matrix (2.8).

44

2.3.3 FMM apply

Sections 2.2.2 and 2.2.3 describe a sparse factorization for the finest level of a

uniform tree and also described how the algorithm may be generalized for a multi-

level approach. This section defines a matrix-free algorithm and discuss modifications

needed for adaptive trees. To describe the algorithm succinctly, some notation from

potential theory is introduced. Consider that charges qB are given at sources for box

B and that the aim is to compute potentials uB at targets for box B, through equation

(2.3).

Terminology for the outgoing representation q̂B and the incoming represen-

tation ûB are also introduced. The skeleton nodes of an outgoing representation q̂B

replicate, to accuracy ε, the effect of qB at targets in the far field. Similarly, the

skeleton nodes of an incoming representation of potentials ûB are the [approximate]

potential at skeleton points XSB due to all sources qF in the far field. Translation

operators are used to convert one representation to another. For example, the transla-

tion operator X(ifo)
B,B′ converts an outgoing representation q̂B′ in box B′ to an incoming

representation ûB in box B. Table 2.1 describes translation operators X(ifo)
B,B′ ,X

(tfo)
B,L ,

and X(ofs)
L,B and summarizes the terminology used to describe the algorithm.

qB charges at sources XB (given)
uB potentials at targets XB

q̂B outgoing representation for box B
ûB incoming representation for box B

X(ifo)
B,B′ translation operator ûB ← q̂B′

X(ifs)
B,L translation operator ûB ← qL

X(tfo)
L,B translation operator uL ← q̂B

Table 2.1: Notation used to describe the FMM apply. B is a box in the tree (may be
a leaf or not), and L is specifically a leaf box.

The translation operator X(ifo)
B,B′ has the form

X(ifo)
B,B′ ≜

(
XRB,RB′ XRB,SB′

XSB,RB′ 0

)
, (2.30)

45

where

XRB RB′ = ARB RB′ − T∗
BASB RB′ − ARB SB′TB′ + T∗

BASB SB′TB′

XRB SB′ = ARB SB′ − T∗
BASB SB′ XSB RB′ = ASB RB′ − ASB SB′TB′

(2.31)

The translation operator X(ifs)
B,L has the form

X(ifs)
B,L ≜

(
XRB,L
0

)
, where XRB,L = ARB,L − T∗

BASB ,L (2.32)

Finally, X(tfo)
L,B has the form

X(tfo)
L,B ≜

(
XL,RB 0

)
, where XL,RB = AL,RB − AL,SBTB. (2.33)

Briefly, the algorithm for the simplified FMM is presented. The procedure is

summarized in Algorithm 2. Note that the operators TB are computed using the

precomputation phase in Algorithm 1 and that translation operators are computed

during runtime. First, outgoing representations for the leaf boxes are computed(
q̂R
q̂S

)
:=

(
I
TL I

)(
qR
qS

)
, for leaf boxes L. (2.34)

In an upwards pass through the tree, outgoing representations q̂B are computed for

all boxes of the tree. For a box with children, this procedure requires accumulating

values from the skeleton indices q̂SC
for C ∈ C(B) and applying a operator of the same

form as in (2.34).

Then, the incoming expansion ûB for every box B is computed by accumulating

values from the neighbors of B using translation operators. In particular,

ûB =
∑

colleague
neighbor B′

X(ifo)
B,B′q̂B′ +

∑
coarse

neighbor L

X(ifs)
B,LqL, for all boxes B, (2.35)

where B is included as a colleague neighbor to itself. Recall that a coarse neighbor

must necessarily be a leaf box, so it is called L. For the boxes on level 2 of the tree,

46

additional values are accumulated; the skeleton indices S(2) interact densely through

kernel interactions:

ûSB +=
∑

box B′
on level 2

ASB,S′
B
q̂S′

B
, for boxes B on level 2. (2.36)

In a downward pass through the tree, incoming representations ûB are com-

puted for every box B. For box with children, this procedure requires doing linear al-

gebraic operations with T∗
B and copying values ûB appropriately to children C ∈ C(B).

For a leaf boxes L, uL is computed using

uL =

(
uR
uS

)
:=

(
I T∗

L
I

)(
ûR
ûS

)
, for leaf boxes L. (2.37)

For boxes B with coarse neighbor L, contributions are added to uL as

uL +=
∑

boxes B with
coarse neighbor L

X(tfo)
L,B ûB, for leaf boxes L. (2.38)

2.3.4 Parallel Implementation

In this section, the efficient parallel implementations of Algorithm 1 for the

precomputation and Algorithm 2 for evaluating (2.3) are discussed. In the precom-

putation phase, the calculation of the skeleton indices and interpolation matrix TB

can be done in parallel for all boxes on a level ℓ. The rank kmax is chosen adaptively

for each box according to a prescribed user tolerance. Because of the adaptivity, this

calculation is most fittingly done on the CPU with OpenMP.

In the apply stage, various parallel loops are indicated in Algorithm 2. The nu-

merical results demonstrate the performance of a GPU implementation. To facilitate

this implementation, we made a small number of modifications to the pseudocode in

the algorithm.

First, each short vector qB, q̂B, . . . is padded with zeros so they are all of the

same length. The matrices TB are stored as tensor of size nboxes×kmax×b, where kmax is

47

the maximum skeleton rank and b is the leaf size of the tree decomposition. Then the

computation becomes fairly regular in nature, despite operating on an adaptive tree

data structure. Second, we noticed that much of the computation can be expressed

as matrix-matrix multiplication. For instance,

X(ifo)
B,B′ = AB,B′ −

(
0 T∗

B
)
ASB,B′ − AB,S′

B

(
0
TB′

)
−
(
0 0
0 ASB,SB′

)
(2.39)

Additionally, the pairwise distance calculation needed for evaluating sub-blocks of

A can be expressed using matrix-matrix multiplication, and vectorized CUDA [78]

implementations of many mathematical functions are available in Python packages.

The simplicity of the algorithm, as well as the ability to express the algorithm using

BLAS primitives [30], lends itself well to the implementation of Algorithm 2 on the

GPU. To achieve good parallel performance, the implementation uses batched linear

algebra libraries (e.g. batched BLAS). Batched BLAS performs linear algebraic oper-

ations on many small matrices by grouping them together and processing them in a

single routine, to achieve effective parallelism with minimal overhead. The library is

highly tuned for a variety of sub-task sizes, and the parallel load balancing is handled

automatically.

The skeleton indices and interpolation matrices are loaded into the memory

of the GPU prior to executing Algorithm 2. Depending on the amount of memory

remaining on the GPU, a number of translation operators are formed, leveraging

batched matrix-matrix multiplication as in (2.39). Then, these operators are multi-

plied by relevant short vectors (e.g. q̂B for translation operator X(ifo)), and the result

is accumulated into short vectors (i.e. ûB corresponding to the previous example).

Then, the translation operators are discarded. They are fast to generate again as

needed for subsequent evaluations of Algorithm 2 because of the efficiency of batched

BLAS and hardware acceleration features. This approach works well for problems

of modest size up to N = 8M, but modified approaches will be required to scale to

larger problem sizes, especially for high accuracy in 3D. The interpolation matrices

TB require more memory because the rank is higher in 3D for fine user tolerances ϵ.

48

Algorithm 2 FMM apply

Input: q ∈ CN . For each box B, indices IB = IS ∪ IR, and matrix TB.
Output: u = Aq.

1: for all boxes B do
2: Set q̂B := 0 and ûB := 0.

3: for ℓ = L,L− 1, . . . , 2 do // upward pass
4: for all box B at level ℓ do // in parallel
5: if box B is a leaf then
6: Set q̂B = qB.
7: else
8: Accumulate q̂B from skeleton indices of children q̂SC

for C ∈ C(B).
9: Set (

q̂R
q̂S

)
:=

(
I
TB I

)(
q̂R
q̂S

)
10: for all box B with colleague neighbor B′ (including B) do // in parallel
11: Evaluate

ûB += X(ifo)
B,B′q̂B′

12: for all box B with coarse neighbor L do // in parallel
13: Evaluate

ûB += X(ifs)
B,LqL

14: for all box B on level 2 do
15: Evaluate

ûSB +=
∑

B′ on level 2

ASBS′
B
q̂S′

B
.

16: for ℓ = 2, . . . , L do // downward pass
17: for all box B at level ℓ do // in parallel
18: Set (

ûR
ûS

)
:=

(
I T∗

B
I

)(
ûR
ûS

)
19: if box B is a leaf then
20: Set uB = ûB.
21: else
22: Copy values ûB to skeleton indices of children ûSC for C ∈ C(B).
23: for all box B with coarse neighbor L do // in parallel
24: Evaluate

uL += X(tfo)
L,B q̂B

49

2.4 Complexity analysis

In this section, the computational complexity and storage costs of Algorithms

1 and 2 are analyzed. Assume that the point distribution of N particles is partitioned

into a tree with at most b points in the leaf boxes and that the numerical rank from

ID compression is a constant kmax. Let nboxes be the total number of boxes in the tree

and nneigh be the maximum number of near-neighbor boxes. The quantity nboxes is a

function of other problem parameters and depends on the dimension of points in X :

nboxes = ctree
N

b
, (2.40)

where ctree =
4
3
for a uniform quad-tree and ctree =

8
7
for a uniform oct-tree. Likewise,

Nneigh also depends on the geometry of points in X ; for instance, Nneigh = 9 for a

uniform quad-tree and Nneigh = 27 for a uniform oct-tree. Let tkernel and tflop be

constants for the time needed for one kernel evaluation and one linear algebraic flop,

respectively.

Precomputation Costs: For each box, we evaluate the kernel interactions between

indices IB and proxy surface Xproxy then compute the column ID. Assuming the

accumulated skeleton indices have size at most b and the proxy surface has at most

b points, then the total cost is

Tskel = nboxes

(
b2 tkernel + b2 kmax tflop

)
= ctree (b tkernel + b kmax tflop)N (2.41)

The memory cost of storing the interpolation operator TB for each box is

Mproj = nboxes b kmax = ctree kmax N (2.42)

Algorithm Apply: For each box, the translation operators are evaluated for at most

nneigh neighbors. Each translation operator requires evaluating a kernel matrix AB,B′

for a sub-matrix of size b × b, then applying interpolation matrices on the left and

50

right, requiring at most 2 k2max b flops. Finally, evaluating the matrix vector product

requires b2 flops. Then the total cost is

Tapply = nboxes nneigh

(
b2 tkernel + 2k2max b tflop + b2tflop

)
= ctree nneigh

(
b tkernel + 2 k2max b tflop + b tflop

)
N

:= Tkernel + Tmod + Tmv,

(2.43)

where the terms in the last line break down the total apply time Tapply in terms of

various operations; Tkernel is the total time for kernel evaluation, Tmod for the total time

for modifying near-neighbor interactions, Tmv is the total time to multiply modified

operators by vectors.

Note that Tmod has a potentially large pre-factor of 2 k2max b. Despite this cost,

leveraging BLAS primitives in the implementation makes the wall-clock time fairly

small. In Table 2.2, we report a break-down of the wall-clock time for a non-uniform

distribution of points on the unit sphere for Laplace and Helmholtz kernels for various

leaf sizes b and maximum skeleton rank kmax.

N b kmax Tkernel Tmod Tmv Tapply

120 22 0.61 s 0.23 s 0.03 s 0.88 s
1 M 160 48 1.20 s 0.58 s 0.06 s 2.80 s

400 110 2.44 s 1.41 s 0.11 s 3.97 s

(a) 3D Laplace kernel (2.2)

N b kmax Tkernel Tmod Tmv Tapply

120 34 1.27 s 0.59 s 0.06 s 1.93 s
1 M 220 70 3.07 s 1.66 s 0.14 s 4.90 s

750 138 7.48 s 5.04 s 0.30 s 12.84 s

(b) 3D Helmholtz kernel (2.4) with κ = 20

Table 2.2: Tables 2.2a and 2.2b report the timing breakdown for Tapply for a random
distribution of points on the unit sphere for kernel functions (2.2) and (2.4), using
a variety of parameters for the leaf size b and the maximum skeleton rank kmax.
Although Tmod has a large constant pre-factor, the modifications are implemented
using matrix-matrix multiply, which is particularly efficient on the GPU. In all the
cases reported, Tkernel is the dominant cost of the total apply time Tapply.

51

2.5 Numerical results

In this section, the performance of a parallel implementation is demonstrated

for a variety of uniform and non-uniform point distributions in 2D and 3D. The

FMM is described on an adaptive tree T which satisfies the 2:1 balance constraint, as

described in Section 2.3.1. To produce T , an unbalanced adaptive tree is created with

at most b points in the leaf boxes. Then, the tree is balanced by adding additional

leaf nodes in a sequential algorithm; geometric look-ups are efficiently implemented

using Morton codes. The time to partition and balance the tree is reported as Ttree.

Before the FMM is applied, some precomputation is necessary to compute the

skeleton indices for each box B and the interpolation matrix TB which satisfies equa-

tion (2.7). The procedure is described in Algorithm 1. At each level of the tree, the

relevant information is computed for each box embarrassingly in parallel on the CPU

using OpenMP. The skeleton rank k for each box is computed adaptively according

to provided user tolerance. In the numerical results, we report the maximum skele-

ton rank kmax. The time required for Algorithm 1 is reported as Tskel. The memory

required to store TB for all boxes is reported as Mproj.

N number of points
b leaf size of tree

kmax maximum skeleton rank
Ttree time to partition and balance tree
Tskel time for Algorithm 1
Mproj memory needed for TB for all boxes
Tapply time for Algorithm 2
relerr relative maximum error (on a subset of points)

Table 2.3: Notation for reported numerical results.

To apply the FMM with GPU acceleration using Algorithm 2, the matrices

TB are first moved to the GPU for storage. The modifications needed for efficient

GPU implementation using batched linear algebra are described in Section 2.3.4. Be-

cause the translation operators would require significant memory to store, we instead

52

2 4 6 8
N (M)

2

4

6
T

ap
p

ly
(s

)

2D Uniform Distribution in Square
Laplace equation

2e-09

2e-06

2e-03

(a) 2D Laplace kernel (2.2)

2 4 6 8
N (M)

5

10

T
ap

p
ly

(s
)

2D Uniform Distribution in Square
Helmholtz equation κ = 100

2e-09

2e-06

2e-03

(b) 2D Helmholtz kernel (2.4) with κ = 100

N b kmax Ttree Tskel Mproj Tapply relerr

8 1.9 s 3.4 s 0.1 GB 0.30 s 3.23e-03
1 M 120 16 1.8 s 3.5 s 0.3 GB 0.31 s 1.91e-06

29 1.8 s 3.6 s 0.6 GB 0.37 s 1.82e-09

8 27.4 s 33.3 s 1.8 GB 3.38 s 3.05e-03
8 M 120 16 27.4 s 31.8 s 3.6 GB 6.34 s 1.51e-06

29 27.4 s 33.1 s 6.5 GB 5.98 s 1.79e-09

(c) 2D Laplace kernel (2.2)

N b kmax Ttree Tskel Mproj Tapply relerr

120 49 1.8 s 7.0 s 2.1 GB 0.64 s 1.45e-03
1 M 140 59 1.8 s 10.4 s 3.2 GB 1.08 s 1.23e-06

180 68 1.8 s 14.4 s 4.6 GB 1.19 s 1.40e-09

120 49 27.4 s 47.6 s 22.2 GB 7.96 s 1.50e-03
8 M 140 60 24.9 s 51.5 s 15.2 GB 7.31 s 3.33e-06

180 69 20.5 s 71.1 s 18.5 GB 10.46 s 1.35e-09

(d) 2D Helmholtz kernel (2.4) with κ = 100

Figure 2.7: The performance on a random distribution of points in the unit square
is demonstrated. Figure 2.7a reports Tapply for kernel (2.2) with additional data
reported in Table 2.7c. Similarly, Figure 2.7b and Table 2.7d report results for kernel
(2.4) with κ = 100. In the pre-computation stage, skeleton indices and operators TB
are computed adaptively to provided user tolerance; this is done in parallel on the
CPU with OpenMP. Then, the relevant operators TB are stored on the GPU, and the
FMM is evaluated rapidly using batched BLAS primitives and specialized hardware
accelerations on the GPU.

generate the operators at run-time, evaluate them, store the accumulated results in

vectors q̂B, ûB,uB, then discard the translation operators. Though this procedure

53

2 4 6 8
N (M)

2

4

6

T
ap

p
ly

(s
)

2D Nonuniform Distribution
Laplace equation

2e-09

2e-06

2e-03

(a) 2D Laplace kernel (2.2)

2 4 6 8
N (M)

5

10

T
ap

p
ly

(s
)

2D Nonuniform Distribution
Helmholtz equation κ = 100

2e-09

2e-06

2e-03

(b) 2D Helmholtz kernel (2.4) with κ = 100

N b kmax Ttree Tskel Mproj Tapply relerr

13 4.3 s 3.4 s 0.3 GB 0.44 s 8.58e-04
1 M 120 25 4.4 s 3.7 s 0.5 GB 0.47 s 1.69e-06

36 4.3 s 4.6 s 0.8 GB 0.59 s 1.43e-09

14 50.2 s 34.7 s 3.3 GB 3.62 s 2.61e-03
8 M 120 25 50.0 s 33.3 s 5.9 GB 6.54 s 9.14e-06

37 50.1 s 35.3 s 10.5 GB 5.65 s 3.17e-09

(c) 2D Laplace kernel (2.2)

N b kmax Ttree Tskel Mproj Tapply relerr

150 89 3.4 s 7.8 s 4.7 GB 1.62 s 1.07e-03
1 M 190 103 3.4 s 11.1 s 6.6 GB 1.79 s 1.92e-06

200 115 3.6 s 15.7 s 8.6 GB 2.23 s 1.66e-09

150 90 47.8 s 41.9 s 32.9 GB 9.20 s 2.02e-03
8 M 190 103 46.3 s 53.6 s 28.2 GB 10.78 s 2.80e-06

200 115 46.3 s 77.3 s 36.1 GB 12.07 s 6.71e-09

(d) 2D Helmholtz kernel (2.4) with κ = 100

Figure 2.8: The performance of the method for the non-uniform 2D geometry shown in
Figure 2.6 is demonstrated. Figure 2.8a reports Tapply for kernel (2.2) with additional
data reported in Table 2.8c. Similarly, Figure 2.8b and Table 2.8d report results for
kernel (2.4) with κ = 100. Though the algorithm operates on an adaptive tree, the
computation is made to be fairly uniform and executed efficiently on the GPU.

seems wasteful, it is instead very efficient. The translation operators are very small

b × b matrices, and it is more efficient to generate them on the fly (using batched

BLAS primitives), then to retrieve them from memory. Our implementation also

54

leverages matrix-matrix multiplication when possible as described in Section 2.3.4;

this operation is highly efficient on the GPU. In the numerical results, the time to

apply Algorithm 2 on the GPU is reported as Tapply. The maximum relative error

of u is also reported as relerr; this quantity is approximated by evaluating the true

potential at a small number of points.

The code is implemented in Python. The pre-processing stage described in

Algorithm 1 uses packages numpy [56], scipy [90], and multiprocessing. The GPU

implementation of the FMM apply in Algorithm 2 uses the package PyTorch [79],

which has an interface to highly-efficient batched BLAS libraries as well as many

mathematical functions implemented in CUDA. For the Hankel functionH
(1)
0 in kernel

(2.4), a CUDA implementation is available in the package Cupy. Though PyTorch

is a library designed for deep learning, gradient calculations are disabled, and it is

used only for its linear algebra functionality. The numerical results were run on a

workstation with an Intel Xeon Gold 6326 CPU (running at 2.9 GHz) with 16 cores

and access to 250GB of RAM; the workstation also has an NVIDIA A100 GPU with

80GB of RAM.

2.5.1 2D Experiments

Figure 2.7 reports results for a random distribution of points in the unit square,

and Figure 2.8 reports results for a random non-uniform distribution of points, shown

in Figure 2.6. Both tables show the performance of the method for the Laplace and

Helmholtz kernel for κ = 100 for a variety of user tolerances. For 2D distributions,

the skeleton rank scales roughly as kmax ∼ log(1/ϵ) for the Laplace equation. The

method performs very well on the GPU, and making the user tolerance ϵ finer does

not leads only to minor increases to the runtime Tapply.

55

2 4 6 8
N (M)

0

25

50

75

100

T
ap

p
ly

(s
)

3D Uniform Distribution in Cube
Laplace equation

2e-09

2e-06

2e-03

(a) 3D Laplace kernel (2.2)

2 4 6 8
N (M)

0

100

200

T
ap

p
ly

(s
)

3D Uniform Distribution in Cube
Helmholtz equation κ = 20

2e-06

2e-03

(b) 3D Helmholtz kernel (2.4) with κ = 20

N b kmax Ttree Tskel Mproj Tapply relerr

180 40 2.0 s 6.7 s 3.6 GB 1.76 s 2.70e-04
1 M 750 100 1.2 s 6.7 s 2.9 GB 3.34 s 1.90e-06

2100 277 0.9 s 55.0 s 2.8 GB 12.00 s 1.78e-09

180 45 24.3 s 51.8 s 36.9 GB 14.65 s 5.06e-04
8 M 750 110 14.4 s 34.9 s 28.2 GB 28.50 s 2.10e-06

2100 289 13.8 s 213.4 s 24.9 GB 114.93 s 4.45e-09

(c) 3D Laplace kernel (2.2)

N b kmax Ttree Tskel Mproj Tapply relerr

1 M
500 91 1.2 s 7.4 s 3.6 GB 6.22 s 1.60e-03
2100 262 0.9 s 87.3 s 5.1 GB 27.77 s 1.41e-06

8 M
500 91 14.5 s 41.1 s 30.8 GB 41.26 s 2.50e-03
2100 268 13.8 s 339.9 s 42.2 GB 260.01 s 1.20e-06

(d) 3D Helmholtz kernel (2.4) with κ = 20

Figure 2.9: The performance of the method for a random distribution of points in the
unit cube is demonstrated. Figure 2.9a reports Tapply for kernel (2.2) with additional
data reported in Table 2.9c. Similarly, Figure 2.9b and Table 2.9d report results for
kernel (2.4) with κ = 20. The skeleton rank kmax is large for fine tolerances ϵ, leading
to large storage costs for TB and worse performance for batched linear algebra.

2.5.2 3D Experiments

Figure 2.9 reports results for a random distribution of points in the unit cube,

and Figure 2.10 reports results for a random distribution of points on the surface of

a unit sphere. Both tables show the performance of the method for the Laplace and

Helmholtz kernel for κ = 20 for a variety of user tolerances.

56

2 4 6 8
N (M)

0

10

20

30

T
ap

p
ly

(s
)

3D Distribution on Sphere Surface
Laplace equation

2e-09

2e-06

2e-03

(a) 3D Laplace kernel (2.2)

2 4 6 8
N (M)

0

50

100

T
ap

p
ly

(s
)

3D Distribution on Sphere Surface
Helmholtz equation κ = 20

2e-09

2e-06

2e-03

(b) 3D Helmholtz kernel (2.4) with κ = 20

N b kmax Ttree Tskel Mproj Tapply relerr

120 22 4.3 s 3.9 s 0.5 GB 0.88 s 1.03e-03
1 M 160 48 3.2 s 4.8 s 1.9 GB 2.80 s 1.82e-06

400 110 3.0 s 9.1 s 3.2 GB 3.97 s 2.53e-09

120 25 49.1 s 40.7 s 7.4 GB 8.86 s 7.77e-04
8 M 160 55 48.6 s 39.7 s 25.3 GB 17.19 s 1.75e-06

400 121 34.8 s 53.2 s 47.1 GB 34.95 s 1.84e-09

(c) 3D Laplace kernel (2.2)

N b kmax Ttree Tskel Mproj Tapply relerr

120 34 4.2 s 5.5 s 1.5 GB 1.93 s 1.69e-03
1 M 220 70 3.2 s 10.7 s 6.4 GB 4.90 s 1.97e-06

750 138 2.2 s 31.6 s 8.4 GB 12.84 s 2.00e-09

120 34 49.1 s 53.0 s 24.3 GB 19.97 s 2.06e-03
8 M 220 70 43.1 s 65.0 s 34.1 GB 36.87 s 2.82e-06

750 138 34.0 s 186.4 s 58.1 GB 115.80 s 2.48e-09

(d) 3D Helmholtz kernel (2.4) with κ = 20

Figure 2.10: The performance of the method for a non-uniform distribution of random
points on the surface of a sphere is demonstrated. Figure 2.10a reports Tapply for kernel
(2.2) with additional data reported in Table 2.10c. Similarly, Figure 2.10b and Table
2.10d report results for kernel (2.4) with κ = 20. The skeleton basis is highly effective
in capturing the local geometry of the surface, leading to skeleton rank that does not
grow as substantially with desired user tolerance ϵ.

For 3D point distributions, the skeleton ranks kmax are considerably higher,

leading to poor performance of the method for uniform 3D distributions. This phe-

nomenon is well known for 3D FMMs. In particular for analytic multipole expansions

57

the rank grows as k ∼ (log(1/ϵ))2 for the Laplace equation. Much work has been done

in creating diagonal translation operators [50, 81] using analytic techniques, or in us-

ing FFT acceleration for kernel-independent algebraic methods [64, 101]. Given that

the present work included no such machinery, the poor performance for volume dis-

tributions is not very surprising. The method, however, performs particularly well

for point distributions on surfaces, as shown in Figure 2.10. The skeleton basis can

capture the local geometry with a much smaller skeleton rank kmax, even to high

accuracy.

2.6 Conclusions

This work introduces a novel kernel-independent algorithm for the fast multi-

pole method. Because the algorithm is kernel-independent, it can readily be extended

to a variety of constant-coefficient kernels. The numerical results demonstrate the ef-

fectiveness of the approach for Laplace and low-frequency Helmholtz problems. Sim-

ilar to other kernel-independent approaches, analytical expansions are replaced by a

chosen set of ‘skeleton’ points which replicate the effect of the original source points

in the far-field. The use of skeleton basis is particularly effective for representing

incoming and outgoing representations for point distributions on surfaces.

The major contribution of this work is a simplified description of the FMM that

does not involve the interaction list. The interaction list contains only well-separated

boxes and requires additional book-keeping to be traversed efficiently. Instead, our

algorithm requires algebraically modified kernel interaction between near neighbors.

There is an additional flop cost to calculate the modifications, but the numerical

results demonstrate that this can be done efficiently by leveraging BLAS primitives.

Finally, the work includes an implementation of the proposed algorithm on

modern hardware architectures, using OpenMP on the CPU for the precomputation

stage and batched BLAS primitives for the GPU implementation of the FMM apply.

The simplicity of the proposed algorithm make it particularly amenable to implemen-

58

tation on a variety of hardware architectures and to extension to a broad range of

kernels.

Acknowledgments

The work reported was supported by the Office of Naval Research (N00014-

18-1-2354), by the National Science Foundation (DMS-1952735, DMS-2012606, and

DMS-2313434), and by the Department of Energy ASCR (DE-SC0022251). We thank

Umberto Villa for access to computing resources.

59

Chapter 3: SlabLU: A Two-Level Sparse Direct for

Elliptic PDEs 2

The work describes a sparse direct solver for the linear systems that arise

from the discretization of an elliptic PDE on a two dimensional domain. The solver is

designed to reduce communication costs and perform well on GPUs; it uses a two-level

framework, which is easier to implement and optimize than traditional multi-frontal

schemes based on hierarchical nested dissection orderings. The scheme decomposes

the domain into thin subdomains, or “slabs”. Within each slab, a local factorization

is executed that exploits the geometry of the local domain. A global factorization is

then obtained through the LU factorization of a block-tridiagonal reduced coefficient

matrix. The solver has complexity O(N5/3) for the factorization step, and O(N7/6)

for each solve once the factorization is completed.

The solver described is compatible with a range of different local discretiza-

tions, and numerical experiments demonstrate its performance for regular discretiza-

tions of rectangular and curved geometries. The technique becomes particularly ef-

ficient when combined with very high-order convergent multi-domain spectral collo-

cation schemes. With this discretization, a Helmholtz problem on a domain of size

1000λ× 1000λ (for which N = 100M) is solved in 15 minutes to 6 correct digits on a

high-powered desktop with GPU acceleration.

2This work was completed in collaboration with Per-Gunnar Martinsson and has appeared in
preprints [96, 97].

60

3.1 Introduction

3.1.1 Problem setup

We present a direct solver for boundary value problem of the form{Au(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(3.1)

where A is a second order elliptic differential operator, and Ω is a domain in two

dimensions with boundary ∂Ω. The method works for a broad range of constant and

variable coefficient differential operators, but is particularly competitive for problems

with highly oscillatory solutions that are difficult to pre-condition. For the sake of

concreteness, we will focus on the case where A is a variable coefficient Helmholtz

operator

Au(x) = −∆u(x)− κ2b(x)u(x), (3.2)

where κ is a reference (“typical”) wavenumber, and where b(x) is a smooth non-

negative function. Upon discretizing (3.1), one obtains a linear system

Au = f, (3.3)

involving a coefficient matrix A that is typically sparse. Our focus is on efficient algo-

rithms for directly building an invertible factorization of the matrix A. We specifically

consider two different discretization schemes, first a basic finite difference scheme with

second order convergence, and then a high (say p = 20) order multidomain spectral

collocation scheme [68, Ch. 25]. However, the techniques presented can easily be used

with other (local) discretization schemes such as finite element methods.

3.1.2 Overview of proposed solver

The solver presented is based on a decomposition of the computational domain

into thin “slabs”, as illustrated in Figure 3.1a. Unlike previously proposed sweeping

schemes [33, 39, 89] designed for preconditioning, our objective is to directly factorize

61

the coefficient matrix, or at least compute a factorization that is sufficiently accurate

that it can handle problems involving strong backscattering.

To describe how the solver works, let us consider a simple model problem

where the PDE is discretized using a standard five-point finite difference stencil on

a uniform grid such as the one shown in Figure 3.1a. The nodes in the grid are

arranged into slabs of width b, and are ordered as shown in Figure 3.1a, resulting in

a coefficient matrix A with the block diagonal sparsity pattern shown in Figure 3.1c.

The factorization of A then proceeds through two stages.

I1 I3 I5 I7 I9I2 I4 I6 I8

n

b

(a) Original grid, partitioned into slabs of
width b+ 2, where b = 3.

I1 I3 I5 I7 I9

n

b

(b) Reduced grid, after eliminating blue
nodes. Only the red nodes are “active”.

A22

A12

A32

A21 A23

A44

A34

A54

A43 A45

A66

A56

A76

A65 A67

A88

A78

A98

A87 A89

A11

A33

A55

A77

A99

N ×N
(c) Sparsity structure of A corresponding
to the original grid. Each block of A is
sparse.

T33

T13

T53

T31 T35

T77

T57

T97

T75 T79

T11

T55

T99

N
b
× N

b

(d) Sparsity structure of T corresponding
to the reduced grid. Each block of T is
dense.

Figure 3.1: Illustration of the elimination order used in SlabLU.

62

In the first stage, the nodes that are internal to each slab (identified by the in-

dex vectors I2, I4, . . . and shown as blue in Figure 3.1a) are eliminated from the linear

system, resulting in the reduced problem shown in Figure 3.1b, with the associated

coefficient matrix shown in Figure 3.1d. In this elimination step, we exploit that each

subdomain is thin, which means that classical sparse direct solvers are particularly

fast. To further accelerate this step, we use that the Schur complements that arise

upon the elimination of the interior nodes are rank structured. Specifically, they are

“HBS/HSS matrices” [45, 93, 94] with exact HBS/HSS rank at most 2b. This allows

us to accelerate this reduction step using a recently proposed randomized algorithm

for compressing rank structured matrices [60].

The second stage is to factorize the remaining coefficient matrix T shown in

Figure 3.1d. This matrix is much smaller than the original matrix A, but its blocks are

dense. These blocks are rank structured as well, which could in principle be exploited

to attain a linear complexity solver (for the case where the PDE is kept fixed as N

increases). However, we have found that for 2D problems, the dense operations are

fast enough that exploiting rank structure for the second step is not worthwhile when

N ≤ 108.

A particular advantage of our framework is that it is simple to optimize and

accelerate on GPUs, compared to traditional multi-frontal schemes. The numerical

results demonstrate compelling speed and memory scaling, when compared to Su-

perLU [61]. For meshes with 100 million points, the factorization can be computed in

20 minutes on a desktop with an Intel i9-12900k CPU with 16 cores and an RTX 3090

GPU. Once the factorization is available, subsequent solves take about a minute. The

numerical results feature timing results on a variety of architectures to demonstrate

that the scheme is portable to many hardware settings.

The scheme also interacts very well with high order discretization schemes such

as those described in [66] and [68, Ch. 25], which makes it a particularly powerful tool

for solving problems with highly oscillatory solutions. The numerical results feature

63

constant and variable coefficient Helmholtz problems on rectangular and curved do-

mains. Using high order discretizations, we are able to discretize the PDE to 10 points

per wavelength and accurately resolve solutions on domains of size 1000λ × 1000λ,

where λ is the wavelength, to 6 digits of relative accuracy, compared to the true

solution of the PDE.

3.1.3 Context and related work

Methods to solve (3.3) can be characterized into two groups – direct and it-

erative. The linear systems involved are typically ill-conditioned, which necessitates

the use of pre-conditioners or multigrid solvers. However, preconditioners typically

struggle for problems with oscillatory solutions that involve phenomena such as mul-

tiple reflections, back-scattering, and waves trapped in cavities [34, 39]. Sparse direct

methods, which factorize matrix A exactly, offer a robust means of solving challeng-

ing PDEs. Direct solvers are also particularly advantageous in situations involving

multiple right-hand sides or low-rank updates to the matrix A.

The solver we describe in this work is related to multi-frontal LU solvers [25]

which often use a hierarchical nested dissection ordering of grid nodes [4, 40]. For a

2D grid with N nodes, the resulting techniques have complexity O(N3/2) to build and

O(N logN) complexity to solve, which is known to be work optimal among solvers

that exploit only sparsity in the system [24, 31].

By replacing the nested dissection ordering with a partition into thin slabs,

SlabLU improves communication efficiency, and allows the method to better take

advantage of hardware accelerators. Nevertheless, its asymptotic flop count is only

slightly sub-optimal. Specifically, by choosing b ∼ O(n2/3), sparsity alone results in

complexity O(N5/3) for the factorization stage, and O(N7/6) for the solve stage, when

applied to 2D problems.

The use of rank structured matrix algebra to accelerate sparse direct solvers

is inspired by prior work including [3, 18, 41, 44, 80, 95]. A key feature of SlabLU

64

is that unlike prior work, the rank structures that we exploit are exact, relying only

on the sparsity pattern of the original coefficient matrix (cf. Section 3.3.2). Impor-

tantly, these rank-deficiencies are present in both the non-oscillatory and oscillatory

regimes. This makes the randomized compression particularly efficient, achieving very

high computational efficiency with no loss of accuracy beyond floating point errors.

Another novelty is the usage of a recently developed black box randomized algorithm

for compressing rank structured matrices [60] (which in turn draws on insights from

[63, 67, 73]) when eliminating the interior nodes in each slab. The use of black-box

randomized algorithms makes the solver relatively simple to implement, and easier

to port between different local discretization.

SlabLU is also related to Schur complement methods, which are two-level

methods based on a non-overlapping domain decomposition with implicit treatment

of the interface conditions. The interior of each subdomain is factorized in parallel;

the reduced coefficient matrix T is typically not formed but instead applied matrix-

free in an iterative method [16, 83]. These methods have similar advantages as SlabLU

in that they are easy to parallelize. They implicitly solve a reduced system that is

better conditioned than the original system, but is often difficult to precondition for

oscillatory problems.

3.1.4 Extensions and limitations

The solver presented is purely algebraic and can be applied to a range of

different discretization schemes, including finite element and finite volume methods.

In this manuscript, we restrict attention to uniform grids and domains that are either

rectangular themselves, or can easily be mapped to a union of rectangles. It is in

principle possible to adapt the method to more general discretizations, including

ones that involve local refinement. However, some of the accelerations (e.g. batched

linear algebra) would in this case lose efficiency to some degree.

While we in this manuscript restrict attention to the two dimensional case, the

65

method is designed to handle three dimensional problems as well. All ideas presented

carry over directly, but additional complications do arise. The key challenge is that in

three dimensions, it is no longer feasible to use dense linear algebra when factorizing

the block tridiagonal reduced coefficient matrix T. Instead, rank structure must be

exploited in both stages of the algorithm, and rank deficiencies will no longer be

exact. However, the 3D version of SlabLU is also very easy to parallelize, and the

idea of using randomized compression combined with efficient sparse direct solvers to

eliminate the nodes interior to each slab still applies, cf. Section 3.7.

3.2 Discretization and node ordering

We introduce two different discretization techniques for (3.1). The first is

simply the standard second order convergent five point finite difference stencil. Since

this discretization is very well known, it allows us to describe how the solver works

without the need to introduce cumbersome background material. To demonstrate

that the solver works for a broader class of discretization schemes, the numerical

experiments reported in Section 3.6 also include results that rely on the high order

convergent Hierarchical Poincaré-Steklov (HPS) scheme, which we briefly describe in

Section 3.2.3.

3.2.1 A model problem based on the five point stencil

For purposes of describing the factorization scheme, let us introduce a very

simple discretization of the boundary value problem (3.1). We work with a rectangular

domain Ω = [0, L1] × [0, L2] and the second order linear elliptic operator A defined

by (3.2). We assume that L1 ≥ L2, and that L1 = hn1 and L2 = hn2 for some grid

spacing h and some positive integers n1 and n2. We then discretize A with a standard

second-order finite difference scheme, to obtain the linear system

1

h2
(
u(nw) + u(ne) + u(nn) + u(ns)− 4u(n)

)
− κ2b(n)u(n) = f(n). (3.4)

66

The vector f holds values of the body load at the discretization nodes, and the vector

u holds approximations to the solution u. See Figure 3.2 for a visualization of the 5

point stencil. We write the system (3.4) compactly as Au = f.

u(n)

u(nn)

u(ns)

u(ne)u(nw)

Figure 3.2: Five point stencil in 2D.

3.2.2 Clustering of the nodes

We next subdivide the computational domain into thin “slabs”, as shown in

Figure 3.1a. We let b denote the number of grid points in each slab (b = 4 in Figure

3.1a), and then introduce index vectors I1, I2, I3, . . . that keep track of which slabs

each grid point belongs to. The odd numbered index vectors I1, I3, I5, . . . indicate

nodes on the interfaces between slabs (red in Figure 3.1a), while the even numbered

ones indicate nodes that are interior to each slab (blue in Figure 3.1a). With this

ordering of the grid points, the stiffness matrix associated with the discretization (3.4)

has the sparsity pattern shown in Figure 3.1c.

3.2.3 High order discretizations

To accurately resolve oscillatory wave phenomena, we rely on a high order

accurate multi-domain spectral collocation discretization known as the Hierarchical

Poincaré-Steklov scheme (HPS). This discretization scheme is designed to allow for

high choices of the local discretization order p without degrading the performance of

direct solvers.

In HPS, the computational domain is subdivided into small rectangles, and a

p× p tensor product grid of Chebyshev nodes is placed on each rectangle, cf. Figure

67

3.3. The vector of unknowns u simply holds approximations to the solution u at

the discretization nodes. We then discretize (3.1) through collocation of the spectral

differentiation operator for each internal node. For the nodes on cell boundaries, we

enforce continuity of the normal derivatives, again through spectral differentiation.

To improve efficiency when HPS is combined with sparse direct solvers, we

“eliminate” the dense interactions of nodes interior to each subdomain through a

static condensation step. Due to the domain decomposition used in HPS, the leaf

operations required to produce the equivalent system are independent and can be

performed in parallel. This leaves us with a reduced linear system that involves the

approximately n1n2/p points that sit on the edges between cells. We denote the

reduced stiffness matrix by Ã, and the reduced load vector by f̃, cf. Figure 3.3, to

obtain the equivalent system

Ãũ = f̃. (3.5)

For details, see [68, Ch. 25], as well as [6, 46, 55, 66].

Ω0,0

Ω0,1

Ω1,0

Ω1,1

Ω2,0

Ω2,1

⇒

Figure 3.3: HPS is a multi-domain spectral collocation scheme where the PDE is enforced
on each subdomain interior using dense spectral differentiation. Prior to interfacing with
SlabLU, we “eliminate” the interior blue nodes in parallel and produce an equivalent system
to solve on the boundaries. The original grid has n1 × n2 points, and remaining grid has
≈ n1n2/p points.

Remark 3.1. A key point of the present work is that the solver has only two levels,

which makes the “H” in HPS a slight misnomer, as it refers to “hierarchical”. We

nevertheless stick with the HPS acronym to conform with the prior literature.

68

3.3 Stage one: Elimination of nodes interior to each slab

This section describes the process that we use to eliminate the nodes interior to

each slab that we sketched out in Section 3.1.2. The objective is to reduce the sparse

stiffness matrix A (illustrated in Figure 3.1c) into the smaller block tridiagonal matrix

T (illustrated in Figure 3.1d). The techniques described form the core algorithmic

innovation of the manuscript.

3.3.1 Schur complements

With the ordering introduced in Section 3.2.2, the coefficient matrix A has the

block form 
A11 A12 0 0 0 . . .
A21 A22 A23 0 0 . . .
0 A32 A33 A34 0 . . .
0 0 A43 A44 A45 . . .
...

...
...

...
...

...




u1

u2

u3

u4
...

 =


f1
f2
f3
f4
...

 . (3.6)

We eliminate the vectors u2, u4, u6, . . . that represent unknown variables in the in-

terior of each slab through a step of block Gaussian elimination. To be precise, we

insert the relation

ui = A−1
ii

(
f i − Ai,i−1ui−1 − Ai,i+1ui+1

)
, i = 2, 4, 6, . . . (3.7)

into the odd-numbered rows in (3.6) to obtain the reduced system
T11 T13 0 0 0 . . .
T31 T33 T35 0 0 . . .
0 T53 T55 T57 0 . . .
0 0 T57 T77 T79 . . .
...

...
...

...
...

...




u1

u3

u5

u7
...

 =


f̃1
f̃3
f̃5
f̃7
...

 , (3.8)

69

where the sub-blocks of T are defined as

T11 = A11 − A12 A−1
22 A21, (3.9)

T13 = A13 − A12 A−1
22 A23, (3.10)

T31 = A31 − A32 A−1
22 A23, (3.11)

T33 = A33 − A32 A−1
22 A23 − A34 A−1

44 A43, (3.12)

T35 = A35 − A34 A−1
44 A23, (3.13)

and so on. The reduced right-hand sides f̃ are defined as

f̃1 = f1 − A12 A−1
22 f2, (3.14)

f̃3 = f3 − A32 A−1
22 f2 − A34 A−1

44 f4, (3.15)

f̃5 = f5 − A54 A−1
44 f4 − A56 A−1

66 f6, (3.16)

etc.

3.3.2 Rank structure in the reduced blocks

We next discuss algebraic properties of the blocks of the reduced coefficient

matrix Tij that allow for T to be formed efficiently. The sub-blocks of T are Schur-

complements of sparse matrices. For instance, block T11 has the formula

T11
n2×n2

= A11
n2×n2

− A12
n2×n2b

A−1
22

n2b×n2b

A21
n2b×n2

, (3.17)

where A11,A12,A21 are sparse with O(n2) non-zero entries and A22 is a sparse banded

matrix. Factorizing A22 can be done efficiently using a sparse direct solver, but

forming A−1
22 A21 naively may be slow and memory-intensive, especially considering

that A21 is sparse and would need to be converted to dense to interface with solve

routines.

We use an alternate approach for efficiently forming T11 that achieves high

arithmetic intensity while maintaining a very low memory footprint. First, we prove

70

J

JB

b

Figure 3.4: Contiguous set of points defined as JB ⊂ J .

algebraic properties about T11, which is a dense but structured matrix that only

needs O(n2b) storage in exact precision. The matrix T11 is compressible in a format

called Hierarchically Block-Separable (HBS) or Hierarchically Semi-Separable (HSS)

with exact HBS rank at most 2b. HBS matrices are a type of hierarchical matrix (H-
matrix), which allow dense matrices to be stored efficiently by exploiting low-rank

structure in sub-blocks at different levels of granularity [9, 53, 68]. The matrices Tjk

are compressible in several H-matrix formats, e.g. Hierarchical Off-Diagonal Low

Rank (HODLR). The rank property of T11 is formally stated in Proposition 3.3.2.

After establishing the HBS structure of T11, we then describe how this struc-

ture can be recovered with only O(b) matrix vector products of T11 and T∗
11. Vectors

can efficiently be applied because T11 and its transpose are compositions of sparse

matrices. Since T11 is admissible as a HODLR matrix, the structure can be efficiently

recovered from matrix-vector products in this format as well [63, 67], though more

vectors are required for reconstruction in this format.

[Rank Property] Let JB be a contiguous set of points on the slab interface J ,

and let JF be the rest of the points JF = J1 \JB. The sub-matrices (T11)BF , (T11)FB

have exact rank at most 2b. See Figure 3.4 for an illustration of IB. The proof is

in Appendix A.1.

71

3.3.3 Recovering H-matrix structure from matrix-vector products

We next describe how to extract an H-matrix representation of the reduced

blocks purely from matrix-vector products. For concreteness, we are trying to recover

T11 ∈ Rn2×n2 as an HBS matrix with HBS rank at most 2b. Typically, H-matrices are

used when the cost of forming or factorizing these matrices densely, is prohibitively

large. In the context of SlabLU, T11 ∈ Rn2×n2 can be stored densely for the problem

sizes of interest, but traditional methods for forming T11 densely may be inefficient,

as described in Section 3.3.2. Instead, we recover T11 as an HBS matrix with HBS

rank at most 2b from matrix-matrix products

Y
n2×s

= T11
n2×n2

Ω
n2×s

, Z
n2×s

= T∗
11

n2×n2

Ψ
n2×s

, (3.18)

where Ω,Ψ are Gaussian random matrices and s = 6b using the algorithm presented

in [60]. This is theoretically possible because an HBS matrix of size n2 × n2 with

HBS rank at most 2b can be encoded in O(n2b) storage. The HBS structure can be

recovered from samples Y,Z after post-processing in O(n2b
2) flops. The algorithm

presented in [60] can be seen as an extension of algorithms for recovering low-rank

factors from random sketches [71]. A particular advantage of these algorithms is

that they scale linearly and are truly black-box. The matrix-matrix products (3.18)

are simple to evaluate using the matrix-free formula (3.17) of T11 and its transpose.

Applying T11 involves two applications of sparse matrices and two triangular solves

using pre-computed sparse triangular factors.

3.4 Stage Two: Factorizing the reduced block tridiagonal
coefficient matrix

The elimination of nodes interior to each slab that we described in Section 3.3

results in a reduced linear system

Tũ = f̃, (3.19)

72

where ũ is the reduced solution vector and where f is the equivalent body load on slab

interfaces I1, I3, . . . We recall that the matrix T is of size roughly N/b × N/b, and
is block tridiagonal with blocks of size n2 × n2. Solving a system involving a block

tridiagonal matrix is straight-forward using a blocked version of Gaussian elimination.

In Algorithms 3 and 4 we summarize a basic scheme for solving (3.19) where we

separate the process of Gaussian elimination into a “build stage” where we explicitly

form and invert the Schur complements that arise in the Gaussian elimination, and a

“solve stage” where the computed inverses are used to solve (3.19) for a given right

hand side.

Algorithm 3 Sweeping build stage.
Given a block-tridiagonal matrix T, Algorithm 3 builds a direct solver for T, with
the result stored in the matrices S1,S3, . . .

1: S1 ← T11.
2: for j = 2, . . . , n1/b do
3: S2j+1 ← T2j+1,2j+1 − T2j+1,2j−1S

−1
2j−1T2j−1,2j+1.

4: Store S−1
2j−1.

Algorithm 4 Sweeping solve.
Given a body load f̃ and precomputed inverses of S1,S3, . . . , Algorithm 4 computes
the solution vector ũ.

1: y1 ← S−1
1 f̃1.

2: for j = 1, . . . , n1/b do

3: y2j+1 ← S−1
2j+1

(
f̃2j+1 − T2j+1,2j−1y2j−1

)
.

4: ũ2n1/b+1 ← S−1
2n1/b+1y2n1/b+1.

5: for j = n1/b, n1/b− 1, . . . , 1 do
6: ũ2j−1 ← S−1

2j−1

(
y2j−1 − T2j−1,2j+1ũ2j+1

)
.

We observe that the elimination process described in Section 3.3 automatically

results in blocks that are represented in the HBS format. The most elegant way to

solve (3.19) is to maintain the HBS format throughout Algorithms 3 and 4, as this

leads to a solver with linear complexity in the case where the PDE is kept fixed as N

increases. However, we have found that for two dimensional problems, dense linear

73

algebra is fast enough that the most efficient way to solve (3.19) in practice is to

simply convert the HBS matrix representation to dense matrices, and carry out all

computations by brute force. (In the 3D version of SlabLU, rank structure must be

exploited, however.)

Remark 3.2. In the case where (3.1) has oscillatory solutions, and the number of

points per wavelength is kept fixed as N increases, it is still possible to exploit rank

structure in the blocks of T. However, the ranks will grow during the execution of

Algorithm 3. To minimize rank-growth, an odd-even elimination order can be used

instead of the sequential one in Algorithm 3, but the method would still not attain

linear complexity We observe that our conversion to dense linear algebra allows us

to side-step this complication, as our method relies on the sparsity pattern of the

original matrix only.

3.5 Algorithm and complexity costs

In this section, we provide a summary of the proposed algorithm, and discuss

its efficient parallelization using batched linear algebra on a GPU. We also analyze the

complexity costs, and choose the buffer size b as a function of the number of grid points

N = n1n2, in order to balance costs and achieve competitive complexities for the build

and solve times. While our discussion on choosing b focuses on the 5-point stencil

model problem, the conclusions are generally applicable to other discretizations.

We briefly summarize the algorithm for SlabLU. In Stage One, we compute

factorizations of the form

A−1
22

n2b×n2b

, A−1
44

n2b×n2b

, . . . (3.20)

for n1/b sparse matrices. The reduced matrix T is constructed using efficient black-

box algorithms that recover Tjk in HBS format through a random sampling method,

as discussed in Section 3.3.3. It is important to note that Stage One can be trivially

parallelized for each slab. In Stage Two, dense linear algebra is used to factorize T

as discussed in Section 3.4.

74

Algorithm 5 outlines how to use the computed factorization of A to solve sys-

tems (3.3). This requires storing the sparse factorizations (3.20) and the factorization

of T.

Algorithm 5 Solving Au = f using computed direct solver.

1: Calculate the equivalent body f̃ on I1, I3, . . . using (3.14-3.16) in parallel.
2: Solve Tũ = f̃ for ũ on I1, I3, . . . using serial Algorithm 4.
3: Solve for u on I2, I4, . . . using ũ on I1, I3, . . . with (3.7) in parallel.

3.5.1 Ease of Parallelism and Acceleration with Batched Linear Algebra

We highlight the features of the SlabLU scheme that make it particularly

suitable for implementation on GPUs and compare it to multi-level nested dissection

schemes. Although nested dissection is work-optimal for minimizing the fill-in of

the computed factorization, parallelizing it for high performance on GPUs remains

an active area of research. Recent results include the GPU-accelerated multifrontal

algorithm proposed in [42], which splits the problem into independent sub-problems

that can be factorized entirely in GPU memory. The factorization is then performed

using a level-by-level traversal with custom hand-coded kernels for small matrices and

vendor-optimized BLAS libraries for larger matrices.

However, there are significant challenges and avenues for improvement. Effi-

cient nested dissection codes require parallel operations on a wide range of matrix

sizes, and fully exploiting the potential of modern GPUs would require careful load

balancing and memory access patterns [91]. Sparse direct solvers generally do not

make use of batched linear algebra, a highly optimized framework for parallelized

BLAS operations on many small matrices, because the framework is limited to ma-

trices of the same size, and variable-sized batching is often needed in the context

of a sparse direct solver. Although an extension to variable sizes is currently under

development [2], it is far less mature than its constant-sized counterpart.

In contrast, the SlabLU scheme takes advantage of the two-level structure to

75

simplify the optimization process significantly. The trade-off is a small asymptotic

increase in the flop and memory complexity of the algorithm, but there are large

benefits in terms of practical performance on GPUs. SlabLU only requires factorizing

two front sizes: b in Stage One and n2 in Stage Two. Since the scheme has only two

levels, it is relatively easy to optimize the data movement and coordination between

the GPU, which has limited memory, and the CPU.

In Stage One, parallel operations are performed on many small matrices, while

in Stage Two, serial operations are performed on a relatively small number of larger

matrices. Our implementation makes use of highly optimized libraries (e.g., MAGMA

for batched linear algebra on small matrices [28, 29] and vendor-optimized BLAS for

large matrices [78]), and the high practical performance required little, if any, hand

tuning. Stage One also provides an opportunity to incorporate highly optimized

batched linear algebra schemes by using matrix-free randomized algorithms to recover

Tjk in HBS format, as we do in our implementation. H-matrix algebras can be

efficiently parallelized using batched linear algebra because the off-diagonal rank is

small and uniform on each level of the H-matrix structure [13, 19].

Overall, the SlabLU scheme offers a more straightforward path to optimizing

sparse direct solvers on modern GPUs than traditional nested dissection codes. While

parallelizing nested dissection codes remains an active area of research, the simplicity

of SlabLU makes it an attractive option for efficient parallelization of sparse direct

solvers.

3.5.2 Choosing the buffer size b.

The buffer size is chosen to balance the costs of Stage One and Stage Two.

Stage One involves computing sparse factorizations (3.20), where each sparse matrix

is banded with bandwidth b. This process requires n1

b
× O (b3n2) flops. The cost

of constructing Tjk in HBS format is dominated by the cost of constructing the

random samples (3.18), which requires O (n2b
3) flops using matrix-free formulas for

76

applying Tjk. The cost of post-processing random samples is asymptotically small.

To summarize, Stage One is dominated by the costs of the factorizations of sparse

matrices (3.20) and constructing random samples (3.18), which both have costs n1

b
×

O (n2b
4) = O (b3N). Importantly, Stage One can be done in parallel for n1/b sub-

domains.

Stage Two involves a simple sweeping factorization of T using Algorithm 3.

The reduced matrix T has ≈ n1/b blocks, each of size n2 × n2. The total cost of

constructing the factorization is

Tbuild = O
(
b2N

)
Stage One

+O

(
1

b
n1n

3
2

)
Stage Two

. (3.21)

To balance the costs of Stage One and Stage Two, we choose b = O
(
n
2/3
2

)
. The total

cost of the build stage is Tbuild = O
(
n1n

7/3
2

)
.

To apply the direct solver for A, one needs to store the sparse factoriza-

tions (3.20) and the direct solver for T. The sparse factorizations (3.20) require

O
(
n1

b
× b2n2

)
storage, and storing the direct solver for T requires O

(
n1

b
× n2

2

)
stor-

age. With the choice of b = O
(
n
2/3
2

)
, the sparse factorizations require asymptotically

more space to store. We can rebalance the memory costs of Stage One and Stage Two

by using a nested dissection ordering for the sparse factorization within each slab or

by “discarding” some of the factorization in Stage One (e.g. corresponding to small

subdomains) and re-factorizing as needed to apply Algorithm 5. Then the memory

costs are

Tsolve =
n1

b
×O

(
n2
2

)
= O

(
n1n

4/3
2

)
. (3.22)

Our implementation also exploits rank-structures (e.g. in the off-diagonal sub-blocks

of T) to efficiently store the computed direct solver.

The algorithm scales particularly well for domains with high aspect ratio when

n1 > n2. A square domain is the adversarial worst case in terms of the algorithm

77

complexity. When n1 = n2, then

Tbuild = O
(
N5/3

)
, Tsolve = O

(
N7/6

)
. (3.23)

3.5.3 Complexity Analysis for SlabLU with HPS discretization

The numerical results feature a high order discretization scheme that interfaces

particularly well with sparse direct solvers which we use to resolve high frequency

scattering problems to high accuracy. As discussed in Section 3.2.3, HPS is a spectral

collocation discretization that employs multiple subdomains to enforce the PDE using

spectral differentiation. The subdomains are coupled together by ensuring continuity

of the solution and its derivative across subdomains. A natural approach to factorizing

the sparse coefficient matrix is to first factorize each leaf subdomain in parallel and

then solve the remaining sparse matrix Ã. The leaf operations require independent

dense linear algebraic operations (e.g., LU factorization, matrix-matrix multiply) on

N/p2 systems, each of size p2 × p2, resulting in an overall cost of O(p4N).

The total cost of factorizing a sparse matrix arising from the HPS discretization

can be expressed as

Tbuild = O

(
p4N

leaf operations
+ N5/3

direct solver

)
, (3.24)

where N is the total number of unknowns and p is the polynomial degree used in the

spectral collocation method. After the static condensation step, it is important to

note that the cost of factorizing Ã has no pre-factor dependence on p.

The leaf operations have a large pre-factor cost with p, and have long been

viewed as prohibitively expensive for large p. We make these operations efficient using

batched linear algebra and GPU acceleration, demonstrating compelling results for

p up to 42 in Section 3.6. The numerical results also demonstrate that the choice

of p does not have substantial effects on the build time for the direct factorization

stage, allowing p to be chosen based on physical considerations instead of practical

concerns.

78

The technique we present is most readily applicable to the case where the same

discretization order p is used on every discretization patch. However, it would not be

too difficult to allow p to be chosen from a fixed set of values (say p ∈ {6, 10, 18, 36}
or something similar). This would enable many of the advantages of hp-adaptivity,

while still enabling batching to accelerate computations. For larger p, methods that

produce a sparser equivalent system may be more appropriate [14, 36].

Remark 3.3. The leaf operations are so efficient that we can save on storage costs by

not explicitly storing the factorizations of the local spectral differentiation matrices in

each HPS subdomain. Instead, we can reform and refactor these matrices as needed,

and these costs are included in the solve time reported in Section 3.6.3.

3.6 Numerical experiments

In this section, we demonstrate the effectiveness of our solver through a series

of numerical experiments. We report the build time, solve time, and accuracy of

solving constant and variable-coefficient elliptic PDEs using two collocation-based

discretization schemes on both rectangular and curved geometries. Our experiments

were conducted on various hardware architectures to showcase the portability and

ease of performance tuning of our framework.

Our experiments compare SlabLU to SuperLU in the factorization of a PDE

discretized with 2nd order finite differences. The results demonstrate that SlabLU

achieves a significant speedup compared to traditional nested dissection schemes, even

without GPU acceleration.

Additionally, we utilize a high-order multidomain spectral collocation scheme,

briefly introduced in Section 3.2.3, to solve challenging scattering phenomena. The

high-order discretization scheme allows us to accurately discretize the PDE, while the

flexibility of the multidomain scheme enables us to solve PDEs on curved domains

using SlabLU. The combination of SlabLU and high-order discretization provides a

powerful tool for simulating electromagnetic and acoustic scattering. Our focus is

79

on physical phenomena that may be beyond the reach of preconditioned iterative

methods.

3.6.1 Description of Benchmark PDEs and Accuracies Reported

We briefly describe the PDEs with manufactured solutions used as benchmarks

in our numerical experiments and how we calculate accuracy. The first PDE is the

Laplace equation {−∆u(x) = 0, x ∈ Ω,

u(x) = utrue(x), x ∈ Γ,
(3.25)

The Dirichlet data is the restriction of the true analytic solution to the boundary

utrue(x) = log (∥x− (−0.1, 0.5)∥) . (3.26)

The second PDE is a constant coefficient Helmholtz problem{−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = utrue(x), x ∈ Γ,
(3.27)

where the true solution utrue is given by

utrue = J0 (κ∥x− (−0.1, 0.5)∥) , (3.28)

where x 7→ J0(κ|x|) is the zeroth Bessel function of the first kind.

After applying the direct solver, we obtain the calculated solution ucalc at

discretization points within the domain. We report the relative error with respect to

the residual of the discretized system (3.3) and with respect to the true solution utrue

evaluated at the collocation points as follows:

relerrres =
∥Aucalc − f∥2
∥f∥2

, relerrtrue =
∥ucalc − utrue∥2
∥utrue∥2

. (3.29)

We also report Tfactor, which is the wall-clock time needed to factorize the

coefficient matrix A, andMfactor, which is the memory required to store the computed

direct solver. Additionally, we report Tsolve, which is the time needed to apply the

direct solver to solve systems (3.3), as described in Algorithm 5. Unless otherwise

stated, the solve is done on the entirely on the CPU for a single right hand side vector.

80

3.6.2 Benchmark Experiments using Low-Order Discretization

In this section, we demonstrate how SlabLU performs on sparse coefficient

matrices arising from PDEs discretized with 2nd order finite differences. We also

compare SlabLU to SuperLU, an existing multi-level nested dissection code. We con-

ducted the experiments on three different architectures: (1) a 16-core Intel i9-12900k

CPU with 128 GB of RAM, (2) an NVIDIA RTX 3090 GPU with 24 GB of memory

and access to 128 GB of RAM, and (3) an NVIDIA V100 with 32 GB of memory and

access to 768 GB of RAM. We chose to run experiments on architectures (1) and (2)

to demonstrate that the memory volume required to run SlabLU is reasonable.

All experiments used double precision. While the RTX 3090 supports double

precision calculations, its peak performance using fp64 is significantly less than that

of fp32. In comparison, the V100 is designed for high performance with fp64. Surpris-

ingly, we found that the timings on the two systems did not differ significantly. We

observed significant speedups for Stage Two on the V100 compared to the RTX 3090,

but little change for Stage One, leading us to conclude that the factorization of T is

compute-bound, whereas the sparse factorizations in Stage One are latency-bound.

We demonstrate competitive scaling for the build time of the factorization and

for the memory footprint. See Figure 3.5 for the Poisson equation (3.25) and Figure

3.6 for the constant-coefficient Helmholtz equation (3.27). Despite the super-linear

complexity scaling, the scaling appears to be linear for grids of size up to N = 100M.

However, for coercive PDEs, there is rarely a reason to scale the discretizations to

such large grids. For the Helmholtz equation, we discretize to at least 10 points per

wavelength to resolve the oscillatory solutions, leading to large grids. However, due

to the effect of pollution when using low-order discretization, we need to discretize

the Helmholtz equation to 250 points per wavelength to attain 3 digits of accuracy

with respect to the known analytic solution.

Sparse direct solvers use sparsity in the discretized operator in order to fac-

torize the sparse coefficient matrix exactly. SlabLU uses sparsity in the traditional

81

0 20 40 60 80 100
N = n2 (M)

0

500

1000

1500

2000

ti
m

e
(s

)

Laplace, 2nd order FD
Build Time

CPU only

RTX 3090

Tesla V100

(a) Build time for SlabLU on various architectures.

N b Mfactor Tsolve relerrres relerrtrue
1.0 M 50 0.5 GB 0.5 s 1.99e-12 5.22e-07
4.0 M 100 2.5 GB 1.6 s 3.41e-12 1.31e-07
9.0 M 125 6.5 GB 3.6 s 4.78e-12 5.81e-08
16.0 M 160 12.9 GB 7.3 s 4.15e-12 3.27e-08
25.0 M 200 22.5 GB 12.2 s 4.66e-12 2.09e-08
36.0 M 200 32.7 GB 18.2 s 5.90e-12 1.46e-08
49.0 M 200 46.8 GB 27.4 s 1.10e-11 1.04e-08
64.0 M 250 63.9 GB 37.7 s 6.08e-12 8.10e-09
81.0 M 250 83.3 GB 55.3 s 6.16e-12 6.32e-09
100.0 M 250 105.6 GB 65.4 s 7.96e-12 4.92e-09

(b) Memory footprint, solve time, and solution accuracy using SlabLU.

Figure 3.5: The plot in Figure 3.5a and corresponding table in Table 3.5b for solving the
Poisson equation with a body load (3.25) using a 2nd order finite difference discretization.
SlabLU is portable across a variety of architectures, which is illustrated by reporting results
using the CPU only, as well as two different GPU architectures. Though the build time
of SlabLU scales as O(N5/3), the observed asymptotic behavior has linear scaling with N ;
using GPU acceleration substantially accelerates the build time.

sense for the sparse factorizations (3.20) in Stage One. In order to construct the

reduced coefficient matrix T, we prove a rank property in Proposition (3.3.2) that

allows us to represent sub-blocks Tjk ∈ Rn2×n2 exactly in O(n2b) storage and recover

Tjk in HBS format using random sampling; see Section 3.3.3. Crucially, Proposition

(3.3.2) is a purely algebraic property that holds regardless of the PDE. Often, the

HBS rank of Tjk is considerably less than 2b; SlabLU uses adaptive rank sampling

in the HBS construction to considerably save on build time and storage costs. For a

thin slab with λ wavelengths in the thin dimension, we have observed that the ranks

82

0 20 40 60 80 100
N = n2 (M)

0

500

1000

1500

2000

ti
m

e
(s

)

Constant Coefficient Helmholtz, 2nd order FD
Build Time

CPU only

RTX 3090

Tesla V100

(a) Build time for SlabLU on various architectures.

N κ Mfactor Tsolve relerrres relerrtrue
1.0 M 27.12 0.5 GB 0.5 s 1.00e-11 1.79e-03
4.0 M 52.25 2.5 GB 1.4 s 1.58e-11 2.59e-03
9.0 M 77.39 6.6 GB 3.5 s 2.64e-11 3.95e-03

16.0 M 102.52 12.9 GB 7.2 s 2.27e-11 1.01e-02
25.0 M 127.65 22.5 GB 10.5 s 2.41e-11 1.01e-02
36.0 M 152.78 32.3 GB 17.8 s 2.86e-11 4.84e-03
49.0 M 177.92 46.9 GB 28.3 s 4.12e-11 6.50e-03
64.0 M 203.05 64.0 GB 37.6 s 1.89e-10 3.15e-02
81.0 M 228.18 83.8 GB 61.0 s 1.46e-10 1.09e-02

100.0 M 253.32 105.7 GB 70.8 s 1.04e-10 8.70e-03

(b) Memory footprint, solve time, and solution accuracy using SlabLU.

Figure 3.6: The plot in Figure 3.6a and corresponding table in Table 3.6b report results for
solving the constant coefficient Helmholtz equation (3.27) using a 2nd order finite difference
discretization. The wavenumber κ is increased with the problem size to maintain 250 points
per wavelength. Although we use some approximations for SlabLU, the factorization is able
to resolve the solution is resolved to at least 10 digits in the residual. Because of the effect
of pollution, the relative error compared to the true solution is only 3 digits.

are roughly twice λ plus a small constant factor. For the Poisson equation, HBS rank

about 50 approximates Tjk to high accuracy.

We compare the performance of SlabLU and SuperLU in solving the 2nd order

finite difference discretization of the constant coefficient Helmholtz equation (3.27),

which results in very ill-conditioned sparse matrices (3.3) that need to be solved.

SuperLU is a generic sparse direct solver that computes a sparse LU fac-

torization of any given sparse matrix to high accuracy. It uses groupings of nodes

into ”supernodes” to leverage BLAS3 operations on dense sub-blocks [11, 61] and

83

2.5 5.0 7.5 10.0 12.5 15.0
N = n2 (M)

0

200

400

600

ti
m

e
(s

)
Comparison to SuperLU, 2nd order FD

Build Time

SuperLU, CPU only

SlabLU, CPU only

SlabLU, RTX 3090

(a) Comparison of build time for SuperLU and
SlabLU.

Tsolve (CPU only)
N κ SlabLU SuperLU

1.0 M 27.12 0.21 0.46
1.4 M 27.12 0.31 0.51
2.0 M 33.40 0.43 0.69
2.6 M 39.69 0.58 1.03
3.2 M 45.97 0.74 1.27
4.0 M 52.25 0.69 1.38
4.8 M 52.25 1.16 1.92
5.8 M 58.54 1.10 2.25
6.8 M 64.82 1.69 2.48
7.8 M 71.10 1.96 3.21
9.0 M 77.39 1.63 3.47
10.2 M 77.39 1.97 3.84
11.6 M 83.67 — 4.78

(b) Comparison of solve time for Su-
perLU and SlabLU.

5 10 15
N = n2 (M)

0

10

20

30

m
em

or
y

(G
B

)

Comparison to SuperLU, 2nd order FD
Memory Footprint

Super LU

Slab LU

(c) Comparison of memory footprint for
SuperLU and SlabLU.

5 10 15
N = n2 (M)

10−12

10−9

10−6

10−3

ac
cu

ra
cy

(r
el

at
iv

e)

Comparison to SuperLU, 2nd order FD
Solve Accuracy

Slab LU relerrtrue

Super LU relerrtrue

Slab LU relerrres

Super LU relerrres

(d) Comparison of computed solution ac-
curacy for SuperLU and SlabLU.

Figure 3.7: Figures 3.7a to 3.7d report a comparison between Super LU and SlabLU
for equation 3.27 discretized with a constant number of points per wavelength using 2d
order finite differences. SlabLU groups nodes into supernodes to leverage batched BLAS3
operations in Stage One and uses GPU acceleration for the large fronts in Stage Two. For the
CPU-comparison, SlabLU is faster by a factor of 4 for N=10.2M. Using GPU acceleration
makes the method faster by a factor of 8. Additionally, SlabLU is more memory efficient
by a factor of 4 for N = 10.2 M.

is computed with the default permutation specification of COLAMD ordering [4] to

minimize fill-in. We use the Scipy interface (version 1.8.1) to call SuperLU. During

the factorization, SuperLU may pivot between sub-blocks to achieve stability in the

computed factorization, resulting in superior accuracy in the residual. Despite limita-

84

tions in the pivoting scheme of SlabLU, both schemes are able to resolve the solution

up to the discretization error (see Figure 3.7). However, our comparison shows that

SlabLU outperforms SuperLU in terms of build times and memory costs up to about

10M points. It is somewhat surprising that SlabLU outperforms SuperLU in terms of

memory costs; we believe this is because SuperLU stores its computed factorization in

sparse CSR format, leading to large storage costs for dense sub-blocks. For problems

larger than 10.2M points, SuperLU does not compute the factorization, likely because

the memory requirements exceed some pre-prescribed limit.

3.6.3 Benchmark Experiments using High-Order Discretization

High-order discretization is crucial for resolving variable-coefficient scattering

phenomena due to the pollution effect, which requires increasing the number of points

per wavelength as the domain size increases [10, 26]. The HPS discretization (cf. Sec-

tion 3.2.3) is less sensitive to pollution because it allows for a high choice of local

polynomial order [44, 66].

In this subsection, we demonstrate the ability of HPS to resolve oscillatory

problems without the effect of pollution by reporting results for the constant coeffi-

cient Helmholtz equation (3.27). For these experiments, the wavenumber κ increases

with N to maintain 10 points per wavelength. We also demonstrate performance of

SlabLU in factorizing sparse systems arising from the HPS discretization with local

polynomial order p. The leaf operations are handled efficiently as discussed in 3.5.3,

and factorizing the reduced system Ã has no pre-factor dependence on p. In many

plots (e.g. Figures 3.8, 3.9) results are reported for a range of local polynomial order

p. To keep N fixed for various p, we choose the number of local HPS subdomains

appropriately (e.g. more subdomains for p = 17 and fewer for p = 42).

First, we report performance of the leaf operations on their own. These are

handled efficiently using batched linear algebra, and the local leaf factorizations are

discarded and re-factorized as needed during the solve stage to save on memory costs

85

for the direct solver. The efficiency of the leaf operations for fixed N and varying p

is shown in Figure 3.8. Parallel leaf operations are particularly efficient when using

GPU acceleration.

0 10 20 30
N = n2 (M)

0

200

400

600

ti
m

e
(s

)

Time for HPS leaf operations
for various p

p=17, CPU

p=32, CPU

p=42, CPU

p=17, RTX 3090

p=32, RTX 3090

p=42, RTX 3090

Figure 3.8: The plot shows the time required for leaf operations for HPS, for various local
polynomial orders p and fixed total degrees of freedom N . Leaf operations for HPS require
O(p4N) operations, though the practical scaling for parallel operations has a small constant
prefactor for p up to 32. Parallel HPS leaf operations are further accelerated on the GPU.
The speedup factor is at least 7.7x, 4.7x, and 3.9x for p = 17, 32, and 42, respectively.

20 40 60 80
N = n2 (M)

250

500

750

1000

ti
m

e
(s

)

SlabLU Build Time
for various p on RTX 3090

p=17

p=22

p=32

p=42

Figure 3.9: We discretize equation (3.27) with HPS for various local polynomial order p.
Refinement in the local polynomial order p allows the user to attain faster convergence
in the relative error, compared to the true solution. For many discretizations, increasing
p may lead to substantially slower factorization time. Because HPS interfaces well with
sparse direct solvers, the choice of p does not substantially affect the build time for SlabLU.

86

20 40 60 80
N = n2 (M)

0

50

100

150

200

250

300

ti
m

e
(s

)

SlabLU Solve Time
for various p on RTX 3090

p=17

p=22

p=32

p=42

(a) Solve time for various p.

20 40 60 80
N = n2 (M)

0

10

20

30

40

50

60

70

m
em

or
y

(G
B

)

SlabLU Memory Footprint
for various p

p=17

p=22

p=32

p=42

(b) Memory footprint for various p.

Figure 3.10: Figures 3.10a and 3.10b show the solve time and memory footprint, respec-
tively for equation (3.27) discretized with HPS for various local polynomial order p. Recall
in Remark 3.3, we save on space by discarding local leaf differentiation operators and re-
forming them as needed for the solve stage. Because the leaf operations are efficient on the
GPU, the solve stage is fairly fast, even for large p.

20 40 60 80
N = n2 (M)

10−10

10−8

10−6

10−4

ac
cu

ra
cy

SlabLU Solution Accuracy
for various p

relerrtrue, p=17

relerrtrue, p=22

relerrtrue, p=32

relerrtrue, p=42

relerrres, p=17

relerrres, p=22

relerrres, p=32

relerrres, p=42

Figure 3.11: We discretize equation (3.27) with HPS for various local polynomial order p.
Recall that the wavenumber κ is increased with N to maintain 10 points per wavelength.
Regardless of the choice of p, SlabLU resolves the solution to at least 10 digits of relative
accuracy in the residual (i.e. in the quantity relerrres). With increasing p, one can calculate
solutions with higher relative accuracy, compared to the true solution of the PDE, which
we refer to as relerrtrue.

87

Next, we report the performance of SlabLU in factorizing systems discretized

with HPS for various polynomial orders p. The flexibility of the HPS discretization

allows for p to be changed easily, depending on the user’s preference. Because the

leaf operations are efficient and HPS interfaces well with SlabLU, the build and solve

time are not substantially affected by changing p, c.f. Figures 3.9 and 3.10. Higher

choices of p lead to better resolution of the computed solution, compared to the true

known solution, as reported in Figure 3.11.

0 20 40 60 80 100
N = n2 (M)

0

500

1000

1500

2000

ti
m

e
(s

)

Constant Coefficient Helmholtz, HPS with p = 22
Build Time

CPU only

RTX 3090

Tesla V100

(a) Build time for SlabLU on various architectures.

N κ Mbuild Tsolve relerrres relerrtrue
1.1 M 630.31 0.4 GB 0.8 s 3.54e-12 2.37e-08
4.4 M 1258.63 1.8 GB 2.3 s 6.29e-12 9.57e-08
9.9 M 1886.94 4.4 GB 4.7 s 1.14e-11 2.16e-07
17.6 M 2515.26 8.9 GB 8.1 s 2.39e-11 4.03e-07
27.5 M 3143.58 15.6 GB 13.9 s 6.44e-11 9.66e-07
39.6 M 3771.90 21.5 GB 21.6 s 3.87e-10 7.11e-07
53.9 M 4400.22 32.4 GB 29.7 s 6.23e-11 7.92e-07
70.4 M 5028.54 45.9 GB 39.0 s 1.24e-09 4.56e-07
89.1 M 5656.86 61.0 GB 52.5 s 4.33e-10 1.19e-06
110.0 M 6285.17 80.0 GB 68.1 s 2.33e-10 7.49e-07

(b) Memory footprint, solve time, and solution accuracy using SlabLU.

Figure 3.12: The plot in Figure 3.12a and corresponding table in Table 3.12b report results
for solving the constant coefficient Helmholtz equation (3.27) using an HPS discretization
with p = 22, where the wavenumber κ is increased with the problem size to maintain
10 points per wavelength. Using a high order discretization scheme allows us to scale to
physically large domains up to 1000λ × 1000λ without the effect of pollution. The leaf
operations for HPS and SlabLU are portable across a variety of hardware architectures and
perform especially well on GPUs.

Finally, we show results for the Helmholtz equation discretized with HPS for

88

p = 22; the wavenumber κ is increased with N to maintain 10 points per wavelength.

We scale up to N = 110M points on a variety of hardware architectures, c.f. Figure

3.12. The largest domain is of size 1000λ× 1000λ and is resolved 7 digits of relative

accuracy, compared to the known solution of the PDE. Meanwhile, 2nd order FD

requires 100-250 points per wavelength to achieve low accuracy, c.f. 3.6.

3.6.4 Solving Challenging Scattering Problems with High Order Dis-
cretization

We will now demonstrate the ability of HPS, combined with SlabLU as a sparse

direct solver, to solve complex scattering phenomena on various 2D domains. Com-

bining HPS with SlabLU provides a powerful tool for resolving challenging scattering

phenomena to high accuracy, especially for situations where efficient preconditioners

are not available [34].

For the presented PDEs, we will show how the accuracy of the calculated

solution converges to a reference solution depending on the choice of p in the dis-

cretization. Specifically, we will solve the BVP (3.1) with the variable-coefficient

Helmholtz operator (3.2) for Dirichlet data on curved and rectangular domains. We

fix the PDE and refine the mesh to compare calculated solutions to a reference so-

lution obtained on a fine mesh with high p, as the exact solution is unknown. The

relative error is calculated by comparing ucalc to the reference solution uref at a small

number of collocation points {xj}Mj=1 using the l2 norm

relerrapprox =
∥ucalc − uref∥2
∥uref∥2

. (3.30)

We demonstrate the convergence on a unit square domain Ω = [0, 1]2 with a variable

coefficient field bcrystal corresponding to a photonic crystal, shown in Figure 3.13a.

The solutions and convergence plot are presented in Figure 3.13.

Next, we show the convergence on a curved domain Φ with a constant-coefficient

field b ≡ 1, where Φ is given by an analytic parametrization over a reference square

89

Scattering field bcrystal Solution for κ=156.70 Solution for κ=157.02

0.2

0.4

0.6

0.8

1.0

−20

−10

0

10

20

−50

0

50

(a) Computed solutions on Ω.

100 101

N = n2 (M)

10−8

10−6

10−4

10−2

100

re
le

rr
ap

p
ro

x

Convergence on Ω
with b = bcrystal for κ = 944.5

p=17

p=22

p=32

p=42

(b) Convergence of computed solutions on Ω.

Figure 3.13: Figure 3.13a shows solutions of variable-coefficient Helmholtz problem on
square domain Ω with Dirichlet data given by u ≡ 1 on ∂Ω for various wavenumbers κ. The
scattering field is bcrystal, which is a photonic crystal with an extruded corner waveguide.
The crystal is represented as a series of narrow Gaussian bumps with separation s = 0.04
and is designed to filter wave frequencies that are roughly 1/s. Figure 3.13b shows the
convergence of computed solutions, for reference solution uref on HPS discretization for
N=36M with p = 42.

Ω = [0, 1]2. The domain Φ is parameterized as

Ψ =

{(
x1,

x2
ψ(x1)

)
for (x1, x2) ∈ Ω = [0, 1]2

}
, where ψ(z) = 1− 1

4
sin(z). (3.31)

Using the chain rule, (3.2) on Φ takes the following form on Ω

−∂
2u

∂x21
− 2

ψ′(x1)x2
ψ(x1)

∂2u

∂x1∂x2
−
((

ψ′(x1)x2
ψ(x1)

)2

+ ψ(x1)
2

)
∂2u

∂x22

− ψ′′(x1)x2
ψ(x1)

∂u

∂x2
− κ2u = 0, (x1, x2) ∈ Ω.

(3.32)

90

Solution for κ = 96.24 Solution for κ = 253.32

−60

−40

−20

0

20

40

60

−30

−20

−10

0

10

20

30

40

(a) Computed solution on Ψ.

100 101

N = n2 (M)

10−6

10−3

100

re
le

rr
ap

p
ro

x

Convergence on Φ
with b ≡ 1 for κ = 944.5

p=17

p=22

p=32

p=42

(b) Convergence of computed
solutions on Ψ.

Figure 3.14: Figure 3.14a shows solutions of constant-coefficient Helmholtz problem on
curved domain Ψ with Dirichlet data given by u ≡ 1 on ∂Ψ for various wavenumbers κ.
The solutions are calculated parameterizing Ψ in terms of a reference square domain Ω
as (3.31) and solving (3.32) on Ω. Figure 3.14b shows convergence on curved domain Ψ
for reference solution uref on HPS discretization for N=36M with p = 42. The solutions
exhibit mildly singular behavior near the corners, and choosing high orders of p aids in the
convergence.

−2 −1 0 1 2
0.0

0.5

1.0

1.5

2.0
Solution for κ=96.24

−10

0

10

(a) Computed solutions on X.

100 101

N = n1n2 (M)

10−8

10−6

10−4

10−2

100

re
le

rr
ap

p
ro

x

Convergence on X
with b ≡ 1 for κ = 441.8

p=17

p=22

p=32

p=42

(b) Convergence of computed
solutions on X.

Figure 3.15: Figure 3.15a shows solutions of constant-coefficient Helmholtz problem on
curved domain X with Dirichlet data given by u ≡ 1 on ∂Ψ. The solutions are calculated
parameterizing X in terms of a reference rectangle domain as (3.33) and solving a variable-
coefficient elliptic PDE on the reference rectangle. Figure 3.15b shows the convergence on
curved domain X for reference solution uref on HPS discretization for N=36M with p = 42.

91

The solutions on Φ and the convergence plot is presented in Figure 3.14.

Next, we show the convergence on a curved domain X with a constant-

coefficient field b ≡ 1, where X is a half-annulus given by an analytic parametrization

over a reference rectangle. The domain X is parameterized as

Ψ =
{(

cos
(
θ̂(x1)

)
, sin

(
θ̂(x1)

))
for (x1, x2) ∈ [0, 3]× [0, 1]

}
, (3.33)

where θ̂(z) = π
3
z. Using the chain rule, (3.2) on X takes a different form of a

variable-coefficient elliptic PDE on the reference rectangle. The solutions on X and

the convergence plot are presented in Figure 3.15.

Finally, we demonstrate convergence on a curved domain Ψ with a constant

coefficient field b ≡ 1, where we have implemented a periodic boundary condition.

The domain Ψ is parameterized by the formula

Φ =
{(
r̂(x1, x2) cos

(
θ̂(x1)

)
, r̂(x1, x2) sin

(
θ̂(x1)

))
for (x1, x2) ∈ [0, 6]× [0, 1]

}
,

(3.34)

where r̂(z1, z2) = 1+ 1
5
cos
(
15
π
z1 + z2

)
and θ̂(z) = π

3
z. By applying the chain rule, the

Helmholtz operator (3.2) on Ψ takes a different form of a variable-coefficient elliptic

PDE on the reference rectangle. The solutions on Ψ and the convergence plot is

presented in Figure 3.16.

92

−2 −1 0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Solution for κ=64.82 Solution for κ=190.48

−6

−4

−2

0

2

4

6

8

−60

−40

−20

0

20

40

60

(a) Computed solutions on Ψ.

100 101

N = n1n2 (M)

10−7

10−5

10−3

10−1

101

re
le

rr
ap

p
ro

x

Convergence on Ψ
with b ≡ 1 for κ = 441.8

p=17

p=22

p=32

p=42

(b) Convergence of computed solutions on Ψ.

Figure 3.16: Figure 3.16a shows solutions of constant-coefficient Helmholtz problem on
curved domain Ψ with Dirichlet data given by u ≡ 1 on ∂Ψ for various wavenumbers κ.
Figure 3.16b shows convergence on curved domain Ψ for reference solution uref on HPS
discretization for N=36M with p = 42. Choosing high orders of p aids in the convergence.

3.7 Conclusion

This work introduces SlabLU, a sparse direct solver framework designed for

solving elliptic PDEs. The approach decomposes the domain into a sequence of

thin slabs. The degrees of freedom internal to each slab are eliminated in parallel,

yielding a reduced matrix T defined on the slab interfaces. The reduced matrix T

is then factorized directly. The general two-level framework of SlabLU is simple to

93

implement, easy to parallelize, and can be accelerated via batched linear algebra and

GPU computations.

One key innovation of the method is the use of randomized compression with

a sparse direct solver to efficiently form T. The dense sub-blocks of T have exact

rank deficiencies in the off-diagonal blocks present in both the non-oscillatory and

oscillatory regimes. The use of randomized black-box algorithms provides a purely

algebraic means of efficiently forming T for a variety of PDE discretizations. SlabLU

requires O(N5/3) time to build and O(N7/6) time to apply.

The numerical experiments presented in this work demonstrate that SlabLU is

highly effective when used in conjunction with high-order multi-domain spectral col-

location schemes. The combination of SlabLU with high order discretization enables

the rapid and accurate simulation of large-scale and challenging scattering phenomena

on both rectangular and curved domains to high accuracy.

Acknowledgments Anna would like to thank her dad, Andriy, for gifting her the

RTX-3090 GPU.

Funding The work reported was supported by the Office of Naval Research (N00014-

18-1-2354), by the National Science Foundation (DMS-1952735 and DMS-2012606),

and by the Department of Energy ASCR (DE-SC0022251).

94

Chapter 4: Randomized Strong Recursive

Skeletonization: Simultaneous Compression and

Factorization of H-matrices in the Black-Box

Setting 3

The hierarchical matrix (H2-matrix) formalism provides a way to reinterpret

the Fast Multipole Method and related fast summation schemes in linear algebraic

terms. The idea is to tessellate a matrix into blocks in such as way that each block is

either small or of numerically low rank; this enables the storage of the matrix and the

application of it to a vector in linear or close to linear complexity. A key motivation

for the reformulation is to extend the range of dense matrices that can be represented.

Additionally, H2-matrices in principle also extend the range of operations that can

be executed to include matrix inversion and factorization. While such algorithms can

be highly efficient for certain specialized formats (such as HBS/HSS matrices based

on “weak admissibility”), inversion algorithms for general H2-matrices tend to be

based on nested recursions and recompressions, making them challenging to imple-

ment efficiently. An exception is the strong recursive skeletonization (SRS) algorithm

by Minden, Ho, Damle, and Ying, which involves a simpler algorithmic flow. How-

ever, SRS greatly increases the number of blocks of the matrix that need to be stored

explicitly, leading to high memory requirements. This manuscript presents the ran-

domized strong recursive skeletonization (RSRS) algorithm, which is a reformulation

of SRS that incorporates the randomized SVD (RSVD) to simultaneously compress

and factorize an H2-matrix. RSRS is a “black box” algorithm that interacts with

the matrix to be compressed only via its action on vectors; this extends the range

of the SRS algorithm (which relied on the “proxy source” compression technique) to

include dense matrices that arise in sparse direct solvers. Moreover, RSRS leads to

3This work was completed in collaboration with Per-Gunnar Martinsson and has appeared in
preprint [98].

95

dramatically simpler data structures, faster execution time, and easier parallelization.

RSRS is particularly effective when applied to geometries that have lower dimension-

ality than the ambient space (as when discretizing a boundary integral equation on

a surface in R3), as it enables off-diagonal blocks to be compressed using their actual

numerical ranks, rather than the rank imputed by a proxy surface.

4.1 Introduction

Dense matrices that arise in mathematical physics often have internal structure

that makes it possible to solve problems involving elliptic operators in linear or close

to linear time. Early techniques such as the Fast Multipole Method [48, 49, 50]

exploited mathematical properties of the kernel function directly to enable the fast

application of dense matrices to vectors. The H2-matrix methodology followed, and

reinterpreted the FMM in linear algebraic terms, where a matrix is tessellated into

blocks in such as way that each block is either small or of numerically low rank.

This reinterpretation opened the door to linear complexity algorithms for a wider

range of algebraic operations, including the matrix-matrix multiplication, and the

construction of invertible factorizations.

The manuscript describes the algorithm Randomized Strong Recursive Skele-

tonization (RSRS) for simultaneously compressing and inverting an H2-matrix, given

a means of applying the matrix and its adjoint to vectors. The precise problem for-

mulation is this: Suppose that A is an H2-matrix, and that you are given a fast

method for applying A and its adjoint A∗ to vectors. We then seek to build two

“test-matrices” Ω and Ψ with the property that the H2 representation of A−1 can be

constructed from the set {Y,Z,Ω,Ψ}, where

Y = AΩ and Z = A∗Ψ.

RSRS is immediately applicable in a range of important environments. First,

it can be used to derive a rank-structured representation of any integral operator

96

for which a fast matrix-vector multiplication algorithm, such as the Fast Multipole

Method, is available. In this context, RSRS will directly output an invertible fac-

torization of the integral operator. Second, it can greatly simplify algebraic opera-

tions involving products of rank-structured or sparse matrices. As an illustration, the

Dirichlet-to-Neumann (DtN) operator for a bounded domain can often be constructed

using boundary integral equation techniques, with the overall action of the DtN oper-

ator calculated by applying an iterative solver combined with a post-processing step.

RSRS would let us directly build and factorize the DtN operator. Relatedly, the per-

haps key application of rank-structured matrix algebra is the acceleration of sparse

direct solvers, as the dense matrices that arise during LU factorization are often rank

structured [3, 65, 68, 95]. In the course of such a solver, a typical operation would

be to form a Schur complement such as S = B(I, J)B(J, J)−1B(J, I), where I and J

are two index sets. If B(J, J) is an H2-matrix, then B(J, J)−1 can easily be applied

to vectors via an LU factorization. If, additionally, B(I, J) and B(J, I) are either

sparse or rank structured, then S can easily be applied to a vector. RSRS in this

environment allows us to directly compute a factorization of S, which is precisely

what is needed in order to move the overall LU factorization forwards.

The fact that RSRS simultaneously compresses and inverts the matrix is a

key feature of the algorithm. Previous work on black-box randomized algorithms for

compressing rank structured matrices [60, 63, 67, 73] has approached the tasks of

compression and inversion as two separate computational stages, with one executed

before the other. This approach is very natural for rank structured formats based

on “weak admissibility” (where all off-diagonal blocks of the matrix are treated as

low rank) since in this case simple and exact inversion algorithms are available [19,

45, 94]. In the “strong admissibility” case (where only interactions between well

separated parts of the computational domain are compressed), LU factorization or

inversion are much more challenging tasks that require repeated recompression of

off-diagonal blocks as the algorithm proceeds [9, 12, 76, 87]. This complication has

greatly limited the appeal of direct solvers based on rank structured matrices for

97

problems in involving fully three dimension geometries where strong admissibility is

essential.

In terms of prior work, RSRS draws on the randomized SVD (RSVD) for low

rank approximation of matrices [54, 62, 72], and on earlier methods that apply the

RSVD to the problem of reconstructing rank structured matrices from matrix-vector

products [60, 63, 67, 73]. It in particular draws on ideas from the recent dissertation

of James Levitt [59, 60]. Finally, it draws heavily from the prior work on strong

recursive skeletonization, including the original work [76], and the more recent [86].

The manuscript is structured as follows: Section 4.2 surveys the key ideas

underlying the RSVD and how they can be applied to simultaneously compress all

the off-diagonal blocks of a rank structured matrix. Section 4.2 also introduces the

core idea that is the main contribution of the present work. Section 4.3 introduces

the interpolatory decomposition and shows how it can be used to solve simple linear

systems involving rank deficiencies in their coefficient matrices. Section 4.4 intro-

duces our interpretation of the Strong Recursive Skeletonization (SRS) algorithm.

Section 4.5 describes Randomized Strong Recursive Skeletonization in full, and dis-

cusses refinements to the basic scheme. Section 4.6 presents numerical experiments

that demonstrate how RSRS performs in terms of speed, memory requirements, and

precision.

4.2 Randomized compression and factorization of rank struc-
tured matrices

In this section, we highlight the key methodological contributions of the manuscript

for a simple model problem. For points {xj}Nj=1 shown in Figure 4.1, consider the

N ×N matrix A with entries

A(i, j) = k(xi, xj) (4.1)

given by a kernel function k, for instance k(x,y) = log |x − y|. The singularity at

x = y can be handled with an appropriate quadrature rule. The matrix (4.1) and

98

its adjoint can be applied rapidly to vectors using the fast multipole method. The

objective is to recover an approximate representation of A−1 using random sketches

Y
N×p

= A
N×N

Ω
N×p

, Z
N×p

= A∗
N×N

Ψ
N×p

, Ω,Ψ ∼ N (0, I) (4.2)

using Gaussian test matrices Ω,Ψ. We will discuss the needed number of samples

later, but for now, consider that p≪ N . The material in Section 2.1 follows [54, 71,

77], while the techniques in Sections 2.2 and 2.3 are based on ideas in [59, 60].

Points {xj}Nj=1

Level 1 2 3

Level 2 4 5 6 7

Level 3 8 9 10 11 12 13 14 15

Figure 4.1: The hierarchical tessellation of boxes for a quasi one dimensional model
problem. Boxes on the same level which share an edge or corner are called neighbors.
Two boxes which are not neighbors are called well-separated. A box b has a far-field
consisting of all boxes which are well-separated from b. As an example, box 9 has
neighbors {8,9,10} and far-field {11,. . . , 15}.

The methodology uses that A has certain rank deficiencies to recover a sparse

factorization of A−1 efficiently. Consider the tessellation of points into boxes 8, . . . , 15

on Level 3 of Figure 4.1, where each box has m := N/8 points. The matrix A has the

following property for interactions between far-field blocks

Ai,j
m×m

≈ Qi
m×k

Ãij
k×k

U∗
j

k×m

(4.3)

where index set Ii and Ij correspond to the indices of points of well-separated colleague

boxes i and j, respectively. The low rank property of far-field interactions in (4.3)

is depicted in Figure 4.2a. The blocks corresponding to interactions between near

neighbors are stored densely.

In the next sections, we discuss methods for recovering the bases Qi and Uj,

which we call block nullification, in the black-box setting of (4.2). We also discuss

99

techniques for recovering block-sparse interactions (e.g. interactions between near

neighbors), which we call block extraction. First, to provide context, we review stan-

dard methods for recovering globally low-rank factors from matrix-vector products.

4.2.1 Review of randomized sketching for a low rank matrix

Suppose we would like to compute a low-rank approximation to the matrix

A ∈ Rm×n where the rank k is approximate and known apriori. Randomized low

rank compression provides a powerful set of techniques for accomplishing this task

via the action of A and its adjoint on a small number of vectors.

A low rank approximation to A can be computed in two stages. First, we would

like to compute Q ∈ Rm×k with orthonormal columns for which A ≈ QQ∗A. Once Q

is known, then we can form the matrix B = A∗Q and the low-rank factorization of A

takes the form

A
m×n

= Q
m×k

B
k×n

. (4.4)

To find an approximate basis for the range of A (e.g. find Q such that A ≈ QQ∗A),

we generate a randomized sketch of A

Y
m×(k+l)

= A
m×n

Ω
n×(k+l)

, Ω ∼ N (0, I), (4.5)

where l is a small oversampling parameter (e.g. l = 5). The sketch Y approximately

spans the column space of A, and desired orthonormal basis Q can be computed by

running a procedure to orthonormalize Y

Q
m×(k+l)

= orth
(
Y
)
, where Y = QR (4.6)

When the rank k is not known apriori, there are adaptive algorithms available which

build a low rank representation of A from successive sketches. Randomized sketching

methods can be used to construct a wide range of decompositions, including the

interpolative decomposition which we introduce in Section 4.3.2. These algorithms

are especially useful in the black-box setting of (4.2) because the matrix A is only

100

accessed through its action on vectors. In the next section, we discuss a modification

of randomized low rank matrices which can be used to recover the orthogonal bases

for the row and column blocks of (4.3).

4.2.2 Block Nullification

In the black-box setting of (4.2), we would like to recover the bases Qi,Ui ∈
Rm×k for all blocks i = 8, . . . , 15 as defined in (4.3). Consider that we do this using

some modification of randomized sketching methods. Let the test and sketch matrices

be tessellated according to the tree decomposition in Figure 4.1 on Level 3, so that

Y =


Y8

Y9
...

Y15

 , Ω =


Ω8

Ω9
...

Ω15

 , Yi ∈ Rm×p, Ωi ∈ Rm×p (4.7)

and similar tessellations for Z,Ψ.

The structure of A has dense interactions between near neighbor blocks, c.f.

Figure 4.2a, which complicate the use of randomized sketching techniques. Ideally, the

structure of the test matrices Ω would correspond to the sparsity pattern of the low

rank blocks that we need to sample. Consider a ‘structured’ test matrix Ω′ ∈ RN×k

for sampling the far-field of block i = 9, where Ω′
8,Ω

′
9,Ω

′
10 = 0 and the other blocks

are Gaussian random matrices. Then sketching to produce Y′ = AΩ′, extracting the

I9 block, and post-processing would yield a basis for Q9:

U9
m×k

= orth(Y′
9

m×k

), where Y′
N×k

= A
N×N

Ω′
N×k

(4.8)

To recover the basis for i = 12, another structured test matrix Ω′′ ∈ RN×k can be

designed with zero blocks Ω′′
11,Ω

′′
12,Ω

′′
13 = 0 and procedure in (4.8) can be repeated

for the sketch Y′′ = AΩ′′. Using these structured test matrices, tailored for sampling

the far field of every box, would require k
m
N total samples and k2N post-processing

cost.

101

Block nullification accomplishes the same aim with much fewer samples and

slightly increased post-processing costs. Let us again consider sampling the far-field

of box i = 9, and consider that we construct a matrix N′ from the fully dense test

matrix Ω defined in (4.7)

N′
p×(p−3m)

= null

Ω8
m×p

Ω9

Ω10

 (4.9)

where the operation null gives an orthogonal basis for the nullspace of matrix. Sup-

pose that p = (3m+ k), then N′ is k-dimensional with high probability. Multiplying

N′ on the right of Ω gives

Ω
N×p

N′
p×k

=



Ω8
m×p

N′
p×k

0
0
0

Ω11N
′

...
Ω15N

′


=



Ω′
8

m×k

0
0
0
Ω′

11
...

Ω′
15


:= Ω′ ∈ RN×k, (4.10)

where Ω′ is the ‘structured’ Gaussian random matrix discussed earlier. The blocks

Ω′
9,Ω

′
10,Ω

′
11 are zero matrices by construction. Likewise, the structured random

matrix Ω′′ for sampling the far field for i = 12 can be constructed in a similar

fashion.

Ω
N×p

N′′
p×k

:= Ω′′
N×k

,where N′′
p×(p−3m)

= null

Ω11

Ω12

Ω13

 (4.11)

To recover Q9 as described in (4.8), we need the I9 block of the sketch Y′, which we

can construct by post-processing Ω

Y′
N×k

= A
N×N

Ω′
N×k

= A
N×N

(
Ω

N×p
N′
p×k

)
= Y

N×p
N′
p×k

. (4.12)

Note that because we only need the I9 block, the full sketch Y′ does not need to be

formed explicitly. Instead, Y′
9 can be constructed as

Y′
9

m×k

= Y9
m×p

N′
p×k

, then Q9 = orth (Y′
9) . (4.13)

102

Likewise, the basis Q12 can be recovered by computing N′′ as in (4.11) and or-

thonormalizing the sketch Y′′
12 = Y12N

′′. Block nullification allows us to recover

all bases Q8, . . . ,Q15 using only p = (3m + k) samples of A and O ((m2 +m2k)N)

post-processing cost. The big-O notation hides constants related to the geometry

which are discussed in a later section. The bases U8, . . . ,U15 can be recovered using

a similar procedure for post-processing Z and Ψ.

(a) Setting for block nullification. (b) Setting for block extraction.

full rank

low rank

Figure 4.2: The figure depicts a rank-structured matrix A in two settings. Figure
4.2a shows a dense matrix A that uses low rank bases for each row and column
block. Blocks which are well-separated, according to the geometry in Figure 4.1, are
compressed using uniform bases, c.f. (4.3) for a formal definition. Figure 4.2b shows
a special case of a rank-structured matrix, where the well-separated blocks have rank
exactly 0.

4.2.3 Block Extraction

In addition to low-rank factors, the small dense blocks corresponding to inter-

actions between adjacent neighbors need to be recovered as well. For this task, we

describe a randomized sampling technique which is useful for block-sparse matrices.

The setting for using this technique appropriately in the context of rank-structured

matrices will be described in a later section. For now, we consider a special case

of a rank structured matrix A when the off-diagonal rank is exactly 0. Then, A

is block-sparse with the structure shown in Figure 4.2b. The technique known as

block extraction recovers the dense blocks A8,8,A8,9,A9,8, etc. by post-processing

{Y,Z,Ω,Ψ} from samples (4.2).

Because A is sparse, all the blocks of A can be recovered using only 3m sam-

ples by constructing Ω with special sparse structure (e.g. carefully placed identity

103

matrices). For general geometries, this approach requires solving a combinatorial

graph problem to find the sparsity pattern of Ω to recover A from black-box samples.

Block extraction uses a different approach, which is very similar in spirit to block

nullification. Let us again design a ‘structured’ test matrix Ω′ to recover the blocks

A9,8,A9,9,A9,10 of the following form

Ω′ =



I
m×m

I
m×m

I
m×m

Ω′
11

m×3m
...

Ω′
15

m×3m


(4.14)

Note that the entries on blocks i = 11, . . . , 15 can be arbitrary because A is block-

sparse. Then applying Ω′ to form the sketch Y′ and extracting the I9 block gives

(
A98, A9,9 A9,10

)
= Y′

9
m×3m

, where Y′
N×3m

= A
N×N

Ω′
N×3m

. (4.15)

Consider that we draw p samples using dense Gaussian random test matrices, as in

(4.7) and that we compute a matrix M from the fully dense test matrix Ω as

M
p×3m

=

Ω8
m×p

Ω9

Ω10


†

, (4.16)

where † denotes the right pseudo-inverse. With high probability, the Gaussian random

matrix in (4.16) has linearly independent rows. Then applying M to the right of

Gaussian test matrix Ω gives

Ω
N×p

M
p×3m

= Ω′
N×3m

, (4.17)

where Ω′ has the sparsity pattern of (4.14). Note that Ω′
11 = Ω11M is not a Gaussian

random matrix any longer (e.g. Ω′
11 ̸∼ N (0, I)). This, however, does not matter for

104

the purposes of extracting sparse blocks because A9,11 = 0. To construct the sample

Y′
9, we simply compute M from Ω using (4.16), then compute

Y′
9

m×3m

= Y9
m×p

M
p×3m

, where Y′
N×3m

= A
N×N

Ω′
N×3m

= A
N×N

(
Ω

N×p
M

p×3m

)
(4.18)

Note that all of Y′ does not need to be computed, only the I9 block Y′
9 is needed.

Block extraction allows us to recover all sparse blocks of A using only p = (3m + l)

samples, where l is a small oversampling parameter, and O (m2N) post-processing

cost. Similar techniques are often useful for extracting sparse blocks by sampling the

adjoint operator and post-processing Z and Ψ.

4.2.4 Factorizing Rank-Structured Matrices using Randomized Sampling
Techniques

The objective of this work is to compute an invertible factorization of A. The

details of this machinery are discussed in subsequent sections. For now, assume the

factorization takes the following form

A = V8 . . .V15 Ã W15 . . .W8, (4.19)

where Ã is block-diagonal. The matrices Vi,Wi for i = 8, . . . 15 diagonalize the row

interactions and the column interactions of the block i. In the subsequent sections,

we describe the operators Vi and Wi, but for this discussion, it is important to note

that they are sparse and easy to invert.

Consider the following simpler decomposition of A, which only includes the

diagonalization operators for block i = 8

A = V8 Â W8, (4.20)

where Â is defined in terms of the factorization of (4.19). In later sections, we will

describe how V8 and W8 can be recovered using only a small number of random

sketches (4.2) of the operator A and its adjoint by post-processing {Y,Ω,Z,Ψ}.

105

Suppose that V8 and W8 have been recovered and that we would like to use

similar techniques to recover the operators V9 and W9. Then, it would be natural to

compute random sketches of Â

Ŷ = ÂΩ̂, Ẑ = Â
∗
Ψ̂

and post-process {Ŷ, Ω̂, Ẑ, Ψ̂}. A key observation of this manuscript, is that it is not

necessary to draw sketches of Â because the matrix can be written in terms of A as

Â = V−1
8 AW−1

8 .

Instead, test and sketch matrices can be updated {Y,Ω,Z,Ψ} ⇒ {Ŷ, Ω̂, Ẑ, Ψ̂} using
the following formulas

Ŷ = V8 Y, Ω̂ = W−1
8 Ω

Ẑ = W∗
8 Z, Ψ̂ = V−∗

8 Ψ
(4.21)

This observation allows us to sample the operator and its adjoint as in (4.2), then

recover the factorization of A by reusing the random sketches drawn initially.

4.3 The interpolative decomposition and recursive skeletoniza-
tion

In this section, we review preliminaries which are useful in understanding the

strong recursive skeletonization algorithm. First, we discuss Gaussian elimination and

block elimination matrices in Section 4.3.1. Then, we discuss interpolative decompo-

sitions (ID) for low rank compression in Section 4.3.2, which use a subset of the rows

or columns of the original matrix as a basis. Section 4.3.3 describes how the interpola-

tive decomposition can be used to represent off-diagonal blocks in a rank-structured

A to efficiently compute a direct solver A−1.

106

4.3.1 Gaussian elimination and block elimination matrices

Consider a matrix of the form

A =

 A11 A12 0
A21 A22 A23

0 A32 A33

 .

If A11 is non-singular, we can “decouple” it from the other blocks via one step of block

Gaussian elimination. We express this mathematically through a factorization

A =

 A11 A12 0
A21 A22 A23

0 A32 A33

 = L

 A11 0 0
0 S22 A23

0 A32 A33

U (4.22)

where L and U are “block elimination matrices” of the form

L =

 I 0 0
A21A

−1
11 I 0

0 0 I

 and U =

 I A−1
11 A12 0

0 I 0
0 0 I

 , (4.23)

and where S22 is the “Schur complement”

S22 = A22 − A21A
−1
11 A12.

For future reference, let us introduce a function elim that builds the elimination

matrices. To be precise,

elim(B, I, J, n)

is the n× n identity matrix, except that the matrix B has been inserted in the block

identified by the index vector I and J . In other words, in (4.23),

L = elim(A21A
−1
11 , I2, I1, n) and U = elim(A−1

11 A12, I1, I2, n).

Note that block-elimination matrices of the form elim are simple to invert by toggling

the sign of the off-diagonal block, e.g.

L−1 = elim(−A21A
−1
11 , I2, I1, n)

107

Remark 4.1. When A is symmetric and positive definite (spd), it is preferable to

compute its Cholesky factorization. We would then first factorize the A11 block as

A11 = C11C
∗
11

where C11 is lower triangular. Then instead of (4.22), we would form the triangular

factorization A11 A12 0
A21 A22 A23

0 A32 A33

 =

 C11 0 0
A21C

−∗
11 I 0
0 0 I

 I 0 0
0 S22 A23

0 A32 A33

 C∗
11 C−1

11 A12 0
0 I 0
0 0 I

 .

When A is not spd, one could form analogous triangular factorizations using either

the (partially pivoted) LU decomposition of A11, or potentially an LDL factorization.

In this manuscript, we will focus on block diagonal factorizations, but all techniques

described can easily be adapted to form triangular factorizations instead.

4.3.2 The interpolatory decomposition

Let B be an m × n matrix of rank k. The interpolatory decomposition (ID)

of B is a low rank factorization where a subset of the columns/rows are used to span

its column/row space. For instance, in the column ID, we pick a set of k linearly

independent columns identified through the “skeleton” index vector Js, and collect

the remaining indices in the “residual” index vector Jr, and set

J = [Jr, Js], Br = B(:, Jr), Bs = B(:, Js),

Since B has rank k, there exists a matrix Tsr of size k × (n− k) such that

Br = BsTsr.

This allows us to factor the matrix B as

B(:, J) =
(
Br, Bs

)
=
(
BsTsr, Bs

)
=
(
0, Bs

)(I 0
Tsr I

)
. (4.24)

Interpolatory decompositions can also be computed of matrices that are only of ap-

proximate low rank. The errors induced can in theory be significantly larger than

108

those resulting from the optimal low rank decomposition obtained by truncating a

singular value decomposition. However, in practice the error tends to be modest as

long as the singular values of the input matrix decay at a decent rate. For numerical

stability, we would like the matrix

(
I 0

Tsr I

)
to be as well-conditioned as possible,

but in practice tends to mean that we want the entries of Tsr to be small. It has been

demonstrated that it is always possible to pick the set Js so that every entry of Tsr

has modulus bounded by one, and practical algorithms that ensure that the entries

are of modest size are known. See [27] for a detailed discussion of different algorithms

for computing the ID in practice.

For completeness, let us also describe the row ID, where a set of linearly

independent rows of B would be identified by an index vector Is. Collecting the

remaining row indices in the index vector Ir, we then get the factorization

B([Ir, Is], :) =

(
I Trs

0 I

)(
0

Bs

)
,

where Brs is the (m− k)× k matrix such that B(Ir, :) = TrsB(Is, :).

4.3.3 Classical skeletonization (weak admissibility)

We in this section describe how the interpolatory decomposition that we intro-

duced in Section 4.3.2 can be used to exploit rank deficiencies in off-diagonal blocks to

map a given linear system to another “equivalent one” one with a smaller coefficient

matrix. The technique described has previously been published as a fast direct solver

for boundary integral equations, and is now widely known as “recursive skeletoniza-

tion” [43, 45, 58, 74, 75]. It is based on “weak admissibility”, and forms the basis for

the more complex algorithm based on strong admissibility that is the main focus of

this manuscript.

As a model problem, let us consider a matrix A that has been partitioned into

2× 2 blocks as

A =

(
Abb Afb

Afb Aff

)
, (4.25)

109

where the off-diagonal blocks Afb and Abf each have low rank. Let k denote the

rank of these blocks, and let m and n represent the dimensions of the blocks Abb

and Aff , respectively. We will construct block elimination matrices that map A to a

block diagonal matrix where one block has size (m− k)× (m− k), and other has size

(k+n)× (k+n). Let Ib and If denote index vectors that identify the blocks, so that

(1 : n) = Ib ∪ If .

(For now, our discussion is one purely of linear algebra, but we use notation that will

serve us well when applying these ideas to solve potential problems in Section 4.4.)

The first step of the factorization process is to form the row ID of Aaf and the column

ID of Afa to obtain factorizations

Abf([Ir, Is], :) =

(
Arf

Asf

)
=

(
TrsAsf

Asf

)
(4.26)

and

Afb(:, [Jr, Js]) =
[
Afr, Afs

]
=
[
AfsTsr, Afs

]
. (4.27)

Let us reorder the indices within the current box to have the residual indices go first:

I = [Ir, Is, If], and J = [Jr, Js, If].

This results in the tessellation

A(I, J) =

 Arr Ars Arf

Asr Ass Asf

Afr Afs Aff

 =

 Arr Ars TrsAsf

Asr Ass Asf

AfsTsr Afs Aff

 . (4.28)

Next, we factorize the matrix to introduce zero blocks in the “fr” and “rf” locations:

A(I, J) =

 I Trs 0
0 I 0
0 0 I

 Xrr Xrs 0
Xsr Ass Asf

0 Afs Aff

 I 0 0
Tsr I 0
0 0 I

 . (4.29)

Recognizing that the outside factors in (4.29) are both block elimination matrices,

we define

E := elim(Trs, Ir, Is, n) and F := elim(Tsr, Js, Jr, n).

110

so that we can rewrite (4.29) as

E

 Xrr Xrs 0
Xsr Ass Asf

0 Afs Aff

F. (4.30)

We next perform one step of block Gaussian elimination to decouple Xrr, so that

A(I, J) = EL

 Xrr 0 0
0 Xss Asf

0 Afs Aff

UF,

where L and U are the block elimination matrices

L = elim(XsrX
−1
rr , Is, Ir, n) and U = elim(X−1

rr Xrs, Jr, Js, n).

4.4 Strong recursive skeletonization

In this section, we review the strong recursive skeletonization (SRS) algorithm

of [76] that is used to compute an invertible factorization of a dense matrix involving

a kernel matrix whose kernel represents physical interactions between a set of points

in two or three dimensions. The decomposition is related to classical skeletonization

as introduced in Section 4.3.3, however, the skeletonization is performed with “strong

admissibility” condition, where only well-separated boxes are compressed as low-rank.

First, we discuss a hierarchical tree data structure which gives useful termi-

nology for discussing the algorithm. In Section 4.4.2, we discuss the strong recursive

skeletonization procedure for a single box of the tree, and in Section 4.4.3, we de-

scribe how the algorithm can be applied recursively in a traversal of the tree. Section

4.4.4 discusses how the factorization can be computed efficiently in circumstances

where matrix entries of A can be accessed easily, setting the stage for computing the

factorization in the black-box setting.

In the introduction of the ideas, we focus on the simple quasi-one dimensional

domain of Figure 4.3, though the ideas are directly applicable to more complicated

domains, as shown in Figure 4.6.

111

4.4.1 Hierarchical tree structure

SRS relies on a hierarchical partitioning of given points {xj}Nj=1 into an quad-

tree or oct-tree. For the purposes of this discussion, we restrict our attention to

uniform (e.g. fully populated) trees. Formally, we define a tree T , in which each box

b is associated with a subset of the given points. Initially, all points belong to the

root node. Letting d denote the dimension, we split the root node into 2d children

nodes, and then split each child again until the size of each node is below some given

threshold m. We refer to a node with children as a parent node, and a node with no

children as a leaf node. The depth of a node is defined as its distance from the root

node, and level ℓ of the tree is defined as the set of nodes with depth ℓ, so that level 0

consists of only the root node, level 1 consists of the 2d children of the root node, and

so on. The levels of the tree represent successively finer partitions of the points. The

depth of the tree is defined as the maximum node depth, denoted by L ≈ log2 (N/m).

See Figure 4.6 for a hierarchical decomposition of points into a uniform quadtree.

4.4.2 Strong skeletonization for a single box

Let us consider again the simple model problem on a quasi one dimensional

domain in Figure 4.1 that we introduced in Section 4.2, where A is given by the

evaluation of (4.1) on a set of points {xi}Ni=1. Consider the tessellating the given

points of Figure 4.3(a) into boxes 8, . . . , 15 as shown in Figure 4.3(b). The objective,

in this section, is to describe the process of diagonalizing the interactions between a

target box b and the rest of the points. Once this machinery is in place, the procedure

can be applied successively to all boxes on a level.

Consider the target box 8, for concreteness. First, we would like to compress

the interactions between box b and its far field. To this end, we split the set of points

into three sets: The box itself which contains all points in the box to be compressed

(box 8 in this case), the “near field set” which contains points in boxes directly

adjacent to the active box (box 9 in this case), and the “far field set” which contains

112

(a) A rectangular domain contains
the points {xj}Nj=1.

Box 8 Box 9 Box 10 Box 11 Box 12 Box 13 Box 14 Box 15

(b) A tessellation of the points into
boxes 8, . . . 15.

Figure 4.3: Figure 4.3a shows a rectangular domain with points {xj}Nj=1, which is
tessellated into boxes 8, . . . 15. The colors of Figure 4.3b indicate the index vectors
defined in Section 4.4.2, with magenta for Ia, green for In, and blue for If .

everything else (boxes 10 through 15 in this case). These sets are identified through

three index vectors:

Ib The “target box”. (While compressing box 8, Ib = I8.)
In The “near field indices”. (While compressing box 8, In = I9.)
If The “far field indices”. (While compressing box 8, If =

[I10, I11, . . . , I15].)

Figure 4.3(b) illustrates these definitions. Setting I = J = [Ib, In, If], we now obtain

a partition of A into the blocks

A(I, J) =

 Abb Abn Abf

Anb Ann Anf

Afb Afn Aff

 . (4.31)

(Comparing (4.31) to the tessellation (4.25) that is used in classical skeletonization,

we see that the near field has been added. The purpose is to reduce the numerical

ranks that arise.) We now invoke the well-known fact from the literature on fast

summation schemes that all interactions between the active box and its far-field has

low numerical rank. (To be precise, the rank is bounded by O(log(1/ε)) where ε is

the requested precision. This bound is independent of how many points are actually

in the box.) Linear algebraically, this means that Abf and Afb are both of numerically

low rank. We form the row and the column IDs, respectively, cf. (4.26) and (4.27),

Abf([Ir, Is], :) =

(
Arf

Asf

)
=

(
TrsAsf

Asf

)
(4.32)

and

Afb(:, [Jr, Js]) =
[
Afr, Afs

]
=
[
AfsTsr, Afs

]
. (4.33)

113

These factorizations partition the nodes in Ib into a set of “skeleton nodes” that

represent all interactions between the box and the outside world, and a set of “residual

nodes” that we will decouple from the rest of the system. To keep track of this, we

update I and J to put the residual nodes first:

I = [Ir, Is, In, If], and J = [Jr, Js, In, If].

The corresponding tessellation of A becomes, cf. (4.28),

A(I, J) =


Arr Ars Arn Arf

Asr Ass Asn Asf

Anr Ans Ann Anf

Afr Afs Afn Aff

 =


Arr Ars Arn TrsAsf

Asr Ass Asn Asf

Anr Ans Ann Anf

AfsTsr Afs Afn Aff

 (4.34)

Eliminating the “fr” and the “rf” blocks from (4.34), we next get

A(I, J) = E


Xrr Xrs Xrn 0
Xsr Ass Asn Asf

Xnr Ans Ann Anf

0 Afs Afn Aff

F (4.35)

where

E = elim(Trs, Ir, Is, n) and F = elim(Tsr, Js, Jr, n).

Then block Gaussian elimination yields the factorization

A(I, J) = EL


Xrr 0 0 0
0 Xss Xsn Asf

0 Xns Xnn Anf

0 Afs Afn Aff

UF (4.36)

where L and U are the block elimination matrices

L = elim(XsrX
−1
rr , Is, Ir, n) and U = elim(X−1

rr Xrs, Jr, Js, n). (4.37)

The equation (4.36) successfully decouples the residual nodes of target box b from

the rest of the problem. Alternatively, the system can be written as

Ã = V−1A(I, J)W−1, V := EL, W := UF (4.38)

114

where the matrices V and W are defined as the left and right diagonalization op-

erators, respectively, and the matrix Ã is written explicitly in the equation (4.36).

The redundant nodes of the target box are decoupled in equation (4.36), and the

algorithm proceeds by repeating a similar procedure to the other boxes of the tree,

but now for the modified system Ã.

4.4.3 Recursive Algorithm

In the previous section, we described the procedure for decoupling the redun-

dant nodes of a target box from the rest of the system. Now, we describe how this

procedure can be applied successively to all boxes on a level. Consider again the

simple model of a quasi-one dimensional geometry in Figure 4.1. For target box 8,

the left and right diagonalization operators V8 and W8 have the form described in

Section 4.4.2. Applying these operators to the appropriate permutation of A yields

the matrix Ã defined in (4.38). For the sparsity pattern of Ã, see the leftmost panel of

Figure 4.4, where the modified entries of Ã are highlighted in red. The procedure can

be repeated for target box 9 by computing left and right diagonalization operators

V9 and W9. Note that instead of computing skeletons for the original matrix A as

in equation (4.34), we instead need to compute skeletons which sparsify the modified

matrix Ã. Applying these techniques to the boxes 8, . . . , 15 on Level 3 successively, we

can compute a factorization, which (for an appropriate permutation) has the following

form 
Ãr8

Ãr9
. . .

Ãr15

Ã[s8,...,s15]

 = V−1
15 · · ·V−1

8 A W−1
15 · · ·W−1

8 , (4.39)

where Ã is a matrix of modified interactions. The redundant nodes Ir for every box

8, . . . 15 are decoupled from the rest of the system. The remaining nodes Is of skele-

ton nodes for every box interact densely in the dense block Ã[s8,...,s15]. In the process

115

of computing the single-level factorization (4.39), the modified matrix of decoupled

interactions need to be stored and updated. See Figure 4.4 for the sparsity pattern

of decoupled interactions at various stages of computing the single-level factorization

(4.39). Typically, strong recursive skeletonization is applied in circumstances where

entries of A can be accessed in O(1) time, and the entire matrix of decoupled inter-

actions does not need to be stored explicitly. Then, only the modified entries shown

in red of Figure 4.4 need to be stored at every stage of the computation.

Since the residual degrees of freedom have been decoupled from the problem in

(4.39), the task that remains is to solve the surviving linear system on the “skeleton

nodes”. To illustrate the structure of this problem, we show the coefficient matrix

after the residual nodes have been dropped in Figure 4.5(a). For intermediate size

problems, it is often possible to directly compute the LU decomposition of the linear

system that connects the skeleton nodes, since the ranks tend to be small when

strong admissibility it used. However, for large scale problems, there will be too

many skeleton nodes surviving. In this case, we can continue the skeletonization

process in a multilevel fashion. In order to reintroduce rank deficiencies in the off-

diagonal blocks, we merge the boxes by twos to form larger boxes, as shown in 4.5(b).

The idea is now to simply repeat the skeletonization process outlined in Section 4.4.2.

This results in the further sparsified coefficient matrix shown in Figure 4.5(c).

We will shortly formalize the description of the recursive skeletonization pro-

cess, but let us first briefly show what changes occur when the domain is “truly” two

dimensional, as in Figure 4.6(a). It is now natural to organize the domain into a

quadtree of boxes, rather than a binary tree, as shown in Figures 4.6(b) and 4.6(c).

Other than that, the scheme proceeds just as it does for the quasi one dimensional

example we discussed earlier. After all boxes at the finest level have been compressed,

the remaining skeleton points are shown on top in Figure 4.7(a) in red, while the resid-

ual points are shown in gray. The matrix of interactions between the skeleton points

is shown below. Observe that there are now many more updated (red) boxes than

there were for the quasi one dimensional domain (as many as 25 in some rows). In

116

After diagonalizing
box 8

After diagonalizing
box 11

After diagonalizing
box 15

Figure 4.4: Illustration of the combined compression and factorization process de-
scribed in Section 4.4.2. Upper row: The computational domain after steps 1, 4, and
8. The nodes are colored so that Is is red, Ir is cyan, In is green, and If is blue. (The
gray nodes mark points that were identified as “residual” nodes in the previous steps.
These points have dropped out of the computation and play no active role.) Lower

row: The sparsity pattern of the matrix Ã after the residual nodes in Box 8/11/15
have been decoupled. White blocks are zeros, red blocks are entries that got modified,
and black blocks are entries that have not been modified.

Box 8 Box 9 Box 10 Box 11 Box 12 Box 13 Box 14 Box 15

(a)

Box 4 Box 5 Box 6 Box 7

(b)

Box 4 Box 5 Box 6 Box 7

(c)

Figure 4.5: Illustration of the merging of boxes described in Section 4.4.3. (a) On top,
the points remaining active after compression of the first level has completed. Below,
the corresponding coefficient matrix, with entries that have been modified shown in
red. (b) Boxes on the finest level have been merged by pairs to create larger boxes
and reintroduce rank deficiencies in the off-diagonal blocks. (c) The geometry and
the coefficient matrix after compression at the coarser level has completed.

order to reintroduce rank deficiencies in the off-diagonal blocks, we now merge boxes

by sets of four to yield level 2, as illustrated in Figure 4.7(b). Once compression has

117

completed at level 2, very few points remain as skeleton nodes, as we see on top in

Figure 4.7(c), with the very sparse coefficient matrix shown below.

(a) Computational domain.

22

23 24

25

26

27 28

29 30

31 32

33

34

35 36

37

38

39 40

41

42

43 44

45 46

47 48

49

50

51 52

53 54

55 56

57

58

59 60

61 62

63 64

65

66

67 68

69

70

71 72

73

74

75 76

77 78

79 80

81

82

83 84

85

(b) Ordering of boxes on
level 3.

6

7 8

9

10

11 12

13 14

15 16

17

18

19 20

21

(c) Ordering of boxes on
level 2.

Figure 4.6: The square computational domain described in Section 4.4.1. (a) The
original domain, with the points {xi}Ni=1 shown in blue. (b) The boxes at the finest
level. (c) The merged boxes at the next coarser level.

To formalize the description of SRS, consider that the boxes are diagonalized

in an upward traversal through the tree in order 1, . . . , n. Then the decomposition

takes the form

Ãdiag :=


Ãr1

Ãr2
. . .

Ãrn

Ã[S]

 = V−1
1 · · ·V−1

n A W−1
n · · ·W−1

1 , (4.40)

where [S] is the set of all remaining skeleton nodes at the time of terminating the

algorithm (typically on level 2 of the tree). Because Ãdiag is block-diagonal, it is easy

to invert. The factorization (4.40) can also be used for a sparse factorization of A.

In the next section, we discuss techniques which allow for the efficient calculation

of elimination matrices E and F of Section 4.4.2 in the setting of boundary integral

equations.

118

(a) Active points after
level 3.

(b) Merge boxes by fours.
(c) Active points after

level 2.

(d) Matrix after level 3. (e) Matrix retessellated. (f) Matrix after level 2.

Figure 4.7: The analog of Figure 4.5 when the computational domain is the box shown
in Figure 4.1. Observe that many more blocks get updated for a true two-dimensional
domain — up to 25 boxes per row need to be explicitly stored.

4.4.4 How to compress the far-field interactions

The aim is to compress the two off-diagonal blocks Ab,f and Af,b using the

column ID. Notice that the computational cost would be O(N) if the full matrix

is formed, which turns out to be unnecessary, particularly when A arises from the

discretization of a boundary integral equation.

The proxy method introduces points
{
x
(proxy)
i

}np

i=1
which replicate the effect

of far-field points If . Instead of using the matrix Ab,f , a smaller matrix with O(1)
rows and columns is formed and compressed

Aproxy,b where (Aproxy,b)i,j = k
(
x
(proxy)
i ,x[Ibj]

)
. (4.41)

With the appropriate choice of proxy surface, the matrix Aproxy,b spans the row space

119

of Af,b, and likewise, Ab,proxy spans the column space of Ab,f for any point distribution

in the far-field. Therefore, the indices Ib = Ir∪Is and interpolative matrix T computed

by forming and factorizing the matrix (4.41) will satisfy (4.33). Because the matrix

Ã of diagonalized interactions does modify entries of A, the proxy surface needs to

be placed appropriately to compute the SRS factorization; this is discussed in further

detail in [76, 86].

4.5 Randomized strong recursive skeletonization

In this section, we describe computing the SRS factorization described in Sec-

tion 4.4 in the black-box setting where the matrix A is only accessed through its

action on vectors. The algorithm relies on the randomized sampling machinery first

introduced in Section 4.2. Recall that our setting is the following

Y
N×p

= A
N×N

Ω
N×p

, Z
N×p

= A∗
N×N

Ψ
N×p

, Ω,Ψ ∼ N (0, I) (4.42)

where the matrix A and its adjoint are sketched with Gaussian random matrices.

As in our description of SRS, we first describe the process of diagonalizing

the interactions of a target box b with respect to the rest of the problem. Recall

the notation used in Section 4.4.2 for a target box Ib, its near-field indices In and its

far-field indices If .

In order to compute the skeletonization operators E and F, we need to compute

the column ID of the sketches

Y′
b

m×k

= Abf Ωf , Z′
b

m×k

= A∗
fb Ψf , (4.43)

respectively. The samples Y and Z in (4.42), however, include the contributions of the

near field blocks In. The contribution of Ωn and Ψn, however, can be “nullified” using

block nullification as described in Section 4.2.2 and sketches (4.43) can be computed

as

Y′
b

m×k

= Yb
m×p

null (Ωn)
p×k

, Z′
b

m×k

= Zb
m×p

null (Ψn)
p×k

, (4.44)

120

The sparsified matrix Â = E−1AF−1 has decoupled interactions between Ir and If , and

the interactions between Ir and the rest of the system can be entirely decoupled using

block-elimination matrices L,U as defined in 4.37. Ideally, we would like to extract

the modified interactions between Xr,n and Xn,r as well as Xr,s and Xs,r in equation

(4.35). The samples {Y,Ω,Z,Ψ} ⇒ {Ŷ, Ω̂, Ẑ, Ψ̂} can be updated to instead be

samples of Â.

Ŷ = E Y, Ω̂ = F−1Ω

Ẑ = F∗Z, Ψ̂ = E−∗Ψ
(4.45)

Then the modified interactions Xr,n and Xn,r can be extracted using block extraction,

as discussed in Section 4.2.3 using the formulas

Xr,n = Ŷr Ω̂
†
n, X∗

n,r = Ẑr Ψ̂
†
n. (4.46)

After computing the block elimination matrices L and U, the random sketches can

again to updated to be instead of the matrix Ã = L−1ÂU−1 by updating the sketches

{Ŷ, Ω̂, Ẑ, Ψ̂} to produce sketches {Ỹ, Ω̃, Z̃, Ψ̃}.

Ỹ = L Ŷ, Ω̃ = U−1Ω̂

Z̃ = U∗Ẑ, Ψ̃ = L−∗Ψ̂
(4.47)

After completing this process for a single box, the procedure can be repeated for a

sequence of boxes. Over the coarse of the algorithm, the samples do not need to be

redrawn, instead they are updated using the computed factorization at every stage.

Because the algorithm is multi-level, compression errors do propagate from one level

to the next. To handle this issue, the absolute tolerance for the compression stage

is successively relaxed at every level of the computation. The matrix Ã in equation

(4.40) is block-diagonal to some accuracy which may deviate slightly from the desired

compression tolerance. To estimate the extent to which our compression is successful

for a particular level, we use randomized sampling techniques (e.g. block nullifica-

tion) to estimate the extent to which Ãr,f and Ãf,r deviate from desired compression

tolerance, where in this case If = (1 : N) \ Ir, for every box.

121

4.6 Numerical experiments

In this section, we illustrate the performance of the proposed algorithm. For

the example in Section 4.6.1, we consider a sparse Schur complement, which arises in

the context of sparse direct solvers. Sparse Schur complements are a composition of

sparse matrix operations; they can be applied fast to vectors, however, matrix entries

are challenging to access efficiently.

N number of points
m leaf size of tree
atol absolute compression tolerance at the leaf level
nsamples number of samples of A and A∗

Tfactorize time for algorithm in Section 4.5
M memory needed for Vi and Wi for all boxes
relerr

defined in equation (4.48)
errsolve

Table 4.1: Notation for reported numerical results.

The RSRS algorithm is operates on a uniform quad-tree T which is partitioned

to have at most m points in the leaf boxes. The user provides a parameter atol which

dictates the absolute tolerance of compression at the leaf level; the compression rank

k is chosen for each box adaptively. The success of the algorithm is measured by

accessing the relative error of the computed factorization, as well as the error in the

computed inverse. For the computed invertible factorization K ≈ A, we report

relerr =
∥A−K∥2
∥A∥2

, errsolve = ∥I−K−1A∥2. (4.48)

Typical choices of user parameter atol may be 10−5 or even as large as 10−2;

the resulting errors (4.48) in the factorization are often much smaller, as we will

demonstrate in the numerical results. Table 4.1 summarizes the notation used to

report the numerical results.

122

4.6.1 3D Sparse Direct Solvers

Consider a boundary value problem of the form{−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ,
(4.49)

where A is a second order elliptic differential operator, and Ω is a rectangular domain

in three dimensions with boundary Γ. Upon discretizing (4.49) with 2nd order finite

differences, one obtains a linear system

Au = f,

involving a sparse coefficient matrix. Sparse direct solvers produce an invertible fac-

torization of A by leveraging sparsity, as well as H-matrix structure when appropriate

[68, ch. 20,21]. Often, it is useful to decompose the domain for the purposes of paral-

lelizing the computation. The typical choice of domain decomposition is a hierarchical

quad-tree or oct-tree, but a decomposition into thin slab subdomains is also possible

and advantageous for ease of parallelization. This domain decomposition is employed

in SlabLU, which is a simplified two-level sparse direct solver [97]. The corresponding

domain decomposition is shown in Figure 4.8.

I1 I3 I5 I7 I9I2 I4 I6 I8

n

b
Figure 4.8: Domain decomposition used
in SlabLU. The even-numbered nodes corre-
spond to the nodes interior to each subdo-
main. The odd-numbered nodes correspond
to interfaces between slabs. The slab parti-
tioning is chosen so that interactions between
slab interiors are zero. The slabs have width
of b points.

To be precise, SlabLU uses a decomposition of the domain into elongated

“slab” subdomains of dimensions n × n × b where b is the slab thickness. The odd-

numbered nodes correspond to slab interface nodes and the even-numbered nodes

123

correspond to slab interior nodes. With the slab decomposition, the linear system

(4.6.1) has the block form
A11 A12 0 0 0 . . .
A21 A22 A23 0 0 . . .
0 A32 A33 A34 0 . . .
0 0 A43 A44 A45 . . .
...

...
...

...
...

...




u1

u2

u3

u4
...

 =


f1
f2
f3
f4
...

 . (4.50)

The system (4.50) can be factorized by first eliminating the nodes internal to each

slab are eliminated in parallel by computing sparse direct factorizations A−1
22 ,A

−1
44 , . . .

in parallel. The remaining system has sparse Schur complements of the form

T11 = A11 − A12 A−1
22 A21. (4.51)

Owing to sparsity, T11 and its transpose can be rapidly applied to random vectors

Y = T11 Ω, Z = T∗
11 Ψ (4.52)

Figure 4.9 reports experiments compressing and factorizing T11 using the RSRS al-

gorithm which only accesses the matrix through its action on vectors. The PDE is

Poisson, and the slab thickness is fixed as b = 10 for various problem sizes N = n2.

124

40 60 80 100
N (K)

200

400

600

800

1000

T
fa

ct
or

iz
e

(s
)

Time to Factorize T11

Using RSRS Algorithm

atol=5.0e-06

atol=5.0e-04

atol=5.0e-02

(a) Time to compute T−1
11 scales linearly.

40 60 80 100
N (K)

2

4

6

8

M
(G

B
)

Memory to Store
Factorization of T11

atol=5.0e-06

atol=5.0e-04

atol=5.0e-02

(b) Memory to store T−1
11 scales linearly.

40 60 80 100
N (K)

1500

2000

2500

3000

3500

4000

n
sa

m
p

le
s

Number of samples
to Compress and Factorize T11

atol=5.0e-06

atol=5.0e-04

atol=5.0e-02

(c) Number of samples needed is indepen-
dent of N .

40 60 80 100
N (K)

10−8

10−6

10−4

er
ro

r

Error in Factorization of T11

Computed using RSRS Algorithm

errsolve, atol=5.0e-02

errsolve, atol=5.0e-04

errsolve, atol=5.0e-06

relerr, atol=5.0e-02

relerr, atol=5.0e-04

relerr, atol=5.0e-06

(d) The computed factorization is accurate
and does not deteriorate with increasing N .

Figure 4.9: The figures above show the effectiveness of using RSRS on a sparse Schur
complement T11 which arises while computing sparse direct solvers for discretized
PDEs. The number of samples needed to construct a factorization T−1

11 is constant
as N increases and instead depends only on the desired user tolerance as well as the
leaf size m. For atol=5e-2 and 5e-4, the leaf size m is set as m = 200. For atol=5e-6,
the leaf size m is set as m = 350.

4.7 Conclusions

The manuscript introduces the algorithm Randomized Strong Recursive Skele-

tonization (RSRS) for simultaneously compressing and inverting an H2-matrix, given

a means of applying the matrix and its adjoint to vectors. RSRS is immediately ap-

125

plicable in a range of important environments, and the numerical results demonstrate

the effectiveness of the approach on Schur complements which arise while factoriz-

ing a sparse direct solver. It extends the range of the SRS algorithm using tailored

approaches for randomized linear algebra applied to rank structured matrices.

Acknowledgments

The work reported was supported by the Office of Naval Research (N00014-

18-1-2354), by the National Science Foundation (DMS-1952735, DMS-2012606, and

DMS-2313434), and by the Department of Energy ASCR (DE-SC0022251).

126

Chapter 5: Conclusion

This thesis has explored innovative techniques for efficiently and robustly com-

puting approximate solutions to elliptic partial differential equations (PDEs). The

central theme throughout this work has been the use of hierarchical matrices (H-
matrices) to accelerate key computational operations. The work presents novel algo-

rithms for solving linear systems that exploit randomized methods in linear algebra

to attain high computational efficiency and scalability. The algorithms have been

designed to take advantage of various compute kernels, including vectorization and

specialized hardware acceleration features found in modern architectures.

This thesis has made three significant contributions. Firstly, it introduced a

novel fast multipole method (FMM) based on H-matrices, offering a simplified data

structure compared to the original FMM. Secondly, a sparse direct solver for dis-

cretized PDEs was presented, addressing the issue of dense fill-in in LU and Cholesky

factorizations by exploiting H-matrix structure in dense blocks. The use of the slab

decomposition of the computational domain enhances parallelization and facilitates

GPU acceleration. Lastly, the thesis introduced a novel algorithm for the simulta-

neous compression and LU factorization of a specific class of H-matrices, providing

significant simplifications and accelerations with applications in boundary integral

equations and sparse direct solvers for discretized PDEs. These contributions collec-

tively offer valuable insights into re-envisioning classical linear solvers in the evolving

hardware landscape.

127

Appendix A: Rank Properties

A.1 Rank Property of Thin Slabs

In this appendix, we prove Proposition 3.3.2, which makes a claim on the rank

structure of T11, defined in (3.17). [Rank Property] Let JB be a contiguous set of

points on the slab interface J , and let JF be the rest of the points JF = J1 \ JB. The
sub-matrices (T11)BF , (T11)FB have exact rank at most 2b.

J

Iγ

Iγ

Iα

Iβ

Iα

JB

b

Figure A.1: To assist in the proof of Propo-
sition 3.3.2, we define a partitioning of
the slab interface J = JB ∪ JF , where
JF = J \ JB. We also partition the slab
interior nodes into Iα ∪ Iβ ∪ Iγ.

Recall that T11 = A11−A12A
−1
22 A21. The proof relies on the sparsity structure

of the matrices in the Schur complement. As stated in the proposition, the slab

interface I1 is partitioned into indices IB and IF . The proof relies on partitioning I2

as well, into the indices Iα, Iβ, Iγ shown in Figure A.1, where |Iγ| = 2b.

The matrix A2,2 is sparse and can be factorized as

A2,2 = L2,2U2,2 :=

Lαα

Lβ,β

Lγ,α Lγ,β Lγ,γ

Uα,α Uα,γ

Uβ,β Uβ,γ

Uγ,γ

 (A.1)

The formula for (T1,1)F,B can be re-written as

(T1,1)F,B = AF,B −
(
AF,2U

−1
2,2

)(
L−1
2,2A2,B

)
:= AF,B − XF,2 Y2,B (A.2)

128

The factors XF,2 and Y2,B have sparse structure, due the sparsity in the factorization

(A.1) and the sparsity of AF,2 and A2,B.

XF,2 =
[
AF,α 0 AF,γ

]
U−1

22 , Y2,B = L−1
22

 0
Aβ,B

Aγ,B

 (A.3)

The factors XF,2 and Y2,B have the same sparsity pattern as AF,2 and A2,B, respec-

tively. As a result,

(T1,1)F,B = AF,B −
[
XF,α 0 XF,γ

]  0
Yβ,B

Yγ,B

 = AF,B
sparse, O(1) entries

− XF,γYγ,B
exact rank 2b

. (A.4)

Similar reasoning can be used to show the result for (T11)B,F .

129

Works Cited

[1] Ahmad Abdelfattah, Timothy Costa, Jack Dongarra, Mark Gates, Azzam Haidar,

Sven Hammarling, Nicholas J Higham, Jakub Kurzak, Piotr Luszczek, Stan-

imire Tomov, et al. A set of batched basic linear algebra subprograms and

lapack routines. ACM Transactions on Mathematical Software (TOMS), 47

(3):1–23, 2021.

[2] Ahmad Abdelfattah, Pieter Ghysels, Wajih Boukaram, Stanimire Tomov, Xi-

aoye Sherry Li, and Jack Dongarra. Addressing irregular patterns of matrix

computations on GPUs and their impact on applications powered by sparse

direct solvers. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, pages 1–14, 2022.

[3] Patrick Amestoy, Alfredo Buttari, Jean-Yves l’Excellent, and Theo Mary. On

the complexity of the block low-rank multifrontal factorization. SIAM Journal

on Scientific Computing, 39(4):A1710–A1740, 2017.

[4] Patrick R Amestoy, Timothy A Davis, and Iain S Duff. An approximate

minimum degree ordering algorithm. SIAM Journal on Matrix Analysis and

Applications, 17(4):886–905, 1996.

[5] Patrick R Amestoy, Alfredo Buttari, Jean-Yves L’excellent, and Theo Mary.

Performance and scalability of the block low-rank multifrontal factorization

on multicore architectures. ACM Transactions on Mathematical Software

(TOMS), 45(1):1–26, 2019.

[6] Tracy Babb, Adrianna Gillman, Sijia Hao, and Per-Gunnar Martinsson. An

accelerated Poisson solver based on multidomain spectral discretization. BIT

Numerical Mathematics, 58:851–879, 2018.

130

[7] Ivo M Babuska and Stefan A Sauter. Is the pollution effect of the FEM

avoidable for the Helmholtz equation considering high wave numbers? SIAM

Journal on numerical analysis, 34(6):2392–2423, 1997.

[8] Jonas Ballani and Daniel Kressner. Matrices with Hierarchical Low-Rank

Structures, pages 161–209. Springer International Publishing, Cham, 2016.

ISBN 978-3-319-49887-4. doi: 10.1007/978-3-319-49887-4 3. URL https:

//doi.org/10.1007/978-3-319-49887-4_3.

[9] Mario Bebendorf. Hierarchical matrices, volume 63 of Lecture Notes in Com-

putational Science and Engineering. Springer-Verlag, Berlin, 2008. ISBN

978-3-540-77146-3. A means to efficiently solve elliptic boundary value prob-

lems.

[10] Hadrien Bériot, Albert Prinn, and Gwénaël Gabard. Efficient implementation

of high-order finite elements for Helmholtz problems. International Journal for

Numerical Methods in Engineering, 106(3):213–240, 2016.

[11] Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gul-

lapalli. State-of-the-art sparse direct solvers. In Parallel Algorithms in Com-

putational Science and Engineering, pages 3–33. Springer, 2020.

[12] Steffen Börm. Efficient numerical methods for non-local operators, volume 14 of

EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich,

2010. ISBN 978-3-03719-091-3. H2-matrix compression, algorithms and anal-

ysis.

[13] Wajih Boukaram, George Turkiyyah, and David Keyes. Hierarchical matrix

operations on GPUs: Matrix-vector multiplication and compression. ACM

Transactions on Mathematical Software (TOMS), 45(1):1–28, 2019.

[14] Pablo D Brubeck and Patrick E Farrell. A scalable and robust vertex-star

relaxation for high-order FEM. arXiv preprint arXiv:2107.14758, 2021.

131

https://doi.org/10.1007/978-3-319-49887-4_3
https://doi.org/10.1007/978-3-319-49887-4_3

[15] Léopold Cambier, Chao Chen, Erik G Boman, Sivasankaran Rajamanickam,

Raymond S Tuminaro, and Eric Darve. An algebraic sparsified nested dis-

section algorithm using low-rank approximations. SIAM Journal on Matrix

Analysis and Applications, 41(2):715–746, 2020.

[16] Luiz Mariano Carvalho, Luc Giraud, and Patrick Le Tallec. Algebraic two-level

preconditioners for the Schur complement method. SIAM Journal on Scientific

Computing, 22(6):1987–2005, 2001.

[17] Tony F Chan and Tarek P Mathew. Domain decomposition algorithms. Acta

numerica, 3:61–143, 1994.

[18] Gustavo Chávez, George Turkiyyah, Stefano Zampini, Hatem Ltaief, and David

Keyes. Accelerated cyclic reduction: A distributed-memory fast solver for

structured linear systems. Parallel Computing, 74:65–83, 2018.

[19] Chao Chen and Per-Gunnar Martinsson. Solving Linear Systems on a GPU

With Hierarchically Off-Diagonal Low-Rank Approximations, 2022. URL https:

//arxiv.org/abs/2208.06290.

[20] Chao Chen, Sylvie Aubry, Tomas Oppelstrup, A Arsenlis, and Eric Darve. Fast

algorithms for evaluating the stress field of dislocation lines in anisotropic elastic

media. Modelling and Simulation in Materials Science and Engineering, 2018.

[21] Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir

Rokhlin. On the compression of low rank matrices. SIAM Journal on Scientific

Computing, 26(4):1389–1404, 2005.

[22] Hongwei Cheng, William Y Crutchfield, Zydrunas Gimbutas, Leslie F Green-

gard, J Frank Ethridge, Jingfang Huang, Vladimir Rokhlin, Norman Yarvin,

and Junsheng Zhao. A wideband fast multipole method for the Helmholtz

equation in three dimensions. Journal of Computational Physics, 216(1):300–

325, 2006.

132

https://arxiv.org/abs/2208.06290
https://arxiv.org/abs/2208.06290

[23] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for

shared-memory programming. IEEE computational science and engineering, 5

(1):46–55, 1998.

[24] Timothy A Davis. Direct methods for sparse linear systems, volume 2. Siam,

2006.

[25] Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar.

A survey of direct methods for sparse linear systems. Acta Numerica, 25:383 –

566, 2016. doi: 10.1017/S0962492916000076.

[26] Arnaud Deraemaeker, Ivo Babuška, and Philippe Bouillard. Dispersion and

pollution of the FEM solution for the Helmholtz equation in one, two and three

dimensions. International journal for numerical methods in engineering, 46(4):

471–499, 1999.

[27] Yijun Dong and Per-Gunnar Martinsson. Simpler is better: a compara-

tive study of randomized pivoting algorithms for CUR and interpolative de-

compositions. Advances in Computational Mathematics, 49, 08 2023. doi:

10.1007/s10444-023-10061-z.

[28] Jack Dongarra, Sven Hammarling, Nicholas J Higham, Samuel D Relton, Pedro

Valero-Lara, and Mawussi Zounon. The design and performance of batched

BLAS on modern high-performance computing systems. Procedia Computer

Science, 108:495–504, 2017.

[29] Jack J Dongarra and Stanimire Tomov. Matrix algebra for GPU and multicore

architectures (MAGMA) for large petascale systems. Technical report, Univ.

of Tennessee, Knoxville, TN (United States), 2014.

[30] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S Duff. A set of

level 3 basic linear algebra subprograms. ACM Transactions on Mathematical

Software (TOMS), 16(1):1–17, 1990.

133

[31] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.

Oxford, 1989.

[32] A Dutt, M Gu, and V Rokhlin. Fast algorithms for polynomial interpolation,

integration, and differentiation. SIAM Journal on Numerical Analysis, 33(5):

1689–1711, 1996.

[33] Björn Engquist and Lexing Ying. Sweeping preconditioner for the Helmholtz

equation: hierarchical matrix representation. Communications on pure and

applied mathematics, 64(5):697–735, 2011.

[34] Oliver G Ernst and Martin J Gander. Why it is difficult to solve Helmholtz

problems with classical iterative methods. Numerical analysis of multiscale

problems, pages 325–363, 2012.

[35] William Fong and Eric Darve. The black-box fast multipole method. Journal

of Computational Physics, 228(23):8712–8725, 2009.

[36] Daniel Fortunato, Nicholas Hale, and Alex Townsend. The ultraspherical spec-

tral element method. Journal of Computational Physics, 436:110087, 2021.

[37] Yuhong Fu and Gregory J Rodin. Fast solution method for three-dimensional

Stokesian many-particle problems. International Journal for Numerical Meth-

ods in Biomedical Engineering, 16(2):145–149, 2000.

[38] Yuhong Fu, Kenneth J Klimkowski, Gregory J Rodin, Emery Berger, James C

Browne, Jürgen K Singer, Robert A Van De Geijn, and Kumar S Vemaganti.

A fast solution method for three-dimensional many-particle problems of linear

elasticity. International Journal for Numerical Methods in Engineering, 42(7):

1215–1229, 1998.

[39] Martin J Gander and Hui Zhang. Restrictions on the use of sweeping type pre-

conditioners for Helmholtz problems. In International Conference on Domain

Decomposition Methods, pages 321–332. Springer, 2017.

134

[40] A. George. Nested dissection of a regular finite element mesh. SIAM J. on

Numerical Analysis, 10:345–363, 1973.

[41] P. Ghysels, X. Li, F. Rouet, S. Williams, and A. Napov. An Efficient Multicore

Implementation of a Novel HSS-Structured Multifrontal Solver Using Random-

ized Sampling. SIAM Journal on Scientific Computing, 38(5):S358–S384, 2016.

doi: 10.1137/15M1010117. URL https://doi.org/10.1137/15M1010117.

[42] Pieter Ghysels and Ryan Synk. High performance sparse multifrontal solvers

on modern GPUs. Parallel Computing, 110:102897, 2022.

[43] A Gillman, S Hao, and PG Martinsson. Short note: A simplified technique for

the efficient and highly accurate discretization of boundary integral equations in

2d on domains with corners. Journal of Computational Physics, 256:214–219,

2014.

[44] Adrianna Gillman and Per-Gunnar Martinsson. A direct solver with O(N)

complexity for variable coefficient elliptic PDEs discretized via a high-order

composite spectral collocation method. SIAM Journal on Scientific Comput-

ing, 36(4):A2023–A2046, 2014.

[45] Adrianna Gillman, Patrick Young, and Per-Gunnar Martinsson. A direct solver

o(n) complexity for integral equations on one-dimensional domains. Frontiers

of Mathematics in China, 7:217–247, 2012. ISSN 1673-3452. URL http:

//dx.doi.org/10.1007/s11464-012-0188-3. 10.1007/s11464-012-0188-3.

[46] Adrianna Gillman, AlexH. Barnett, and Per-Gunnar Martinsson. A spectrally

accurate direct solution technique for frequency-domain scattering problems

with variable media. BIT Numerical Mathematics, 55(1):141–170, 2015. ISSN

0006-3835. doi: 10.1007/s10543-014-0499-8. URL http://dx.doi.org/10.

1007/s10543-014-0499-8.

135

https://doi.org/10.1137/15M1010117
http://dx.doi.org/10.1007/s11464-012-0188-3
http://dx.doi.org/10.1007/s11464-012-0188-3
http://dx.doi.org/10.1007/s10543-014-0499-8
http://dx.doi.org/10.1007/s10543-014-0499-8

[47] Zydrunas Gimbutas and Vladimir Rokhlin. A generalized fast multipole method

for nonoscillatory kernels. SIAM Journal on Scientific Computing, 24(3):796–

817, 2003.

[48] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.

Comput. Phys., 73(2):325–348, 1987. ISSN 0021-9991.

[49] Leslie Greengard. The rapid evaluation of potential fields in particle systems.

MIT press, 1988.

[50] Leslie Greengard and Vladimir Rokhlin. A new version of the fast multipole

method for the Laplace equation in three dimensions. Acta numerica, 6:229–

269, 1997.

[51] Leslie F Greengard and Jingfang Huang. A new version of the fast multipole

method for screened Coulomb interactions in three dimensions. Journal of

Computational Physics, 180(2):642–658, 2002.

[52] Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a strong

rank-revealing QR factorization. SIAM Journal on Scientific Computing, 17

(4):848–869, 1996.

[53] Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis, vol-

ume 49. Springer, 2015.

[54] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions. SIAM Review, 53(2):217–288, 2011.

[55] Sijia Hao and Per-Gunnar Martinsson. A direct solver for elliptic PDEs in

three dimensions based on hierarchical merging of Poincaré–Steklov operators.

Journal of Computational and Applied Mathematics, 308:419–434, 2016.

136

[56] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J Smith, et al. Array programming with NumPy. Nature, 585(7825):

357–362, 2020.

[57] Kenneth L Ho and Lexing Ying. Hierarchical interpolative factorization for

elliptic operators: integral equations. Comm. Pure Appl. Math, 69(7):1314–

1353, 2016.

[58] K.L. Ho and L. Greengard. A fast direct solver for structured linear systems

by recursive skeletonization. SIAM Journal on Scientific Computing, 34(5):

2507–2532, 2012.

[59] James Levitt. Building rank-revealing factorizations with randomization. PhD

thesis, University of Texas at Austin, 2022.

[60] James Levitt and Per-Gunnar Martinsson. Linear-Complexity Black-Box Ran-

domized Compression of Hierarchically Block Separable Matrices, 2022. URL

https://arxiv.org/abs/2205.02990.

[61] Xiaoye S Li and Meiyue Shao. A supernodal approach to incomplete LU fac-

torization with partial pivoting. ACM Transactions on Mathematical Software

(TOMS), 37(4):1–20, 2011.

[62] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and

Mark Tygert. Randomized algorithms for the low-rank approximation of ma-

trices. Proc. Natl. Acad. Sci. USA, 104(51):20167–20172, 2007. ISSN

1091-6490. doi: 10.1073/pnas.0709640104. URL http://dx.doi.org/10.

1073/pnas.0709640104.

[63] L. Lin, J. Lu, and L. Ying. Fast construction of hierarchical matrix representa-

tion from matrix-vector multiplication. Journal of Computational Physics, 230

137

https://arxiv.org/abs/2205.02990
http://dx.doi.org/10.1073/pnas.0709640104
http://dx.doi.org/10.1073/pnas.0709640104

(10):4071 – 4087, 2011. ISSN 0021-9991. doi: 10.1016/j.jcp.2011.02.033. URL

http://www.sciencedirect.com/science/article/pii/S0021999111001227.

[64] Dhairya Malhotra and George Biros. PVFMM: A parallel kernel independent

FMM for particle and volume potentials. Communications in Computational

Physics, 18(3):808–830, 2015.

[65] Per-Gunnar Martinsson. A fast direct solver for a class of elliptic partial

differential equations. J. Sci. Comput., 38(3):316–330, 2009. ISSN 0885-

7474. doi: 10.1007/s10915-008-9240-6. URL http://dx.doi.org/10.1007/

s10915-008-9240-6.

[66] Per-Gunnar Martinsson. A direct solver for variable coefficient elliptic PDEs

discretized via a composite spectral collocation method. Journal of Computa-

tional Physics, 242:460–479, 2013.

[67] Per-Gunnar Martinsson. Compressing rank-structured matrices via random-

ized sampling. SIAM Journal on Scientific Computing, 38(4):A1959–A1986,

2016.

[68] Per-Gunnar Martinsson. Fast direct solvers for elliptic PDEs. SIAM, 2019.

[69] Per-Gunnar Martinsson and Vladimir Rokhlin. A fast direct solver for bound-

ary integral equations in two dimensions. Journal of Computational Physics,

205(1):1–23, 2005.

[70] Per-Gunnar Martinsson and Vladimir Rokhlin. An accelerated kernel-independent

fast multipole method in one dimension. SIAM Journal on Scientific Comput-

ing, 29(3):1160–1178, 2007.

[71] Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear al-

gebra: Foundations and algorithms. Acta Numerica, 29:403–572, 2020. doi:

10.1017/S0962492920000021.

138

http://www.sciencedirect.com/science/article/pii/S0021999111001227
http://dx.doi.org/10.1007/s10915-008-9240-6
http://dx.doi.org/10.1007/s10915-008-9240-6

[72] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized

algorithm for the decomposition of matrices. Appl. Comput. Harmon. Anal.,

30(1):47–68, 2011. ISSN 1063-5203. doi: 10.1016/j.acha.2010.02.003. URL

http://dx.doi.org/10.1016/j.acha.2010.02.003.

[73] P.G. Martinsson. A fast randomized algorithm for computing a hierarchically

semiseparable representation of a matrix. SIAM Journal on Matrix Analysis

and Applications, 32(4):1251–1274, 2011. doi: 10.1137/100786617. URL http:

//link.aip.org/link/?SML/32/1251/1.

[74] P.G. Martinsson and V. Rokhlin. A fast direct solver for boundary integral

equations in two dimensions. J. Comp. Phys., 205(1):1–23, 2005.

[75] E. Michielssen, A. Boag, and W. C. Chew. Scattering from elongated objects:

direct solution in O(N log2N) operations. IEE Proc. Microw. Antennas

Propag., 143(4):277 – 283, 1996.

[76] Victor Minden, Kenneth L. Ho, Anil Damle, and Lexing Ying. A recursive

skeletonization factorization based on strong admissibility. Multiscale Modeling

& Simulation, 15(2):768–796, 2017. doi: 10.1137/16M1095949. URL https:

//doi.org/10.1137/16M1095949.

[77] Yuji Nakatsukasa. Fast and stable randomized low-rank matrix approximation,

2020. arxiv.org report #2009.11392.

[78] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable paral-

lel programming with CUDA: Is CUDA the parallel programming model that

application developers have been waiting for? Queue, 6(2):40–53, 2008.

[79] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance deep learning library.

Advances in neural information processing systems, 32, 2019.

139

http://dx.doi.org/10.1016/j.acha.2010.02.003
http://link.aip.org/link/?SML/32/1251/1
http://link.aip.org/link/?SML/32/1251/1
https://doi.org/10.1137/16M1095949
https://doi.org/10.1137/16M1095949

[80] Grégoire Pichon, Eric Darve, Mathieu Faverge, Pierre Ramet, and Jean Ro-

man. Sparse supernodal solver using block low-rank compression. In 2017

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 1138–1147. IEEE, 2017.

[81] V. Rokhlin. Diagonal forms of translation operators for the Helmholtz equation

in three dimensions. Applied and Computational Harmonic Analysis, 1(1):82

– 93, 1993. ISSN 1063-5203. doi: 10.1006/acha.1993.1006. URL http:

//www.sciencedirect.com/science/article/pii/S1063520383710067.

[82] Vladimir Rokhlin. Rapid solution of integral equations of scattering theory in

two dimensions. Journal of Computational physics, 86(2):414–439, 1990.

[83] Yousef Saad and Maria Sosonkina. Distributed schur complement techniques

for general sparse linear systems. SIAM Journal on Scientific Computing, 21

(4):1337–1356, 1999.

[84] RN Simpson and Z Liu. Acceleration of isogeometric boundary element anal-

ysis through a black-box fast multipole method. Engineering Analysis with

Boundary Elements, 66:168–182, 2016.

[85] Barry F Smith. Domain decomposition methods for partial differential equa-

tions. In Parallel Numerical Algorithms, pages 225–243. Springer, 1997.

[86] Daria Sushnikova, Leslie Greengard, Michael O’Neil, and Manas Rachh. FMM-

LU: A fast direct solver for multiscale boundary integral equations in three

dimensions, 2022. URL https://arxiv.org/abs/2201.07325.

[87] Toru Takahashi, Pieter Coulier, and Eric Darve. Application of the inverse

fast multipole method as a preconditioner in a 3D Helmholtz boundary element

method. Journal of Computational Physics, 341:406–428, 2017.

[88] Andrea Toselli and Olof Widlund. Domain decomposition methods-algorithms

and theory, volume 34. Springer Science & Business Media, 2004.

140

http://www.sciencedirect.com/science/article/pii/S1063520383710067
http://www.sciencedirect.com/science/article/pii/S1063520383710067
https://arxiv.org/abs/2201.07325

[89] Alexandre Vion, R Bélanger-Rioux, L Demanet, and Christophe Geuzaine. A

DDM double sweep preconditioner for the Helmholtz equation with matrix

probing of the DtN map. Mathematical and Numerical Aspects of Wave Prop-

agation WAVES, 2013, 2013.

[90] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, WarrenWeckesser,

Jonathan Bright, et al. SciPy 1.0: fundamental algorithms for scientific com-

puting in Python. Nature methods, 17(3):261–272, 2020.

[91] Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat Guney, and

Aashay Shringarpure. On the limits of GPU acceleration. In Proceedings of

the 2nd USENIX conference on Hot topics in parallelism, volume 13, 2010.

[92] Ruoxi Wang, Chao Chen, Jonghyun Lee, and Eric Darve. PBBFMM3D: a

parallel black-box algorithm for kernel matrix-vector multiplication. Journal

of Parallel and Distributed Computing, 154:64–73, 2021.

[93] Shen Wang, Xiaoye S Li, Jianlin Xia, Yingchong Situ, and Maarten V De Hoop.

Efficient scalable algorithms for solving dense linear systems with hierarchically

semiseparable structures. SIAM Journal on Scientific Computing, 35(6):C519–

C544, 2013.

[94] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li. Fast algorithms for hierarchi-

cally semiseparable matrices. Numerical Linear Algebra with Applications, 17

(6):953–976, 2010.

[95] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li. Superfast

multifrontal method for large structured linear systems of equations. SIAM J.

Matrix Anal. Appl., 31(3):1382–1411, 2010. ISSN 0895-4798. doi: 10.1137/

09074543X. URL http://dx.doi.org/10.1137/09074543X.

141

http://dx.doi.org/10.1137/09074543X

[96] Anna Yesypenko and Per-Gunnar Martinsson. GPU Optimizations for the

Hierarchical Poincaré-Steklov Scheme. arXiv preprint arXiv:2211.14969, 2022.

[97] Anna Yesypenko and Per-Gunnar Martinsson. SlabLU: A Two-Level Sparse

Direct Solver for Elliptic PDEs. arXiv preprint arXiv:2211.07572, 2022.

[98] Anna Yesypenko and Per-Gunnar Martinsson. Randomized Strong Recursive

Skeletonization: Simultaneous compression and factorization of H-matrices in

the Black-Box Setting. arXiv preprint arXiv:2311.01451, 2023.

[99] Anna Yesypenko, Chao Chen, and Per-Gunnar Martinsson. SkelFMM: A

Simplified Fast Multipole Method Based on Recursive Skeletonization. arXiv

preprint arXiv:2310.16668, 2023.

[100] Lexing Ying. A kernel independent fast multipole algorithm for radial basis

functions. Journal of Computational Physics, 213(2):451–457, 2006.

[101] Lexing Ying, George Biros, and Denis Zorin. A kernel-independent adaptive

fast multipole algorithm in two and three dimensions. Journal of Computa-

tional Physics, 196(2):591–626, 2004.

[102] Ken-ichi Yoshida, Naoshi Nishimura, and Shoichi Kobayashi. Application of

fast multipole Galerkin boundary integral equation method to elastostatic crack

problems in 3D. International Journal for Numerical Methods in Engineering,

50(3):525–547, 2001.

[103] Chenhan D Yu, James Levitt, Severin Reiz, and George Biros. Geometry-

oblivious FMM for compressing dense SPD matrices. In Proceedings of the

International Conference for High Performance Computing, Networking, Stor-

age and Analysis, page 53. ACM, 2017.

142

Vita

Anna Yesypenko is a PhD candidate in the Computational Science, Engi-

neering, and Mathematics program at the Oden Institute. Prior to studying at the

University of Texas at Austin, she earned a Bachelors of Science degree in Computer

Science from Cornell University in 2017.

Address: annayesy@utexas.edu

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

143

	Chapter 1: Introduction
	Problem formulation
	Integral equation formulation
	Sparse Direct Solvers for PDEs

	H-matrices in the context of PDE solvers
	Fast Solvers for Discretized Integral Equations
	Fast Sparse Direct Solvers for Discretized PDEs

	Randomized compression for H-matrices
	Low rank
	Randomized Black-Box Algorithms for H-matrices

	Overview of Chapters
	SkelFMM: A Simplified Fast Multipole Method
	SlabLU: A Two-Level Sparse Direct Solver
	Randomized Strong Recursive Skeletonization: Simultaneous Compression and Factorization of H2 Matrices

	Contributions by Area

	Chapter 2: SkelFMM: A Simplified Fast Multipole Method Based on Recursive Skeletonization
	Introduction
	Methodology
	Skeletonization of a single box
	Matrix Sparsification
	Multi-Level Algorithm for a Simple Geometry

	Algorithm
	Adaptive tree data structure
	Build stage
	FMM apply
	Parallel Implementation

	Complexity analysis
	Numerical results
	2D Experiments
	3D Experiments

	Conclusions

	Chapter 3: SlabLU: A Two-Level Sparse Direct for Elliptic PDEs
	Introduction
	Problem setup
	Overview of proposed solver
	Context and related work
	Extensions and limitations

	Discretization and node ordering
	A model problem based on the five point stencil
	Clustering of the nodes
	High order discretizations

	Stage one: Elimination of nodes interior to each slab
	Schur complements
	Rank structure in the reduced blocks
	Recovering H-matrix structure from matrix-vector products

	Stage Two: Factorizing the reduced block tridiagonal coefficient matrix
	Algorithm and complexity costs
	Ease of Parallelism and Acceleration with Batched Linear Algebra
	Choosing the buffer size b.
	Complexity Analysis for SlabLU with HPS discretization

	Numerical experiments
	Description of Benchmark PDEs and Accuracies Reported
	Benchmark Experiments using Low-Order Discretization
	Benchmark Experiments using High-Order Discretization
	Solving Challenging Scattering Problems with High Order Discretization

	Conclusion

	Chapter 4: Randomized Strong Recursive Skeletonization: Simultaneous Compression and Factorization of H-matrices in the Black-Box Setting
	Introduction
	Randomized compression and factorization of rank structured matrices
	Review of randomized sketching for a low rank matrix
	Block Nullification
	Block Extraction
	Factorizing Rank-Structured Matrices using Randomized Sampling Techniques

	The interpolative decomposition and recursive skeletonization
	Gaussian elimination and block elimination matrices
	The interpolatory decomposition
	Classical skeletonization (weak admissibility)

	Strong recursive skeletonization
	Hierarchical tree structure
	Strong skeletonization for a single box
	Recursive Algorithm
	How to compress the far-field interactions

	Randomized strong recursive skeletonization
	Numerical experiments
	3D Sparse Direct Solvers

	Conclusions

	Chapter 5: Conclusion
	Appendix A: Rank Properties
	Rank Property of Thin Slabs

	Works Cited
	Vita

