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Abstract—We present a scheme to compress the method of
moments (MoM) matrix, which is linear in complexity for low to
intermediate frequency problems in electromagnetics. The method
is fully kernel independent and easy to implement using existing
codes. The O(N ) complexity for both memory and time (setup
and matrix–vector product) is achieved thanks to the application
of a recursive skeletonization to the H2 matrix structure of the
MoM matrix that uses the nested nature of the far interactions.
The interpolative decomposition is applied in a novel manner in
order to compress the “far-field signature” of the groups of basis
functions. Moreover the scheme is fully characterized and it proves
itself well suited for the analysis of multiscale structures.

Index Terms—Fast solvers, integral equations (IEs), method of
moments (MoM).

I. INTRODUCTION

SURFACE integral equations (SIEs) are among the most
used formulations for the analysis of problems in electro-

magnetics due to their accuracy and favorable scaling proper-
ties. The method of moments (MoM) discretization of integral
equation (IE) operators is conveniently done via subsectional
elements, such as the Rao–Wilton–Glisson (RWG) basis [1]
for surface discretizations. The electric field integral equation
(EFIE) has proven extremely accurate, and is therefore, the
usual choice from low to intermediate frequency cases. As fre-
quency increases, it is often combined with the magnetic field
integral equation (MFIE) yielding the combined field integral
equation (CFIE), a resonance-free formulation. Although the
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number of unknowns is relatively small (compared to volume
discretizations), the well-known drawback of MoM discretiza-
tions is that they result in a dense matrix system. Many strate-
gies have been explored to reduce the cost of matrix filling
and inversion, typically labeled as fast solvers [2]: these tech-
niques are aimed at reducing storage requirements and speeding
up matrix–vector (MV) multiplications in iterative solutions.
Fast solvers can be classified in two main classes: kernel-based
factorizations and algebraic factorizations. Historically, kernel-
dependent techniques were addressed first, starting from the
revolutionary work by Rokhlin [3] paving the way for fast mul-
tipole methods (FMM) techniques [4]–[6]. Kernel-based fac-
torizations, however, rely on analytic expansions of the integral
kernel: if the kernel (i.e., the problem, or simply the formulation)
is varied, the expansion needs be recomputed (assuming such
expansion exists). Conversely, kernel-independent techniques
are highly desirable due to their ability to solve a wide plethora
of problems without substantial modifications to the code: In
the following, we will limit our focus to this latter class of fast
solvers.

All techniques are generally based on the following observa-
tion: subblocks of the system matrix representing interactions
between two clustered groups of “far” basis functions are (nu-
merically) rank deficient. This property guarantees that a com-
pression of such matrix blocks is possible, although it does not
tell how to construct it: The difference among different fast
solvers is indeed the way this factorization is constructed. Be-
cause of the need of subdividing the geometry into clusters of
basis functions, clustering algorithms (e.g., Octree) are a key
ingredient of most fast solvers. Once the computational domain
has been geometrically partitioned, the same partitioning can
be related to the matrix itself, highlighting blocks which can be
compressed by means of some factorization scheme. Because of
the fact that compressible blocks correspond to distant clusters,
this geometrical distance terminology is often associated to the
matrix itself, which is then split in a near-field (incompressible)
portion, and its far-field (compressible) complement.

The achievable computational gain depends on the structure
employed for representing the far-field portion of the matrix.
In the H-matrix representation [7], at each level of the clus-
tering far-field interactions are independently compressed: This
means that compression is carried out separately at each scale,
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and no communication between different scales is required. As
one might guess, this is not the most efficient strategy, espe-
cially in the presence of multiscale discretizations. H-matrix
compression techniques are very well known and employed due
to their relative simplicity: Classic examples can be found in the
adaptive cross approximation (ACA) [8], [19]. Nested compres-
sion schemes, in which bases are recursively expressed in terms
of the bases at finer level of the clustering, are introduced to
mitigate the inefficiencies of H-matrix representations: These
matrix representations, formally a subset of H-matrices, are
known asH2-matrices [9].

A second key factor for the computational gain is played
by the admissibility condition [7], which can be either weak
or strong. In short, the admissibility condition fixes a dis-
tance between clusters for the corresponding matrix block to be
compressed. A weak admissibility condition yields matrices in
which only interactions of a cluster with itself are computed and
stored without compression: With the proper ordering, this in-
duces a block diagonal near-field matrix. Conversely, if a strong
admissibility condition is assumed, interactions between neigh-
boring (touching) clusters are not compressed: this obviously
increases storage requirements for the near-field matrix, but this
is largely compensated by the significantly higher compression
rates achievable on far-field couplings. If N denotes the dimen-
sion of the linear system, using the strong admissibility condi-
tion allows to solve static problems with provable O(N log N)
andO(N) complexities, forH- andH2-matrix representations,
respectively.

Matrices with weak admissibility condition applied to H2-
matrix format are known as hierarchically semiseparable (HSS)
matrices; HSS matrices have been successfully used for the
development of fast direct methods using Nystrom discretiza-
tions [10], [12] and collocation schemes [13], [14]. Previous
attempts using the weak admissibility for MoM matrices re-
sulted in complexities higher than linear for the compression
stages [15]. The compression stage is accelerated thanks to the
concept of proxy surfaces, auxiliary surface introduced in [10].
A similar idea was already foreseen in [11], where auxiliary
sources were place around a group of basis functions for the
construction of a reduced representation of the scattered field.

In this paper, we propose a novel scheme, labeled in the fol-
lowing as nested skeletonization scheme (NSS), directly inspired
by the work in [12] where a direct solver for HSS matrices is in-
troduced for 1-D problems. Our scheme is used for the compres-
sion of the MoM matrix with a strong admissibility condition.
We demonstrate that the solver has linear complexity for fully
3-D problems, thanks to the control of the rank during compres-
sion stages provided by the strong admissibility condition. The
solver is well suited to problems in the low and intermediate
frequency regimes. The kernel free nature of this paper makes
it applicable to a broad range of formulations. Also, a thor-
ough derivation and discussion of the computational cost of the
algorithm is presented; to the best of the authors’ knowledge,
this systematic study for the compression of the entire MoM
matrix had not been addressed previously.

The use of H2 matrices with strong admissibility in elec-
tromagnetics can be tracked back to kernel interpolation-based

solvers [16]–[18], where the degenerate nature of the Green’s
function is cleverly exploited to factor the kernel using La-
grange polynomials. The solver proposed in this paper, on the
other hand, does not explicitly require an analytic expansion
of the kernel; rather it directly compresses matrix blocks. Such
compression techniques are often referred to as kernel free or al-
gebraic, and include the ACA [19], multilevel ACA [20], nested
equivalent sources approximation (NESA) [21], multilevel ma-
trix decomposition algorithm [22].

In [23], the strong admissibility condition was used in the
compression of the near-field matrix of a standard multilevel
fast multipole algorithm with O(N log N) complexity, obtain-
ing however a kernel-dependent solver; the same authors suc-
cessfully used a similar scheme for generating a preconditioner
for multiscale structures [24]. Instead our solver is completely
kernel free and achieves aO(N) complexity. Another work us-
ing strong admissibility is the fast summation technique for 1-D
problems presented in [25]; focus of that work is the analysis
of potential problems for 1-D geometries, while our scheme is
demonstrated to efficiently deal with 3-D vector problems.

At a difference from [15] and [23], our approach discards
the use of fully discretized proxy surfaces using RWG vector
functions, which can be cumbersome in practical codes. Instead,
the proposed approach employs fields scattered by the sources
and measured in a finite set of points located in the artificial
proxy surface. Our work shares the objectives of the recent
kernel-independent solver for MoM matrices presented in [21];
nevertheless the present approach is much simpler as it avoids
the use of inverse source procedures (e.g., using truncated SVD
pseudoinverses), consequently, reducing the number of user-
defined parameters to set.

To summarize, we present a state of the art kernel-independent
solver with linear complexity for MoM solutions in the low
and intermediate frequency regimes. A brief background is
presented in Section II, a detailed description of the proposed
scheme is presented in Section III. The solver is fully charac-
terized and its efficiency and accuracy addressed in Section IV;
finally, Section V summarizes our findings.

II. BACKGROUND

We consider a perfect electric conductor body on which the
unknown current density J is approximated as a linear combi-
nation of basis functions

J(r) �
N∑

n=1

In fn (r) (1)

where In corresponds to the current expansion coefficients and
fn (r) to the RWG basis functions [1]; applying the MoM and
Galerkin testing to the EFIE, the problem is transformed into
the linear system as

ZEFIEI = (ZA
EFIE + Zφ

EFIE)I = VEFIE (2)
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where

ZA
mnEFIE =

jωμ0

4π

∫∫

Sm

dS

·fm (r)
∫∫

Sn

dS ′ G(r, r′)fn (r′) (3)

Zφ
mnEFIE =

1
j4πωε0

∫∫

Sm

dS ∇s

·fm (r)
∫∫

Sn

dS ′G(r, r′)∇s · fn (r′) (4)

Vm EFIE =
∫∫

Sm

dS fm (r) ·Ei(r) (5)

with G(r, r′) = e−jk0 |r−r ′ |/|r− r′|, k0 = ω
√

ε0μ0 , Sm and Sn

correspond to the supports of the functions fm and fn , respec-
tively, and Ei to the incident electric field. In (2), we have
explicitly denoted the contributions of the scalar (φ) and vector
(A) potentials.

The same discretization strategy is applied to the MFIE,
yielding

ZmnMFIE =
1
2

∫∫

Sm

dS fm (r) · fn (r)

+
1
4π

∫∫

Sm

dS fm (r)

×n̂

∫∫

Sn

dS ′ fn (r′)×∇G(r, r′) (6)

Vm MFIE =
∫∫

Sm

dS fm (r) · n̂×Hi(r) (7)

where n̂ is the outward unit normal to the surface, and Hi is the
incident magnetic field. The CFIE is then expressed as a linear
combination of EFIE and MFIE as follows:

(αZEFIE + (1− α)ZMFIE)I

= (αVEFIE + (1− α)VMFIE) (8)

where 0 < α < 1 is the weight controlling the contribution of
the EFIE and MFIE operators. In this paper, we use Z as the
MoM matrix, defined as Z = αZEFIE + (1− α)ZMFIE .

III. NSS

In this section the main stages of the proposed scheme,
NSS are described. First, the matrix structure is summarized in
Section III-A; then the compression scheme based on field sam-
pling is elaborated in Section III-B. The memory complexity
scaling is described in Section III-C.

A. Fast Solver Matrix Structure

The NSS starts clustering the basis functions in different
groups in L + 1 levels (e.g., using an Octree with root level
equal to zero), where L is the leafs’ index. For each group, the far
field is defined as the groups complying with the admissibility

condition [9]

diam(τ ′) ≤ η · dist(τ ′, τ) (9)

where τ ′ and τ are two groups diam stands for the size of
the group and dist is the distance between the centroids of two
groups; η is a constant usually around 1 [26]. Here, the clustering
is performed via an Octree, therefore, the diam of groups τ ′ and
τ is equal.

Once this formal description is given, the proposed solver
uses the classical definition for the far field used in the FMM,
where, for each group, all the “touching” groups and the group
itself are defined as the near field (e.g., η = 1.1), while the rest of
the groups in the cluster tree are considered in the far field. The
clustering of the geometry induces a tessellation of the matrix,
while the admissibility condition split the contributions in near
and far field (low rank). NSS computes the near-field matrix at
the leafs’ level (level L) Z

(L)
Near, then each group of functions at

level L is compressed using the proxy fields scheme (explained
in Section III-B). The compression of each group generates three

outputs: an anterpolation matrix V (L)T
, an interpolation matrix

U (L) (these are the transpose of each other due to reciprocity),
and a set of the principal radiators/receivers in the group (e.g.,
a list containing the indices of the dominant basis functions).
Notice that the matrix names interpolation and anterpolation are
used for notation purposes only.

The far-field interaction between two groups (e.g., τ and
τ ′) that have been compressed is described in terms of the
factorization

Zτ,τ ′
(L) ≈ Uτ

(L)Z̃
(L)
τ ,τ ′Vτ ′

(L)T
(10)

where Zτ,τ ′
(L) is the low rank interaction matrix between

groups τ and τ ′ at level L; the anterpolation and interpolation

matrices are V
(L)
τ ′

T
and Uτ

(L) , respectively. Notice that Uτ
(L)

depends on τ only, while V
(L)
τ ′

T
depends on τ ′ only: this

is one of the characteristics of the H2 structure. The matrix
Z̃

(L)
τ ,τ ′ contains the interactions between the principal functions

(e.g., is a submatrix of Zτ,τ ′
(L)). In MATLAB notation

Z̃
(L)
τ ,τ ′ = Zτ,τ ′

(L)(Is, Js), where Is is the set of indices obtained
from the compression of group τ , while Js is the set of indices
obtained from the compression of group τ ′; these indices are
usually known as skeletons. As in all low-rank factorizations, the
number of skeletons is much lower than the size of the groups;
details on the low rank factorization are given in Section III-B.

Once all the low rank factorizations are computed (10), the
structure of the MoM matrix Z can be written as

Z ≈ U (L)Z̃(L−1)V (L)T
+ Z

(L)
Near (11)

that describes the leafs’ level compression of the MoM matrix;

U (L) and V (L)T
contain the basis matrices spanning the skele-

tons (as receivers and radiators) for all the far interacting groups;
the matrix Z̃(L−1) contains the interactions between the skele-
tons at level L− 1, where we have regrouped the leaf groups
into their parents (in level L− 1), reintroducing rank deficien-
cies in Z̃(L) . The structured nature of matrix Z̃(L−1) allows to
define a new near field for level L− 1, called simply Z

(L−1)
Near ,
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while far interactions in level L− 1 can be compressed through
the same procedure described previously. This is a recursive
procedure described by

Z̃(L−i) ≈ U (L−i)Z̃(L−i−1)V (L−i)T
+ Z

(L−i)
Near (12)

where i = 0, . . . , L− 2 for L ≥ 2. It is remarked that matrices
Z̃(L−i−1) are never computed except for i = L− 2 (e.g., the
first Octree subdivision); these matrices are used here just for
illustrative purposes of the method (we use the indices obtained
from the skeletonization in each level only).

Regarding the nature of matrices Z
(L−i)
Near in (12), we point

out that, although they are considered full rank in level (L− i),
they are low rank in level (L− i + 1); this simple observation al-
lows to further compress these matrices. Indeed, going one level
down (e.g., from (L− i) to (L− i + 1)), it can be seen that the
interaction blocks are rank deficient (R(k) with rank k, in hier-
archical matrices terminology [26]). It is important to highlight
that this optional step is not necessary in any way for obtaining
the linear complexity; it just decreases the necessary memory
of the method, keeping the complexity unchanged. Notice that
Z

(L−i)
Near is sparse with a few R(k) blocks, so they are suitable

for a simple block-by-block compression; the ACA [8] with the
recompression proposed in [26] is used here for this step.

Combining (11) and (12), we obtain the generalized structure
of the NSS as

Z ≈ U (L){U (L−1)[ . . . (U (2)Z̃(1)V (2)T
+ Z

(2)
Near) . . .

]

V (L−1)T
+ Z

(L−1)
Near

}
V (L)T

+ Z
(L)
Near. (13)

The recursion for the compression stops at Z̃(2) = U (2)Z̃(1)

V (2)T
+ Z

(2)
Near as in level 1, no group is admissible according to

the admissibility condition in (9). The nestedness of the method
resides in the fact that the hierarchical structure is constructed
from the leafs information only.

The previous concepts are elucidated with a simple example
in Fig. 1(a), where a 1-D geometry is used for ease to illustrate
the key points; nonetheless, it is highlighted that our solver
works for general 3-D cases as will be demonstrated in the
numerical results section. Fig. 1(a) shows the 1-D discretization
(in triangles); the different groups are numbered according to
the tree presented in Fig. 1(b).

The solver starts at the leafs’ level [L = 3, last level in the
tree in Fig. 1(b)], where for each group, the near-field interac-
tions are computed and stored in the near-field matrix [Z(3)

Near
in Fig. 1(c)], while the far-field interactions are compressed
through the local compression explained in the next section.
The far-field interactions for each group are factorized both as
receiver and radiator in order to construct the basis matrices
U (3) and V (3)T

, respectively, and a set of indices that represent
the dominant basis/testing functions selected through the skele-
tonization; the dominant indices interactions are represented by
the matrix Z̃(2) , although this matrix is never build explicitly.
In the next coarser level L− 1 [e.g., level 2 in Fig. 1(b)], the
dominant interactions that survived at level L are regrouped and
recompressed through the same compression scheme used at
level L.

Fig. 1. 1-D geometry example. (a) 1-D geometry clustering. (b) Cluster tree.
(c) Matrix tessellation.

Fig. 2. Far-field signature of a given group by computing the entire far field.

B. Local Compression Scheme

For the sake of simplicity, in this subsection, the terms source
or test will be used referring to vector functions (e.g., the RWG)
that are either radiating or receiving; therefore, when referring to
blocks of the matrix, block row is the block of the MoM matrix
containing the interactions between a test group and its far field,
a block column is the block of the MoM matrix containing the
interactions between a source group and its far field.

The compression in this paper uses the idea of proxy surfaces
[10] where, instead of building the entire block row and block
column of a group in order to compress it (as shown in Fig. 2),
only the interactions between the sources (test) of the group and
a set of test (sources) auxiliary functions is computed. By doing
this, the computation is now local, consequently, bounded by
the number of sources (test) in the group. Up-to-date schemes
working with proxy surfaces first discretize the proxy that is
generally a sphere or a cube enclosing the group [15], [23]. In-
stead, here, we use samples of the field scattered by the group
being compressed in the artificial sphere around it. In practice,
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Fig. 3. Near- and far-field zones for group τ .

Fig. 4. Skeletonization using proxy field sampling for group τ .

we use the routines that compute the scattered field (electric
field, the magnetic field can be used as well); the field is ob-
tained using the mixed potentials formulation used for the MoM
interactions [e.g., for the electric field, we use (3) and (4)], but
instead of a Galerkin testing, we use vector Dirac deltas for
sampling each of the components of the field in each of the
sampling points. Fig. 3 shows graphically the near and far parts
for a given group (group τ ), where the boundaries of the tree
are highlighted in order to ease the comprehension.

The NSS scheme generates Q points (set according to the de-
sired accuracy, see Section IV ahead) around each group, then
the electric field radiated by the RWG’s in the group is sampled
at those points (three components for each of the Q points);
this procedure generates a matrix ZS , that is compressed using
the interpolative decomposition (ID) [27]. The geometrical in-
terpretation of the scheme is depicted in Fig. 4. Fig. 5 presents
the matrix version of the factorization of a far-field group using
the field sampling compression; each row of matrix ZS contains

Fig. 5. Construction of anterpolation matrices via interpolative
decomposition.

one component of the field due to the contributions of all the
sources in the group; therefore, ZS have 3Q rows.

The electric (magnetic can be used as well) field, scattered
or radiated by generic vector functions fn (r′) sampled at points
rm can be written as

ZSm n = −jωμ0

4π

∫∫

Sn

dS ′γ̂ ·
[
(I +

∇∇
k2 )G(rm , r′)

]
· fn (r′)

(14)
where we have used γ̂ for indicating either x̂, ŷ, or ẑ, while
rm is the position vector of the mth proxy point where the field
component is sampled. Each point where the field is sampled
produce then three values (one for each component of the field).
The ID takes as input the low rank matrix ZS and a user-defined
tolerance, then it outputs the rank of the matrix, a set of the
dominant indices, Js (that corresponds to the skeletons, defined
as the vector basis functions fJs

), and a basis matrix Vτ ′
T for

a generic group τ ′. The matrix Vτ ′
T maps (anterpolates) the

sources f(r′)n contributions to a reduced set of dominant ones,
Js , after which this reduced set is able to radiate any field
(accurate up to the user given tolerance) in the far field of the
group. The outputs of the ID are graphically shown in Fig. 5
(right part). The obtained Vτ ′

T is also used to find the basis as
Uτ ′ = Vτ ′ .

If we take two far interacting groups, as the ones de-
scribed in Section III-A (e.g., τ and τ ′), we perform the ID
to both groups obtaining Vτ ′

T and Js for the source group
and Uτ and Is for the test group (10), this is pictorially rep-
resented in Fig. 6. Even if Uτ = Vτ for any group τ , we
will keep the separated representation for the sake of clarity
in the discussion. It is also highlighted that for the construction
of the anterpolation/interpolation matrices (V and U ) that either
the electric or magnetic field can be used, because, once the
field is matched in the proxy surface, the solutions outside the
proxy are unique and so their representations. We point out that
in view of the discrete nature of the MoM representation, a re-
laxation of the requirement of a completely closed surface is
prescribed; however, this is common to all proxy-based solvers,
and as demonstrated in the numerical results, it does not pose
a limitation to the applicability and accuracy of the scheme.
As stated in the introduction, the method is entirely kernel
independent, as the translations between far groups are rep-
resented by the MoM matrix interactions between the skeletons
(e.g., through the Z

(L−i)
Near with i = 0, . . . , L− 2 and Z̃(1) matri-

ces, as shown in (13)].
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C. Complexity Scaling

The matrix structure used in this work belongs to the so
called H2 matrices; both the strong admissibility condition
and nestedness used are responsible for the linear complexity
obtained as

Cmemory ≈ QN + 8Q2 log2(N) + 27 KN + 4dQN + Q2

(15)
where Cmemory stands for the computational complexity in mem-
ory with Q constant sampling points around each group, while
N is the total number of unknowns and K is a constant number
of basis functions in the near field for each group in the leafs’
level. The different contributions are summarized as follows.
The QN term is related to the memory used for the interpola-
tion and anterpolation matrices U and V at the leafs’ level, while
the near-field matrix contribution (near field at leafs’ level) is ex-
pressed in the 27 KN term. The 8Q2 log2(N) term describes
the scaling of U and V at coarser levels (e.g., different from
leafs’ level); the near-field matrices for coarser levels scale as
4dQN , for d the dimension of the clustering algorithm (d = 3
for the Octree, d = 2 for a Quadtree, etc.). The last contribution
Q2 is related to the coupling matrix Z̃(1) , which is computed
in the coarsest level only. It is evident that the linear trend is
the dominant one. A detailed discussion of the terms in this
complexity estimation in (15) is reported in the Appendix A.

As the MV product is done from right to left, as described in
the Appendix B, the MV product complexity follows that of the
memory times the number of iterations.

The setup time complexity depends on the ID applied to
each of the Q · ni matrices in order to generate V (ni being
the number of basis functions in the group i). Each ID costs
mn log k + k2n [14] for each m · n matrix with rank k; in our
analysis, this becomes niQ log Q + Q3 using our maximum
bound for the rank. In the leafs’ level, adding the cost of all
groups, this cost becomes NQ log Q + Q3 . The previous is the
upper bound for the cost of the ID, as in the coarser levels (e.g.,
after the skeletonization is made in the leafs’ level), the cost is
bounded by applying the ID to Q ·Q = Q2 matrices.

Finally, the time complexity for all the near-field matrices
(Z(l)

Near for l = 2, . . . , L ) and the coupling matrix Z̃(1) follows
the memory trend in (15) (the time is proportional to the number
of elements of these sparse matrices).

IV. NUMERICAL RESULTS

This section assesses the behavior of the proposed strat-
egy. The accuracy of the proposed field sampling technique
is assessed in Sections IV-A and IV-B in the low-frequency
regime with respect to the user-defined tolerance. Second, in
Section IV-C, we evaluate the numerical complexities of the
method; then the intermediate frequency error is determined
in Section IV-D, in order to bound properly the limitations of
our solver. Finally, realistic multiscale structures are simulated
in Sections IV-E and IV-F. In all the tests, the integrals for
obtaining the scattered fields are computed with a three-points
Gaussian rule [28]. The mean discretization size is referred to as
h. Our proposed scheme will be referred to as NSS. All the sim-

Fig. 6. Compression of a far-field interaction Zτ ,τ ′ by proxy field sampling.

Fig. 7. Far-field signature compression error varying the number of auxiliary
test points Q in the proxy surface.

ulations were performed with an Intel Xeon ES-2670 (2.6 GHz),
64-Bit server with 256 GB of RAM.

A. Error Assessment

In order to assess the accuracy of the proposed field sampling
technique, the normalized Frobenius error is computed. A PEC
square plate with side 0.1λ is discretized with h/λ = 0.005, and
an Octree with four levels is generated such that there are 64
nonempty groups in the last level. A group in the middle of the
plate in the last level is taken as reference; the group’s far-field
block column (Zblock) as shown in Fig. 2 is fully assembled
for reference using a 61-points Gaussian rule for the MoM
reaction integrals [28], both for internal and external integrals.
Such a high number of integration points intends to separate the
error due to the accuracy of the MoM integrals evaluation from
the error of the used fast factorization. The group compression
is performed as explained in Section III-B using Q sampling
points, which will be the varying parameter in this test; both V T

and the set of indices Js are obtained and finally the normalized
Frobenius error is evaluated as

εFro =
||Zblock − Zblock(:, Js) · V T ||

||Zblock || . (16)

Fig. 7 demonstrates the general trend when Q changes; the
almost one-to-one relation between the user’s input tolerance
εID and the effective accuracy obtained allow us to be confi-
dent in the obtained results. Once Q is defined using Fig. 7
as a guide, the only parameter, which is user dependent is the
compression tolerance itself, being much more simple than the
recently proposed solver in [21]. From the rest of the numerical
results a Gaussian rule of three points for the exterior integral
and seven for the inner integral is used (except for near interac-
tions, where singularity treatments are used as proposed in [29]
and [30]), which provides an accuracy of 10−4 [21]. The ID and
the number of proxy samples rely on the accurate calculation of
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TABLE I
ACCURACY AND COMPUTATIONAL DATA FOR THE PEC SPHERE DISCRETIZED WITH 9060 UNKNOWNS,

FOR DIFFERENT Q SAMPLING POINTS; εID IS SET TO 1e − 4

Q Near/Far-Field Memory [MB] Far-Field Approximation Time [m:s] Iterative Solution Time [m:s] η

30 68.34/346 12:45 01:26 0.0035
50 68.34/383.2 14:00 01:20 0.0021
100 68.34/397 15:11 01:27 0.0018

TABLE II
ACCURACY AND COMPUTATIONAL DATA FOR THE PEC SPHERE DISCRETIZED WITH 9060 UNKNOWNS, FOR DIFFERENT

ID TOLERANCES (εID ); THE NUMBER OF SAMPLING POINTS Q IS SET TO 50

ε ID Near- and Far-Field Memory No
Recompression/With
Recompression [MB]

Far-Field Approximation Time No
Recompression/With
Recompression [m:s]

Iterative Solution Time No
Recompression/With
Recompression [m:s]

η

1e − 2 68.34 and 79.11/44.86 03:06/02:59 00:29/00:43 0.122
1e − 3 68.34 and 206.24/107.66 07:42/06:40 01:03/00:58 0.011
1e − 4 68.34 and 383.2/204.66 14:00/11:40 01:20/01:21 0.0021

the sampling matrix (Zs). Our implementation follows careful
integration rules [29], [30], in order to guarantee the correct
sampling of the radiated fields.

B. Tradeoff Between Accuracy and Computational Burden

The tradeoff between accuracy and computational burden for
the NSS is assessed. A PEC sphere is used as test case (radius
r = 0.5 m, frequency 300 MHz); the sphere is discretized using
9060 RWG functions. The l2 error of the current density is
defined as

η =
||Jref − J ||
||Jref|| (17)

where Jref is the reference solution (vector of coefficients) ob-
tained with the LU decomposition of the full MoM matrix with-
out approximations; J is the corresponding solution obtained
with the NSS. First, we address the accuracy/computational
burden versus the number of sampling points Q: A summary of
the results is presented in Table I. The solution is obtained using
a BiCGStab with a residual set to 1e− 6. A simple diagonal
preconditioner is applied in order to minimize its effect on the
MV times. From the data in Table I, it is noted that increasing the
number of points Q, the MV time remains almost unchanged
(the MV here is measured by the iterative solution time, due
to the very short duration of each MV); the far-field memory
increases just slightly with the number of points. The error of
the current remains almost constant.

Next, we keep Q constant to 50 points and we vary the εID: the
results are displayed in Table II. The obtained results follow the
expected trend for an increasing the accuracy (e.g., decreasing
εID) required to the fast solver; recompression/no recompression
stands for the use of the ACA compression of the near-field ma-
trices as described in Section III-A. For the rest of the numerical
results section Q is set to 50.

Finally, we benchmark our implementation’s accuracy using
the Mie series; the bistatic radar cross section (RCS) of a PEC
sphere with radius 0.5λ is computed with our method (using two
different kernels, being the EFIE and the CFIE with α = 0.8)

Fig. 8. PEC sphere benchmark.

and compared to the Mie series. The εID is set to 1e−3 and a
BiCGStab with a residual of 1e−4 is used. The results are shown
in Fig. 8.

The excellent agreement between the NSS solution and the
Mie series confirm that the proposed method fulfills the standard
accuracy requirements for fast solvers; moreover, the kernel-
independent nature of the solver is clearly established.

C. Numerical Complexity

In this section, we numerically verify that the NSS is lin-
ear in setup time, memory, and MV product time as discussed
in Section III-C. The test case is a PEC sphere (radius equal
to 0.5 m), the frequency is set to 3 MHz, and the number of
unknowns (N ) is increased by increasing the mesh density (de-
creasing the h parameter). The εID is set to 1e−3 . Four cases are
tested (10 464, 39 696, 155529, 642936 unknowns); this is usu-
ally known as fixed discretization complexity. The MoM matrix
setup time complexity is shown in Fig. 9, the memory complex-
ity in Fig. 10, and finally, the MV product time complexity is in
Fig. 11.

The linear scaling is clear in all the three computational com-
plexities, demonstrating the feasibility of the proposed method
for the analysis of large 3-D surface MoM computations.
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Fig. 9. MoM matrix setup complexity.

Fig. 10. MoM matrix memory complexity.

Fig. 11. MoM MV product time complexity.

D. Intermediate Frequency Limit

The NSS is well suited for simulations from very low fre-
quencies to intermediate frequencies (as demonstrated in the
multiscale cases in Sections IV-E and IV-F); the purpose of this
section is to assess the intermediate frequency limit. Nonethe-
less it is important to remark that by modifying the compression
stages by including directional rank properties [31], [32], the
solver can be extended to work in high-frequency regimes, but
this is outside the scope of this paper. A square PEC plate
(0.3 m side) is discretized (h = 0.015 m); a four levels Octree
is generated (e.g., leafs’ level with 64 groups), with each group
having a box side of 0.0375 m and 543 RWG. The frequency
is varied from 1 to 16 GHz (the box side in λ grows from λ/8
to 2λ); the εID tolerance is fixed to 1e−3 . The test is repeated
for different number of proxy field sampling points (Q). The
test evaluates the rank obtained at each frequency, as reported
in Fig. 12.

Fig. 12. Rank versus λ.

Fig. 13. Comparison of the convergences of NESA and NSS.

TABLE III
MORPHED EV-55 AIRCRAFT, εID = 1e − 4, Q = 100

Solver Near- / Far-Field
Memory [MB]

MoM Matrix Setup
Time [m:s]

MV Product [s]

NESA 3500 / 2300 55:56 7.8
NSS 3774 / 8643 49:35 2.8

From Fig. 12, it is noticed that the rank growth explodes
for groups sizes larger than 1λ; therefore, we can state that the
solver presented in this paper deals efficiently with structures of
up to 4 λ in size (as for the boxes in the coarsest level using an
Octree, where the admissibility condition is fulfilled, have 1λ in
length).

E. Real-Life Multiscale Test Case at Intermediate Frequency

The multiscale capabilities of the proposed scheme are tested
using a mockup version of the Evektor EV-55 airplane1 (seen
in the insert in Fig. 13), discretized with 171.763 unknowns. A
100-MHz plane wave impinges on the structure from the θ =
90◦, φ = 225◦ direction; the wing span of the airplane is 5.3 λ

at the simulation frequency and the discretization parameter
h/λ varies as 1.6e− 3 ≤ h/λ ≤ 2.8e− 2. Our scheme is then
compared to the one proposed in [21], in the following indicated
as NESA, in Table III.

For NESA, 100 equivalent sources are used, εSVD = 1e−
12, εACA = 1e− 4 and Rτ /R0 = 1, which should provide an
accuracy∼ 1e− 4 according to the tables presented in [21]. For
the NSS, we use Q = 100 and εID = 1e− 4, setting less user-

1[Online]. Available: http://www.evektoraircraft.com/en/aircraft/ev-55-outback/
overview
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Fig. 14. Comparison between the RCS of NESA and NSS.

defined parameters than NESA as previously discussed. Both
solutions are obtained with a BiCGStab with a relative residual
of 1e− 4; both solvers are preconditioned with the MR + ILU
preconditioner [33].

Table III shows a decrease of the MV product time (Column 4)
of the NSS respect to the NESA solver of a factor of almost
3. This is due to the fact that NESA needs to compute the
interactions between equivalent sources in far interactions when
doing the MV, which depends on the number of equivalent
sources (the higher the desired accuracy the higher the MV
time). NSS instead performs the coupling between far groups
using the compressed representation, involving the numerical
ranks only (which are always lower than the maximum bound
given by the number of field sampling points Q).

On the memory side, however, there is an increase on the
far-field memory of the NSS respect to the NESA solver (Col-
umn 2). This is because NESA communicates between far
groups by using the equivalent sources defined around them,
this is uniquely defined for each level, therefore, a single set
of equivalent sources is used, reducing the memory required.
The NSS instead, transfers this information between far groups
by using interactions between skeletons rather than equivalent
sources, in this way, the necessary memory is higher. Neverthe-
less this increase in memory is not directly reflected in the MoM
matrix setup times (Column 3) that are instead comparable (this
is of course implementation dependent). Finally, the iterations
count for both solvers is shown in Fig. 13, where the imaginary
part of the current density with the NSS is shown as well; the
bistatic radar cross section (RCS) in dB is computed for both
approaches and compared in Fig. 14.

F. Real-Life Multiscale Tests Case at Low Frequency

In this section, the multiscale capabilities at low fre-
quencies and dense meshes of the solver are demonstrated
simulating complex, realistic structures. We use the same

Fig. 15. Morphed ev55 current density at 300 kHz

mockup version of the Evektor EV-55 airplane of the previous
subsection with a denser discretization (the number of unknowns
is 2.799.662); the simulation frequency is set to 300 kHz (the
aircraft’s wingspan is 0.016λ); in the following, the Q sampling
points are set to 50, while the εID is set to 5e−3 . A BiCGStab
is used for the iterative solution with a residual set to 1e−4 .
The used preconditioner is the multiresolution preconditioner
[34]; the low-frequency stabilization in [35] is used for dealing
with the convergence problems caused at very low frequencies
with dense discretizations. Fig. 15 shows the current density ob-
tained; a detail on the realistic nature of the model is presented
for illustration purposes.

This test case demonstrates the ability of our solver to deal
with large structures; in particular, this structure uses 155 GB of
memory, while the MV product takes 45 s. The target residual
is reached after 197 iterations.

V. CONCLUSION AND PERSPECTIVES

A fully characterized fast compressive solver was presented.
The linear complexities obtained allow us to claim that this
scheme belongs to the state of the art kernel-independent fast
solvers. The extension of the HSS structure with strong admis-
sibility is demonstrated to be a suitable option, which is simpler
than other kernel-independent solvers. Moreover the presented
scheme was analyzed and discussed in a comprehensive manner
and its advantages demonstrated numerically.

Further improvements that are being considered are the exten-
sion to high-frequency analysis by including directional proper-
ties in the compression stage. In addition, the developed matrix
structure can be used to develop a fast direct solver.

APPENDIX

A. Complexity

We start out this sketch by analyzing the memory trends of
the scheme that results in the complexity in (15). We recall that
Q is the number of sampling points and N is the number of
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unknowns. Q is used as the upper bound for the numerical rank
of the far-field interactions for low to intermediate frequencies,
which is a well-known fact [19], [22]. Anterpolation and inter-
polation matrices V and U are the same, hence, we refer only
to V in order to facilitate the discussion, also constants, which
are of no use will be overlooked for clarity in the presentation.

At the leafs’ level L, each group i has ni basis functions,
i = 1, 2, . . . , Ng with Ng number of groups at the leafs’ level,

therefore, anterpolation matrices Vi
(L)T

contain ni ·Q ele-
ments. Adding up all the Ng groups, at the leafs’ level, results

in
∑Ng

i=1 Q · ni = Q ·N .
In the next coarser levels (l = L− 1, . . . , 2), the memory of

the matrices V (l)T
is bounded by Q ·Q = Q2 times the number

of children of each group, that is constant and equal to 2d (where
d = 3 for an Octree), times the number of levels L, which scales
as log2(N); this results in 8Q2 · log2(N).

For each group at the leafs’ level, we define a near-field made
of the neighbors and self-terms; this near field is bounded by
27 groups (for an Octree), each of which contains a constant
number of functions K so that each group i will have 27 K
functions to interact with (MoM blocks of 27 K · ni). Adding
all groups contributions, we end up with 27 K ·N .

In the coarser levels (l = L− 1, . . . , 2), the near field comes
from an skeletonization performed in the previous child level;
we then regroup the children of each group in this level (level
l) but we keep constant our upper bound Q. This scales as
2dQ. The number of groups decreases as Ng/2d(L−l) (where
Ng is the number of groups at the leafs’ level). These near-
field matrices then scale as 2d ·QNg/2d(L−l) , where Q is con-
stant and Ng grows as N . We concentrate now in the term
2d/2d(L−l) . Adding throughout the levels and simplifying, we
obtain 2d

∑
l(2

(l−L))d .
Our interest lies on the trend of the summation regarding the

(l − L) terms as d is a constant, and therefore, we tackle the
term

∑L
l=1 2(l−L) . Notice that we have assumed the sum to go

up to level l = 1, though in practice we sum up to level l = 2,
this does not constitute any change in terms of the trend, but it
allows us to obtain a closed form for the series. The series can
be written in a geometric series form by a change of variables
n = l − L, so the series becomes

∑0
n=1−L 2n . Then, the sum

is recast in

0∑

n=1−L

2n =
L−1∑

n=0

(1/2)n =
1− (1/2)L

1− 1/2
. (18)

The term (1/2)L tends to N−1 , which goes to zero for grow-
ing N , therefore the series converge to a constant value of 2.

We conclude that the scaling for the near-field matrices at
coarser levels is 4d ·Q ·N .

Finally, the coupling matrix Z̃ is computed at level l = 1
only, scaling as a constant number of groups (e.g., 8) times Q2 .
Adding the cost of all the steps involved in the construction of
the compressed MoM matrix results in (15).

B. MV Product

In this section, the implementation of the MV product is
described in details; this description is strictly related to the
matrix structure in (13). For the sake of clarity, the input vector
will be called q, while the output vector is referred to as u [e.g.,
u = Zq, with Z the MoM matrix in (13)]. Any given subset of
functions of a vector is written directly using the subscript of
the given group (e.g., qτ are the functions of q that belong to
group τ ); vectors with∧ indicate intermediate results at different
levels. The algorithm uses the Octree data structure from level
1 (eight groups) to level L (leafs’ level).

Algorithm 1: MV Algorithm.
At level l = L (leafs’ level)
for all leaf groups τ do

q̂
(l)
τ ← V (l)T

τ qτ

end for
for all levels, finer to coarser, l = L− 1, L− 2, . . . , 2 do

for all parent groups τ on level l do
Let σ1 , σ2 , . . . σ8 be the children of group τ

q̂
(l)
τ ← V (l)T

τ

⎡

⎢⎢⎢⎢⎣

q̂σ1

q̂σ2

...

q̂σ8

⎤

⎥⎥⎥⎥⎦

(l)

end for
end for
At level l = 1 couple the skeletons that survived
throughout the finer level skeletonizations
Let σ1 , σ2 , . . . σ8 be the children of group τ
⎡

⎢⎢⎢⎢⎣

ûσ1

ûσ2

...

ûσ8

⎤

⎥⎥⎥⎥⎦

(l)

← Z̃(l)

⎡

⎢⎢⎢⎢⎣

q̂σ1

q̂σ2

...

q̂σ8

⎤

⎥⎥⎥⎥⎦

(l)

for all levels, coarser to finer, l = 2, 3, . . . , L− 1 do
for all parent groups τ on level l do

Let σ1 , σ2 , . . . σ8 be the children of group τ
⎡

⎢⎢⎢⎢⎣

ûσ1

ûσ2

...

ûσ8

⎤

⎥⎥⎥⎥⎦

(l)

← U
(l)
τ û

(l)
τ + Z

(l)
Near

⎡

⎢⎢⎢⎢⎣

q̂σ1

q̂σ2

...

q̂σ8

⎤

⎥⎥⎥⎥⎦

(l)

end for
end for
At level l = L couple the near field at leafs’ level with the
far field
for all leaf groups τ do

uτ ← U
(l)
τ û

(l)
τ + Z

(l)
Nearqτ

end for
End MV Algorithm
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