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a b s t r a c t

A numerical method for variable coefficient elliptic PDEs on three dimensional domains is
described. The method is designed for problems with smooth solutions, and is based on
a multidomain spectral collocation discretization scheme. The resulting system of linear
equations can very efficiently be solved using a nested dissection style direct (as opposed
to iterative) solver. This makes the scheme particularly well suited to solving problems
for which iterative solvers struggle; in particular for problems with oscillatory solutions. A
principal feature of the scheme is that once the solution operator has been constructed, the
actual solve is extremely fast. An upper bound on the asymptotic cost of the build stage of
O(N4/3) is proved (for the case where the PDE is held fixed as N increases). The solve stage
has close to linear complexity. The scheme requires a relatively large amount of storage per
degree of freedom, but since it is a high order scheme, a small number of degrees of freedom
is sufficient to achieve high accuracy. Themethod is presented for the casewhere there is no
body load present, but it can with little difficulty be generalized to the non-homogeneous
case. Numerical experiments demonstrate that the scheme is capable of solvingHelmholtz-
type equations on a domain of size 20 × 20 × 20 wavelengths to three correct digits on a
modest personal workstation, with N ≈ 2 · 106.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The manuscript describes an algorithm for solving the boundary value problem
[Au](x) = 0 x ∈ Ω,

u(x) = f (x) x ∈ ∂Ω,
(1)

where Ω = [0, 1]3 is the unit cube, and where A is an elliptic partial differential operator

[Au](x) = −c11(x)[∂2
1 u](x) − c22(x)[∂2

2 u](x) − c33(x)[∂2
3 u](x) − 2c12(x)[∂1∂2 u](x) − 2c13(x)[∂1∂3 u](x)

− 2c23(x)[∂2∂3 u](x) + c1(x)[∂1 u](x) + c2(x)[∂2 u](x) + c3(x)[∂3 u](x) + c(x)u(x). (2)

We assume that all coefficients in (2) are smooth functions, and that the matrixc11 c12 c13
c12 c22 c23
c13 c23 c33
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is positive definite throughout the domain to ensure the ellipticity of the equation. The generalizations to problems with a
body load, to different boundary conditions, and to general domains are straight-forward, aswas demonstrated for problems
in two dimensions in [1–3].

The method proposed is a generalization to three dimensions of a technique that was described for problems in two
dimensions in [2,4,5,1]. The idea is to explicitly build an approximation to the solution operator of (1) via a hierarchical
divide-and-conquer approach. This makes the scheme a direct solver, as opposed to more commonly used iterative solvers.
The domain Ω is recursively split in halves to create a tree of boxes, cf. Fig. 2. The splitting continues until each box is small
enough that the solution, and its first and second derivatives, can accurately be resolved on a local tensor product grid of
p × p × p Chebyshev nodes (where, say, p = 10 or p = 15). The PDE (1) is enforced via collocation to locally compute
a solution operator for each leaf. Then in a single pass up through the tree of boxes, solution operators are constructed
hierarchically by ‘‘gluing together’’ the solution operators of the two children of each box.

The solver we propose has three principal advantages over standard solvers for (1): (i) Since the solver is direct,
the method is particularly well suited for problems for which efficient pre-conditioners are difficult to find, such as,
e.g., problems with oscillatory solutions. (ii) In situations where a sequence of equations involving the same operator
but different boundary data needs to be solved, the method is very fast. Once the solution operator has been built, we
demonstrate that problems with 106 degrees of freedom can be solved in about 1 s on a standard workstation. (iii) Even
though the solver is direct, its asymptotic complexity is at worst O(N4/3) (as opposed to O(N2) complexity for classical
nested dissection).

The idea of building a solution operator via a hierarchical process on a binary tree of boxes is directly analogous to classical
‘‘nested dissection’’ and ‘‘multifrontal’’ solvers [6–8]. The asymptotic complexity for these classical methods is O(N2) for the
first solve, and then, once the solution operator has been built, O(N4/3) for subsequent solves. The principal reason for the
unfavorable scaling is the need to perform operations such as matrix inversion and matrix–matrix multiplication on dense
matrices that are defined on the interfaces of the boxes. Since the number of interface nodes for two boxes close to the
top of the tree is O(N2/3), this leads to O(N2) overall complexity. It has recently been observed [9–13] that by exploiting
internal structure in these dense matrices, the overall complexity can be reduced to linear, or close to linear, for both the
build and the solve stage. Specifically, the structure exploited is that the off-diagonal blocks of these densematrices have low
numerical rank, and can be represented using so called ‘‘data sparse’’ formats such as, e.g., theH-matrix format of Hackbusch
and co-workers [14–17]. The direct solver described here follows exactly the same idea as these linear complexity nested
dissection schemes, but has a powerful advantage:While the performance of existing nesteddissection schemesdeteriorates
very rapidly when the order of the discretization is increased, see [4, Table 3], the scheme proposed here allows very high
ordermethods to be usedwith essentially no additional cost for the direct solver. (Loosely speaking, in the nested dissection
method, the ‘‘separators’’ required to split the mesh into disconnected pieces grow thicker as the order is increased. In
contrast, they stay razor thin in our version, regardless of the order.)

Like existing direct solvers for 3D problems, the method proposed here has two disadvantages in that it requires a fairly
large amount of storage, and in that the time required to initially build the solution operators is comparatively large. In
situations where an equation needs to be solved only once, and iterative methods converge rapidly, the method proposed
here will in consequence not be competitive to techniques such as, e.g., multigrid. Our target is instead situations where
iterativemethods converge slowly, or where the cost of building the solution operator can be amortized over a large number
of solves. Moreover, the method proposed involves less communication than iterative methods (since each solve involves
only a single pass through the hierarchical tree, as opposed to one pass per iteration for iterative methods), which opens a
path to the construction of solvers that can efficiently be parallelized.

2. Outline of proposed solver

The method described is based on a hierarchical subdivision of the computational domain, as illustrated in Fig. 2. The
solver consists of two stages. In the ‘‘build stage’’, we first process all of the leaf boxes in the tree. For each such box, a
local solution operator and an approximation to the local Dirichlet-to-Neumann (DtN) operator are built. The build stage
then continues with an upwards pass through the tree (going from smaller boxes to larger) where for each parent box, we
construct approximations to its local solution operator and its local DtN operator by ‘‘merging’’ the corresponding operators
for its children. The end result of the ‘‘build stage’’ is a hierarchical representation of the overall solution operator for (1). Once
this solution operator is available, the ‘‘solve stage’’ takes as input a given boundary data f , and constructs an approximation
to the solution u valid throughout the domain through a single pass downwards in the tree (going from larger boxes to
smaller).

The scheme described is a collocation scheme that uses for its collocation points tensor product grids of q × q Gaussian
nodes (a.k.a. Legendre nodes) placed on each face of each leaf box in the domain. In addition to this global grid of Gaussian
nodes, the computations executed on each leaf also rely on a local p×p×p tensor product grid of Chebyshev nodes. Typically,
p = q + 1 or p = q + 2.

The manuscript is structured as follows: Section 3 describes how a local spectral collocation method can be used to
construct the local ‘‘solution operators’’ on a leaf in the tree. Section 4 describes how to construct a solution operator for
a parent node, given the solution operators for its two children. Section 5 describes how the techniques in Sections 3 and
4 can be combined to form a direct solver for (1) based on a multidomain spectral discretization. The method described in
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Sections 3–5 has complexityO(N2) for the build stage. In Sections 6 and 7we then describe how to accelerate the build stage
to O(N4/3) complexity by exploiting internal structure in the DtN operators. Finally, Section 8 illustrates the performance
of the algorithm with several of numerical examples, and Section 9 summarizes the key features and limitations of the
algorithm, and possibly extensions.

3. Leaf computation

3.1. Overview

This section describes a spectralmethod for computing a numerical approximation to theDirichlet-to-Neumann operator
associated with Eq. (1) for a box domain Ω . In this section, we use a global spectral method to construct this operator. Later
in this report, we will apply the techniques developed in this section to construct DtN operators for every leaf box in the
hierarchical tree.

We represent potentials and fluxes on the six sides of the boxΩ by collocation on tensor product grids of Gaussian nodes
on each side. To be precise, fix a small positive integer q (say q = 5 or q = 10), and place on each side q2 nodes in a tensor
product grid. Let {zi}

6q2
i=1 denote these points. Furthermore, let u ∈ R6q2 denote approximations to the potential at these

points,

u(i) ≈ u(zi), i = 1, 2, . . . , 6q2.

Let v ∈ R6q2 denote approximations to the fluxes at the Gaussian nodes,

v(i) ≈


∂1u(zi), when zi lies on a face parallel to the x2–x3 plane,
∂2u(zi), when zi lies on a face parallel to the x1–x3 plane,
∂3u(zi), when zi lies on a face parallel to the x1–x2 plane.

Our objective is now to build a 6q2 × 6q2 matrix T such that

v = Tu. (3)

In order to build T, we will work with a tensor product grid of p × p × p Chebyshev nodes inside Ω (typically, p = q + 1).
We proceed through the following steps: Given the vector u of tabulated Dirichlet data on the Gaussian nodes, we first
interpolate to get Dirichlet data on the Chebyshev nodes that lie on the boundary.We then solve the PDE (1) using a spectral
collocation method in the interior of the box, see [18]. This gives us the values of u tabulated at all interior nodes. We use
spectral differentiation to construct the boundary fluxes, tabulated on the boundaryChebyshevnodes. Finally,we interpolate
back from the Chebyshev nodes to the boundary Gaussian nodes. The combination of these four linear maps defines the
matrix T.

3.2. Local spectral solver on the Chebyshev grid

With p the order of the local Chebyshev approximation, as defined in Section 3.1, let {xk}
p3
k=1 denote the points in a p×p×p

tensor product grid of Chebyshev nodes. Let ũ ∈ Rp3 denote a vector holding approximations to u at {xk}
p3
k=1 and let D(1),

D(2), D(3) denote the spectral differentiation matrices corresponding to the partial differential operators ∂/∂x1, ∂/∂x2 and
∂/∂x3. Then the operator in (1) can be approximated via a p3 × p3 matrix

A = −C11(D(1))2 − C22(D(2))2 − C33(D(3))2 − 2C12D(1)D(2)
− 2C13D(1)D(3)

− 2C23D(2)D(3)

+ C1D(1)
+ C2D(2)

+ C3D(3)
+ C,

where Cij are diagonal matrices with entries {ci,j(xk)}
p3
k=1, and Ci and C are defined analogously.

Partition the index set of Chebyshev nodes as

{1, 2, . . . , p3} = Ii ∪ Ie

where Ii lists the (p − 2)3 interior nodes and Ie lists the p3 − (p − 2)3 exterior nodes. Then partition the vector ũ according
to its value at internal and external nodes via

ũi = ũ(Ii) and ũe = ũ(Ie).

We also partition the A into four parts via

Ai,i = A(Ii, Ii), Ai,e = A(Ii, Ie), Ae,i = A(Ie, Ii), Ae,e = A(Ie, Ie).

Following [18], we discretize (1) by enforcing a collocation condition at all interior nodes,

Ai,iũi + Ai,eũe = 0. (4)
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Fig. 1. Illustration of the ‘‘merge step’’ described in Section 4, where the two boxes Ωσ1 and Ωσ2 are fused to form the larger rectangular domain Ωτ . With
the notation as in Section 4, the interpolation points are circles for J1 , crosses for J2 , and squares for J3 .

In constructing a DtN operator, we consider the Dirichlet data, as represented in ũe as given, and seek to determine the
values of the potential at the interior nodes. Solving (4), we find that

ũi = S ũe,

where the solution operator S is defined via

S = −A−1
i,i Ai,e. (5)

3.3. Interpolation between Gaussian and Chebyshev grids

Construction of DtN operator consists for three steps:

Step 1—re-tabulation from Gaussian nodes to Chebyshev nodes: Given a vector ue ∈ R6q2 of potential values tabulated on the
Gaussian nodes on each face, form for each face the corresponding interpolating polynomial (this is the unique polynomial
consisting of a sum of tensor products of polynomials of degree at most q−1). Then evaluate these six different polynomials
at the exterior Chebyshev nodes. Let LG2C denote the matrix that achieves the interpolation.
Step 2—solve and differentiate on the Chebyshev grids: Once the vector ũe of Dirichlet data on the Chebyshev grid is available,
we solve (1) using the technique in Section 3.2. Once the solution is available at the full p × p × p Chebyshev grid, we use
spectral differentiation to obtained the values of the boundary fluxes on each of the 6 faces. Let V denote the resulting linear
map.
Step 3—re-tabulation from Chebyshev nodes back to Gaussian nodes: In the final step, we simply interpolate the values of the
boundary fluxes from the exterior Chebyshev nodes to the exterior Gaussian nodes. Let this interpolationmatrix be denoted
LC2G.

Putting everything together, we form the DtN operator T as a product of three matrices

T = LC2G V LG2C,

6q2 × 6q2 6q2 × 6p2 6p2 × (6p2 − 12p + 8) (6p2 − 12p + 8) × 6q2 (6)

where each matrix corresponds to one of the three steps described above.

4. Merge two DtN operators

In this section, we describe how to construct the DtN operator for the PDE (1) under the assumption that the domain Ωτ

is a rectangular box formed by the union of two smaller rectangular boxes Ωσ1 and Ωσ2 , cf. Fig. 1,

Ωτ = Ωσ1 ∪ Ωσ2 .

We further assume that the DtN operators Tσ1 and Tσ2 for the two ‘‘children’’ boxes have already been computed using
the techniques described in Section 3. In this section, we describe how these two operators can be combined in a ‘‘merge
operation’’ to form the DtN operator Tτ associated with the union box.

We suppose that on each of the 11 faces involved in this geometry, there is a local tensor product grid of q × q Gaussian
nodes. (Observe that the merge operation involves only sets of q×q Gaussian nodes on faces of boxes. The interior p×p×p
grids of Chebyshev nodes are used only for the leaf computations.) We partition these nodes into three sets:

J1 Boundary nodes of Ωσ1 but not boundary nodes of Ωσ2 .
J2 Boundary nodes of Ωσ2 but not boundary nodes of Ωσ1 .
J3 Boundary nodes shared by Ωσ1 and Ωσ2 . (These are interior nodes of Ωτ ).
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Let u denote the vector holding tabulated solution values and let v denote the vector holding boundary fluxes values as
in Section 3. Letting ui and ue denote the solution tabulated on the interior and exterior nodes of Ωτ , we have

ui = u3, and ue =


u1
u2


.

By the definitions of DtN operators for σ1 and σ2, we have
v1
v3


=


T

σ1
1,1 T

σ1
1,3

T
σ1
3,1 T

σ1
3,3

 
u1
u3


and


v2
v3


=


T

σ2
2,2 T

σ2
2,3

T
σ2
3,2 T

σ2
3,3

 
u2
u3


. (7)

Eliminating v3 from the equations in (7), we find

T
σ1
3,1u1 + T

σ1
3,3u3 = T

σ2
3,2u2 + T

σ2
3,3u3.

Therefore,

u3 = (T
σ1
3,3 − T

σ2
3,3)

−1(−T
σ1
3,1u1 + T

σ2
3,2u2) = Sτ


u1
u2


, (8)

where the solution operator Sτ for the box τ is defined by.

Sτ
= (T

σ1
3,3 − T

σ2
3,3)

−1
[−T

σ1
3,1 | T

σ2
3,2]. (9)

Observe that Sτ has a role analogous to the solution operator we defined for a leaf, cf. (5): it maps potential values on the
boundary to potential values on the interior.

Now that we have solved for u3, we can express the boundary fluxes {v1, v2} as a function of {u1, u2}. To be precise,
combining (7) and (8), we find

v1
v2


=


T

σ1
1,1u1 + T

σ1
1,3u3

T
σ1
2,2u2 + T

σ1
2,3u3


=


T

σ1
1,1u1 + T

σ1
1,3(T

σ1
3,3 − T

σ2
3,3)

−1(−T
σ1
3,1u1 + T

σ2
3,2u2)

T
σ1
2,2u2 + T

σ1
2,3(T

σ1
3,3 − T

σ2
3,3)

−1(−T
σ1
3,1u1 + T

σ2
3,2u2)


= Tτ


u1
u2


,

where the Dirichlet-to-Neumann operator Tτ for τ is defined via

Tτ
=


T

σ1
1,1 0
0 T

σ2
2,2


+


T

σ1
1,3

T
σ2
2,3


Sτ . (10)

Remark 1. Formula (8) involves the inverse of the matrix T
σ1
3,3 − T

σ2
3,3, which raises the questions of first whether this

matrix is necessarily invertible, and second what its condition number might be. We are unfortunately not aware of any
rigorous mathematical results that answer these questions. However, extensive numerical experiments indicate that for
coercive elliptic problems (e.g. Laplace, Yukawa), no difficulties in this regard arise. For problems with oscillatory solutions
(e.g. Helmholtz, time-harmonic Maxwell) the situation is different. In this case, the DtN operator itself is not guaranteed
to exist, and is in practice often ill-conditioned. This problem can be eliminated by replacing the DtN operator by other
Poincaré–Steklov operators that are guaranteed to be well-posed, such as, e.g., the impedance-to-impedance map, as
described in [5]. To keep the presentation simple, we in this paper use the DtN operator exclusively, which from a practical
point of view tends to work very well even for Helmholtz problems involving reasonably large domains, as shown in the
numerical experiments in Section 8.

5. Direct solver via composite spectral method

Now that we know how to construct the DtN operator for a leaf (Section 3), and how to merge the DtN operators of
two neighboring patches to form the DtN operator of their union (Section 4), we are ready to describe the full hierarchical
scheme for solving (1).

5.1. Discretization

To start with, partition the domain Ω into a hierarchical tree of boxes, as shown in Fig. 2. We let Ω1 = Ω denote the
entire domain, the root of the tree. Then cut this box into two halves Ω1 = Ω2 ∪ Ω3. Then continue cutting into smaller
boxes, until all boxes are small enough that the local solution can accurately be resolved using a local grid of p × p × p
Chebyshev nodes. The set of boxes that were never subdivided are called leaves. If α and β are two boxes whose union forms
a box τ , we say that α and β are siblings, and are the children of τ . We assume the ordering is such that if α is the child of τ ,
then α > τ . For simplicity, we assume the tree is uniform so that all leaf nodes are on the same hierarchical level. Let ℓ = 0
denote the coarsest level and ℓ = L denote the level with the leaf nodes. Fig. 2 shows the boxes on levels 0–3.
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Fig. 2. The rectangular domain Ω is split into 2 × 2 × 2 leaf boxes. These are then organized into a binary tree of successively larger boxes as described
in Section 5.1. Note that if box τ is the parent of a box σ , we have τ < σ .

Now fix a small integer q that denotes the local order of the approximation (picking q between 5 and 20 has proven to be
good choices). On each face of the leaf boxes, we then place a q × q tensor product grid of Gaussian nodes, which will serve
as collocation nodes. Let {zℓ}

N
ℓ=1 denote the collection of all collocation nodes on the boundaries. Let u ∈ RN be the vector

holding approximation to the solution function u tabulated on {zℓ}
N
ℓ=1. In other words,

u(ℓ) ≈ u(zℓ).

5.2. The full hierarchical scheme

The algorithmwe describe is a direct solver. It has a build stagewhere we construct the solution operator to Eq. (1). Once
this solution operator has been constructed, we can for any given boundary data f very rapidly construct the full solution u
by applying the solution operator in a solve stage.

The build stage involves the following steps:

(1) Discretization: The domain is partitioned into a hierarchical tree as described in Section 5.1 and the global grid {zℓ}
N
ℓ=1

is formed.
(2) Leaf computation: For each leaf box, a solution operator andDtN operator are constructed as described in Section 3. Recall

that this computation relies on a local spectral discretization of (1) on the local p × p × p Chebyshev grid.
(3) Upwards pass: We execute a single sweep through the tree, starting at the leaves and moving up to the root node

(the entire domain). For each parent node, we construct its DtN operator and solution operator by ‘‘merging’’ the DtN
operators of its two children, as described in Section 4.

The solve stage involves the following steps:

(1) Downwards pass: Given a vector holding the Dirichlet boundary data as input, we execute a sweep downwards through
the tree, starting with the root (the entire domain) and working our way down towards the leaves. When processing a
parent node, we know the value of the potential on its boundary nodes, and construct the potential at its interior nodes
using the solution operator, as defined by (9).

(2) Leaf processing: At the end of the downwards sweep, we have constructed the potential at the Gaussian grids on all leaf
edges.We can then reconstruct the potential at the interior Chebyshev nodes for every box by applying the local solution
operator (5).

5.3. Asymptotic complexity

Let N be the total number of Chebyshev nodes used to discretize the three-dimensional rectangular domain Ω and
suppose that we locally use Chebyshev grids with p × p × p nodes. We further assume that the order of the Chebyshev
and Gaussian meshes are similar, so that q ≈ p. When analyzing the algorithm, we temporarily consider a scheme in which
the hierarchical tree is an octree rather than a binary tree. The corresponding merge operator merges the DtN operators of
the eight children of a parent box. Note that this change from a binary tree to an octree is merely a cosmetic change made
to simplify the analysis. (The merge-8 operation can easily be executed as a sequence of three pair-wise merges.) At level ℓ,
a box in the octree has roughly 2−ℓ N1/3 discretization points along a side. Finally, observe that with L denoting the number
of levels in the octree, we have N ≈ 8L p3.

Let us start with analyzing the ‘‘build stage’’ where we build all solution operators. Here, we first process all leaves in the
tree. Since computing the DtN operators for each leaf box involves inverting dense matrices of size p3 × p3, and since there
are N/p3 leaves, the total cost for processing all leaves is

Tleaf ∼
N
p3

× (p3)3 ∼ Np6. (11)

Next, we perform an upwards pass through the tree where we merge boxes in sets of eight. For each box τ on level ℓ, the
operators Tτ and Sτ are constructed via (9) and (10). A box on level ℓ has roughly 2−ℓ N1/3 points along a side, which means
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the dense matrices involved in these formulas are of sizes O(2−2ℓ N2/3) × O(2−2ℓ N2/3). Since there are 8ℓ
= 23ℓ boxes on

level ℓ, and since the cost of matrix inversion is cubic in the matrix dimensions, the cost to process level ℓ is

Tℓ ∼ 23ℓ
× (2−2ℓN2/3)3 ∼ 2−3ℓN2. (12)

To summarize, the cost for the build stage is then

Tbuild = Tleaf +
L−1
ℓ=0

Tℓ ∼ N p6 +

L−1
ℓ=0

2−3ℓN2
∼ N p6 + N2.

Next we consider the ‘‘solve stage’’ where we build a solution for a given set of boundary data. This stage consists of
a downwards pass, where we at level ℓ need to apply dense matrices of size O(2−2ℓ N2/3) × O(2−2ℓ N2/3). Since there are
23ℓ boxes on level ℓ, this gives a total cost of processing level ℓ of 23ℓ

× (2−2ℓN2/3)2 ∼ 2−ℓN4/3. For each leaf box on the
bottom level, the solution operator is of size O(p3) × O(p2), so the cost of processing the leaves is (N/p3) × p3 × p2 ∼ N p2.
Consequently,

Tsolve ∼ N p2 +

L
ℓ=1

2−ℓN4/3
∼ N p2 + N4/3.

6. Fast algorithms for compressible matrices

The cost of the algorithm presented in Section 5.2 is dominated by constructing DtN operators at the top levels. The
matrix operations involve inverting dense matrices of size O(N2/3) × O(N2/3) where N is total number of discretization
nodes, resulting in O(N2) total cost. However, there is internal structure in these dense matrices that can be explored to
accelerate the computation. Specifically, the off-diagonal blocks of these matrices are rank-deficient to high precision and
the diagonal blocks can be represented as Hierarchical Block-Separable (HBS) matrices. In this section, we describe the HBS
matrix format.

Remark 2. The format we refer to as HBS in this note is essentially identical to a format sometimes referred to as
Hierarchically Semi-Separable (HSS), see, e.g. [19–21]. We prefer the term ‘‘block-separable’’ since these matrices are not
really related to ‘‘semi-separable’’ matrices but the term HSS has stuck for historical reasons.

6.1. Compressible matrices

We first give definition of block separable matrix. Let A be a matrix of sizemp × mp such that it is partitioned into p × p
blocks, each of sizem × m, i.e.

A =


D1 A1,2 · · · A1,p

A2,1 D2 · · · A2,p
...

...
...

Ap,1 Ap,2 · · · Dp

 . (13)

We say that the matrix A is block separable if each off-diagonal block admits the factorization

Aσ ,τ
m×m

=
Uσ
m×k

Ãσ ,τ
k×k

V∗

τ
k×m

, σ , τ ∈ {1, 2, . . . , p}, σ ≠ τ , (14)

where U and V arem × kmatrices. Therefore, the matrix A admits the factorization

A
mp×mp

= U
mp×kp

Ã
kp×kp

V∗

kp×mp + D
mp×mp

, (15)

where U = diag(U1, U2, . . . , Up), V = diag(V1, V2, . . . , Vp) and D = diag(D1, D2, . . . , Dp). Moreover,

Ã =


0 Ã1,2 Ã1,3 · · ·

Ã2,1 0 Ã2,3 · · ·

Ã3,1 Ã3,2 0 · · ·

...
...

...

 .

Remark 3. In constructing the factorization (14), we use the so-called interpolative decomposition (ID) [22]. For an m × n
matrix B or rank k, the ID takes the form

B = X B(I, J) Y,
m × n m × k k × k k × n
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where I and J are index vectors pointing to k rows and columns of B, respectively, and where the matrices X and Y are well-
conditioned and have the k × k identity matrix as submatrices. When the ID is used in (14), the matrix Ãσ ,τ will be simply
a submatrix of A(Iσ , Iτ ). See [22–25] for details.

6.1.1. Hierarchically block-separable (HBS) matrices
To give the definition of HBS matrices, we first define the binary tree structure associated with the discretization nodes

with index I = [1, 2, . . . ,M]. Basically, let I denote the root of the tree and partition the index set into two roughly equi-
sized subsets level by level. Specifically, we call an index set as leaf node if there is no further split. For a non-leaf node τ we
call two nodes σ1 and σ2 as the children of τ if Iτ = Iσ1 ∪ Iσ2 , and call τ the parent node of σ1 and σ2.

By now,we are ready to give definition of hierarchical block-separablewith respect to a given binary tree associatedwith
index set I . Let ℓ = 0, 1, . . . , L denote the levels from the coarsest level to the finest level. A matrix is called a HBS matrix if
it satisfies two conditions:

(1) For each leaf node pair {τ , τ ′
} (τ ≠ τ ′) on level L, there exists integer k such that the off-diagonal blocks Aτ ,τ ′ admits

factorization

Aτ ,τ ′

m×m
=

Uτ
m×k

Ãτ ,τ ′

k×k
V∗

τ
k×m

. (16)

(2) For off-diagonal blocks on level ℓ = L−1, L−2, . . . , 1, the rank-deficiency property at level ℓ can be constructed based
on the next finer level ℓ + 1. Specifically, for any distinct non-leaf nodes τ and τ ′ on level ℓ with children σ1, σ2 and σ ′

1
and σ ′

2, define

Aτ ,τ ′ =


Ãσ1,σ

′
1

Ãσ1,σ
′
2

Ãσ2,σ
′
1

Ãσ2,σ
′
2


.

There exists factorization

Aτ ,τ ′

2k×2k
=

Uτ
2k×k

Ãτ ,τ ′

k×k
V∗

τ
k×2k

. (17)

Define

Dτ = A(Iτ , Iτ )

for each leaf node τ , and define

Bτ =


0 Ãσ1,σ2

Ãσ2,σ1 0


for non-leaf node τ with children σ1 and σ2. An HBS matrix A can then be fully described if

• for every leaf node, we are given the diagonal matrices Dτ , as well as column basis and row basis Uτ and Vτ ;
• for every non-leaf node, we are given the interaction matrix Bτ between the children of τ , as well as column basis and

row basis Uτ and Vτ .

In other words, the HBS matrix A admits telescoping factorization given U, V, D and B hierarchically:

(1) Ã(0)
= B(0),

(2) Ã(ℓ)

k2ℓ×k2ℓ
=

U(ℓ)

k2ℓ×k2ℓ−1
Ã(ℓ−1)

k2ℓ−1×k2ℓ−1
(V(ℓ))∗

k2ℓ−1×k2ℓ
+ B(ℓ)

k2ℓ×k2ℓ
for ℓ = 1, 2, . . . , L − 1,

(3) A
m2L×n2L

=
U(L)

m2L×k2L
Ã(L−1)

k2L×k2L
(V(L))∗

k2L×n2L
+ D(L)

m2L×m2L
.

6.2. Fast algorithms on HBS matrices

Fast algorithms on how to add two HBS matrices, apply HBS matrices to vector and invert HBS matrices are presented
in [26]. Here we briefly summarize the fast matrix–vector multiplication and inversion algorithms.

6.2.1. Matrix inversion
The inverse of an HBSmatrix can be rapidly constructed using a variation of the classical Sherman–Morrison–Woodbury

formula by exploring the low-rank deficiency hierarchically. Here we provide a condensed description of the inversion
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procedure given in [26], which has asymptotic cost of O(N k2), for an N × N matrix whose off-diagonal blocks have rank k.
Firstly, we define several matrices on each node τ

D̂τ = (V∗

τ D̃−1
τ Uτ )

−1, (18)

Eτ = D̃−1
τ Uτ D̂τ , (19)

Fτ = (D̂τ V∗

τ D̃−1
τ )∗, (20)

Gτ = D̃−1
τ − D̃−1

τ Uτ D̂τ V∗

τ D̃−1
τ . (21)

In above equations, we define

D̃τ = Dτ

if τ is a leaf node and define

D̃τ =


D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2


if τ is a non-leaf node. Note that all thematrices {D̂τ , Eτ , Fτ , Gτ }τ can be computed cheaply level by level. Using the formula

A−1
= E(Ã + D̂)−1F∗

+ G, (22)

we can express A−1 hierarchically via

(Ã(ℓ)
+ D̂(ℓ))−1

= E(ℓ−1)(Ã(ℓ−1)
+ D̂(ℓ−1))−1(F(ℓ−1))∗ + G(ℓ−1) (23)

for ℓ = L, L − 1, . . . , 2, and

(Ã(1)
+ D̂(1))−1

=


D̂2 B2,3

B3,2 D̂3

−1

= G(0)
= G1. (24)

Algorithm 3 summarizes the inversion procedure of HBS matrices.

6.2.2. Matrix–vector multiplication
In this section, we briefly describe how to compute y = A−1x, for given x, using the compressed representation of A−1

resulting from the inversion algorithm. Using Eqs. (23) and (24), y can be computed hierarchically as

y = A−1x = (Ã(L)
+ D̂(L))−1x

= E(L−1)(Ã(L−1)
+ D̂(L−1))−1(F(L−1))∗x + G(L−1)x

= E(L−1)E(L−2)(Ã(L−2)
+ D̂(L−2))−1(F(L−2))∗(F(L−1))∗x + G(L−2)G(L−1)x

= E(L−1)E(L−2) . . . E(1)G1(F(1))∗ . . . (F(L−2))∗(F(L−1))∗x + G(1) . . . G(L−2)G(L−1)x.

Details on the fast matrix–vector multiplication algorithm are given in Algorithm 4.

Algorithm 3 (inversion of an HBS matrix)

Given factors {Uτ , Vτ , Dτ , Bτ }τ representing an HBSmatrix H, this algorithm constructs factors {Eτ , Fτ , Gτ }τ representing
H−1.

loop over all levels, finer to coarser, ℓ = L, L − 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node
D̃τ = Dτ

else
Let σ1 and σ2 denote the children of τ .

D̃τ =


D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2


end if
D̂τ =


V∗

τ D̃
−1
τ Uτ

−1.
Eτ = D̃

−1
τ Uτ D̂τ .

F∗
τ = D̂τ V∗

τ D̃
−1
τ .

Gτ = D̃
−1
τ − D̃

−1
τ Uτ D̂τ V∗

τ D̃
−1
τ .

end loop
end loop

G1 =


D̂2 B2,3

B3,2 D̂3

−1

.
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Algorithm 4 (application of the inverse of an HBS matrix)

Given x , compute y = H−1 x using the factors {E τ , F τ , G τ }τ resulting from Algorithm 3.

loop over all leaf boxes τ
x̂τ = F∗

τ x(Iτ ).
end loop
loop over all levels, finer to coarser, ℓ = L, L − 1, . . . , 1

loop over all parent boxes τ on level ℓ,
Let σ1 and σ2 denote the children of τ .

x̂τ = F∗
τ


x̂σ1
x̂σ2


.

end loop
end loop

ŷ2
ŷ3


= G1


x̂2
x̂3


.

loop over all levels, coarser to finer, ℓ = 1, 2, . . . , L − 1
loop over all parent boxes τ on level ℓ

Let σ1 and σ2 denote the children of τ .
ŷσ1
ŷσ2


= Eτ x̂τ + Gτ


x̂σ1
x̂σ2


.

end loop
end loop
loop over all leaf boxes τ

y(Iτ ) = Eτ q̂τ + Gτ x(Iτ ).
end loop

6.2.3. Asymptotic costs of HBS matrix algebra
Let us analyze the asymptotic cost of matrix inversion andmatrix–vector multiplication for an HBSmatrix of sizeM ×M ,

with ranks of the off-diagonal blocks k. Let L denote the total number of levels, and suppose that M ∼ k 2L. In order to
execute the inversion algorithm described in Section 6.2.1, we need to compute all matrices D̂τ , Eτ , Fτ , Gτ on each level ℓ.
The cost is dominated by performing dense matrix inversion of matrices of size 2k × 2k on each level, where there are 2ℓ

nodes totally. The total cost is therefore

Tinv ∼

L
ℓ=1

2ℓ(2k)3 ∼ 2L k3 ∼ Mk2.

Moreover, the total cost of fast matrix–vector multiplication is

Tmulti =

L
ℓ=1

2ℓ(2k)2 ∼ 2Lk2 ∼ Mk.

7. Accelerating the direct solver

In this section, we describe how to accelerate the direct solver in Section 5.2 using the fast algorithms described in
Section 6.2 to achieve O(N4/3) complexity.

7.1. Acceleration using structured matrix algebra

Recall from Section 5.3 that the dominant cost of the basic scheme described in Section 5.2 derives from the need to
performmatrix computations on dense matrices whose sizes get large as we approach to top of the tree. For instance, recall
that the DtN operator for a node τ with children σ1 and σ2 is computed via the formula, cf. (10),

Tτ
=


T

σ1
1,1 0
0 T

σ2
2,2


+


T

σ1
1,3

T
σ2
2,3


(T

σ1
3,3 − T

σ2
3,3)

−1
[−T

σ1
3,1 | T

σ2
3,2].

The key observation is now that since T
σ1
3,3 and T

σ2
3,3 each represent (discretized) parts of the DtN operators for σ1 and σ2, they

can be represented using theHBS format described in Section 6, which allows us to performmatrix inversion very efficiently.
Analogously, for every parent node τ , the solution operatorSτ is a discretization of the operator thatmapsDirichlet boundary
data for Ωτ to the face shared by Ωσ1 and Ωσ2 , which is an interior plane of Ωτ . Standard regularity results for elliptic PDEs
indicate that this operator is globally of low rank.
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Observe that the accelerated scheme makes no detailed à priori assumptions on the numerical ranks of the various
matrices that arise. Instead, the scheme takes as input a tolerance ε, and numerically determines the optimal rank that
achieves the specified tolerance. We use insights from regularity theory for PDEs only for two purposes: (1) As a guide on
where to look for rank deficiencies. (2) In order to estimate the overall asymptotic complexity of the scheme.

Let us show in some additional detail how a merge operation gets executed once all discretized DtN operators are
represented in the HBS format. Using the same notation as in Section 4, we suppose that τ is a parent box with children
σ1 and σ2. We then have the DtN operators Tσ1 and Tσ2 available in DtN formats. From these representations, we extract
the low rank factors associated with T

σ1
1,3, T

σ1
3,1, T

σ2
2,3 and T

σ2
3,2, and denote these by {Q1,3, R1,3}, {Q3,1, R3,1}, {Q2,3, R2,3} and

{Q3,2, R3,2}, respectively. The sub-matrices T
σ1
3,3 and T

σ2
3,3 are themselves in HBS format. Then the following computations

will execute the merge:

(1) Add two HBS matrices T
σ1
3,3 and −T

σ2
3,3 resulting a new HBS matrix T

σ1
3,3 − T

σ2
3,3.

(2) Invert the HBS matrix T
σ1
3,3 − T

σ2
3,3.

(3) Apply the thin low rank factor


R1,3
R2,3


to the inverse (in HBS form). The resulting matrix together with another low rank

factor [−Q3,1 | Q3,2] form the low rank approximation to the solution operator Sτ .
(4) Performing matrix products T

σ1
1,3 Sτ and T

σ2
2,3 Sτ are analogous, just exploiting all factors are low rank.

(5) Perform a low-rank update to the block-diagonal matrix


T
σ1
1,1 0
0 T

σ2
2,2


, whose blocks are provided in HBS-form to

construct the new HBS matrix Tτ .

Remark 4. For intermediate size problems, we can use simpler ‘‘data sparse’’ formats to store the matrices Tτ encoding all
DtN operators. For instance, each such matrix can be represented as a 6 × 6 block matrix, corresponding to interactions
between the 6 faces of the box Ωτ . Substantial gains are achieved by storing the six diagonal blocks of this matrix densely
(without exploiting any internal structure), and the 30 off-diagonal blocks using simple low rank representations. A format
such as this does not improve the asymptotic O(N2), but is far easier to code, and greatly accelerates the practical execution
time for mid-size problems.

7.2. Asymptotic cost of the accelerated solver

We use the same notation as in Section 5.3, with N denoting the total number of Chebyshev nodes used to discretize
the three-dimensional rectangular domain Ω , and L denoting be the number of levels in the octree, so that there are 8L leaf
boxes. Since there are p3 Chebyshev discretization nodes on each leaf box, we have N ≈ 8L p3. We further assume that the
order of the Chebyshev and Gaussian meshes are similar, q ≈ p.

We first discuss the cost of the ‘‘build stage’’. When processing the leaves, we do not use structured matrix algebra, so
the cost (11) remains valid. For the upwards pass where we merge boxes to construct the DtN operator Tτ and the solution
operator Sτ for each parent node τ , we exploit that all matrices are stored either in HBS format, or as low-rank matrices.
Recall that there are 23ℓ boxes on level ℓ and that all matrices are now of sizeM × M , withM ∼ 2−2ℓN2/3 (recall that there
are roughly 2−ℓN1/3 points along a side of a box on level ℓ). Using that the time required to invert anM × M HBS matrix of
rank k is O(M k2) (see Section 6.2.3), we then find that the cost to process level ℓ is

Tℓ ∼ 23ℓ
× 2−2ℓN2/3k2 ∼ 2ℓN2/3k2.

This rank k depends on the level. In the present situation, the operator represented in the HBS format approximates an
integral operator defined on a face discretized into 2−ℓN1/3

× 2−ℓN1/3 points. It was shown in [27] the maximal rank k
encountered in this situation satisfies

k ∼ 2−ℓN1/3. (25)

In consequence, the build stage has an overall asymptotic cost that is bounded by

Tbuild = Tleaf +
L−1
ℓ=0

Tℓ ∼ N p6 +

L−1
ℓ=0

2ℓ N2/3 (2−ℓN1/3)2 ∼ N p6 + N4/3. (26)

Remark 5. Observe that our derivation of a bound on the asymptotic complexity is slightly crude. We assumed that at level
ℓ in the ‘‘build stage’’, the ranks used inside the HBS structurewere constant across all levels in the HBS structure, and satisfy
(25). In reality, the ranks vary across levels inside the HBS structure too, which means that the bound M k2 is pessimistic.
Performing a more careful analysis gets slightly involved given that there are two hierarchical structures nested inside each
other. We expect however that the final result would be substantially better than O(N4/3), and would follow very closely
the estimates provided in [28–30], where the use of structured matrix algebra to accelerate the classical nested dissection
algorithm is analyzed in some detail.
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Table 1
Results for solving Laplace’s equation (27) in Example 8.1 with known exact solution.

Ntot R (GB) Tbuild (s) Tsolve (s) E∞ Erel

4913 0.04 0.97 0.004 1.20e−06 3.38e−05
35937 0.52 20.34 0.032 1.45e−08 4.08e−07

274625 6.33 522.78 0.24 5.48e−08 1.54e−07
2146689 76.59 17103.21 1121.0 6.51e−09 1.83e−07

For the ‘‘solve stage’’, we execute a downwards pass through the tree. At level ℓ, we apply 23ℓ solution operators of
size O(2−2ℓ N2/3) × O(2−2ℓ N2/3) that have numerical rank k ∼ 2−ℓ N1/3. This results in a total time to process level ℓ of
23ℓ

× 4−ℓN2/3
× 2−ℓN1/3

∼ N . For each leaf box on the bottom level, the solution operator is of size O(p3) × O(p2), so the
cost of processing the leaves is (N/p3) × p3 × p2 ∼ N p2. Consequently,

Tsolve ∼ N p2 +

L
ℓ=1

N ∼ N p2 + N logN.

Remark 6. In deriving the estimates on the asymptotic complexity, we assumed that the underlying equation is fixed as N
is increased. This is a reasonable assumption for problems such as Laplace and low-frequency Helmholtz. However, when
solving problems with oscillatory solutions, one often strives to keep the ‘‘number of points per wave-length’’ constant as
N increases. In this case, the estimates given in this section will not hold.

8. Numerical experiments

This section presents numerical experiments that illustrate the performance of the proposed direct solver. All the
experiments are carried out on a personal work-station with an Intel Xeon E-1660 3.3 GHz 6-core CPU, and 128 GB of
RAM. The experiments serve two purposes. The first is to systematically measure the speed and memory requirements (the
amount of RAM used in the build stage) for different problems. The second is to measure the accuracy of the algorithm.
Specifically, we report:

Ntot Total number of Chebyshev discretization nodes.
Tbuild Time for building the solution operator (seconds).
Tsolve Time to solve the equation once solution operator is built (seconds).
R Amount of memory required at build stage to store the solution operator (GB).

For all experiments, we chose the compression parameter ϵ = 10−5. The code was implemented in Matlab, which means
that while the timings reported should scale in a representative manner, the absolute times can probably be improved.
(Additionally, memory usage is not quite optimal whichmeans that we run out of memory sooner than what would happen
in a careful implementation in Fortran or C.) Finally, due to the overhead cost of structured matrix algebra, we switch from
densematrix algebra toHBSmatrix algebra only once the block sizes exceed a certain threshold. This accelerates the practical
run time of the code, but does not influence the asymptotic cost estimate.

Example 8.1 (Laplace Problem with Known Exact Solution).We first consider the Laplace problem
−1u(x) = 0 x ∈ Ω,

u(x) = f (x) x ∈ Γ ,
(27)

on the domain Ω = [0, 1]3. The number of Chebyshev nodes is fixed p = 5 on each panel while the number of panels on
each side is increased. The boundary data is chosen to coincide with the known solution

uexact(x) =
1

4π |x − x̂|

where x̂ = (−2, −1, 0). To measure the accuracy, we present both the error E∞ in ℓ∞-norm as well as the relative error
Erel given by

E∞
= ∥uapprox − uexact∥ℓ∞ and Erel

=
∥uapprox − uexact∥ℓ∞

∥uexact∥ℓ∞

,

where uexact and uapprox denote the vectors holding the exact and the computed solutions evaluated at all interior Chebyshev
nodes. This is an artificial problem in the sense that it could very easily be solved to high precision using a single spectral grid.
The purpose of this example is primarily to investigate the stability and scaling properties of the algorithm. Speed, memory
and accuracy results are shown in Table 1. Note that the off-diagonal blocks of DtN operators at top levels are stored in
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a b

Fig. 3. (Example 8.1) (a) Time at build stage in seconds, (b) time at solve stage.

Table 2
Results for solving Helmholtz equation (28) in Example 8.2(a) with 2 wavelength in each direction.

Ntot R (GB) Tbuild (s) Tsolve (s) E∞ Erel

4913 0.04 1.01 0.005 6.39e−03 1.70e−01
35937 0.54 22.20 0.042 1.98e−03 5.60e−02

274625 6.41 514.53 0.32 5.34e−04 1.53e−02
2146689 76.95 18605.66 1368 1.36e−04 3.81e−03

low-rank form which saves roughly 1.6 times of the memory compared to dense form. If no low-rank computation is
executed, the computation runs out of memory (over 128 GB) when N is about 2 · 106. Fig. 3 shows the scales of time
spent at build stage and solve stage. For the very largest problem, the program started to store matrices on the hard drive,
which explains the large jump in the solve time.

In the exampleswe could fit in RAM, very little benefitwas seen for using structuredmatrix algebra, except at the very top
levels.Wewould therefore not expect themeasured behavior for Tbuild to reflect the asymptotic bound proven in Section 5.3.

Example 8.2(a) (Helmholtz Problemswith Known Exact Solution and Fixed Number of Chebyshev Nodes on Each Panel).Wenext
consider a Helmholtz problem

−1u(x) − κ2u(x) = 0 x ∈ Ω,
u(x) = f (x) x ∈ Γ ,

(28)

on domain Ω = [0, 1]3. The number of Chebyshev nodes is fixed p = 5 on each panel the same as we did in Example 8.1.
The boundary data is chosen to coincide with the known solution

uexact(x) =
eiκ|x−x̂|

4π |x − x̂|

where x̂ = (−2, −1, 0). Accuracy is measured in the sameway as Example 8.1. Table 2 reports the results when κ = 12.56
such that there are 2 × 2 × 2 wavelengths across the whole domain.

Example 8.2(b) (Helmholtz Problems with Known Exact Solution and Fixed Number of Boxes on Each Side). In this example,
we still solve the Helmholtz problem (28). We now keep the number of boxes constant, using an 8 × 8 × 8 grid, and
instead test what happens as the local discretization order is increased. (In other words, we do ‘‘p-refinement’’ rather than
‘‘h-refinement’’.) Note that in the following examples, we keep this problem setting in regards to what happens as N is
increased. Table 3 reports the results when κ = 62.8 such that there are 10 × 10 × 10 wavelengths across the whole
domain. Table 4 reports an analogous experiment, but now for a domain of size 20 × 20 × 20 wavelengths.

Example 8.3 (Laplace’s Equation with Unknown Exact Solution). In this example, we solve the Laplace’s equation (27) with
Dirichlet boundary data given by

f (x) = cos(8 x1)(1 − 2 x2) ex3 . (29)
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Table 3
Results for solving Helmholtz equation (28) in Example 8.2(b) with 10 × 10 × 10 wavelength across the
domain.

Ntot R (GB) Tbuild (s) Tsolve(s) E∞ Erel

274625 6.79 850.5 0.2 1.55e−03 4.28e−02
531441 15.03 2427.2 0.6 6.51e−05 1.80e−03
912673 29.51 4967.0 1.1 1.83e−06 5.06e−05

1442897 52.80 10133.1 2.7 3.57e−08 9.86e−07
2146689 89.15 19831.9 558.8 1.14e−08 3.15e−07

Table 4
Results for solving Helmholtz equation (28) in Example 8.2(b) with 20 × 20 × 20 wavelength across the
domain.

Ntot R (GB) Tbuild (s) Tsolve(s) E∞ Erel

274625 8.65 1034.3 0.2 1.34e+00 3.76e+01
531441 18.40 2910.6 0.5 1.70e−01 4.78e+00
912673 34.55 7573.7 1.1 7.50e−03 2.11e−01

1442897 59.53 14161.1 2.8 9.45e−04 2.65e−02
2146689 97.73 25859.3 978.7 5.26e−05 1.48e−03

Table 5
Results for Example 8.3: Solving Laplace’s equation (27) with Dirichlet boundary data (29).

Ntot R (GB) Tbuild (s) Tsolve (s) uint(x) E∞ Erel

117649 2.13 84.7 0.06 −0.32055891842 1.10e−06 3.44e−06
274625 6.09 540.1 0.2 −0.32055781677 9.43e−08 2.94e−07
531441 14.35 1517.3 0.4 −0.32055772259 2.56e−08 7.98e−08
912673 29.11 2822.4 0.7 −0.32055769701 1.24e−07 3.87e−07

1442897 50.44 9130.9 1.4 −0.32055757286 7.34e−08 2.29e−07
2146689 86.12 18076.5 541.5 −0.32055776368

Table 6
Results for Example 8.4: Solving Helmholtz equation (28) with Dirichlet boundary data (29).

Ntot R (GB) Tbuild (s) Tsolve (s) uint(x) E∞ Erel

274625 6.58 662.9 0.2 1.93279205417 1.87e+00 9.68e−01
531441 15.13 1382.9 0.3 3.80381724805 9.55e−02 2.51e−02
912673 30.25 2992.5 0.7 3.70818462313 2.91e−03 7.84e−04

1442897 55.23 7895.9 2.3 3.71109259971 6.16e−05 1.66e−05
2146689 89.15 21190.2 789.8 3.71103088491

Since we have no knowledge of an exact solution, we report pointwise convergence. Letting uN1 and uN2 denote the value of
u computed using N1 and N2 degrees of freedom where N2 > N1, we used

E∞
= |uN1(x̂) − uN2(x̂)| and Erel

=
|uN1(x̂) − uN2(x̂)|

|uN1(x̂)|

as estimates for the pointwise errors at point x̂ = (0.5, 0.25, 0.75). Results are reported in Table 5.

Observe that the examples investigated in Examples 8.1 and 8.2(a/b) were slightly artificial in that the solutions are
perfectly smooth even near the corners. The current example represents amore typical situationwhere the solution exhibits
singular behavior near corners. However, as the results show, the scheme handles these relatively mild singularities very
well, and converges rapidly.

Example 8.4 (Helmholtz Equation with Unknown Exact Solution). In this example, we solve the Helmholtz equation (28) with
Dirichlet boundary data given in (29). The wavenumber is set κ = 62.8 such that there are 10× 10× 10 wavelength across
the domain. Table 6 presents the convergence as well as time and memory results. Pointwise errors are computed the same
as Example 8.3.

Example 8.5 (Variable Coefficient Helmholtz). We solve the variable coefficient problem
−1u(x) − κ2(1 − b(x))u(x) = 0 x ∈ Ω,

u(x) = f (x) x ∈ Γ ,
(30)

where Ω = [0, 1]3, where Γ = ∂Ω and where

b(x) = (sin(4πx1) sin(4πx2) sin(4πx3))2.



S. Hao, P.-G. Martinsson / Journal of Computational and Applied Mathematics 308 (2016) 419–434 433

Table 7
Results for Example 8.5: Solving the variable coefficient problem (30).

Ntot R (GB) Tbuild (s) Tsolve (s) uint(x) E∞ Erel

274625 6.55 639.3 0.2 10.22765480303 6.13e−02 5.99e−03
531441 15.15 1443.4 0.3 10.16634235402 8.69e−03 8.55e−04
912673 30.35 3701.0 0.7 10.17503224623 4.56e−04 4.48e−05

1442897 55.39 5639.6 1.4 10.17548843592 1.35e−04 1.33e−05
2146689 89.27 20854.3 874.7 10.17535090141

Table 8
Results for Example 8.6: Solving the constant convection problem (31).

Ntot R (GB) Tbuild (s) Tsolve (s) uint(x) E∞ Erel

117649 2.41 136.0 0.08 −0.90989632585 3.33e−02 3.66e−02
274625 6.65 524.9 0.1 −0.87662189265 2.30e−03 2.62e−02
531441 15.33 1806.0 0.3 −0.87432365086 4.36e−05 4.99e−05
912673 30.45 3524.9 0.7 −0.87428002798 1.23e−05 1.41e−05

1442897 55.35 6719.9 1.3 −0.87429233218 3.30e−06 3.77e−06
2146689 88.03 19313.7 656.2 −0.87429562890

TheHelmholtz parameterwas chosen as κ = 62.8, corresponding to a domain of size 10×10×10wavelengths. TheDirichlet
boundary datawas given by in (29). Againwemeasure the pointwise errors sincewe do not know the exact solution. Results
are reported in Table 7. We observe that the accuracy as almost as good as constant coefficient case.

Example 8.6 (Constant Convection Diffusion Problem). Our last example is to solve a convection diffusion problem
−1u(x) − 1000 ∂3u(x) = 0 x ∈ Ω,

u(x) = f (x) x ∈ Γ ,
(31)

on domain Ω = [0, 1]3 with Dirichlet boundary data given in (29). Results are reported in Table 8. We observe that despite
the very sharp gradients encountered in this example, the method is still capable of attaining more than 5 correct digits.

9. Conclusions and future work

We have described a numerical method for solving variable coefficient elliptic PDEs on rectangular domains in 3D. The
scheme is based on a composite spectral discretization and is an extension of previous work for the two dimensional case
[2,4].

The technique is conceptually similar to the nested dissection method of George [7]. Like this classical direct solver,
our solver relies on a hierarchical subdivision of the domain into a tree of nested sub-domains, in our case boxes. An
approximation to the solution operator is built in a single sweep through the tree from smaller to larger boxes. In this
sweep, we build for each box numerical approximations to its Dirichlet-to-Neumann (DtN) operator, and to a local ‘‘solution
operator’’. However, in contrast to the classical nesteddissection technique, ourmethod retains highpractical efficiency even
for high order discretizations. We demonstrate that by exploiting that the matrix approximating each DtN operator can be
represented in a ‘‘data sparse’’ format, the asymptotic complexity of the solver can be accelerated from O(N2) for the build
stage to, at worst, O(N4/3). Our work is in this regard related to recent work on accelerating nested dissection methods
[9–13] but gives much higher accuracy for the same number of degrees of freedom, due to the use of high-order
discretizations. Specifically, we solved a Helmholtz problem on a domain of size 20×20×20 wave-lengths to three correct
digits using 2.1M degrees of freedom, cf. Table 4.

A key advantage of the method proposed is that it involves less communication than competing iterative methods.
Each solve involves only one or two sweeps through the hierarchical tree, which keeps computations highly localized. The
development of parallel implementations of this algorithm is a work in progress, and will be reported at a later date.

The fact that the method can without difficulty handle high order local discretizations makes it particularly well suited
for solving Helmholtz problems with oscillatory solutions, as was demonstrated in the numerical experiments in Section 8.
It is hard to make a general recommendation for an ‘‘optimal choice’’ of the local discretization order—choosing a higher
order p leads to needing fewer degrees of freedom overall, but on the other hand increases the storage requirements per
degree of freedom.Moreover, the fact that the cost of the leaf computations scales asN p6 puts a practical limit on how large
p can realistically be. We have found that p in the range between 10 and 15 often works very well.

In this manuscript, we describe a basic version of the method applicable to simple rectangular domains. The extension
to more general domains, including curved and infinite domains, is in principle straight-forward, as was demonstrated for
problems in two dimensions in [1–3].

The scheme can easily be extended to cover the case of ‘‘body loads’’ (that is, the case [Au](x) = g(x) rather than
[Au](x) = 0). The corresponding extension for the 2D case was described in [1,31]. The more general version that includes
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body loads has the same asymptotic scaling as the method reported here. In terms of absolute times, the cost of the build
stage increases only very slightly. For the solve stage, one must decide whether the solution operators on the leaves should
be stored or not. Storing them leads to very fast solves, but requires a lot of memory. If they are not stored, then memory
requirements are similar to the scheme reported here, but then the solve stage becomes noticeably slower since the PDE
needs to be solved on the fly on each leaf box.
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