
SIAM J. SCI. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. S485–S507

A RANDOMIZED BLOCKED ALGORITHM FOR EFFICIENTLY
COMPUTING RANK-REVEALING FACTORIZATIONS

OF MATRICES∗

PER-GUNNAR MARTINSSON† AND SERGEY VORONIN†

Abstract. This manuscript describes a technique for computing partial rank-revealing factoriza-
tions, such as a partial QR factorization or a partial singular value decomposition. The method takes
as input a tolerance ε and an m×n matrix A and returns an approximate low-rank factorization of A
that is accurate to within precision ε in the Frobenius norm (or some other easily computed norm).
The rank k of the computed factorization (which is an output of the algorithm) is in all examples
we examined very close to the theoretically optimal ε-rank. The proposed method is inspired by the
Gram–Schmidt algorithm and has the same O(mnk) asymptotic flop count. However, the method
relies on randomized sampling to avoid column pivoting, which allows it to be blocked, and hence
accelerates practical computations by reducing communication. Numerical experiments demonstrate
that the accuracy of the scheme is for every matrix that was tried at least as good as column-pivoted
QR and is sometimes much better. Computational speed is also improved substantially, in particular
on GPU architectures.

Key words. low-rank approximation, QR factorization, singular value decomposition, random-
ized algorithm

AMS subject classifications. 65F15, 65F25

DOI. 10.1137/15M1026080

1. Introduction.

1.1. Problem formulation. This manuscript describes an algorithm based on
randomized sampling for computing an approximate low-rank factorization of a given
matrix. To be precise, given a real or complex matrix A of size m× n and a compu-
tational tolerance ε, we seek to determine a matrix Aapprox of low rank such that

(1) ‖A− Aapprox‖ ≤ ε.

For any given k ∈ {1, 2, . . . , min(m,n)}, a rank-k approximation to A that is in many
ways optimal is given by the partial singular value decomposition (SVD),

(2)
Ak = Uk Σk V∗

k,
m× n m× k k × k k × n

where Uk and Vk are orthonormal matrices whose columns consist of the first k left
and right singular vectors, respectively, and Σk is a diagonal matrix whose diagonal
entries {σj}kj=1 are the leading k singular values of A, ordered so that σ1 ≥ σ2 ≥ σ3 ≥
· · · ≥ σk ≥ 0. The Eckart–Young theorem [4] states that for the spectral norm and
the Frobenius norm, the residual error is minimal,

‖A− Ak‖ = inf{‖A− C‖ : C has rank k}.
∗Received by the editors June 15, 2015; accepted for publication (in revised form) October 12,

2015; published electronically October 27, 2016. This research was supported by DARPA under
contract N66001-13-1-4050 and by NSF under contract DMS-1407340.

http://www.siam.org/journals/sisc/38-5/M102608.html
†Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309

(martinss@colorado.edu, sergey.voronin@colorado.edu).

S485

http://www.siam.org/journals/sisc/38-5/M102608.html
mailto:martinss@colorado.edu
mailto:sergey.voronin@colorado.edu

S486 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

However, computing the factors in (2) is computationally expensive. In contrast, our
objective is to find an approximant Aapprox that is cheap to compute and close to
optimal.

The method we present is designed for situations where A is sufficiently large
that computing the full SVD is not economical. The method is designed to be highly
communication efficient and to execute efficiently on both shared and distributed
memory machines. It has been tested numerically for situations where the matrix fits
in RAM on a single machine. We will, without loss of generality, assume that m ≥ n.
For the most part we discuss real matrices, but the generalization to complex matrices
is straightforward.

1.2. A greedy template. A standard approach in computing low-rank factor-
izations is to employ a greedy algorithm to build, one vector at a time, an orthonormal
basis {qj}kj=1 that approximately spans the columns of A. To be precise, given an
m×n matrix A and a computational tolerance ε, our objective is to determine a rank
k and an m × k matrix Qk = [q1 · · · qk] with orthonormal column vectors such that
‖A − QkBk‖ ≤ ε, where Bk = Q∗

kA. The matrices Qk and Bk may be constructed
jointly via the following procedure:

Algorithm 1

(1) Q0 = []; B0 = []; A(0) = A; j = 0;

(2) while ‖A(j)‖ > ε

(3) j = j + 1

(4) Pick a unit vector qj ∈ ran(A(j−1)).

(5) bj = q∗
jA

(j−1)

(6) Qj = [Qj−1 qj]

(7) Bj =

[
Bj−1

bj

]

(8) A(j) = A(j−1) − qjbj

(9) end while

(10) k = j.

Note that A(j) can overwrite A(j−1). It is straightforward to show that if the
algorithm is executed in exact arithmetic, then the matrices generated satisfy

(3) A(j) = A−QjQ
∗
jA and Bj = Q∗

jA.

The performance of the greedy scheme is determined by how we choose the vector
qj on line (4). If we pick qj as simply the largest column of A(j−1), scaled to yield
a vector of unit length, then we recognize the scheme as the column-pivoted Gram–
Schmidt algorithm for computing a QR factorization. This method often works very
well but can lead to suboptimal factorizations. Reference [6] discusses this in detail
and also provides an improved pivoting technique that can be proved to yield closer
to optimal results. However, both standard Gram–Schmidt (see, e.g., [5, sect. 5.2])
and the improved version in [6] are challenging to implement efficiently on modern
multicore processors since they cannot readily be blocked. Expressed differently, they
rely on BLAS2 operations rather than BLAS3.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S487

Another natural choice for qj on line (4) is to pick the unit vector that minimizes

‖A(j−1) −qq∗A(j−1)‖. This in fact leads to an optimal factorization, with the vectors
{qj}kj=1 being left singular vectors of A. However, finding the minimizer tends to be
computationally expensive.

In this manuscript, we propose a scheme that is more computationally efficient
than column-pivoted Gram–Schmidt and often yields close to minimal approximation
errors. The idea is to choose qj as a random linear combination of the columns of

A(j−1). To be precise, we propose the following mechanism for choosing qj :

(4a) Draw a random vector ω whose entries are iid Gaussian random variables.

(4b) Set y = A(j−1)ω.

(4c) Normalize so that qj =
1

‖y‖ y.

This scheme is mathematically very close to the low-rank approximation scheme pro-
posed in [8] but is slightly different in the stopping criterion used (the scheme of [8]
does not explicitly update the matrix and therefore relies on a probabilistic stopping
criterion) and in its performance when executed with finite precision arithmetic. We
argue that choosing the vector qj using randomized sampling leads to performance
very comparable to traditional column pivoting but has a decisive advantage in that
the resulting algorithm is easy to block. We will demonstrate substantial practical
speed-up on both multicore CPUs and GPUs.

Remark 1. The factorization scheme described in this section produces an ap-
proximate factorization of the form A ≈ QkBk, where Qk is orthonormal, but no
conditions are a priori imposed on Bk. Once the factors Qk and Bk are available, it
is simple to compute many standard factorizations, such as the low-rank QR, SVD,
or CUR factorizations. For details, see section 3.3.

2. Technical preliminaries.

2.1. Notation. Throughout the paper, we measure vectors in R
n using their

Euclidean norm. The default norm for matrices will be the Frobenius norm ‖A‖ =
(
∑

i,j |A(i, j)|2)1/2, although other norms will also be discussed.
We use the notation of Golub and Van Loan [5] to specify submatrices. In other

words, if B is an m × n matrix with entries bij , and I = [i1, i2, . . . , ik] and J =
[j1, j2, . . . , j�] are two index vectors, then we let B(I, J) denote the k × � matrix

B(I, J) =

⎡
⎢⎢⎢⎣

bi1j1 bi1j2 · · · bi1j�
bi2j1 bi2j2 · · · bi2j�
...

...
...

bikj1 bikj2 · · · bikj�

⎤
⎥⎥⎥⎦ .

We let B(I, :) denote the matrix B(I, [1, 2, . . . , n]), and we define B(:, J) analogously.
The transpose of B is denoted B∗, and we say that a matrix U is orthonormal if

its columns form an orthonormal set, so that U∗U = I.

2.2. The SVD. The SVD was introduced briefly in the introduction. Here we
define it again, with some more detail added. Let A denote an m×n matrix, and set
r = min(m,n). Then A admits a factorization

(4)
A = U Σ V∗,

m× n m× r r × r r × n

S488 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

where the matrices U and V are orthonormal, and Σ is diagonal. We let {ui}ri=1 and
{vi}ri=1 denote the columns of U and V, respectively. These vectors are the left and
right singular vectors of A. As in the introduction, the diagonal elements {σj}rj=1 of
Σ are the singular values of A. We order these so that σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. We
let Ak denote the truncation of the SVD to its first k terms, as defined by (2). It is
easily verified that

(5) ‖A− Ak‖spectral = σk+1 and that ‖A− Ak‖ =

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

,

where ‖A‖spectral denotes the operator norm of A and ‖A‖ denotes the Frobenius
norm of A. Moreover, the Eckart–Young theorem [4] states that these errors are the
smallest possible errors that can be incurred when approximating A by a matrix of
rank k.

2.3. The QR factorization. Any m × n matrix A admits a QR factorization
of the form

(6)
A P = Q R,

m× n n× n m× r r × n

where r = min(m,n), Q is orthonormal, R is upper triangular, and P is a permutation
matrix. The permutation matrix P can more efficiently be represented via a vector
Jc ∈ Z

n
+ of column indices such that P = I(:, Jc), where I is the n×n identity matrix.

Then (6) can be written

(7)
A(: , Jc) = Q R.
m× n m× r r × n

The QR factorization is often computed via column pivoting combined with either the
Gram–Schmidt process, Householder reflectors, or Givens rotations [5]. The resulting
upper triangular R then satisfies various decay conditions [5]. These techniques are
all incremental and can be stopped after the first k terms have been computed to
obtain a “partial QR factorization of A”:

(8)
A(: , Jc) ≈ Qk Rk.
m× n m× k k × n

A drawback of the classical column-pivoted QR factorization algorithm is that it
cannot be easily blocked, making it hard to approach peak performance on multi-
processor architectures.

2.4. Orthonormalization. Given an m×� matrix X, with m ≥ �, we introduce
the function

Q = orth(X)

to denote orthonormalization of the columns of X. In other words, Q will be an
m× � orthonormal matrix whose columns form a basis for the column space of X. In
practice, this step is typically achieved most efficiently by a call to a packaged QR
factorization; e.g., in MATLAB, we would write Q = qr(X, 0). However, all calls to
orth in this manuscript can be implemented without pivoting, which makes efficient
implementation much easier.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S489

3. Construction of low-rank approximations via randomized sampling.

3.1. A basic randomized scheme. Let A be a givenm×nmatrix, and suppose
that we seek to determine a matrix Q with � orthonormal columns such that

(9) A ≈ QB, where B = Q∗ A.

In other words, we seek a matrix Q whose columns form an approximate orthonor-
mal basis for the column space of A. A randomized procedure for solving this task
was proposed in [9] and later analyzed and elaborated in [10, 8]. A basic version of
the scheme that we call “randQB” is given in Figure 1. Once randQB has been exe-
cuted to produce the factors Q and B in (9), standard factorizations such as the QR
factorization or the truncated SVD can easily be obtained, as described in section 3.3.

For (9) to be an accurate approximation, the singular values of A need to exhibit
some level of decay. It turns out that the faster they decay, the easier it becomes
to find “close to optimal” approximations. Some theoretical results describing the
performance of randQB are given in section 3.2, and in section 5 we describe some
modifications to the scheme that enhance the accuracy in situations where the singular
values decay slowly.

3.2. Oversampling and theoretical performance guarantees. The algo-
rithm randQB described in section 3.1 produces close to optimal results for matrices
whose singular values decay rapidly, provided that some slight oversampling is done.
To be precise, if we seek to match the minimal error for a factorization of rank k,
then choose � in randQB as

� = k + s,

where s is a small integer (say, s = 10). It was shown in [8, Thm. 10.5] that if s ≥ 2,
then

E
[‖A−QB‖] ≤

(
1 +

k

s− 1

) ⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

,

where E denotes expectation. Recall from equation (5) that (
∑min(m,n)

j=k+1 σ2
j)

1/2 is the
theoretically minimal error in approximating A by a matrix of rank k, so we miss the
optimal bound only by a factor of (1 + k

s−1) (except for the oversampling, of course).
Moreover, the likelihood of a substantial deviation from the expectation is extremely
small; see [8, sect. 10.3] for a proof and section 6.4 for numerical evidence.

Remark 2. When errors are measured in the spectral norm, as opposed to the
Frobenius norm, the randomized scheme is slightly further removed from optimality.

function [Q,B] = randQB(A, �)

(1) Ω = randn(n, �)

(2) Q = orth(AΩ) Cmmmn�+ m�2

(3) B = Q∗A Cmmmn�

Fig. 1. The most basic version of the randomized range finder. The algorithm takes as input an
m×n matrix A and a target rank � and produces factors Q and B of sizes m×� and �×n, respectively,
such that A ≈ QB. Text in blue refers to computational cost; see section 4.4 for notation.

S490 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

Theorem 10.6 of [8] states that

(10) E
[‖A−QB‖spectral

] ≤
(
1 +

k

s− 1

)
σk+1 +

e
√
k + s

s

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

,

where e is the basis of the natural exponent. We observe that in cases where the
singular values decay slowly, the right-hand side of (10) is substantially larger than
the theoretically optimal value of σk+1. For such a situation, the “power scheme”
described in section 5.1 should be used.

3.3. Computing standard factorizations. The output of the randomized fac-
torization scheme in Figure 1 is a factorization A ≈ QB where Q is orthonormal, but
no constraints have been placed on B. It turns out that standard factorizations can
efficiently be computed from the factors Q and B; in this section we describe how to
get the QR, the SVD, and “interpolatory” factorizations.

3.3.1. Computing the low-rank SVD. To get a low-rank SVD (cf. section 2.2),

we perform the full SVD on the �× n matrix B to obtain a factorization B = Û D̂ V̂.
Then,

A ≈ QB = QÛD̂V̂
∗
.

We can now choose a rank k to use based on the decaying singular values of D. Once
a suitable rank has been chosen, we form the low-rank SVD factors,

Uk = QÛ(:, 1 : k), Σk = D̂(1 : k, 1 : k), and Vk = V̂(:, 1 : k),

so that A ≈ UkΣkV
∗
k. Observe that the truncation undoes the oversampling that was

done and detects a numerical rank k that is typically very close to the optimal ε-rank.

3.3.2. Computing the partial pivoted QR factorization. To obtain the
factorization AP ≈ QR (cf. section 2.3) from the QB decomposition, perform a QR

factorization of the �×n matrix B to obtain BP = Q̃R. Then, set Q̂ = QQ̃ to obtain

AP ≈ QBP = QQ̃R = Q̂R.

3.3.3. Computing interpolatory and CUR factorizations. In applications
such as data interpretation, it is often of interest to determine a subset of the rows/
columns of A that form a good basis for its row/column space. For concreteness,
suppose that A is an m× n matrix of rank k and that we seek to determine an index
set J of length k and a matrix Y of size k × n such that

(11)
A ≈ A(:, J) Y.

m× n m× k k × n

One can prove that there always exist such a factorization for which every entry of
Y is bounded in modulus by 1 (which is to say that the columns in A(:, J) form a
well-conditioned basis for the range of A) and for which Y(:, J) is the k × k identity
matrix [2]. Now suppose that we have available a factorization A = QB where B is
of size �× n. Then determine J and Y such that

(12)
B ≈ B(:, J) Y.

�× n �× k k × n

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S491

This can be done using the techniques in, e.g., [2] or [6]. Then (11) holds automatically
for the index set J and the matrix Y that were constructed. Using similar ideas, one
can determine a set of rows that form a well-conditioned basis for the row space, and
also the so-called CUR factorization

A ≈ C U R,
m× n m× k k × k k × n

where C and R consist of subsets of the columns and rows of A, respectively; cf. [15].

4. A blocked version of the randomized range finder. Highly efficient
implementations of linear algebraic algorithms exploit blocking to attain high perfor-
mance. Blocking algorithms make it easier to maintain a high throughput at all levels
of the memory hierarchy and to optimally feed multicore processors [7, 3]. The gains
are particularly pronounced for the matrix-matrix multiplication, which parallelizes
well [16].

In this section, we demonstrate that the basic randomized scheme described in
Figure 1 is easily blocked. This allows us to match the very high efficiency of BLAS3
and standard library routines while still being able to incorporate adaptive rank de-
termination. The optimal choice of block size depends strongly on what hardware is
used and is a topic that is currently under investigation.

The algorithm described in this section is directly inspired by Algorithm 4.2 of
[8]; besides blocking, the scheme proposed here is different in that the matrix A is
updated in a manner analogous to “modified” column-pivoted Gram–Schmidt. This
updating allows the randomized stopping criterion employed in [8] to be replaced with
a precise deterministic stopping criterion.

4.1. Blocking. Converting the basic scheme in Figure 1 to a blocked scheme is
in principle straightforward. Suppose that in addition to an m × n matrix A and a
rank �, we have set a block size b such that � = sb for some integer s. Then draw
an n× � Gaussian random matrix Ω and partition it into slices {Ωj}sj=1, each of size
n× b, so that

(13) Ω =
[
Ω1, Ω2, . . . , Ωs

]
.

We analogously partition the matrices Q and B in groups of b columns and b rows,
respectively,

Q =
[
Q1, Q2, . . . , Qs

]
and B =

⎡
⎢⎢⎢⎣

B1

B2

...
Bs

⎤
⎥⎥⎥⎦ .

The blocked algorithm then proceeds to build the matrices {Qi}si=1 and {Bi}si=1 one
at a time. We first initiate the algorithm by setting

(14) A(0) = A.

Then step forwards, computing for i = 1, 2, . . . , s the matrices

Qi = orth
(
A(i−1)Ωi

)
,(15)

Bi = Q∗
iA

(i−1),(16)

A(i) = A(i−1) −QiBi.(17)

S492 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

We will next prove that the matrix Q̄i = [Q1, Q2, . . . , Qi] constructed is indeed

orthonormal and that the matrix A(i) defined by (17) is the “remainder” after i steps,
in the sense that

A(i) = A− [
Q1, Q2, . . . , Qi

] [
Q1, Q2, . . . , Qi

]∗
A = A− Q̄iQ̄

∗
iA.

To be precise, we will prove the following proposition.
Proposition 4.1. Let A be an m× n matrix. Let b denote a block size, and let

s denote the number of steps. Suppose that the rank of A is at least sb. Let Ω be a
Gaussian random matrix of size n × sb, partitioned as in (13), with each Ωj of size

n× b. Let {A(j)}ij=0, {Qj}ij=1, and {Bj}ij=1, be defined by (14)–(17). Set

(18) Pi =
i∑

j=1

Qj Q
∗
j

and

(19)
Q̄i =

[
Q1, Q2, . . . ,Qi

]
, B̄i =

[
B∗

1, B
∗
2, . . . ,B

∗
i

]∗
, Ȳi =

[
AΩ1, AΩ2, . . . ,AΩi

]
.

Then for every i = 1, 2, . . . , s, it is the case that
(a) the matrix Q̄i is ON, so Pi is an orthogonal projection;

(b) A(i) =
(
I− Pi

)
A =

(
I− Q̄iQ̄

∗
i

)
A and B̄i = Q̄

∗
iA;

(c) R(Q̄i) = R(Ȳi) (where R(X) denotes the range of a matrix X).
Proof. The proof is by induction. We will several times use that if C is a matrix of

size n× b of full rank, and we set Q = orth(C), then R(Q) = R(C). We will also use
the fact that if Ω is a Gaussian random matrix of size n× �, and E is a matrix of size
m× n with rank at least �, then the rank of EΩ is with probability 1 precisely � [8].

Direct inspection of the definitions show that (a), (b), (c) are all true for i = 1.
Suppose all statements are true for i − 1. We will prove that then (a), (b), (c) hold
for i.

To prove that (a) holds for i, we use that (b) holds for i − 1 and insert this into
(15) to get

(20) Qi = orth((I− Pi−1)AΩi).

Then observe that Pi−1 is the orthogonal projection onto a space of dimension b(i−1),

which means that the matrix A(i−1) = (I − Pi−1)A has rank at least bs− b(i − 1) =

b(s− i+ 1) ≥ b. Consequently, A(i−1)Ωi has rank precisely b. This shows that

R(Qi) ⊆ R(I− Pi−1) = R(Pi−1)
⊥ = R([Q1, Q2, . . . , Qi−1])

⊥.

It follows that Q∗
jQi = 0 whenever j < i, which shows that Q̄i is ON. Next,

Bi = Q∗
iA

(i−1) = Q∗
i

(
I−Qi−1Q

∗
i−1

)
A(i−2) = Q∗

iA
(i−2) = · · · = Q∗

iA
(0) = Q∗

iA.

It follows that

Q̄
∗
iA = [Q1, . . . ,Qi]

∗A =

⎡
⎢⎣
Q∗

1A
...

Q∗
iA

⎤
⎥⎦ =

⎡
⎢⎣
B1

...
Bi

⎤
⎥⎦ = B̄i.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S493

Thus, (a) holds for i.
Proving (b) is a simple calculation. Combining (16) and (17) we get

A(i) = A(i−1) −QiQiA
(i−1) = (I−QiQ

∗
i)A

(i−1) (b)
= (I−QiQ

∗
i)(I− Pi−1)A

= (I− (Pi−1 +QiQ
∗
i))A,

where in the last step we used that Q∗
iPi−1 = 0. Since Pi = Pi−1+QiQ

∗
i , this proves

(b).
To prove (c), we observe that (20) implies that

(21) R(Qi) ⊆ R([AΩi,Pi−1AΩi]).

Induction assumption (c) tells us that

(22) R(Pi−1AΩi) ⊆ R([Q1, Q2, . . . , Qi−1]) = R([AΩ1, AΩ2, . . . , AΩi−1]).

Combining (21) and (22), we find

(23) R(Qi) ⊆ R([AΩ1, AΩ2, . . . , AΩi−1, AΩi]).

Equation (23) together with the induction assumption (c) imply that R([Q1, Q2, . . . ,
Qi]) ⊆ R([AΩ1, AΩ2, . . . , AΩi]). But both of these spaces have dimension pre-
cisely bi, so the fact that one is a subset of the other implies that they must be
identical.

Let us next compare the blocked algorithm defined by relations (14)–(17) to the
unblocked algorithm described in Figure 1. For a fixed Gaussian matrix Ω, let the
output of the blocked version be {Q,B} and let the output of the unblocked method be
{Q̃, B̃}. These two pairs of matrices do not need to be identical. (They depend on how
exactly the QR factorizations are implemented, for instance). However, Proposition

4.1 demonstrates that the projectors QQ∗ and Q̃Q̃
∗
are identical. To be precise, both

of these matrices represent the orthogonal projection onto the space R(AΩ). This
means that the errors resulting from the two algorithms are also identical,

A−QQ∗A︸ ︷︷ ︸
error from blocked algorithm

= A− Q̃Q̃
∗
A︸ ︷︷ ︸

error from nonblocked algorithm

.

Consequently, all theoretical results given in [8] (cf. section 3.2) directly apply to the
output of the blocked algorithm too.

4.2. Adaptive rank determination. The blocked algorithm defined by (14)–
(17) was presented in section 4.1 for the case where the rank � of the approximation
is given in advance. A perhaps more common situation in practical applications is
that a precision ε > 0 is specified, and then we seek to compute an approximation of
as low rank as possible that is accurate to precision ε. Observe that in the algorithm
defined by (14)–(17), we proved that after step i has been completed, we have

‖A(i)‖ = ‖A− PiA‖ = ‖A− [
Q1 Q2 · · · Qi

] [
Q1 Q2 · · · Qi

]∗
A‖.

In other words, A(i) holds precisely the residual remaining after step i. This means
that incorporating adaptive rank determining is now trivial—we simply compute

S494 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

function [Q,B] = randQB b(A, ε, b)

(1) for i = 1, 2, 3, . . .

(2) Ωi = randn(n, b)

(3) Qi = orth(AΩi) Cmmmnb+ Cqrmb2

(3′) Qi = orth(Qi −
∑i−1

j=1 QjQ
∗
jQi) 2(i− 1)Cmmmb2 + Cqrmb2

(4) Bi = Q∗
iA Cmmmnb

(5) A = A−QiBi Cmmmnb

(6) if ‖A‖ < ε then stop

(7) end for

(8) Set Q = [Q1 · · · Qi] and B = [B∗
1 · · · B∗

i]
∗.

Fig. 2. A blocked version of the randomized range finder; cf. Figure 1. The algorithm takes as
input an m × n matrix A, a block size b, and a tolerance ε. Its output are factors Q and B such
that ‖A − QB‖ ≤ ε. Note that if the algorithm is executed in exact arithmetic, then line (3′) does
nothing. Text in blue refers to computational cost; see section 4.4 for notation.

‖A(i)‖ after completing step i and break once ‖A(i)‖ ≤ ε. The algorithm result-
ing is shown as randQB b in Figure 2. (The purpose of line (3′) will be explained in
section 4.3.)

Remark 3. Recall that our default norm in this manuscript, the Frobenius norm,
is simple to compute, which means that the check on whether to break the loop on
line (7) in Figure 2 hardly adds at all to the execution time. If circumstances warrant
the use of a norm that is more expensive to compute, then some modification of the
algorithm would be required. Suppose, for instance, that we seek an approximation
in the spectral norm. We could then use the fact that the Frobenius norm is an upper
bound on the spectral norm, keep the Frobenius norm as the breaking condition,
and then eliminate any “superfluous” degrees of freedom that were included in the
postprocessing step; cf. section 3.3.1. (This approach would be practicable only for
matrices whose singular values exhibit reasonable decay, as otherwise the discrepancy
in the ε-ranks could be prohibitively large.)

4.3. Floating point arithmetic. When the algorithm defined by (14)–(17) is
carried out in finite precision arithmetic, a serious problem often arises in that round-
off errors will accumulate and will cause loss of orthonormality among the columns in
{Q1, Q2, . . . }. The problem is that as the computation proceeds, the columns of each
computed matrix Qi will due to round-off errors drift into the span of the columns of
{Q1, Q2, . . . , Qi−1}. This phenomenon occurs for the classical (nonblocked) Gram–
Schmidt procedure as well, and the standard solution is to either use Householder
projections [5] or to explicitly reproject any new basis vector away from the span of
the previous vectors before adding it to the basis [1]. For our purposes, the latter
technique generalizes directly, and the resulting operation appears in Figure 2 on line
(3′). (Note that if the algorithm is carried out in exact arithmetic, then Q∗

jQi = 0
whenever j < i, so line (3′) would have no effect.)

4.4. Comparison of execution times. Let us compare the computational cost
of algorithms randQB (Figure 1) and randQB b (Figure 2). To this end, let Cmm and

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S495

Cqr denote the scaling constants for the cost of executing a matrix-matrix multipli-
cation and a full QR factorization, respectively. In other words, we assume that

• multiplying two matrices of sizes m× n and n× r costs Cmmmnr;
• performing a QR factorization of a matrix of size m× n, with m ≥ n, costs
Cqr mn2.

Note that these are rough estimates. Actual costs depend on the actual sizes, but this
model is still instructive. The execution time for the algorithm in Figure 1 is easily
seen to be

(24) TrandQB ∼ 2Cmmmn�+ Cqr m�2.

For the blocked algorithm of Figure 2, we assume that it stops after s steps and set
� = sb. Then

TrandQB b ∼
s∑

i=1

[
3Cmmmnb+ 2(i− 1)Cmmmb2 + Cqr2mb2

]
∼ 3sCmmmnb+ s2Cmmmb2 + sCqr2mb2.

Using that sb = � we find

(25) TrandQB b ∼ 3Cmmmn�+ Cmmm�2 +
2

s
Cqrm�2.

Comparing (24) and (25), we see that the blocked algorithm involves one additional
term of Cmmmn� but on the other hand spends less time executing full QR factoriza-
tions, as expected.

Remark 4. All blocked algorithms that we present share the characteristic that
they slightly increase the amount of time spent on matrix-matrix multiplication while
reducing the amount of time spent performing QR factorization. This is a good
trade-off on many platforms but becomes particularly useful when the algorithm is
executed on a GPU. These massively multicore processors are particularly efficient at
performing matrix-matrix multiplications but struggle with communication intensive
tasks such as a QR factorization.

Remark 5. The function orth that we use as a key building block can most easily
be implemented by a call to a library QR factorization routine, as described in section
2.4. We want to emphasize that pivoting is not necessary here, since the “R” factor
is never used. This in principle opens up the possibility of building highly efficient
implementations of the QR factorizations.

5. A version of the method with enhanced accuracy.

5.1. Randomized sampling of a power of the matrix. The accuracy of the
basic randomized approximation scheme described in section 3, and the blocked ver-
sion of section 4 is well understood. The analysis of [8] (see the synopsis in section 3.2)

shows that the error ‖A−Aapprox‖ depends strongly on the quantity (
∑min(m,n)

j=k+1 σ2
j)

1/2.
This implies that the scheme is highly accurate for matrices whose singular values de-
cay rapidly but less accurate when the “tail” singular values have substantial weight.
The problem becomes particularly pronounced for large matrices. Happily, it was
demonstrated in [12] that this problem can with modest cost be resolved when given
a matrix with slowly decaying singular values by using a so-called power scheme. To
be precise, suppose that we are given an m×n matrix A, a target rank �, and a small

S496 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

function [Q,B] = randQB p(A, �, P)

(1) Ω = randn(n, �).

(2) Q = orth(AΩ). Cmmmn�+ Cqrm�2

(3) for j = 1 : P

(4) Q = orth(A∗Q). Cmmmn�+ Cqrm�2

(5) Q = orth(AQ). Cmmmn�+ Cqrm�2

(6) end for

(7) B = Q∗A Cmmmn�

Fig. 3. An accuracy enhanced version of the basic randomized range finder in Figure 1. The
algorithm takes as input an m × n matrix A, a rank �, and a “power” P (see section 5.1). The
output are matrices Q and B of sizes m × � and �× n such that A ≈ QB. Higher P leads to better
accuracy but also higher cost. Setting P = 1 or P = 2 is often sufficient.

integer P (say, P = 1 or P = 2). Then the following formula will produce an ON
matrix Q whose columns form an approximation to the range:

Ω = randn(n, �) and Q = orth
((
AA∗)PAΩ, 0

)
.

The key observation here is that the matrix
(
AA∗)PA has exactly the same left

singular vectors as A, but its singular values are σ2P+1
j (observe that our objective is

to build an ON-basis for the range of A, and the optimal such basis consists of the
leading left singular vectors). Even a small value of P will typically provide enough
decay that highly accurate results are attained. For a theoretical analysis, see [8,
sect. 10.4].

When the “power scheme” idea is to be executed in floating point arithmetic,
substantial loss of accuracy happens whenever the singular values of A have a large
dynamic range. To be precise, if εmach denotes the machine precision, then any

singular components smaller than σ1 ε
1/(2P+1)
mach will be lost. This problem can be

resolved by orthonormalizing the “sample matrix” between each application of A and
A∗. This results in the scheme we call randQB p, as shown in Figure 3. (Note that this
scheme is virtually identical to a classical subspace iteration with a random Gaussian
matrix as the start [13].)

5.2. The blocked version of the power scheme. A blocked version of
randQB p is easily obtained by a process analogous to the one described in section 4.1,
resulting in the algorithm “randQB pb” in Figure 4. Line (8) combats the problem of
incremental loss of orthonormality when the algorithm is executed in finite precision
arithmetic; cf. section 4.3.

5.3. Computational complexity. When comparing the computational cost of
randQB p (cf. Figure 3) versus randQB pb (cf. Figure 4), we use the notation that was
introduced in section 4.4. By inspection, we directly find that

TrandQB p ∼ Cmm(2 + 2P)mn�+ Cqr(1 + 2P)m�2.

For the blocked scheme, inspection tells us that

TrandQB pb ∼
s∑

i=1

[
Cmm(3 + 2P)mnb+ 2(i− 1)Cmmmb2 + Cqr(2 + 2P)mb2

]
.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S497

function [Q,B] = randQB pb(A, ε, P, b)

(1) for i = 1, 2, 3, . . .

(2) Ωi = randn(n, b).

(3) Qi = orth(AΩi). Cmmmnb+ Cqr mb2

(4) for j = 1 : P

(5) Qi = orth(A∗Qi). Cmmmnb+ Cqrmb2

(6) Qi = orth(AQi). Cmmmnb+ Cqrmb2

(7) end for

(8) Qi = orth(Qi −
∑i−1

j=1 QjQ
∗
jQi) 2(i− 1)Cmmmb2 + Cqrmb2

(9) Bi = Q∗
iA Cmmmnb

(10) A = A−QiBi Cmmmnb

(11) if ‖A‖ < ε then stop

(12) end while

(13) Set Q = [Q1 · · · Qi] and B = [B∗
1 · · · B∗

i]
∗.

Fig. 4. A blocked and adaptive version of the accuracy enhanced algorithm shown in Figure 3.
Its input and output are identical, except that we now provide a tolerance ε as an input (instead of
a rank), and also a block size b.

Executing the sum, and utilizing that � = sb, we get

TrandQB pb ∼ Cmm(3 + 2P)mn�+ Cmmm�2 +
1

s
Cqr(2 + 2P)m�2.

In other words, the blocked algorithm again spends slightly more time executing
matrix-matrix multiplications and quite a bit less time on QR factorizations. This
trade is often favorable, and particularly so when the algorithm is executed on a GPU
(cf. Remark 4). On the other hand, when �
 n, the benefit to saving time on QR
factorizations is minor.

5.4. Is reorthonormalizing truly necessary? Looking at algorithm
randQB p, it is very tempting to skip the intermediate QR factorizations and sim-
ply execute steps (2)–(6) as

(2) Y = AΩ.

(3) for j = 1 : P

(4) Y = A
(
A∗Y

)
(5) end for

(6) Q = orth(Y)

This simplification does speed things up substantially, but as we mentioned earlier,
it can lead to loss of accuracy. In this section we state some conjectures about when
reorthonormalization is necessary. These conjectures appear to show that the blocked
scheme is much more resilient to skipping reorthonormalization.

To describe the issue, let us fix a (small) integer P and define the matrix

AP =
(
AA∗)PA.

S498 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

n ×104

0.4 0.6 0.8 1 1.2 1.4 1.6

T
im

e
in

 s
ec

on
ds

100

101

102

Time for partial (k=100) QR factorization n x n matrix. b=20.

QR part
QR part gpu
QB P=0 cpu
QB P=0 gpu
QB P=1 cpu
QB P=1 gpu
QB P=2 cpu
QB P=2 gpu
QR full

Fig. 5. Timing results for different algorithms on CPU and GPU. The integer P denotes the
parameter in the “power scheme” described in section 5.

If the SVD of A is A = UΣV∗, then the SVD of AP is

AP = UΣ2P+1V∗.

In computing Y = APΩ, we lose all information about any singular value σi (and
its associated singular vectors) for which σ2P+1

i ≤ σ2P+1
1 εmach, where εmach is the

machine precision. In other words, in order to accurately resolve the first k singular
modes, reorthogonalization is needed if

(26)
σ1

σk
> ε

1/(2P+1)
mach .

As an example, with P = 2 and εmach = 10−15, we find that ε
1/(2P+1)
mach = 10−3, so

reorthonormalization is imperative to resolve any components smaller than σ1 10
−3.

Moreover, if we skip reorthonormalization, we are likely to see an overall loss of
accuracy affecting singular values and singular vectors associated with larger singular
values.

Next consider the blocked scheme. The crucial observation is that now, instead
of trying to extract the whole range of singular values {σj}kj=1 (and their associated
eigenvectors) at once, we now extract them in s groups of b modes each, where k ≈ sb.
This means that we can expect to get reasonable accuracy as long as

(27)
σ(i−1)b+1

σib
≤ ε

1/(2P+1)
mach for i = 1, 2, . . . , s.

Comparing (26) and (27), we see that (27) is a much milder condition, since the block
size b is smaller than k.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S499

k
0 20 40 60 80 100

||A
 -

 A
k||

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
Spectral norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

k
0 20 40 60 80 100

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
Frobenius norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

Fig. 6. Errors for the 800 × 600 “Matrix 1” whose singular values decay very rapidly. The
block size is b = 10.

All claims in this section are heuristics. However, while they have not been rigor-
ously proven, they are supported by extensive numerical experiments; see section 6.3.

6. Numerical experiments. In this section, we present numerical examples
that illustrate the computational efficiency and the accuracy of the proposed scheme,
see sections 6.1 and 6.2, respectively. The codes we used are available at http://amath.
colorado.edu/faculty/martinss/main codes.html and we encourage any interested
reader to try the methods out and explore different parameter sets than those included
here. Additional numerical experiments which did not fit in the journal version of this
article can be reviewed in the technical report [11].

6.1. Comparison of execution speeds. We first compare the run times of
different techniques for computing a partial (rank k) QR factorization of a given
matrix A of size n × n. Observe that the choice of matrix is immaterial for a run
time comparison (we investigate accuracy in section 6.2). We compared three sets of
techniques:

• Truncating a full QR factorization, computed using the Intel MKL libraries.
• Taking k steps of a column-pivoted Gram–Schmidt process. The implemen-
tation was accelerated by using MKL library functions whenever practicable.

• The blocked “QB” scheme, followed by postprocessing of the factors to obtain
a QR factorization. We used the “power method” described in section 5 with
parameters P = 0, 1, 2.

S500 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

k
0 10 20 30 40 50 60 70

||A
 -

 A
k||

10-2

10-1

100
Spectral norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

k
0 10 20 30 40 50 60 70

10-2

10-1

100
Frobenius norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

Fig. 7. Errors for the 800× 600 “Matrix 2” whose singular values decay slowly. The block size
is b = 10.

The algorithms were all implemented in C and run on a desktop with a 6-core Intel
Xeon E5-1660 CPU (3.30 GHZ) and 128 GB of RAM. We also ran the blocked “QB”
scheme on an NVIDIA Tesla K40c GPU installed on the same machine. The results
are shown in Figure 5. Figure 5 shows that our blocked algorithms (blue, magenta,
and cyan lines) compare favorably to both of the two benchmarks we chose—full QR
using MKL libraries (green) and partial factorization using column pivoting (red).
However, it must be noted that our implementation of column-pivoted QR is far
slower than the built-in QR factorization in the MKL libraries. Even for as low a
rank as k = 100, we do not break even with a full factorization until n = 8000. This
implies that column pivoting can be implemented far more efficiently than we were
able to. The point is that in order to attain the efficiency of the MKL libraries, very
careful coding that is customized to any particular computing platform would have to
be done. In contrast, our blocked code is able to exploit the very high efficiency of the
MKL libraries with minimal effort. (Observe that in implementing the operation orth

in our blocked randomized schemes, we did not use our version of column-pivoted QR
but rather used the MKL library function for QR factorization.)

Finally, it is worth noting how particularly efficient our blocked algorithms are
when executed on a GPU. We gained a substantial integer factor speed-up over CPU
speed in every test we conducted.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S501

k
0 20 40 60 80 100

||A
 -

 A
k||

10-1

100

Spectral norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

k
0 20 40 60 80 100

10-1

100

Frobenius norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

Fig. 8. Errors for the 800× 600 “Matrix 3.” This is a sparse matrix for which column-pivoted
Gram–Schmidt performs exceptionally well. However, randQB still gives better accuracy whenever a
power P ≥ 1 is used.

Remark 6 (choice of blocking parameter b). The algorithms described rely on
library routines to attain high efficiency for operations like matrix-matrix multiplica-
tion and QR factorization of small matrices. A key advantage of this setup is that it
allows us to exploit the power and easy of use of autotuning that is built into these
routines [16]. The blocking parameter b that a user must specify need only be large
enough that these library routines have enough data to work with. In other words,
while picking b to be very small has a deleterious effect on performance, there is no
need to carefully optimize it once it is larger than a (small) threshold.

6.2. Accuracy of the randomized scheme. We next investigate the accuracy
of the randomized schemes versus column-pivoted QR on the one hand (easy to com-
pute, not optimal) and versus the truncated SVD on the other (expensive to compute,
optimal). We used five classes of test matrices that each have different characteristics:

Matrix 1 (fast decay). Let A1 denote an m× n matrix of the form A1 = UDV∗,
where U and V are randomly drawn matrices with orthonormal columns
(obtained by performing QR on a random Gaussian matrix), and where D
is a diagonal matrix with entries roughly given by dj = g2j β

j−1, where gj is
a random number drawn from a uniform distribution on [0, 1] and β = 0.65.
To precision 10−15, the rank of A1 is about 75.

Matrix 2 (slow decay). The matrix A2 is formed just like A1, but now the diagonal
entries of D decay very slowly, with dj = (1 + 200(j − 1))1/2.

S502 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

k
0 20 40 60 80 100

||A
 -

 A
k||

100

101

Spectral norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

k
0 20 40 60 80 100

100

101

Frobenius norm

SVD
Column-pivoted QR
randQB (P=0)
randQB (P=1)
randQB (P=2)
randQBblocked (P=0)
randQBblocked (P=1)
randQBblocked (P=2)

Fig. 9. Errors for the 1000 × 1000 “Matrix 4.” This matrix is a variation of the “Kahan
counterexample” and is designed specifically to give poor performance for column-pivoted QR. Here
b = 20.

Matrix 3 (sparse). The matrix A3 is a sparse matrix given by A3 =
∑10

j=1
2
j xj y

∗
j+∑min(m,n)

j=11
1
j xj y

∗
j where xj and yj are random sparse vectors generated by the

MATLAB commands sprand(m, 1, 0.01) and sprand(n, 1, 0.01), respectively.
We used m = 800 and n = 600, which resulted in a matrix with roughly
6% nonzero elements. This matrix was borrowed from Sorensen and Embree
[14] and is an example of a matrix for which column-pivoted Gram–Schmidt
performs particularly well.

Matrix 4 (Kahan). This is a variation of the “Kahan counterexample,” which is
a matrix designed so that Gram–Schmidt performs particularly poorly. The
matrix here is formed via the matrix matrix product SK, where

S =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 · · ·
0 ζ 0 0 · · ·
0 0 ζ2 0 · · ·
0 0 0 ζ3 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ and K =

⎡
⎢⎢⎢⎢⎢⎣

1 −φ −φ −φ · · ·
0 1 −φ −φ · · ·
0 0 1 −φ · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

with random ζ, φ > 0, ζ2+φ2 = 1. Then SK is upper triangular, and for many
choices of ζ and φ, classical column pivoting will yield poor performance as
the different column norms will be similar and pivoting will generally fail. The

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S503

0 20 40 60 80 100 120

10
−10

10
0

k

||A
 −

 A
k||

(s
pe

ct
ra

l n
or

m
)

Errors for "Matrix 1" with P=1 (skipping qr)

0 20 40 60 80 100 120

10
−10

10
0

k

||A
 −

 A
k||

(s
pe

ct
ra

l n
or

m
)

Errors for "Matrix 1" with P=2 (skipping qr)

0 20 40 60 80 100 120

10
−2

10
−1

10
0

k

||A
 −

 A
k||

(s
pe

ct
ra

l n
or

m
)

Errors for "Matrix 2" with P=2 (skipping qr)

0 20 40 60 80 100 120

10
−6

10
−4

10
−2

k

||A
 −

 A
k||

(s
pe

ct
ra

l n
or

m
)

Errors for "Matrix 5" with P=1 (skipping qr)

svds
unblocked randQB
randQB with b=10
randQB with b=20
randQB with b=30

Fig. 10. Errors incurred when not reorthonormalizing between applications of A and A∗ in
the “power method”; cf. sections 5.4 and 6.3. The nonblocked scheme (red) performs precisely as
predicted and cannot resolve anything beyond precision 10−5 when P = 1 and 10−3 when P = 2.
The blocked version converges slightly slower when skipping reorthonormalization but always reaches
full precision.

rank-k approximation resulting from column-pivoted QR is substantially less
accurate than the optimal rank-k approximation resulting from truncating
the full SVD [6]. However, we obtain much better results than QR with the
QB algorithm.

We compare four different techniques for computing a rank-k approximation to
our test matrices:

SVD. We computed the full SVD (using the MATLAB command svd) and then
truncated to the first k components.

Column-pivoted QR. We implemented this using modified Gram–Schmidt with
reorthogonalization to ensure that orthonormality is strictly maintained in
the columns of Q.

randQB—single vector. This is the greedy algorithm labeled “Algorithm 1” in
section 1.2, implemented with qj on line (4) chosen as qj = y/‖y‖, where
y =

(
AA∗)P Aω and where ω is a random Gaussian vector.

randQB—blocked. This is the algorithm randQB pb shown in Figure 4.

The results are shown in Figures 6–9. We make three observations: (1) When the
“power method” described in section 5 is used, the accuracy of randQB pb exceeds
that of column-pivoted QR in every example we tried, even for as low a power as

S504 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

k
0 50 100 150

||A
 -

 A
k||

10-1

100

Spectral norm - errors for 25 experiments

SVD
randQB (P=0)
randQB (P=1)
randQB (P=2)

k
0 50 100 150

10-1

100

Frobenius norm - errors for 25 experiments

SVD
randQB (P=0)
randQB (P=1)
randQB (P=2)

Fig. 11. The error paths for 25 instantiations of the randomized factorization algorithm applied
to Matrix 5.

P = 1. (2) Blocking appears to lead to no loss of accuracy. In most cases, there is no
discernible difference in accuracy between the blocked and the nonblocked versions.
(3) The accuracy of randQB pb is particularly good when errors are measured in
the Frobenius norm. In almost all cases we investigated, essentially optimal results
are obtained even for P = 1. (All results shown in this section refers to a single
instantiation of the randomized algorithm. See section 6.4 for statistical properties.)

6.3. When reorthonormalization is required. We claimed in section 5.4
that the blocked scheme is more robust toward loss of orthonormality than the
nonblocked scheme presented in [8]. To examine this hypothesis, we tested what
happens if we skip the reorthonormalization between applications of A and A∗ in the
algorithms shown in Figures 3 and 4. The results are shown in Figure 10. The key
observation here is that the blocked versions of randQB still always yield excellent pre-
cision. When the block size is large, the convergence is slowed down a bit compared to
the more meticulous implementation, but essentially optimal accuracy is nevertheless
obtained relatively quickly.

Remark 7. The numerical results in Figure 10 substantiate the claim that for

the unblocked version, the best accuracy attainable is σ1 ε
1/(2P+1)
mach . In all examples,

we have σ1 = 1, so the prediction is that for P = 1 the maximum precision is(
10−15

)1/3
= 10−5 and for P = 2 it is

(
10−15

)1/5
= 10−3. The results shown precisely

follow this pattern. Observe that for A2, no loss of accuracy is seen at all since the
singular values we are interested in level out at about 10−2.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S505

0 0.5 1

x 10
−10

0

0.2

0.4

0.6

0.8

1

1.2

x 10
−10

||A − A
k
||/||A||

||A
 −

 A
k|| fr

o/||
A

|| fr
o

Matrix 1: N
exp

 = 2000. k = 60

0 0.05 0.1 0.15
0

0.05

0.1

||A − A
k
||/||A||

||A
 −

 A
k|| fr

o/||
A

|| fr
o

Matrix 2: N
exp

 = 2000. k = 60

0 0.05 0.1 0.15
0

0.05

0.1

||A − A
k
||/||A||

||A
 −

 A
k|| fr

o/||
A

|| fr
o

Matrix 3: N
exp

 = 2000. k = 60

0 0.5 1
0

0.2

0.4

0.6

0.8

1

||A − A
k
||/||A||

||A
 −

 A
k|| fr

o/||
A

|| fr
o

Matrix 5: N
exp

 = 2000. k = 75

SVD
Column−pivoted GS
RandQB with P=0
RandQB with P=1
RandQB with P=2

Fig. 12. Each blue cross in the graphs represents one instantiation of the randomized blocked
algorithm. The x- and y-coordinates show the relative errors in the spectral and Frobenius norms,
respectively. For reference, we also include the error from classical column-pivoted Gram–Schmidt
(the magenta diamond) and the error incurred by the truncated SVD. The dashed lines are the
horizonal and vertical lines cutting through the point representing the SVD—since these errors are
minimal, every other dot must be located above and to the right of these lines.

6.4. Distribution of errors. The output of our randomized blocked approxi-
mation algorithms is a random variable, since it depends on the drawing of a Gaussian
matrix Ω. It has been proven (see, e.g., [8]) that due to concentration of mass, the
variation in this random variable is tiny. The output is for practical purposes always
very close to the expectation of the output. For this reason, when we compared the
accuracy of the randomized method to classical methods in section 6.2, we simply
presented the results from one particular draw of Ω. In this section, we investigate
numerically how much spread is incurred for the following example:

Matrix 5 (S shaped decay). The matrix A5 is built in the same manner as A1 and
A2, but now the diagonal entries of D are chosen to first hover around 1, then
decay rapidly, and then level out at a relatively high plateau; cf. Figure 11.

Figure 11 shows the error paths from 25 different instantiations of the randomized
algorithm. We observe that the errors are tightly clustered, in particular for P = 1
and P = 2. We also observe that the clustering is stronger in the Frobenius norm
than in the spectral norm.

S506 PER-GUNNAR MARTINSSON AND SERGEY VORONIN

For our final experiment, we tested how the algorithm performs over 2000 instan-
tiations, applied to matrices 1, 2, 3, and 5. To keep the plots legible, we plot the errors
only for a fixed value of k; see Figure 12. These experiments further substantiate our
claim that the results are tightly clustered, in particular when P ≥ 1, and when errors
are measured in the Frobenius norm.

7. Concluding remarks. We have described a randomized algorithm for the
low-rank approximation of matrices. The algorithm is based on the randomized sam-
pling paradigm described in [9, 12, 8, 10]. In this article, we introduce a blocking
technique, which allows us to incorporate adaptive rank determination without sac-
rificing computational efficiency, and an updating technique that allows us to replace
the randomized stopping criterion proposed in [8] with a deterministic one. Through
theoretical analysis and numerical examples, we demonstrate that while the blocked
scheme is mathematically equivalent to the nonblocked scheme of [9, 12, 8, 10] when
executed in exact arithmetic, the blocked scheme is slightly more robust toward ac-
cumulation of round-off errors.

The updating strategy that we propose is directly inspired by a classical scheme for
computing a partial QR factorization via the column-pivoted Gram–Schmidt process.
We demonstrate that the randomized version that we propose is more computationally
efficient than this classical scheme (since it is hard to block the column pivoting
scheme). Our numerical experiments indicate that the randomized version not only
improves speed but also leads to higher accuracy. In fact, in all examples we present,
the errors resulting from the blocked randomized scheme are very close to the optimal
error obtained by truncating a full SVD. In particular, when errors are measured in
the Frobenius norm, there is almost no loss of accuracy at all compared to the optimal
factorization, even for matrices whose singular values decay slowly.

The scheme described can output any of the standard low-rank factorizations of
matrices such as, e.g., a partial QR or SVD factorization. It can also with ease pro-
duce less standard factorizations such as the CUR and interpolative decompositions;
cf. section 3.3.

In this manuscript, we presented a basic version of the blocked scheme that is
easy to implement either using a high-level language such as MATLAB or Python or
using standard library functions in BLAS, LAPACK, etc.

REFERENCES

[1] Å. Björck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra Appl., 197/198
(1994), pp. 297–316.

[2] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.

[3] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and
sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206–A239.

[4] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psy-
chometrika, 1 (1936), pp. 211–218.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Stud. Math.
Sci., Johns Hopkins University Press, Baltimore, MD, 2013.

[6] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[7] F. G. Gustavson, Cache blocking for linear algebra algorithms, in Parallel Processing and
Applied Mathematics, Springer, New York, 2012, pp. 122–132.

[8] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

A BLOCKED ALGORITHM FOR LOW-RANK APPROXIMATION S507

[9] P.-G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the Approx-
imation of matrices, Yale CS research report YALEU/DCS/RR-1361, Computer Science
Department, Yale University, New Haven, CT, 2006.

[10] P.-G. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decompo-
sition of matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68.

[11] P. G. Martinsson and S. Voronin, A randomized blocked algorithm for efficiently computing
rank-revealing factorizations of matrices, arXiv:1503.07157v2, 2015.

[12] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component
analysis, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1100–1124.

[13] Y. Saad, Overview of Krylov subspace methods with applications to control problems, in Signal
Processing, Scattering and Operator Theory, and Numerical Methods (Amsterdam, 1989),
Progr. Systems Control Theory 5, Birkhäuser Boston, Boston, MA, 1990, pp. 401–410.

[14] D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, preprint,
arXiv:1407.5516, 2014.

[15] S. Voronin and P.-G. Martinsson, A CUR factorization algorithm based on the interpolative
decomposition, arXiv.1412.8447, 2014.

[16] R. C. Whaley and J. J. Dongarra, Automatically tuned linear algebra software, in Proceed-
ings of the 1998 ACM/IEEE Conference on Supercomputing, Washington, DC, 1998, IEEE
Computer Society, pp. 1–27.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

