
Numerical methods for solving linear elliptic PDEs:

Direct solvers and high order accurate discretizations

by

Sijia Hao

B.S.,University of Science and Technology of China, 2009

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2015



This thesis entitled:
Numerical methods for solving linear elliptic PDEs:

Direct solvers and high order accurate discretizations
written by Sijia Hao

has been approved for the Department of Applied Mathematics

Per-Gunnar Martinsson

Gregory Beylkin

James Bremer

Bengt Fornberg

Zydrunas Gimbutas

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Hao, Sijia (Ph.D., Applied Mathematics)

Numerical methods for solving linear elliptic PDEs:

Direct solvers and high order accurate discretizations

Thesis directed by Professor Per-Gunnar Martinsson

This dissertation describes fast and highly accurate techniques for solving linear elliptic

boundary value problems associated with elliptic partial differential equations such as Laplace’s,

Helmholtz equations and time-harmonic Maxwell’s equation. It is necessary to develop efficient

methods to solve these problems numerically.

The techniques we develop in this dissertation are applicable to most linear elliptic PDEs,

especially to the Helmholtz equation. This equation models frequency domain wave-propagation,

and has proven to be particularly difficult to solve using existing methodology, in particular in

situations where the computational domain extends over dozens or hundreds of wave-lengths. One

of the difficulties is that the linear systems arising upon discretization are ill-conditioned that

have proven difficult to solve using iterative solvers. The other is that errors are aggregated over

each wave-length such that a large number of discretization nodes are required to achieve certain

accuracy. The objective of this dissertation is to overcome these difficulties by exploring three sets

of ideas: 1) high order discretization, 2) direct solvers and 3) local mesh refinements.

In terms of “high-order” discretization, the solutions to the PDEs are approximated by

high-order polynomials. We typically use local Legendre or Chebyshev grids capable of resolving

polynomials up to degree between 10 and 40. For solving the linear system formed upon high-order

discretization, there exist a broad range of schemes. Most schemes are “iterative” methods such

as multigrid and preconditioned Krylov methods. In contrast, we in this thesis mainly focus on

“direct” solvers in the sense that they construct an approximation to the inverse of the coefficient

matrix. Such techniques tend to be more robust, versatile and stable compared to the iterative

techniques. Finally, local mesh refinement techniques are developed to effectively deal with sharp



iv

gradients, localized singularities and regions of poor resolution. A variety of two-dimensional and

three-dimensional problems are solved using the three techniques described above.



Dedication

I dedicate this dissertation to my family, especially my parents and my sister, who have

encouraged and supported me for so many years.



vi

Acknowledgements

First and foremost, I would like to thank my advisor Gunnar Martisson, who has supported

and advised me through my time at University of Colorado. Without his knowledge and help, this

dissertation would never have been possible.

Next, I would like to thank all my committee members for their time and interest to my work.

A special thank you to Gregory Beylkin who has provided valuable suggestions on my dissertation.

The faculty in the Department of Applied Mathematics are awesome. The Grandview Gang,

especially Tom Manteuffel and Steve McCormick have provided guidance in my first two years of

study.

During my six years life at Boulder, I am fortunate to make some great friends who helped

ease the stress. Kuo Liu and Lei Tang are generous to share their experience. Ying Zhao, Qian Li

and Liang Zhang have been so supportive of me and for that, I am grateful.

Finally, thank you to my sister and parents who were always there to encourage me.



vii

Contents

Chapter

1 Introduction 1

1.1 Theme I: High order methods for boundary integral equations in the plane . . . . . . 4

1.1.1 High-order Nyström discretization and quadrature schemes . . . . . . . . . . 5

1.1.2 Local mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Direct solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Theme II: Acoustic scattering involving rotationally symmetric scatterers . . . . . . 7

1.2.1 A single rotationally symmetric scatter. . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Multibody scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Theme III: Scattering in variable wave-speed media in 2D and 3D . . . . . . . . . . 10

1.3.1 Direct solver via composite spectral discretization . . . . . . . . . . . . . . . 10

1.3.2 Local mesh refinement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Accelerated 3D direct solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Structure of dissertation and overview of principle contributions . . . . . . . . . . . . 12

2 High-order accurate methods for Nyström discretization of integral equations on smooth

curves in the plane 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Overview of Nyström discretization . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Types of singular quadrature schemes . . . . . . . . . . . . . . . . . . . . . . 22



viii

2.1.3 Related work and schemes not compared . . . . . . . . . . . . . . . . . . . . 24

2.2 A brief review of Lagrange interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Nyström discretization using the Kapur-Rokhlin quadrature rule . . . . . . . . . . . 25

2.3.1 The Kapur–Rokhlin correction to the trapezoidal rule . . . . . . . . . . . . . 25

2.3.2 A Nyström scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Nyström discretization using the Alpert quadrature rule . . . . . . . . . . . . . . . . 27

2.4.1 The Alpert correction to the trapezoidal rule . . . . . . . . . . . . . . . . . . 27

2.4.2 A Nyström scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Nyström discretization using modified Gaussian quadrature . . . . . . . . . . . . . . 30

2.5.1 Modified Gaussian quadratures of Kolm–Rokhlin . . . . . . . . . . . . . . . . 31

2.5.2 A Nyström scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Nyström discretization using the Kress quadrature rule . . . . . . . . . . . . . . . . . 34

2.6.1 Product quadratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2 The Kress quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.3 A Nyström scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 A 1D integral equation example . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.2 Combined field discretization of the Helmholtz equation in R2 . . . . . . . . . 40

2.7.3 Effect of quadrature scheme on iterative solution efficiency . . . . . . . . . . 43

2.7.4 The Laplace BVP on axisymmetric surfaces in R3 . . . . . . . . . . . . . . . 46

2.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 A simplified technique for the efficient and highly accurate discretization of boundary integral

equations in 2D on domains with corners 50

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 A linear algebraic observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Matrix skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



ix

3.4 Outline of the solution process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 A high-order Nyström discretization scheme for Boundary Integral Equations Defined on

Rotationally Symmetric Surfaces 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Applications and prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Kernel evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.4 Principal contributions of present work . . . . . . . . . . . . . . . . . . . . . 64

4.1.5 Asymptotic costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Fourier Representation of BIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Truncation of the Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Nyström discretization of BIEs on the generating curve . . . . . . . . . . . . . . . . 69

4.3.1 Quadrature nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 A simplistic Nyström scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 High-order accurate Nyström discretization . . . . . . . . . . . . . . . . . . . 70

4.4 The full algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Cost of computing the coefficient matrices . . . . . . . . . . . . . . . . . . . . 71

4.4.3 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Accelerations for the Single and Double Layer Kernels Associated with Laplace’s

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



x

4.5.1 The Double Layer Kernels of Laplace’s Equation . . . . . . . . . . . . . . . . 74

4.5.2 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.3 Evaluation of Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Fast Kernel Evaluation for the Helmholtz Equation . . . . . . . . . . . . . . . . . . . 79

4.6.1 Rapid Kernel Calculation via Convolution . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Application to the Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . 81

4.7 Fast evaluation of fundamental solutions in cylindrical coordinates . . . . . . . . . . 83

4.8 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.1 Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.2 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 An efficient and highly accurate solver for multi-body acoustic scattering problems involving

rotationally symmetric scatterers 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Mathematical formulation of the scattering problem . . . . . . . . . . . . . . . . . . 96

5.3 Discretization of rotationally symmetric scattering bodies . . . . . . . . . . . . . . . 97

5.3.1 Nyström discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 A single rotationally symmetric scatterer . . . . . . . . . . . . . . . . . . . . 99

5.3.3 Multibody scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 A block-diagonal pre-conditioner for the multibody scattering problem . . . . . . . . 102

5.5 Accelerated multibody scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.1 Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6.2 Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.3 Accelerated scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xi

6 A composite spectral scheme for 2D variable coefficient elliptic PDEs with local mesh re-

finement 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.1 Outline of solution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.2 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Spectral discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Leaf computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.1 Notation and basic equilibrium conditions . . . . . . . . . . . . . . . . . . . . 123

6.3.2 Constructing the DtN operator . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.3 Interpolating the solution and DtN operators to Gaussian nodes . . . . . . . 127

6.4 The merge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.2 Equilibrium condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.3 Constructing the DtN operators for the union box . . . . . . . . . . . . . . . 131

6.5 The full hierarchical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6.1 Refinement criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6.2 New data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6.3 Interpolation of solution and DtN operators . . . . . . . . . . . . . . . . . . . 136

6.7 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7.1 Helmholtz equation on square domain with non-smooth boundary data . . . 138

6.7.2 Helmholtz equation on domain with corners . . . . . . . . . . . . . . . . . . . 146

6.7.3 Variable coefficient problem on square domain . . . . . . . . . . . . . . . . . 148

6.7.4 Free space scattering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



xii

7 Spectral method for solving three-dimensional scattering problem 155

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Leaf computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.1 Spectral discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.2 Constructing the DtN operator. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Direct solver via composite spectral method . . . . . . . . . . . . . . . . . . . . . . . 160

7.4.1 Merge two DtN operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4.2 The full hierarchical scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 Fast algorithms of compressible matrices . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5.1 Compressible matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5.2 Fast algorithms on HSS matrices. . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.6 Accelerating the direct solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.6.1 Memory efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.6.2 Memory and Time efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.6.3 Complexity analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.8 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8 Conclusion 180

Bibliography 183

Appendix

A Tables of Kapur–Rokhlin Quadrature weights 190



xiii

B Tables of Alpert Quadrature rules 192

C Tables of Modified Gaussian Quadrature rules 195



xiv

Tables

Table

2.1 Classification of Nyström quadrature schemes for logarithmically-singular kernels on

smooth 1D curves. Schemes tested in this work are marked by a solid bullet (“•”).

Schemes are amenable to the FMM unless indicated with a †. Finally, ∗ indicates

that other analytic knowledge is required, namely a local expansion for the PDE. . 19

2.2 Condition numbers of the Nyström system matrix (1
2 I+A), and numbers of GMRES

iterations to reach residual error 10−12, for all the quadrature schemes. . . . . . . . 42

3.1 Results from solving the external Helmholtz boundary value problems (D) and (N)

on the geometries in Figures 3.1(a) and 3.2(a) for three different values of the wave-

number ω. The errors Echarge and Epot report the relative errors in the computed

charge distribution q, and the evaluated potential, respectively. k is the rank of

interaction (to precision ε) between the corner piece in Γ1 and the rest of the contour,

and Ncompress is the size of the compressed system. Tcompress is the time in seconds

required for compressing the corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Timing results in seconds performed for the domain given in Figure 5.3(a) for the

interior Dirichlet problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



xv

4.2 Timing comparison in seconds for constructing the matrices (I+A(n)) using composite

Gaussian quadrature and the recursion relation described in Section 4.5.3 to evaluate

kn for diagonal and near diagonal blocks. The FFT is used to evaluate kn at all other

entries. 2N + 1 is the total number of Fourier modes used. 5 panels were used to

discretize the boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Error in internal Dirichlet problem solved on domain (a) in Figure 5.3. . . . . . . . . 88

4.4 Error in external Dirichlet problem solved on domain (b) in Figure 5.3. . . . . . . . 88

4.5 Error in external Dirichlet problem solved on domain (c) in Figure 5.3. . . . . . . . . 89

4.6 Timing results in seconds performed for a spherical domain. . . . . . . . . . . . . . . 90

4.7 Relative error in external Helmholtz problem for the domain in Figure 5.3(a). The

domain is 1 wavelength in length (the major axis). . . . . . . . . . . . . . . . . . . . 91

4.8 Relative error in external Helmholtz problem for the domain in Figure 5.3(a). The

domain is 25 wavelengths in length (the major axis). . . . . . . . . . . . . . . . . . . 91

4.9 Relative error in external Helmholtz problem for the domain in Figure 5.3(b). The

domain is 10 wavelengths in length (the major axis). . . . . . . . . . . . . . . . . . . 92

4.10 Relative error in external Helmholtz problem for the domain in Figure 5.3(c). The

domain is 10 wavelengths in length (the major axis). . . . . . . . . . . . . . . . . . . 92

5.1 Example 1: exterior Laplace problem solved on the domain in Figure 5.4. . . . . . . 108

5.2 Example 2: exterior Laplace problem solved on the domain in Figure 5.5(a). . . . . . 109

5.3 Example 3: exterior Helmholtz problem solved on the domain in Figure 5.5(b). Each

ellipsoid is 10 wavelengths in diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Example 3: exterior Helmholtz problem solved on the domain in Figure 5.5(b). Each

ellipsoid is 20 wavelengths in diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Example 4: exterior Helmholtz problem solved on the domain in Figure 5.5(a). Each

cavity is 2 wavelength in diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xvi

5.6 Example 4: exterior Helmholtz problem solved on the domain in Figure 5.5(a). Each

cavity is 5 wavelength in diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 (Example 5) Results from solving an exterior Laplace problem on the domain in

Figure 5.6 with p = 50 scatterers. Here the system with the full np× np coefficient

matrix is solved (no compression). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 (Example 5) Results from solving an exterior Laplace problem on the domain in

Figure 5.6 using the accelerated scheme with a reduced size coefficient matrix. The

ranks ka, kb, and kc for the three “species” of scatterers are given. . . . . . . . . . . 115

5.9 (Example 6) Results from solving an exterior Helmholtz problem on the domain in

Figure 5.8 with p = 64 scatterers without compression (the system with the full

np× np coefficient matrix is solved). Each ellipsoid is 5 wavelengths in diameter. . . 117

5.10 (Example 6) Results from solving an exterior Helmholtz problem on the domain in

Figure 5.8 using the accelerated scheme. Each ellipsoid is 5 wavelengths in diameter. 117

5.11 (Example 7) Results from solving the exterior Helmholtz problem on the domain

in Figure 5.6 with p = 50 scatterers, using the full np × np coefficient matrix (no

compression). Each scatterer is 2 wavelengths in diameter. . . . . . . . . . . . . . . . 117

5.12 (Example 7) Results from solving an exterior Helmholtz problem on the domain in

Figure 5.6 using the accelerated scheme with a reduced size coefficient matrix. Each

scatterer is 2 wavelengths in diameter. The ranks ka, kb, and kc, for each of the three

types of scatterer is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 (Example 6) Interior accuracies resulting from solving free space scattering problem

(37) and (38) for different wavenumbers. 11× 11 tensor product grids of Chebyshev

nodes are used for leaf computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 (Example 6) Exterior accuracies resulting from solving free space scattering problem

(37) and (38) for different wavenumbers. 11× 11 tensor product grids of Chebyshev

nodes are used for leaf computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



xvii

6.3 (Example 6) Interior accuracies resulting from solving free space scattering problem

(37) and (38) for different wavenumbers. 21× 21 tensor product grids of Chebyshev

nodes are used for leaf computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 (Example 6) Exterior accuracies resulting from solving free space scattering problem

(37) and (38) for different wavenumbers. 21× 21 tensor product grids of Chebyshev

nodes are used for leaf computations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1 Results for solving Laplace’s equation (24) in Example 7.1 with known exact solution.174

7.2 Results for solving Helmholtz equation (25) in Example 7.2 with 10× 10× 10 wave-

length across the domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3 Results for solving Helmholtz equation (25) in Example 7.2 with 20× 20× 20 wave-

length across the domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4 Results for solving Laplace’s equation (24) with Dirichlet boundary data (26). . . . . 177

7.5 Results for solving Helmholtz equation (25) with Dirichlet boundary data (26). . . . 177

7.6 Results for solving variable coefficient problem (27). . . . . . . . . . . . . . . . . . . 178

7.7 Results for solving constant convection problem (28). . . . . . . . . . . . . . . . . . . 179



xviii

Figures

Figure

1.1 The boundary Γ considered in the numerical experiments. (a) The original Gaussian

grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid.

(c) The grid after local compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Geometry of scattering problem. An incident field v propagates in a medium with

constant wave-speed and hits a scattering surface Γ =
⋃m
p=1 Γp (shown for m = 8).

A charge distribution σ is induced on the surface Γ and generates an outgoing field u. 8

2.1 Example smooth planar curve discretized with N = 90 points via (a) periodic trape-

zoidal rule nodes and (b) panel-based rule (10-point Gauss–Legendre; the panel

ends are shown by line segments). In both cases the parametrization is polar angle

t ∈ [0, 2π] and the curve is the radial function f(t) = 9/20 − (1/9) cos(5t). (c) Ge-

ometry for 2D Helmholtz numerical examples in section 2.7.2 and 2.7.3. The curve

is as in (a) and (b). Stars show source locations that generate the potential, while

diamonds show testing locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Example of Alpert quadrature scheme of order l = 10 on the interval [0, 1]. The

original trapezoidal rule had 20 points including both endpoints, i.e. N = 19 and

h = 1/19. Correction nodes {χph}mp=1 and {1− χph}mp=1 for m = 10 and a = 6, are

denoted by stars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Error results for solving the integral equation (2.40) in Section 2.7.1. . . . . . . . . . 37

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



xix

2.5 (a) Magnitude of eigenvalues of the matrix (1
2 I + A) associated with the Nyström

discretization of the Helmholtz BVP (2.46). The system size is N = 640 and the

wave-number ω corresponds to a contour of size 0.5 wave-lengths. (b) Eigenvalues

in the complex plane associated with 10th-order Kapur–Rokhlin (dots) and Kress

(crosses) quadratures. (c) Same plot as (b), but zoomed in to the origin. . . . . . . 42

2.6 Domains used in numerical examples in Section 2.7.4. All items are rotated about

the vertical axis. (a) A sphere. (b) A starfish torus. . . . . . . . . . . . . . . . . . . 44

2.7 Error results for the 3D interior Dirichlet Laplace problem from section 2.7.4 solved

on the axisymmetric domains (a) and (b) respectively shown in Figure 2.6. . . . . . 45

3.1 The boundary Γtear considered in the numerical experiments. (a) The original Gaus-

sian grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined

grid. (c) The grid after local compression. . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 The boundary Γpacman considered in the numerical experiments. (a) The original

Gaussian grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally

refined grid. (c) The grid after local compression. . . . . . . . . . . . . . . . . . . . . 55

3.3 Plots of the solutions q for the BIEs (8) and (9) associated with, respectively, the

Dirichlet problem (D) and the Neumann problem (N). The solid line is the real part,

and the dotted line is the imaginary part. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 The axisymmetric domain Γ generated by the curve γ. . . . . . . . . . . . . . . . . . 66

4.2 Domains used in numerical examples. All items are rotated about the vertical axis.

(a) An ellipse. (b) A wavy block. (c) A starfish torus. . . . . . . . . . . . . . . . . . 85

4.3 Timings of the algorithm as the number of degrees of freedom Ntot = I(2N + 1)

increases. The timings reported here are for the case I ≈ 2N + 1. The numbers

in parentheses provide estimates of the asymptotic complexity, i.e. the best fit to a

curve T = C Nα
tot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



xx

4.4 Maximum and minimum singular values for the matrices resulting from an 80 panel

discretization of a sphere using 400 Fourier modes, where n is the the matrix asso-

ciated with the nth Fourier mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Geometry of scattering problem. An incident field v propagates in a medium with

constant wave-speed and hits a scattering surface Γ =
⋃m
p=1 Γp (shown for m = 8).

A charge distribution σ is induced on the surface Γ and generates an outgoing field u. 96

5.2 The axisymmetric domain Γ generated by the curve γ. . . . . . . . . . . . . . . . . . 99

5.3 Domains used in numerical examples. All items are rotated about their symmetry

axis. (a) An ellipsoid. (b) A bowl-shaped cavity. (c) A starfish-shaped cavity. . . . . 106

5.4 Domain contains 125 randomly oriented ellipsoids. Distance between any two ellip-

soids is 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 (a) Domain contains 8 bowl-shaped cavities. Distance between any two cavities is

0.5. (b) Domain contains 8 randomly oriented ellipsoids. Distance between any two

ellipsoids is 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Domain contains 50 randomly oriented scatters. . . . . . . . . . . . . . . . . . . . . . 114

5.7 Example of skeletonization of three different scatterers before and after compression.

With n = 10 100 original discretization points (denoted by black dots), after com-

pression (a) for an ellipsoid, only ka = 435 points survive (denoted by red dots); (b)

for a bowl-shaped cavity domain, only kb = 826 points survive; (c) for a starfish-

shaped cavity, only kc = 803 points survive. . . . . . . . . . . . . . . . . . . . . . . . 114

5.8 Domain contains 64 randomly oriented ellipsoids, where the minimal distance be-

tween any two is 6.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Notation for the leaf computation in Section 7.3. (a) A leaf before elimination of

interior (white) nodes. (b) A leaf after elimination of interior nodes. . . . . . . . . . 124



xxi

6.2 Notation for the merge operation described in Section 7.4.1. The rectangular domain

Ω is formed by two squares Ωα and Ωβ. The sets J1 (boundary nodes of Ωα that are

not boundary nodes of Ωβ) and J2 (boundary nodes of Ωβ that are not boundary

nodes of Ωα) form the exterior nodes (black), while J3 (boundary nodes of both Ωα

and Ωβ that are not boundary nodes of the union box) consists of the interior nodes

(white). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 The square domain Ω is split into 4 × 4 leaf boxes. These are then gathered into a

binary tree of successively larger boxes as described in Section 6.5.1. One possible

enumeration of the boxes in the tree is shown, but note that the only restriction is

that if box τ is the parent of box σ, then τ < σ. . . . . . . . . . . . . . . . . . . . . . 132

6.4 Pre-computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Solve stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6 (a) Grid with refinement at the center; (b) Jα denote the indices of Gaussian nodes

on ∂Ωα denoted by blue dots, while Jβ denote the indices of Gaussian nodes on ∂Ωβ

denoted by red circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 (Example 1) Grid of the exterior Gaussian nodes with four levels of refinement. . . 140

6.8 (Example 1) Dirichlet data f(x) for various β given in (32). . . . . . . . . . . . . . . 141

6.9 (Example 1) Convergence of the errors from solving the interior Helmholtz problem

(31) on domain Ω = [0, 1]2 with boundary data given in (32) with respect to the

number of levels of refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.10 (Example 2) Approximated solution and Dirichlet boundary data given in (33). . . . 143

6.11 (Example 2) Convergence of the errors from solving the interior Helmholtz problem

(31) on domain Ω = [0, 1]2 with boundary data given in (33) with respect to the

number of levels of refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.12 (Example 3) Approximated solution and Dirichlet boundary data given in (34). . . . 144



xxii

6.13 (Example 3) Convergence of the errors from solving the interior Helmholtz problem

(31) on domain Ω = [0, 1]2 with boundary data given in (34) with respect to the

number of levels of refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.14 (Example 4) Approximated solution of problem (31) with Dirichlet boundary data

(35) on a tunnel-shaped domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.15 (Example 4) Convergence of the relative errors from solving problem (31) on a tunnel-

shaped domain with respect to the number of levels of refinement. . . . . . . . . . . 147

6.16 (Example 5)(a) Scattering potential b(x) = e−10000|x−x̂|2 , (b) approximated solution. 148

6.17 (Example 5) Convergence of the errors from solving problem (36) on a square domain

with respect to the number of levels of refinement. . . . . . . . . . . . . . . . . . . . 149

6.18 (Example 6) Grid of the exterior Gaussian nodes with three levels of refinement.

The edges of b(x) where refinements are executed are denoted by blue lines. . . . . . 151

6.19 (Example 6)(a) Scatter potential b(x) defined in (38), (b) approximated solution. . . 151

6.20 (Example 6) Computational time Tbuild and solve time Tsolve are plotted against the

total degrees of freedom for refinement levels varying from 0, 2, 4, 6. The domain is

of size 3.2× 3.2 wave-lengths and p = 15. . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1 The three-dimensional rectangular domain Ωτ = Ωσ1 ∪ Ωσ2 . J1 are denoted by blue

dots while J2 are denoted by black dots. Red nodes present the interior nodes of Ωτ

denoted by J3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 The rectangular domain Ω is split into 2×2×2 leaf boxes. These are then organized

into a binary tree of successively larger boxes as described in Section 7.2. Note that

if box τ is the parent of a box σ, we have τ < σ. . . . . . . . . . . . . . . . . . . . . 163

7.3 (Example 7.1)(a) Time at build stage in seconds, (b) time at solve stage. . . . . . . . 175



Chapter 1

Introduction

The dissertation describes fast techniques for solving linear elliptic boundary value problems

(BVPs) associated with elliptic partial differential operators arise frequently in engineering, math-

ematics, and physics. Equations like Stokes, Helmholtz and time-harmonic Maxwell are used to

model a diverse range of physical phenomena. It is necessary to find efficient techniques to solve

these problems numerically. Typically there are two approaches to solving these partial differential

equations (PDEs). The first and most common approach is to directly discretize the differential

operator via finite difference, finite element and spectral methods. The second approach is to

convert the BVPs to boundary integral equations (BIEs) once the fundamental solution is known.

The BIEs are then discretized by boundary element, Galerkin or Nyström method. The resulting

reduced dimensionality and geometric simplicity allows for high-order accurate numerical solutions

with much more efficiency than standard finite difference or finite element discretization.

The techniques we are developing in the dissertation are applicable to most linear elliptic

PDEs, but for concreteness, we will mainly focus on the Helmholtz equation. This equation models

frequency domain wave-propagation, and has proven to be particularly difficult to solve using

existing methodology, in particular in situations where the computational domain extends over

dozens or hundreds of wave-lengths. In this situation, the physics of the problem is inherently ill-

conditioned, and the linear systems arising upon discretization have proven difficult to solve using

iterative solvers. Moreover, due to the aggregation of errors over each wave-length, it is necessary

to make the local discretization error tiny in order to have any accuracy in the final answer. Three



2

sets of ideas for overcoming these difficulties are explored:

(1) High order discretization. Due to the need for tiny local discretization errors, we

will in this dissertation exclusively work with so called “high-order” discretizations, in

which the solution to the PDE is on each “patch” in the discretization approximated by

a high-order polynomial. We typically use local Legendre or Chebyshev grids capable of

resolving polynomials up to degree p between 10 and 40. Traditionally, such high order

discretizations lead to high expense for forming the linear system, as well as to difficulties

in getting iterative solvers to converge. To overcome these problems, we develop novel

techniques for evaluating the matrix elements, as well as direct solvers to overcome issues

of convergence. Brief introduction to applications of these ideas to BIEs with weakly

singular kernels are explored in Section 1.1.1; applications to composite spectral collocation

methods are briefly discussed in Section 1.3.1. The first discretization technique is relied

on earlier work [69, 2, 64, 66] while the second is similar to earlier work on multidomain

pseudospectral methods in [95, 31, 101], especially in Pfeiffer et al [84].

(2) Direct solvers. Consider a linear system

Au = b, (1.1)

arising from the discretization of a linear boundary value problem. The N×N matrix A may

be either dense of sparse, depending on whether the differential operator was discretized

directly, or a boundary integral equation formulation was used. A direct solver (as opposed

to an iterative solver) constructs an operator T such that

||A−1 − T|| ≤ ε,

where ε is a given computational tolerance. Then an approximate solution to (1.1) is

obtained by simply evaluating

uapprox = Tb.



3

Direct solvers offer several advantages over iterative ones:

(1) a couple of orders of magnitude speed-up for problems involving multiple right hand

sides;

(2) the ability to solve relatively ill-conditioned problems;

(3) increased reliability and robustness.

We are interested in developing fast direct solvers. By “fast”, we mean that the compu-

tational cost is of order O(N logqN) where q is a small integer, normally q = 0, 1 or 2.

Most of the fast schemes rely on rank-deficiencies in the off-diagonal blocks of the matrix.

For example, for many one-dimensional BIEs, the matrix to be inverted is Hierarchically

Semi-Separable (HSS), allowing the direct solver to be accelerated to linear or close to

linear complexity. These direct solvers are described in [36, 42], drawing on the early work

[77, 20, 8, 80, 93]. We will adopt this technique to reduce computational cost in solving

problems in 2D on domains with corners as well as problems involving many 3D scatterers

that are well separated (under the constraint that each scatterer is rotationally symmetric),

see Sections 1.1.3 and 1.2.

It is also possible to adapt direct solvers to solve the linear systems associated with cer-

tain novel multidomain spectral collocation discretizations. We have demonstrated via

extensive numerical experimentation that the solution operators in this context can also be

represented in the HSS format. Section 1.3.3 outlines a solution strategy that accelerates

the scheme for problems in 3D from the O(N2) complexity that would be attained by an

established “multifrontal” solver [29] to O(N4/3). This acceleration is similar to techniques

developed for classical nested dissection for finite-element and finite-difference matrices in

[19, 89, 41].

(3) Local mesh refinement. In numerical simulation of PDEs, a frequently encountered

objective is to effectively deal with sharp gradients, localized singularities and regions of



4

poor resolution. A natural way is to do local mesh refinement that does not require much

à priori knowledge of the solution. Such an algorithm would take an error estimator as

input and produce a new discrete model or mesh that reduces the error as an output.

However, driving adaptive refinement at a “high level” is never an easy task: it depends

on the experienced selection of tolerances and refinement criteria that are highly problem-

dependent [61]. In the thesis, we present two local mesh refinement schemes. In Section

1.1.2, we describe an efficient refinement technique for solving BIEs in 2D on domains

with corners. Another mesh refinement algorithm adapted to a direct solver via spectral

collocation method is proposed in Section 1.3.2. The adaptive algorithm is working in

progress.

The three sets of ideas have been explored in a number of manuscripts. Rather than discussing

each topic individually, we in this introduction organize the work into three broad “themes,” which

will be described in Sections 1.1, 1.2, and 1.3. Section 1.4 provides an overview of the specific

contributions of each Chapter.

1.1 Theme I: High order methods for boundary integral equations in the

plane

Consider the so called “sound-soft” scattering problem




−∆u(x)− κ2u(x) = 0 x ∈ Ωc,

u(x) = f(x) x ∈ Γ,

∂u(x)

∂r
− iκu(x) = O(1/r) r := |x| → ∞,

(1.2)

where the “wave number” κ is a real non-negative number. It is known [26] that (1) has a unique

solution for every incoming field v. Following standard practice, we reformulate (1) as second kind

Fredholm BIE using a so called “combined field technique” [26, 81]. We then look for a solution u

of the form

u(x) =

∫

Γ
Gκ(x,x′)σ(x′) dA(x′), x ∈ Ωc, (1.3)



5

where Gκ is a combination of the single and double layer kernels,

Gκ(x,x′) =
∂φκ(x,x′)

∂n(x′)
+ iκ φ(x,x′) (1.4)

and where φκ is the free space fundamental solution

φκ(x,x′) =
eiκ|x−x

′|

|x− x′| . (1.5)

To obtain an equation for σ, we take the limit in (2) as x approaches the boundary Γ, and find

that σ must satisfy the integral equation

1

2
σ(x) +

∫

Γ
Gκ(x,x′)σ(x′) dA(x′) = f(x), x ∈ Γ. (1.6)

1.1.1 High-order Nyström discretization and quadrature schemes

We start with an underlying quadrature scheme on [0, T ], defined by nodes {xi}Ni=1 ordered

by 0 ≤ x1 < x2 < · · · < xN < T , and corresponding weights {wi}Ni=1. The Nyström discretization

is to use the nodes {xi}Ni=1 as collocation points where (5) is enforced and to construct a linear

system that relates a given data vector f = {fi}Ni=1 to an unknown solution vector σ = {σi}Ni=1 to

solve. Our first aim is to construct the matrix element {ai,j}Ni,j=1 such that

∫ T

0
Gκ(xi,x

′)σ(x′) dx′ ≈
N∑

j=1

ai,j σ(xj) , (1.7)

holds to high accuracy. If the kernel Gκ in (5) is smooth, as occurs for the Laplace double-layer

operator (κ = 0), then standard trapezoidal rule and Gaussian quadrature approximate the integral

to high accuracy, and the matrix elements are given by

ai,j = Gκ(xi, xj)wj (1.8)

It is less obvious how to construct the matrix A = {ai,j} such that (2.4) holds to high order accuracy

in the case where k has a logarithmic singularity.

Fortunately there exist high-order quadratures to integrate these weakly singular kernels,

for example, Kapur-Rokhlin, Alpert, modified Gaussian and Kress quadrature, described in earlier



6

work [69, 2, 64, 66]. In Chapter 2, we summarize their key features in view of the differences of

numerical construction, requirement to know the kernel explicitly or not, easiness to implement,

etc. Furthermore, details on how to construct Nyström discretization with these four quadratures

and comparisons of their performance are given, where we also provide numerical results for solving

problem (1) using different schemes for different wave numbers.

1.1.2 Local mesh refinement

Suppose the domain where we solve the problem (1) is a piecewise smooth contour in the

plane but has some corners, for example a tear-shaped domain shown in Figure 1.1. Challenges arise

since the integrand exhibits complicated singular behavior near the corner points. To overcome

this difficulty, we start with a standard Nyström discretization using a panel based quadrature and

partition the contour into two disjoint parts, Γ = Γ1
⋃

Γ2, in such a way that Γ1 is a small piece

containing the corner. The piece Γ2 is smooth, and can be discretized into panels rather coarsely.

For the piece Γ1, we use a simplistic refinement strategy where we recursively cut the panel nearest

the corner in half. Once the innermost panel is small enough that its contribution can be ignored,

it is simply discarded and the refinement stops.
3

(a) (b) (c)

Figure 1. The boundary Γ considered in the numerical experiments. (a) The original
Gaussian grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid.
(c) The grid after local compression.

Numerical illustration: Consider the boundary value problem

(8)

∆u(x) + κ2u(x) = 0 x ∈ Ω̄c

u(x) = g(x) x ∈ Γ = ∂Ω√
|x|

(
∂

∂|x| − iκ
)

u(x) → 0 as |x| → ∞

where κ is a constant wavenumber, Ω is a two dimensional bounded domain whose boundary Γ is a piecewise
smooth contour, and Ω̄c = R2/Ω̄. We make the ansatz that the solution u can be represented by

u(x) =

∫

Γ

(
i

4

∂

∂ν(y)
H0(κ|x − y|)

)
q(y) ds(y), x ∈ Ω̄c,

where ν(y) represents the normal vector to Γ at the point y ∈ Γ and i
4H0(κ|x−y|) is the fundamental solution

to the Helmholtz equation. By enforcing the boundary condition, we obtain the following equation for the
unknown boundary charge distribution q:

(9) −1

2
q(x) +

∫

Γ

(
i

4

∂

∂ν(y)
H0(κ|x − y|)

)
q(y) ds(y) = g(x), for x ∈ Γ.

We discretize (9) via a Nyström technique based on a composite Gaussian quadrature [10] with 10 Gaussian
nodes per panel. Note that the kernel of (9) is weakly singular, but high order accuracy can be retained by
modifying a small number of matrix entries close to the diagonal, see [6].

All experiments are run on a Lenovo laptop computer with 8GB of RAM and a 2.6GHz Intel i5-2540M pro-
cessor. The compression technique was implemented rather crudely in MATLAB, which means that significant
further gains in speed should be achievable.

A tear shaped geometry with arc-length 4π is considered, cf. Figure 1 (a), for three values of κ (corresponding
to domain sizes 0.31, 3.18, and 31.83 wavelengths, respectively). The boundary data is taken to be the incident
wave eiκx2 . We measured the error Echarge in the computed boundary charge q given by

Echarge =
‖q − qexact‖L2(Γ)

‖qexact‖L2(Γ)

and the error Epot in the potential u, evaluated on the boundary of a circle S with radius 3 enclosing Ω,

Epot =
‖u − uexact‖L2(S)

‖uexact‖L2(S)
.

Since the exact solutions qexact and uexact were not available, we measured against a very highly over-resolved
reference solution. Rows 1, 5, and 9 of Table 1 report the errors Echarge and Epot when there is no refinement
of the corner. In all other experiments, the corner is discretized with 1280 points and is compressed for three
prescribed tolerances ε. Table 1 reports the size of the original system (N × N), the size of the compressed

3

(a) (b) (c)

Figure 1. The boundary Γ considered in the numerical experiments. (a) The original
Gaussian grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid.
(c) The grid after local compression.

Numerical illustration: Consider the boundary value problem

(8)

∆u(x) + κ2u(x) = 0 x ∈ Ω̄c

u(x) = g(x) x ∈ Γ = ∂Ω√
|x|

(
∂

∂|x| − iκ
)

u(x) → 0 as |x| → ∞

where κ is a constant wavenumber, Ω is a two dimensional bounded domain whose boundary Γ is a piecewise
smooth contour, and Ω̄c = R2/Ω̄. We make the ansatz that the solution u can be represented by

u(x) =

∫

Γ

(
i

4

∂

∂ν(y)
H0(κ|x − y|)

)
q(y) ds(y), x ∈ Ω̄c,

where ν(y) represents the normal vector to Γ at the point y ∈ Γ and i
4H0(κ|x−y|) is the fundamental solution

to the Helmholtz equation. By enforcing the boundary condition, we obtain the following equation for the
unknown boundary charge distribution q:

(9) −1

2
q(x) +

∫

Γ

(
i

4

∂

∂ν(y)
H0(κ|x − y|)

)
q(y) ds(y) = g(x), for x ∈ Γ.

We discretize (9) via a Nyström technique based on a composite Gaussian quadrature [10] with 10 Gaussian
nodes per panel. Note that the kernel of (9) is weakly singular, but high order accuracy can be retained by
modifying a small number of matrix entries close to the diagonal, see [6].

All experiments are run on a Lenovo laptop computer with 8GB of RAM and a 2.6GHz Intel i5-2540M pro-
cessor. The compression technique was implemented rather crudely in MATLAB, which means that significant
further gains in speed should be achievable.

A tear shaped geometry with arc-length 4π is considered, cf. Figure 1 (a), for three values of κ (corresponding
to domain sizes 0.31, 3.18, and 31.83 wavelengths, respectively). The boundary data is taken to be the incident
wave eiκx2 . We measured the error Echarge in the computed boundary charge q given by

Echarge =
‖q − qexact‖L2(Γ)

‖qexact‖L2(Γ)

and the error Epot in the potential u, evaluated on the boundary of a circle S with radius 3 enclosing Ω,

Epot =
‖u − uexact‖L2(S)

‖uexact‖L2(S)
.

Since the exact solutions qexact and uexact were not available, we measured against a very highly over-resolved
reference solution. Rows 1, 5, and 9 of Table 1 report the errors Echarge and Epot when there is no refinement
of the corner. In all other experiments, the corner is discretized with 1280 points and is compressed for three
prescribed tolerances ε. Table 1 reports the size of the original system (N × N), the size of the compressed

3

(a) (b) (c)

Figure 1. The boundary Γ considered in the numerical experiments. (a) The original
Gaussian grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid.
(c) The grid after local compression.

Numerical illustration: Consider the boundary value problem

(8)

∆u(x) + κ2u(x) = 0 x ∈ Ω̄c

u(x) = g(x) x ∈ Γ = ∂Ω√
|x|

(
∂

∂|x| − iκ
)

u(x) → 0 as |x| → ∞

where κ is a constant wavenumber, Ω is a two dimensional bounded domain whose boundary Γ is a piecewise
smooth contour, and Ω̄c = R2/Ω̄. We make the ansatz that the solution u can be represented by

u(x) =

∫

Γ

(
i

4

∂

∂ν(y)
H0(κ|x − y|)

)
q(y) ds(y), x ∈ Ω̄c,

where ν(y) represents the normal vector to Γ at the point y ∈ Γ and i
4H0(κ|x−y|) is the fundamental solution

to the Helmholtz equation. By enforcing the boundary condition, we obtain the following equation for the
unknown boundary charge distribution q:

(9) −1

2
q(x) +

∫

Γ

(
i

4

∂

∂ν(y)
H0(κ|x − y|)

)
q(y) ds(y) = g(x), for x ∈ Γ.

We discretize (9) via a Nyström technique based on a composite Gaussian quadrature [10] with 10 Gaussian
nodes per panel. Note that the kernel of (9) is weakly singular, but high order accuracy can be retained by
modifying a small number of matrix entries close to the diagonal, see [6].

All experiments are run on a Lenovo laptop computer with 8GB of RAM and a 2.6GHz Intel i5-2540M pro-
cessor. The compression technique was implemented rather crudely in MATLAB, which means that significant
further gains in speed should be achievable.

A tear shaped geometry with arc-length 4π is considered, cf. Figure 1 (a), for three values of κ (corresponding
to domain sizes 0.31, 3.18, and 31.83 wavelengths, respectively). The boundary data is taken to be the incident
wave eiκx2 . We measured the error Echarge in the computed boundary charge q given by

Echarge =
‖q − qexact‖L2(Γ)

‖qexact‖L2(Γ)

and the error Epot in the potential u, evaluated on the boundary of a circle S with radius 3 enclosing Ω,

Epot =
‖u − uexact‖L2(S)

‖uexact‖L2(S)
.

Since the exact solutions qexact and uexact were not available, we measured against a very highly over-resolved
reference solution. Rows 1, 5, and 9 of Table 1 report the errors Echarge and Epot when there is no refinement
of the corner. In all other experiments, the corner is discretized with 1280 points and is compressed for three
prescribed tolerances ε. Table 1 reports the size of the original system (N × N), the size of the compressed

(a) (b) (c)

Figure 1.1: The boundary Γ considered in the numerical experiments. (a) The original Gaussian
grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid. (c) The grid
after local compression.



7

1.1.3 Direct solver

The apparent drawback of a simplistic refinement process is that it can dramatically increase

the number of degrees of freedom required in the Nyström discretization. Remarkable progress has

been made in [9, 54, 58] to “squeeze out” the degrees of freedom added by the local refinement near

the corner via purpose-built local compression techniques. In Chapter 3 we propose a different local

compression scheme via a general direct solver [36]. A local compression process is then applied

such that a set of skeleton points are automatically picked from among the large number of points

used in the refinement. The degrees of freedom are then largely reduced. Most important, the

algorithm in Chapter 3 can be executed in time that scales linearly with the number of degrees of

freedom added.

1.2 Theme II: Acoustic scattering involving rotationally symmetric scatter-

ers

This section describes the second theme: a robust and highly accurate numerical method for

modeling frequency domain acoustic scattering on domain external to a single scatter and a group

of scatterers in three dimensions. Specifically, for problem with multiple scatterers, let Γ = ∪mp=1Γp

denote the union of m smooth, disjoint, rotationally symmetric surfaces in R3. We solve problem

(1) on the domain exterior to Γ, denoted by Ω, for example the one shown in Figure 5.1. The ability

to solve scattering problems in complex geometries to this high level of accuracy has only recently

become possible, due to improvements both in constructing high-order Nyström discretizations of

the BIEs as described in Section 1.1 and in robust solvers for the resulting linear systems.

1.2.1 A single rotationally symmetric scatter.

We first develop a solution procedure draws an earlier work [86, 103] describing techniques for

solving scattering problems involving a single scatterer. The high-order accuracy technique relies

on decoupling the BIEs defined on the surface of the scattering body as a sequence of equations

defined on a generating contour and discretizing the BIEs using the Nyström method based on



8

incident field v

scattered field u

Figure 1.2: Geometry of scattering problem. An incident field v propagates in a medium with
constant wave-speed and hits a scattering surface Γ =

⋃m
p=1 Γp (shown for m = 8). A charge

distribution σ is induced on the surface Γ and generates an outgoing field u.



9

a high-order accurate composite Gaussian quadrature rule. Then the scattering matrix for an

individual rotationally symmetric body can very efficiently be constructed and solved by iterative

solvers, such as GMRES.

In view of asymptotic complexity, let N denote the total numbers of degree of freedom, the

cost of solving the linear system for a single right-hand side is O(N2). The subsequent solve requires

only O(N3/2) operations for additional right hand sides. Details can be found in Chapter 4.

1.2.2 Multibody scattering.

We then in Chapter 5 proceed to the general case of m disjoint scattering surfaces where each

scatterer is discretized using the tensor product procedure described in Chapter 4. For notational

simplicity, we assume that each scatterer is discretized using the same n number of nodes, for a

total degree of freedom of N = mn. We then seek to construct matrix blocks {Ap,q}mp,q=1 such that

the Nyström discretization of (5) associated with this quadrature rule takes the form




A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

...

Am,1 Am,2 · · · Am,m







σ1

σ2

...

σm




=




f1

f2

...

fm




, (1.9)

where each block Ap,q is of size n×n. The diagonal blocks Ap,p are constructed using the technique

described in Section 5.3.2. Next observe that in the off-diagonal blocks, the “naive” formula resulted

from standard Gaussian quadrature works well since the kernel Gκ(x,x′) is smooth since x and

x′ belong to different scatterers. We then solve the linear system (17) using the iterative solver

GMRES [88], accelerated by a block-diagonal pre-conditioner. Each matrix-vector multiplication is

accelerated using the Fast Multipole Method (FMM) [43, 21]; specifically the implementation [39]

by Zydrunas Gimbutas and Leslie Greengard.

Furthermore, when the scatterers are not tightly packed, we explore that the off-diagonal

blocks of the linear system are typically rank-deficient. Therefore, the multibody scattering scheme

can be accelerated by reducing the size of the linear system (17) before applying an iterative solver.



10

Chapter 5 describes the implementation details of the high accurate numerical scheme de-

scribed above. Numerical results illustrate the efficiency and robustness of the method. In par-

ticular, implementing this accelerated scheme greatly reduces the degree of freedom especially for

Helmholtz equation.

1.3 Theme III: Scattering in variable wave-speed media in 2D and 3D

This section describes a numerical method for solving boundary value problems, such as




−∇(c(x)∇u(x)) + b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

(1.10)

where Ω is rectangular domain in R2 or R3 with boundary Γ = ∂Ω, where c and b are smooth

functions, where c > 0 and b ≥ 0, and where f is a given function.

1.3.1 Direct solver via composite spectral discretization

We first describe a direct solver which draws an earlier work [79] for solving variable coefficient

elliptic PDEs (1.10) in the plane via a composite spectral collocation method. The scheme combines

a spectral multidomain technique with a hierarchical direct solver. More specifically, the scheme

starts with splitting the domain into a hierarchical tree of patches where on each patch the solution

to (1.10) are approximated via tabulation on a tensor product grid of Chebyshev points. A local

solution operator for each “leaf” patch is then built, and solution operators for larger patches

are built via a hierarchical merge procedure in a upwards sweep over the tree from smaller to

larger patches. Once the solution operators for all patches have been computed, the Dirichlet data

tabulated on Γ are taken as input to construct tabulated values of the solution vector at all internal

grid points. This solve stage involves a single downwards pass through the tree, going from larger

patches to smaller.

Note that once the solution operators have been built, solves can be executed extremely

rapidly, requiring only O(N logN) operations while the build stage has O(N1.5) asymptotic com-

plexity. Details describing the direct solver are given in Chapter 6.



11

1.3.2 Local mesh refinement scheme

If there exists a localized region Ω̃ ⊂ Ω where c(x) and/or b(x) vary dramatically, or the

solution u(x) exhibits singularities, it is beneficial to use a finer discretization in that region. We

propose a refinement scheme that retains the high-order accuracy by continuously splitting the

the patches into smaller ones with a distance criteria. Further details on this topic are presented

in Chapter 6. Numerical experiments show that the proposed algorithm is capable of retaining

high-order accuracy with a few levels of refinements.

1.3.3 Accelerated 3D direct solver

We also develop a fast direct solver for solutions to linear systems arising from three dimen-

sional elliptic equations. The construction of the direct solver for 3D problems is similar to that of

the 2D problems, which consists of spectral discretization, build stage and solve stage. The build

stage has O(N2) asymptotic complexity, which is dominated by inverting dense matrices of size

O(N2/3)×O(N2/3) at top levels. The solve stage takes O(N4/3) operations.

However, an acceleration technique to compute the solution operators efficiently can be im-

plemented by exploring the internal structure of the matrix representation T of the DtN operator.

We make the following claims:

• The off-diagonal blocks of T have low numerical rank.

• The diagonal blocks of T are Hierarchically Semi Separable (HSS) matrices with low HSS

rank.

By HSS, we mean a matrix is amenable to a telescoping block factorization. The computational

cost of the build stage could then be reduced to O(N4/3) since arithmetic operations involving dense

HSS matrices of size M ×M can often be executed in O(M) operations. Details on properties, the

factored representation of HSS matrices as well as the associated fast algorithms are provided in

[36, 46, 47] and Chapter 7.



12

1.4 Structure of dissertation and overview of principle contributions

Beside the introductory and conclusion chapters, the dissertation consists of six chapters,

four of which have been published to referred journals. Each chapter is independent and can be

read by itself. To improve readability and accessibility, in this section we briefly summarize the

key contributions of each chapter.

Chapter 2: The material in this chapter has appeared as:

S. Hao, A. Barnett, P.G. Martinsson, and P. Young, High-order accurate methods

for Nyström discretization of integral equations on smooth curves in the plane,

Advances in Computational Mathematics, 40(1), pp. 245-272, 2014.

This paper can be viewed as a survey which summarizes existing high-order quadrature rules

for integrating functions with logarithmic kernels. It also provides details to deriving Nyström

implementation formulas and also demonstrates their performance with numerical experiments.

Principle contributions of this paper include:

• Nyström implementation formulas of four different quadratures: Kapur-Rokhlin, Alpert,

Kolm-Rokhlin and Kress are carefully derived in this paper. Although earlier work [70, 2,

64, 66, 70] present the construction of these high-order quadrature rules, many of them are

lack of details of how to implement them in Nyström discretization of BIEs. The formulas

we derived are compact and can be easily implemented into numerical simulation.

• The paper presents formal comparison between the accuracy of different approaches on

various problem settings. We also make informal remarks on the relative advantages and

disadvantages of different quadrature rules. Our remarks are primarily informed by the

numerical experiments. These remarks could give some advice which quadratures should

be used given certain problems.

Chapter 3: The material in this chapter has appeared as:



13

A. Gillman, S. Hao, P.G. Martinsson, A simplied technique for the efficient and

high-order accurate discretization of boundary integral equations in 2D on do-

mains with corners, Journal of Computational Physics, 256(1), pp. 214–219,

2014.

This paper implements one of the techniques described in Chapter 2, composite Gaussian rule, to

solve BIEs on two-dimensional domains with corners, but focuses on eliminating the “superfluous”

degrees of freedom added by refinement. Principle contributions include:

• This paper describes the recent developed techniques for computing solutions to BIEs

defined on piecewise smooth contour in the plane with corners. In our approach, the BIE is

discretized with standard Nyström method where composite Gaussian quadrature is used

to deal with log-singularity of the kernel functions. Singularity near the corner points can

be resolved by refining the computation mesh near the corners until given computational

tolerance ε reached.

• When dealing with the challenges arise with the refinement process where the number of

degrees of freedom dramatically increases, instead of using the purpose-built local process

introduced in [10, 55, 59, 53], we accomplish the “squeezing out” task via employing the

general purpose direct solver of [36, 42, 63, 78] to compress the corner and eliminate the

“extra” degrees of freedom. Moreover, numerical experiments show that this local com-

pression process can be executed in time that scales linearly with the number of degrees of

freedom added.

Chapter 4: The material in this chapter has appeared as:

P. Young, S. Hao, and P. G. Martinsson, A high-order Nyström discretization

scheme for boundary integral equations defined on rotationally symmetric sur-

faces, J. Comput. Phys. 231 (2012), no. 11, 41424159.



14

This paper implements high-order panel-based Gaussian quadrature rule to solve scattering problem

on rotationally symmetric surfaces in 3D. Principle contributions include:

• The paper describes a high-order Nyström discretization of the BIEs (1) that provides

far higher accuracy and speed than previously published methods. The scheme presented

uses the Fourier transform to reduce the original BIE defined on a surface to a sequence

of BIEs defined on a generating curve for the surface. Nyström discretization with high-

order Gaussian quadrature rule is used to discretize the BIEs on the generating curve. The

reduction in dimensionality, along with the use of high-order accurate quadratures, leads

to small linear systems that can be inverted directly via, e.g., Gaussian elimination. This

makes the scheme particularly fast in environments involving multiple right hand sides.

• Complications arise when evaluating the kernel functions of the axisymmetric formulation.

The fact is that each kernel is defined as a Fourier integral of the original kernel function in

the azimuthal variable, that cannot be evaluated analytically, and would be too expensive

to approximate via standard quadrature techniques. Fortunately, for BIEs associated with

the Laplace and Helmholtz equations, we develop techniques to evaluate the kernel in the

reduced equations very rapidly by exploiting recursion relations for Legendre function.

Chapter 5: The material in this chapter has appeared as:

S. Hao, P.G. Martinsson, P. Young, An efficient and high-order accurate solver

for multi-body acoustic scattering problems involving rotationally symmetric scat-

terers, Computers and Mathematics with Applications, 69(4), 2015, pp 304 - 318.

This paper extends the algorithm described in Chapter 4 to solving problems involving multiple

rotational symmetric bodies. Principle contributions include:

• In this paper we combine several recently developed techniques to obtain a solver capable

of solving scattering problems on complex multibody geometries in three dimensions. The



15

solver is robust and highly accurate that it solves the problem to eight digits of accuracy

or more with moderate numbers of discretization nodes. In particular, the solver is capable

of resolving domain involving cavities.

• This paper also presents an accelerated algorithm for problems where the scatterers are

well-separated. In these situations, the off-diagonal blocks of the coefficient matrix are

rank deficient. The number of degrees of freedom in the global system can be greatly

reduced by applying skeletonization scheme introduced in [76]. The algorithm is capable of

solving even very large scale problems to high accuracy. Extensive numerical experiments

confirm the performance that a dozen of degrees of freedom can be reduced if the accelerated

algorithm is implemented.

Chapter 6: This chapter describes a high-order local mesh refinement scheme for variable

coefficient elliptic PDEs in the plane, where the regularity of the solution changes across the domain.

The algorithm relies on the composite spectral scheme [79] on uniform grid. Specific contributions

include:

• The variable coefficient elliptic PDEs in the plane are discretized via a composite spectral

collocation method. While Chebyshev nodes are ideal for the leaf computations, however,

there are benefits to using Gaussian nodes that justify the trouble to retabulate the oper-

ators. One of the advantages is to allow for interpolation between different discretizations

and make the direct solver be easily extended to local refinement when necessary. An in-

terpolation technique is carefully presented in this chapter which interpolates the potential

values at Chebyshev nodes on the boundary of each patch to its values at Gaussian nodes.

• This chapter presents a refinement scheme when the positions need for refinement are

known in advance. The boxes containing these points are split into smaller ones according

to a distance criteria. A direct solver is then executed after the hierarchical tree is built

which solves the problem in a single sweep. After all the solution operators are constructed



16

for every box in the hierarchical tree, solutions can be obtained immediately for multiple

righthand-sides without recomputing the solution operators.

Chapter 7: This chapter describes a numerical scheme to solve elliptic PDEs with variable

coefficients on three-dimensional domains. The method is an extension to the direct solver presented

in Chapter 6.

• The principal contribution of the present work is a technique that exploits internal structure

in the dense matrices representing DtN maps to improve on the computational complexity

from O(N2) to O(N4/3). The fact is that the diagonal blocks of the DtN operators are of

HSS (Hierarchically Semi Separable) form which enable matrix inversion to be performed

in linear time.

• Numerical experiments presented in this chapter were carried on a personal worksta-

tion. The algorithm performs well for solving three-dimensional Laplace and low-frequency

Helmholtz problems. However, with these experiments, we observe that memory constraints

become far more limiting for 3D problems than for problems in 2D.



Chapter 2

High-order accurate methods for Nyström discretization of integral equations

on smooth curves in the plane

S. Hao, A. H. Barnett, P.G. Martinsson, P. Young

Note: The work described in this chapter was carried out in collaboration with Professors Alexan-

der Barnett of Dartmouth and Per-Gunnar Martinsson of the University of Colorado and Patrick

Young. It appeared in the Advances in Computational Mathematics (40(1), pages 245-272, 2014)

under the title: “High-order accurate methods for Nyström discretization of integral equations on

smooth curves in the plane ” .

Abstract: Boundary integral equations and Nyström discretization provide a powerful tool for

the solution of Laplace and Helmholtz boundary value problems. However, often a weakly-singular

kernel arises, in which case specialized quadratures that modify the matrix entries near the diago-

nal are needed to reach a high accuracy. We describe the construction of four different quadratures

which handle logarithmically-singular kernels. Only smooth boundaries are considered, but some

of the techniques extend straightforwardly to the case of corners. Three are modifications of the

global periodic trapezoidal rule, due to Kapur–Rokhlin, to Alpert, and to Kress. The fourth

is a modification to a quadrature based on Gauss–Legendre panels due to Kolm–Rokhlin; this

formulation allows adaptivity. We compare in numerical experiments the convergence of the four

schemes in various settings, including low- and high-frequency planar Helmholtz problems, and 3D

axisymmetric Laplace problems. We also find striking differences in performance in an iterative

setting. We summarize the relative advantages of the schemes.



18

2.1 Introduction

Linear elliptic boundary value problems (BVPs) where the partial differential equation has

constant or piecewise-constant coefficients arise frequently in engineering, mathematics, and physics.

For the Laplace equation, applications include electrostatics, heat and fluid flow, and probability;

for the Helmholtz equation they include the scattering of waves in acoustics, electromagnetics, op-

tics, and quantum mechanics. Because the fundamental solution (free-space Green’s function) is

known, one may solve such problems using boundary integral equations (BIEs). In this approach,

a BVP in two dimensions (2D) is converted via so-called jump relations to an integral equation for

an unknown function living on a 1D curve [27]. The resulting reduced dimensionality and geomet-

ric simplicity allows for high-order accurate numerical solutions with much more efficiency than

standard finite-difference or finite element discretizations [4].

The BIEs that arise in this setting often take the second-kind form

σ(x) +

∫ T

0
k(x, x′)σ(x′) dx′ = f(x), x ∈ [0, T ], (2.1)

where [0, T ] is an interval, where f is a given smooth T -periodic function, and where k is a (doubly)

T -periodic kernel function that is smooth away from the diagonal and has a logarithmic singularity

as x′ → x. (The term “smooth” refers to C∞ in this manuscript.) In order to solve a BIE such

as (2.1) numerically, it must be turned into a linear system with a finite number N unknowns.

This is most easily done via the Nyström method [82, 71]. (There do exist other discretization

methods such as Galerkin and collocation [71]; while their relative merits in higher dimensional

settings are still debated, for curves in the plane there seems to be little to compete with Nyström

[27, Sec. 3.5].) However, since the fundamental solution in 2D has a logarithmic singularity, generic

integral operators of interest inherit this singularity at the diagonal, giving them (at most weakly-

singular) kernels which we write in the standard “periodized-log” form

k(x, x′) = ϕ(x, x′) log

(
4 sin2 π(x− x′)

T

)
+ ψ(x, x′) (2.2)

for some smooth, doubly T -periodic functions ϕ and ψ. In this note we focus on a variety of



19
split into ϕ, ψ explicit split into ϕ, ψ unknown

global • Kress† [70] • Kapur–Rokhlin [64]
(periodic trapezoidal rule) • Alpert [2]

◦ QBX∗ [65]

panel-based ◦ Helsing [52, 56] • Modified Gaussian (Kolm-Rokhlin) [66]
(Gauss-Legendre nodes) ◦ QBX∗ [65]

Table 2.1: Classification of Nyström quadrature schemes for logarithmically-singular kernels on
smooth 1D curves. Schemes tested in this work are marked by a solid bullet (“•”). Schemes are
amenable to the FMM unless indicated with a †. Finally, ∗ indicates that other analytic knowledge
is required, namely a local expansion for the PDE.

high-order quadrature schemes for the Nyström solution of such 1D integral equations.

We first review the Nyström method, and classify some quadrature schemes for weakly-

singular kernels.

2.1.1 Overview of Nyström discretization

One starts with an underlying quadrature scheme on [0, T ], defined by nodes {xi}Ni=1 ordered

by 0 ≤ x1 < x2 < x3 < · · · < xN < T , and corresponding weights {wi}Ni=1. This means that for g a

smooth T -periodic function,
∫ T

0
g(x)dx ≈

N∑

i=1

wig(xi)

holds to high accuracy. More specifically, the error converges to zero to high order in N . Such

quadratures fall into two popular types: either a global rule on [0, T ], such as the periodic trape-

zoidal rule [71, Sec. 12.1] (which has equally-spaced nodes and equal weights), or a panel-based

(composite) rule which is the union of simple quadrature rules on disjoint intervals (or panels)

which cover [0, T ]. An example of the latter is composite Gauss–Legendre quadrature. The two

types are shown in Figure 2.1 (a) and (b). Global rules may be excellent—for instance, if g is ana-

lytic in a neighborhood of the real axis, the periodic trapezoidal rule has exponential convergence

[71, Thm. 12.6]—yet panel-based rules can be more useful in practice because they are very simple

to make adaptive: one may split a panel into two smaller panels until a local convergence criterion

is met.



20

The Nyström method for discretizing (2.1) constructs a linear system that relates a given data

vector f = {fi}Ni=1 where fi = f(xi) to an unknown solution vector σ = {σi}Ni=1 where σi ≈ σ(xi).

Informally speaking, the idea is to use the nodes {xi}Ni=1 as collocation points where (2.1) is

enforced:

σ(xi) +

∫ T

0
k(xi, x

′)σ(x′) dx′ = f(xi), i = 1, . . . , N. (2.3)

Then matrix elements {ai,j}Ni,j=1 are constructed such that, for smooth T -periodic σ,

∫ T

0
k(xi, x

′)σ(x′) dx′ ≈
N∑

j=1

ai,j σ(xj) . (2.4)

Combining (2.3) and (2.4) we obtain a square linear system that relates σ to f:

σi +

N∑

j=1

ai,j σj = fi, i = 1, . . . , N . (2.5)

In a sum such as (2.5), it is convenient to think of xj as the source node, and xi as the target

node. We write (2.5) in matrix form as

σ + Aσ = f . (2.6)

A high-order approximation to σ(x) for general x ∈ [0, T ] may then be constructed by interpolation

through the values σ; the preferred way to do this is via the kernel itself, which is known as “Nyström

interpolation” [71, p. 202].

If the kernel k is smooth, as occurs for the Laplace double-layer operator, then the matrix

elements

ai,j = k(xi, xj)wj (2.7)

lead to an error convergence rate that is provably the same order as the underlying quadrature

scheme [71, Sec. 12.2]. It is less obvious how to construct the matrix A = {ai,j} such that (2.4)

holds to high order accuracy in the case where k has a logarithmic singularity, as in (2.2). The

purpose of this note is to describe and compare several techniques for this latter task. Note that it is

the assumption that the solution σ(x) is smooth (i.e. well approximated by high-order interpolation

schemes)



21

(a) (b) (c)

Figure 2.1: Example smooth planar curve discretized with N = 90 points via (a) periodic trape-
zoidal rule nodes and (b) panel-based rule (10-point Gauss–Legendre; the panel ends are shown by
line segments). In both cases the parametrization is polar angle t ∈ [0, 2π] and the curve is the
radial function f(t) = 9/20− (1/9) cos(5t). (c) Geometry for 2D Helmholtz numerical examples in
section 2.7.2 and 2.7.3. The curve is as in (a) and (b). Stars show source locations that generate
the potential, while diamonds show testing locations.



22

2.1.2 Types of singular quadrature schemes

We now overview the schemes presented in this work. It is desirable for a scheme for the

singular kernel case to have almost all elements be given by (2.7), for the following reason. When

N is large (greater than 104, say), solving (2.6) via standard dense linear algebra starts to become

impractical, since O(N3) effort is needed. Iterative methods are preferred which converge to a

solution using a small number of matrix-vector products; in the last couple of decades so-called

fast algorithms have arisen to perform such a matrix-vector product involving a dense N × N

matrix in only O(N) or O(N logN) time. The most well-known is probably the fast multipole

method (FMM) of Rokhlin–Greengard [43], but others exist [6, 28, 102]. They use potential theory

to evaluate all N sums of the form

N∑

j=1

k(xi, xj) qj , i = 1, . . . , N (2.8)

where the qj are interpreted as charge strengths. Choosing qj = wjσj turns this into a fast algorithm

to evaluate Aσ given σ, in the case where A is a standard Nyström matrix (2.7).

Definition 1 We say that a quadrature scheme is FMM-compatible provided that only O(N)

elements {ai,j} differ from the standard formula (2.7).

An FMM-compatible scheme can easily be combined with any fast summation scheme for the

sum (2.8) without compromising its asymptotic speed. Usually, for FMM-compatible schemes, the

elements which differ from (2.7) will lie in a band about the diagonal; the width of the band depends

only on the order of the scheme (not on N). All the schemes we discuss are FMM-compatible, apart

from that of Kress (which is not to say that Kress quadrature is incompatible with fast summation;

merely that a standard FMM will not work out of the box).

Another important distinction is the one between (a) schemes in which the analytic split (2.2)

into two smooth kernels must be explicitly known (i.e. the functions ϕ and ψ are independently

evaluated), and (b) schemes which merely need to access the overall kernel function k. The latter

schemes are more flexible, since in applications the split is not always readily available. However,

as we will see, this flexibility comes with a penalty in terms of accuracy.



23

The following schemes will be described:

• Kapur–Rokhlin (section 2.3). This is the simplest scheme to implement, based upon an

underlying periodic trapezoidal rule. The weights, but not the node locations, are modified

near the diagonal. No explicit split is needed.

• Alpert (section 2.4). Also based upon the periodic trapezoidal rule, and also not needing

an explicit split, this scheme replaces the equi-spaced nodes near the diagonal with an

optimal set of auxiliary nodes, at which new kernel evaluations are needed.

• Modified Gaussian (section 2.5). Here the underlying quadrature is Gauss–Legendre

panels, and new kernel evaluations are needed at each set of auxiliary nodes chosen for

each target node in the panel. These auxiliary nodes are chosen using the algorithm of

Kolm–Rokhlin [66]. No explicit split is needed.

• Kress (section 2.6). This scheme uses an explicit split to create a spectrally-accurate

product quadrature based upon the periodic trapezoidal rule nodes. All of the matrix

elements differ from the standard form (2.7), thus the scheme is not FMM-compatible. We

include it as a benchmark where possible.

Table 2.1 classifies these schemes (and a couple of others), according to whether they have under-

lying global (periodic trapezoidal rule) or panel-based quadrature, whether the split into the two

smooth functions need be explicitly known or not, and whether they are FMM-compatible.

In section 5.6 we present numerical tests comparing the accuracy of these quadratures in 1D,

2D, and 3D axisymmetric settings. We also demonstrate that some schemes have negative effects

on the convergence rate in an iterative setting. We compare the advantages of the schemes and

draw some conclusions in section 2.8.



24

2.1.3 Related work and schemes not compared

The methods described in this paper rely on earlier work [70, 2, 64, 66] describing high-order

quadrature rules for integrands with weakly singular kernels. It appears likely that these rules

were designed in part to facilitate Nyström discretization of BIEs, but, with the exception of Kress

[70], the original papers leave most details out. (Kress describes the Nyström implementation but

does not motivate the quadrature formula; hence we derive this in section 2.6.) Some later papers

reference the use (e.g. [11, 76]) of high order quadratures but provide few details. In particular,

there appears to have been no formal comparison between the accuracy of different approaches.

There are several schemes that we do not have the space to include in our comparison. One

of the most promising is the recent scheme of Helsing for Laplace [52] and Helmholtz [56] problems,

which is panel-based but uses an explicit split in the style of Kress, and thus needs no extra kernel

evaluations. We also note the recent QBX scheme [65] (quadrature by expansion) which makes use

of off-curve evaluations and local expansions of the PDE.

2.2 A brief review of Lagrange interpolation

This section reviews some well-known (see, e.g., [4, Sec 3.1]) facts about polynomial interpo-

lation that will be used repeatedly in the text.

For a given set of distinct nodes {xj}Nj=1 and function values {yj}Nj=1, the Lagrange inter-

polation polynomial L(x) is the unique polynomial of degree no greater than N − 1 that passes

through the N points {(xj , yj)}Nj=1. It is given by

L(x) =
N∑

j=1

yj Lj(x),

where

Lj(x) =

N∏

i=1
i 6=j

(
x− xi
xj − xi

)
. (2.9)

While polynomial interpolation can in general be highly unstable, it is perfectly safe and accurate

as long as the interpolation nodes are chosen well. For instance, for the case where the nodes



25

{xj}Nj=1 are the nodes associated with standard Gaussian quadrature on an interval I = [0, b], it is

known [4, Thm. 3.2] that for any f ∈ CN (I)
∣∣∣∣∣∣
f(s)−

N∑

j=1

Lj(s) f(xj)

∣∣∣∣∣∣
≤ C bN s ∈ I,

where

C =

(
sup
s∈[0, b]

|f (N)(s)|
)
/N !

2.3 Nyström discretization using the Kapur-Rokhlin quadrature rule

2.3.1 The Kapur–Rokhlin correction to the trapezoidal rule

Recall that the standard N+1-point trapezoidal rule that approximates the integral of a

function g ∈ C∞[0, T ] is h[g(0)/2 + g(h) + · · ·+ g(T − h) + g(T )/2], where the node spacing is

h =
T

N
,

and that it has only 2nd-order accuracy [71, Thm. 12.1]. The idea of Kapur–Rokhlin [64] is to

modify this rule to make it high-order accurate, by changing a small number of weights near the

interval ends, and by adding some extra equi-spaced evaluation nodes xj = hj for −k ≤ j < 0 and

N < j ≤ N + k, for some small integer k > 0, i.e. nodes lying just beyond the ends. They achieve

this goal for functions g ∈ C∞[0, T ], but also for the case where one or more endpoint behavior is

singular, as in

g(x) = ϕ(x)s(x) + ψ(x) , (2.10)

where ϕ(x), ψ(x) ∈ C∞[0, T ] and s(x) ∈ C(0, T ) is a known function with integrable singularity

at zero, or at T , or at both zero and T . Accessing extra nodes outside of the interval suppresses

the rapid growth with order of the weight magnitudes that plagued previous corrected trapezoidal

rules. However, it is then maybe unsurprising that their results need the additional assumption

that ϕ,ψ ∈ C∞[−hk, T + hk].

Since we are interested in methods for kernels of the form (2.2), we specialize to a periodic

integrand with the logarithmic singularity at x = 0 (and therefore also at x = T , making both



26

endpoints singular),

g(x) = ϕ(x) log
∣∣∣sin xπ

T

∣∣∣+ ψ(x) . (2.11)

The mth-order Kapur–Rokhlin rule TN+1
m which corrects for a log singularity at both left and right

endpoints is,

TN+1
m (g) = h

[ m∑

`=−m
6̀=0

γ` g(`h) + g(h) + g(2h) + · · ·+ g(T − h) +
m∑

`=−m
`6=0

γ−` g(T + `h)

]
(2.12)

Notice that the left endpoint correction weights {γ`}m`=−m,` 6=0 are also used (in reverse order) at

the right endpoint. The convergence theorems from [64] then imply that, for any fixed T -periodic

ϕ,ψ ∈ C∞(R), ∣∣∣∣
∫ T

0
g(x) dx− TN+1

m (g)

∣∣∣∣ = O(hm) as N →∞ . (2.13)

The apparent drawback that function values are needed at nodes `h for −m ≤ ` ≤ −1, which

lie outside the integration interval, is not a problem in our case of periodic functions, since by

periodicity these function values are known. This enables us to rewrite (2.12) as

TN+1
m (g) = h

[ m∑

`=1

(γ`+γ−`)g(`h)+g(h)+g(2h)+ · · ·+g(T −h)+

−1∑

`=−m
(γ`+γ−`)g(T + `h)

]
(2.14)

which involves only the N − 1 nodes interior to [0, T ].

For orders m = 2, 6, 10 the values of γ` are given in the left-hand column of [64, Table 6].

(These are constructed by solving certain linear systems, see [64, Sec. 4.5.1].) In our periodic case,

only the values γ` + γ−` are needed; for convenience we give them in appendix A. Notice that they

are of magnitude 2 for m = 2, of magnitude around 20 for m = 6, and of magnitude around 400 for

m = 10, and alternate in sign in each case. This highlights the statement of Kapur–Rokhlin that

they were only partially able to suppress the growth of weights in the case of singular endpoints

[64].

2.3.2 A Nyström scheme

We now can construct numbers ai,j such that (2.4) holds. We start with the underlying

periodic trapezoidal rule, with equi-spaced nodes {xi}Ni=1 with xj = hj, h = T/N . We introduce a



27

discrete offset function `(i, j) between two nodes xi and xj defined by

`(i, j) ≡ j − i (mod N), −N/2 < `(i, j) ≤ N/2 ,

and note that for each i ∈ {1, . . . , N}, and each |`| < N/2, there is a unique j ∈ {1, . . . , N} such

that `(i, j) = `. Two nodes xi and xj are said to be “close” if |`(i, j)| ≤ m. Moreover, we call xi

and xj “well-separated” if they are not close.

We now apply (2.14) to the integral (2.4), which by periodicity of σ and the kernel, we may

rewrite with limits xi to xi+T so that the log singularity appears at the endpoints. We also extend

the definition of the nodes xj = hj for all integers j, and get,

∫ T

0
k(xi, x

′)σ(x′) dx′ =

∫ xi+T

xi

k(xi, x
′)σ(x′) dx′

≈ h
i+N−1∑

j=i+1

k(xi, xj)σ(xj) + h
m∑

`=−m
`6=0

(γ` + γ−`)k(xi, xi+`)σ(xi+`) .

Wrapping indices back into {1, . . . , N}, the entries of the coefficient matrix A are seen to be,

ai,j =





0 if i = j,

h k(xi, xj) if xi and xj are “well-separated”,

h (1 + γ`(i,j) + γ−`(i,j)) k(xi, xj) if xi and xj are “close”, and i 6= j.

(2.15)

Notice that this is the elementwise product of a circulant matrix with the kernel matrix k(xi, xj),

and that diagonal values are ignored. Only O(N) elements (those closest to the diagonal) differ

from the standard Nyström formula (2.7).

2.4 Nyström discretization using the Alpert quadrature rule

2.4.1 The Alpert correction to the trapezoidal rule

Alpert quadrature is another correction to the trapezoidal rule that is high-order accurate

for integrands of the form (2.10) on (0, T ). The main difference with Kapur–Rokhlin is that Alpert

quadrature uses node locations off the equi-spaced grid xj = hj, but within the interval (0, T ).



28

Figure 2.2: Example of Alpert quadrature scheme of order l = 10 on the interval [0, 1]. The original
trapezoidal rule had 20 points including both endpoints, i.e. N = 19 and h = 1/19. Correction
nodes {χph}mp=1 and {1− χph}mp=1 for m = 10 and a = 6, are denoted by stars.

Specifically, for the function g in (2.11) with log singularities at both ends, we denote by SN+1
l (g) the

lth-order Alpert quadrature rule based on an N+1-point trapezoidal grid, defined by the formula

SN+1
l (g) = h

m∑

p=1

wp g(χp h) + h
N−a∑

j=a

g(jh) + h
m∑

p=1

wp g(T − χp h). (2.16)

There are N − 2a + 1 internal equi-spaced nodes with spacing h = T/N and equal weights; these

are common to the trapezoidal rule. There are also m new “correction” nodes at each end which

replace the a original nodes at each end in the trapezoidal rule. The label “lth-order” is actually

slightly too strong: the scheme is proven [2, Cor. 3.8] to have error convergence of order O(hl| log h|)

as h → 0. The number m of new nodes needed per end is either l−1 or l. For each order l, the

integer a is chosen by experiments to be the smallest integer leading to positive correction nodes and

weights. The following table shows the values of m and a for log-singular kernels for convergence

orders l = 2, 6, 10, 16:

Convergence order h2| log h| h6| log h| h10| log h| h16| log h|

Number of correction points m 1 5 10 15

Width of correction window a 1 3 6 10

The corresponding node locations χ1, . . . χm and weights w1, . . . wm are listed in Appendix B;

and illustrated for the case l = 10 in Figure 2.2. The Alpert quadrature nodes and weights are

determined by solving certain non-linear systems of equations, see e.g. [2, Eqns. (39) & (40)].

Numerically, these equations can be solved via schemes based on modified Newton iterations, see

[2, Sec. 5]. (The quadratures listed in Appendix B are adapted from [2, Table 8].)



29

2.4.2 A Nyström scheme

Recall that we wish to construct a matrix ai,j that when applied to the vector of values

{σ(xj)}Nj=1 approximates the action of the integral operator on the function σ, evaluated at each

target node xi. To do this via the lth-order Alpert scheme with parameter a, we start by using

periodicity to shift the domain of the integral in (2.4) to (xi, xi + T ), as in section (2.3.2). Since

the 2m auxiliary Alpert nodes lie symmetrically about the singularity location xi, for simplicity we

will treat them as a single set by defining χp+m = −χp and wp+m = wp for p = 1, . . . ,m. Then the

rule (2.16) gives

∫ T

0
k(xi, x

′)σ(x′) dx′ ≈ h
N−a∑

p=a

k(xi, xi+ph)σ(xi+ph)+h
2m∑

p=1

wpk(xi, xi+χph)σ(xi+χph) . (2.17)

The values {χp}2mp=1 are not integers, so no auxiliary nodes coincide with any equi-spaced

nodes {xj}Nj=1 at which the vector of σ values is given. Hence we must interpolate σ to the auxiliary

nodes {xi + χph}2mp=1. We do this using local Lagrange interpolation through M equi-spaced nodes

surrounding the auxiliary source point xi + χph. For M > l the interpolation error is higher order

than that of the Alpert scheme; we actually use M = l + 3 since the error is then negligible.

Remark 1 While high-order Lagrange interpolation through equi-spaced points is generally a bad

idea due to the Runge phenomenon [96], here we will be careful to ensure that the evaluation point

always lies nearly at the center of the interpolation grid, and there is no stability problem.

For each auxiliary node p, let the nth interpolation node index offset relative to i be

o(p)
n := bχp −M/2c+ n ,

and let the whole set be O(p) := {o(p)
n }Mn=1. For q ∈ O(p), let the function np(q) := q − bχp −M/2c

return the node number of an index offset of q. Finally, let

L(p)
n (x) =

M∏

k=1
k 6=n

(
x− o(p)

k

o
(p)
n − o(p)

k

)



30

be the nth Lagrange basis polynomial for auxiliary node p. Applying this interpolation in σ gives

for the second sum in (2.17),

h
2m∑

p=1

wpk(xi, xi + χph)
M∑

n=1

L(p)
n (χp)σ(x

i+o
(p)
n

) .

Note that all node indices in the above will be cyclically folded back into the set {1, . . . , N}.

Recalling the notation `(i, j) from section 2.3.2, we now find the coefficient matrix A has

entries

ai,j = bi,j + ci,j , (2.18)

where the first sum in (2.17) gives

bi,j =





0 if |`(i, j)| < a,

h k(xi, xj) if |`(i, j)| ≥ a,
(2.19)

the standard Nyström matrix (2.7) with a diagonal band set to zero, and the auxiliary nodes give

ci,j = h

2m∑

p=1
O(p)3`(i,j)

wp k(xi, xi + χph)L
(p)
np(`(i,j))(χp) . (2.20)

Notice that the bandwidth of matrix ci,j does not exceed a + M/2, which is roughly l, and thus

only O(N) elements of ai,j differ from those of the standard Nyström matrix.

2.5 Nyström discretization using modified Gaussian quadrature

We now turn to a scheme with panel-based underlying quadrature, namely the composite

Gauss–Legendre rule. We recall that for any interval I = [0, b], the single-panel n-point Gauss–

Legendre rule has nodes {xj}nj=1 ⊂ I and weights {wj}nj=1 ⊂ (0,∞) such that the identity

∫ b

0
f(x) dx =

n∑

j=1

wjf(xj) (2.21)

holds for every polynomial f of degree at most 2n − 1. For analytic f the rule is exponentially

convergent in n with rate given by the largest ellipse with foci 0 and b in which f is analytic [97,

Ch. 19].



31

2.5.1 Modified Gaussian quadratures of Kolm–Rokhlin

Suppose that given an interval [0, b] and a target point t ∈ [0, b], we seek to approximate

integrals of the form
∫ b

0

(
ϕ(s)S(t, s) + ψ(s)

)
ds, (2.22)

where ϕ and ψ are smooth functions over [0, b] and S(t, s) has a known singularity as s→ t. Since

the integrand is non-smooth, standard Gauss–Legendre quadrature would be inaccurate if applied

to evaluate (2.22). Instead, we seek an m-node “modified Gaussian” quadrature rule with weights

{vk}mk=1 and nodes {yk}mk=1 ⊂ [0, b] that evaluates the integral (2.22) to high accuracy. In particular,

we use a quadrature formula of the form

∫ b

0

(
ϕ(s)S(t, s) + ψ(s)

)
ds ≈

m∑

k=1

vk
(
ϕ(yk)S(t, yk) + ψ(yk)

)
(2.23)

which holds when ϕ and ψ are polynomials of degree n. It is crucial to note that {vk}mk=1 and

{yk}mk=1 depend on the target location t; unless t values are very close then new sets are needed for

each different t.

Next consider the problem of evaluating (2.22) in the case where the target point t is near

the region of integration but not actually inside it, for instance t ∈ [−b, 0)∪ (b, 2b]. In this case, the

integrand is smooth but has a nearby singularity: this reduces the convergence rate and means that

its practical accuracy would be low for the fixed n value we prefer. In this case, we can approximate

the integral (2.22) with another set of modified Gaussian quadrature weights {v̂k}m
′

k=1 and nodes

{ŷk}m
′

k=1 ⊂ [0, b] giving a quadrature formula analogous to (2.23). In fact, such weights and nodes

can be found that hold to high accuracy for all targets t in intervals of the form [−10−p+1,−10−p].

The nodes and weights of the Kolm-Rokhlin quadrature rules are constructed by solving

certain non-linear systems of equations via modified Newton iterations, see [66] and [24]. In the

numerical experiments in section 5.6, we use a rule with n = 10, m = 20, and m′ = 24. This rule

leads to fairly high accuracy, but is not of so high order that clustering of the end points becomes

an issue in double precision arithmetic. Since the full tables of quadrature weights get long in this

case, we provide them as text files at [49].



32

2.5.2 A Nyström scheme

We partition the domain of integration as

[0, T ] =

NP⋃

p=1

Ωp,

where the Ωp’s are non-overlapping subintervals called panels. For simplicity, we for now assume

that the panels are equi-sized so that Ωp =
[
T (p−1)
NP

, Tp
NP

]
. Note that an adaptive version would

have variable-sized panels. On each panel, we place the nodes of an n-point Gaussian quadrature

to obtain a total of N = nNP nodes. Let {xi}Ni=1 and {wi}Ni=1 denote the nodes and weights of the

resulting composite Gaussian rule.

Now consider the task of approximating the integral (2.4) at a target point xi. We decompose

the integral as
∫ T

0
k(xi, x

′)σ(x′) dx′ =

NP∑

q=1

∫

Ωq

k(xi, x
′)σ(x′) dx′. (2.24)

We will construct an approximation for each panel-wise integral

∫

Ωq

k(xi, x
′)σ(x′) dx′, (2.25)

expressed in terms of the values of σ at the Gaussian nodes in the source panel Ωq. There are three

distinct cases:

Case 1: xi belongs to the source panel Ωq: The integrand is now singular in the domain of integra-

tion, but we can exploit that σ is still smooth and can be approximated via polynomial interpolation

on this single panel. Using the set of n interpolation nodes {xk : xk ∈ Ωq}, let Lj be the Lagrange

basis function corresponding to node j. Then,

σ(x′) ≈
∑

j : xj∈Ωq

Lj(x
′)σ(xj) . (2.26)

Inserting (2.26) into the integral in (2.25) we find

∫

Ωq

k(xi, x
′)σ(x′) dx′ ≈

∑

j : xj∈Ωq

(∫

Ωq

k(xi, x
′)Lj(x

′) dx′

)
σ(xj).



33

Let {vi,k}mk=1 and {yi,k}mk=1 be the modified Gaussian weights and nodes in the rule (2.23) on the

interval Ωq associated with the target t = xi. Using this rule,

∫

Ωq

k(xi, x
′)σ(x′) dx′ ≈

∑

j : xj∈Ωq

(
m∑

k=1

vi,k k(xi, yi,k)Lj(yi,k)

)
σ(xj). (2.27)

Note that the expression in brackets gives the matrix element ai,j . Here the auxiliary nodes yi,k

play a similar role to the auxiliary Alpert nodes xi + χph from section 2.4: new kernel evaluations

are needed at each of these nodes.

Case 2: xi belongs to a panel Ωp adjacent to source panel Ωq: In this case, the kernel k is smooth,

but has a singularity closer to Ωq than the size of one panel, so standard Gaussian quadrature would

still be inaccurate. We therefore proceed as in Case 1: we replace σ by its polynomial interpolant

and then integrate using the modified quadratures described in Section 2.5.1. The end result is a

formula similar to (2.27) but with the sum including m′ rather than m terms, and with v̂i,k and

ŷi,k replacing vi,k and yi,k, respectively.

Case 3: xi is well-separated from the source panel Ωq: By “well-separated” we mean that xi and

Ωq are at least one panel size apart in the parameter x. (Note that if the curve geometry involves

close-to-touching parts, then this might not be a sufficient criterion for being well-separated in R2;

in practice this would best be handled by adaptivity.) In this case, both the kernel k and the

potential σ are smooth, so the original Gaussian rule will be accurate,

∫

Ωq

k(xi, x
′)σ(x′) dx′ ≈

∑

j : xj∈Ωq

wjk(xi, xj)σ(xj) . (2.28)

Combining (2.28) and (2.27), we find that the Nyström matrix elements ai,j are given by

ai,j =





∑m
k=1 vi,k k(xi, yi,k)Lj(yi,k), if xi and xj are in the same panel,

∑m′

k=1 v̂i,k k(xi, ŷi,k)Lj(ŷi,k), if xi and xj are in adjacent panels,

k(xi, xj)wj , if xi and xj are in well-separated panels.



34

2.6 Nyström discretization using the Kress quadrature rule

The final scheme that we present returns to an underlying periodic trapezoidal rule, but

demands separate knowledge of the smooth kernel functions ϕ and ψ appearing in (2.2). We first

review spectrally-accurate product quadratures, which is an old idea, but which we do not find well

explained in the standard literature.

2.6.1 Product quadratures

For simplicity, and to match the notation of [70], we fix the period T = 2π and take N to be

even. The nodes are thus xj = 2πj/N , j = 1, . . . , N .

A product quadrature approximates the integral of the product of a general smooth 2π-

periodic real function f with a fixed known (and possibly singular) 2π-periodic real function g, by

a periodic trapezoidal rule with modified weights wj ,

∫ 2π

0
f(s)g(s) ds ≈

N∑

j=1

wjf(xj) . (2.29)

Using the Fourier series f(s) =
∑

n∈Z fne
ins, and similar for g, we recognize the integral as an inner

product and use Parseval,
∫ 2π

0
f(s)g(s) ds = 2π

∑

n∈Z
fngn . (2.30)

Since f is smooth, |fn| decays to zero with a high order as |n| → ∞. Thus we can make two

approximations. Firstly, we truncate the infinite sum to
∑′
|n|≤N/2, where the prime indicates that

the extreme terms n = ±N/2 are given a factor of 1/2. Secondly, we use the periodic trapezoidal

rule to evaluate the Fourier coefficients of f , i.e.

fn =
1

2π

∫ 2π

0
e−insf(s)ds ≈ 1

N

N∑

j=1

e−inxjf(xj) . (2.31)

Although the latter introduces aliasing (one may check that the latter sum is exactly fn + fn+N +

fn−N + fn+2N + fn−2N + · · · ), the decay of fn means that errors decay to high order with N .

Substituting (2.31) into the truncated version of (2.30) gives

∫ 2π

0
f(s)g(s) ds ≈ 2π

′∑

|n|≤N/2

gn
1

N

N∑

j=1

e−inxjf(xj) ≈
N∑

j=1

(
2π

N

′∑

|n|≤N/2

e−inxjgn

)
f(xj) (2.32)



35

The bracketed expression gives the weights in (2.29). Since g is real (hence g−n = gn),

wj =
2π

N

′∑

|n|≤N/2

e−inxjgn =
2π

N

[
g0 +

N/2−1∑

n=1

2Re(gne
inxj ) + Re(gN/2e

iNxj/2)

]
, j = 1, . . . , N.

(2.33)

2.6.2 The Kress quadrature

To derive the scheme of Kress (originally due to Martensen–Kussmaul; see references in [70])

we note the Fourier series (proved in [71, Thm. 8.21]),

g(s) = log
(

4 sin2 s

2

)
⇔ gn =





0, n = 0,

−1/|n|, n 6= 0.

(2.34)

Translating g by a displacement t ∈ R corresponds to multiplication of gn by e−int. Substituting

this displaced series into (2.33) and simplifying gives

∫ 2π

0
log

(
4 sin2 t− s

2

)
ϕ(s) ds ≈

N∑

j=1

R
(N/2)
j (t)ϕ(xj) , (2.35)

where the weights, which depend on the target location t, are

R
(N/2)
j (t) = −4π

N

[N/2−1∑

n=1

1

n
cosn(xj − t) +

1

N
cos

N

2
(xj − t)

]
, j = 1, . . . , N. (2.36)

This matches [70, (3.1)] (note the convention on the number of nodes differs by a factor 2).

When a smooth function is also present, we use the periodic trapezoidal rule for it, to get

∫ 2π

0
log

(
4 sin2 t− s

2

)
ϕ(s) + ψ(s) ds ≈

N∑

j=1

R
(N/2)
j (t)ϕ(xj) +

2π

N

N∑

j=1

ψ(xj) . (2.37)

Assuming the separation into ϕ and ψ is known, this gives a high-order accurate quadrature; in

fact for ϕ and ψ analytic, it is exponentially convergent [70].

2.6.3 A Nyström scheme

We use the above Kress quadrature to approximate the integral (2.4) where the kernel has

the form (2.2) with T = 2π, and the functions ϕ(x, x′) and ψ(x, x′) are separately known. Applying



36

(2.37), with h = 2π/N , gives

∫ 2π

0
k(xi, x

′)σ(x′) dx′ ≈
N∑

j=1

R
(N/2)
j (xi)ϕ(xi, xj)σ(xj) + h

N∑

j=1

ψ(xi, xj)σ(xj) . (2.38)

Using the symbol R
(N/2)
j := R

(N/2)
j (0), and noticing that R

(N/2)
j (xi) depends only on |i− j|, we find

that the entries of the coefficient matrix A are,

ai,j = R
(N/2)
|i−j| ϕ(xi, xj) + hψ(xi, xj) . (2.39)

Note that R
(N/2)
|i−j| is a dense circulant matrix, and all N2 elements differ from the standard Nyström

matrix (2.7). Since ϕ and ψ do not usually have fast potential-theory based algorithms to apply

them, the Kress scheme is not FMM-compatible.

2.7 Numerical experiments

We now describe numerical experiments in 1D, 2D and 3D applications that illustrate the

performance of the quadratures described in sections 2.3-2.6. The experiments were carried out

on a Macbook Pro with 2.4GHz Intel Core 2 Duo and 4GB of RAM, and executed in a MATLAB

environment. Once the Nyström matrix is filled, the linear system (2.6) is solved via MATLAB’s

backslash (mldivide) command. In all examples below, the errors reported are relative errors

measured in the L∞-norm, ||uε − u||∞/||u||∞, where u is the reference solution and uε is the

numerical solution. For each experiment we compare the performance of the different quadratures.

Specifically, we compare the rules of Kapur–Rokhlin of orders 2, 6, and 10; Alpert of orders 2, 6,

10, and 16; modified Gaussian with n = 10 points per panel; and (where convenient) Kress. Our

implementation of the modified Gaussian rule uses m = 20 auxiliary nodes for source and target

on the same panel, and m′ = 24 when on adjacent panels.

The quadrature nodes and weights used are provided in appendices and at the website [49].



37

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N (number of nodes)

L
∞

 e
rr

o
r 

re
la

ti
v
e
 t
o
 |
|u

||
∞

 

 

mod. gauss.

2
nd

 K−R

6
th

 K−R

10
th

 K−R

2
nd

 Alpert

6
th

 Alpert

10
th

 Alpert

16
th

 Alpert

Kress

Figure 2.3: Error results for solving the integral equation (2.40) in Section 2.7.1.



38

2.7.1 A 1D integral equation example

We solve the one-dimensional integral equation

u(x) +

∫ 2π

0
k(x, x′)u(x′)dx′ = f(x), x ∈ [0, 2π] (2.40)

associated with a simple kernel function having a periodic log singularity at the diagonal,

k(x, x′) =
1

2
log

∣∣∣∣sin
x− x′

2

∣∣∣∣ =
1

4
log

(
4 sin2 t− s

2

)
− 1

2
log 2 , (2.41)

thus the smooth functions ϕ(x, x′) = 1/4 and ψ(x, x′) = −(1/2) log 2 are constant. This kernel is

similar to that arising from the Laplace single-layer operator on the unit circle. Using (2.34) one

may check that the above integral operator has exact eigenvalues −π log 2 (simple) and −π/(2n),

n = 1, 2, . . . (each doubly-degenerate). Thus the exact condition number of the problem (2.40)

is ((π log 2) − 1)/(1 − π/4) ≈ 5.5. We choose the real-analytic periodic right-hand side f(x) =

sin(3x) ecos(5x). The solution u has ‖u‖∞ ≈ 6.1. We estimate errors by comparing to the Kress

solution at N = 2560. (In passing we note that the exact solution to (2.40) could be written

analytically as a Fourier series since the Fourier series of f is known in terms of modified Bessel

functions.) When a solution is computed on panel-based nodes, we use interpolation back to the

uniform trapezoidal grid by evaluating the Lagrange basis on the n = 10 nodes on each panel.

In Figure 2.3, the errors in the L∞-norm divided by ‖u‖∞ are presented forN = 20, 40, 80, . . . , 1280.

We see that the rules of order 2, 6, and 10 have the expected convergence rates, but that Alpert

has prefactors a factor 102 to 105 smaller the Kapur–Rokhlin. We also see that Kress is the most

efficient at any desired accuracy, followed by the three highest-order Alpert schemes. These four

schemes flatten out at 13 digits, but errors start to grow again for larger N , believed due to the

larger linear system. Note that modified Gaussian performs roughly as well as 6th-order Alpert

with twice the number of points, and that it flattens out at around 11 digits.



39

(a) 0.5 λ diameter
(ω = 2.8)

10
2

10
3

10
−15

10
−10

10
−5

10
0

N (number of nodes)

re
la

ti
v
e
 e

rr
o
r

 

 

mod. gauss.

2
nd

 K−R

6
th

 K−R

10
th

 K−R

2
nd

 Alpert

6
th

 Alpert

10
th

 Alpert

16
th

 Alpert

Kress

(b) 5 λ diameter
(ω = 28)

10
2

10
3

10
−15

10
−10

10
−5

10
0

N (number of nodes)

re
la

ti
v
e
 e

rr
o
r

 

 

mod. gauss.

2
nd

 K−R

6
th

 K−R

10
th

 K−R

2
nd

 Alpert

6
th

 Alpert

10
th

 Alpert

16
th

 Alpert

Kress

(c) 50 λ diameter
(ω = 280)

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
10

−15

10
−10

10
−5

10
0

N (number of nodes)

re
la

ti
v
e
 e

rr
o
r

 

 

mod. gauss.

2
nd

 K−R

6
th

 K−R

10
th

 K−R

2
nd

 Alpert

6
th

 Alpert

10
th

 Alpert

16
th

 Alpert

Kress

Figure 2.4: Error results for the exterior planar Helmholtz problem (2.42) in Section 2.7.2 solved
on the starfish domain of Figure 2.1.



40

2.7.2 Combined field discretization of the Helmholtz equation in R2

In this section, we solve the Dirichlet problem for the Helmholtz equation exterior to a smooth

domain Ω ⊂ R2 with boundary Γ,

−∆u− ω2u = 0, in E = Ωc, (2.42)

u = f, on Γ, (2.43)

where ω > 0 is the wavenumber. u satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2

(
∂u

∂r
− iωu

)
= 0, (2.44)

where r = |x| and the limit holds uniformly in all directions. A common approach [27, Ch. 3] is to

represent the solution to (2.42) via both the single and double layer acoustic potentials,

u(x) =

∫

Γ
k(x, x′)σ(x′) dl(x′)

=

∫

Γ

(
∂φ(x, x′)

∂n(x′)
− iω φ(x, x′)

)
σ(x′) dl(x′), x ∈ E, (2.45)

where φ(x, x′) = i
4H

(1)
0 (ω|x− x′|) and H

(1)
0 is the Hankel function of the first kind of order zero; n

is the normal vector pointing outward to Γ, and dl the arclength measure on Γ. The motivation for

the combined representation (2.45) is to obtain the unique solvability to problem (2.42-2.43) for all

ω > 0. The corresponding boundary integral equation we need to solve is

1

2
σ(x) +

∫

Γ
k(x, x′)σ(x′) dl(x′) = f(x), x ∈ Γ, (2.46)

where k(x, x′) = ∂φ(x,x′)
∂n(x′) − iω φ(x, x′).

To convert (2.46) into an integral equation on the real line, we need to parametrize Γ by a

vector-valued smooth function τ : [0, T ]→ R2. By changing variable, (2.46) becomes

1

2
σ(τ (t)) +

∫ T

0
k(τ (t), τ (s))σ(τ (s)) |dτ/ds| ds = f(τ (t)), t ∈ [0, T ]. (2.47)

To keep our formula uncluttered, we rewrite the kernel as

m(t, s) = k(τ (t), τ (s)) |dτ/ds|, (2.48)



41

as well as the functions

σ(t) = σ(τ (t)) and f(t) = f(τ (t)).

Thus we may write the integral equation in standard form,

σ(t) + 2

∫ T

0
m(t, s)σ(s) ds = 2f(s), t ∈ [0, T ], (2.49)

and apply the techniques of this paper to it. All the quadrature schemes apart from that of Kress

are now easy to implement by evaluation of m(t, s). For the Kress scheme, some additional work

is required to split this kernel into analytic functions ϕ and ψ, see [27, p. 68], or [57, eq. (27)].

We assess the accuracy of each quadrature rule for the smooth domain shown in Figure 2.1(c),

varying N and the wavenumber ω. Specifically, we varied wavenumbers such that there are 0.5, 5

and 50 wavelengths across the domain’s diameter. The right-hand side is generated by a sum of five

point sources inside Ω, with random strengths; thus the exact exterior solution is known. Errors are

taken to be the maximum relative error at the set of measurement points shown in Figure 2.1(c).

Notice that sources and measurement points are both far from Γ, thus no challenges due to close

evaluation arise here.

The results are shown in Figure 2.4. At the lowest frequency, results are similar to Figure

2.3, except that errors bottom out at slightly higher accuracies, probably because of the smoothing

effect of evaluation of u at distant measurement points. In terms of the error level each scheme

saturates at, Kress has a 2-3 digit advantage over the others at all frequencies. At the highest

frequency, Figure 2.4(c), there are about 165 wavelengths around the perimeter Γ and we find that

the point at which the Kress quadrature saturates (N = 1000) corresponds to around 6 points

per wavelength. At 10 points per wavelength (apparently a standard choice in the engineering

community, and roughly halfway along the N axis in our plot), 16th-order Alpert has converged at

10 digits, while modified Gaussian and 10th-order Alpert are similar at 8 digits. The other schemes

are not competitive.



42

scheme mod. Gauss 2nd K-R 6th K-R 10th K-R 2nd Alpert 6th Alpert 10th Alpert 16th Alpert Kress
cond # 3.95 3.52 3.68 169 3.52 3.52 3.52 3.52 3.52
# iters 14 14 22 206 14 14 14 14 14

Table 2.2: Condition numbers of the Nyström system matrix (1
2 I + A), and numbers of GMRES

iterations to reach residual error 10−12, for all the quadrature schemes.

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

modified gauss
2

nd
 K−R

6
th

 K−R
10

th
 K−R

2
nd

 Alpert
6

th
 Alpert

10
th

 Alpert
16

th
 Alpert

Kress

(b)

−20 −10 0 10

−10

−5

0

5

10

15

20 (c)

0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

Figure 2.5: (a) Magnitude of eigenvalues of the matrix (1
2 I + A) associated with the Nyström

discretization of the Helmholtz BVP (2.46). The system size is N = 640 and the wave-number ω
corresponds to a contour of size 0.5 wave-lengths. (b) Eigenvalues in the complex plane associated
with 10th-order Kapur–Rokhlin (dots) and Kress (crosses) quadratures. (c) Same plot as (b), but
zoomed in to the origin.



43

2.7.3 Effect of quadrature scheme on iterative solution efficiency

When the number of unknowns N becomes large, iterative solution becomes an important

tool. One standard iterative method for nonsymmetric systems is GMRES [87]. In Table 2.2 we

compare the numbers of GMRES iterations needed to solve the linear system (2.4) arising from

the low-frequency Helmholtz BVP in section 2.7.2 (0.5 wavelengths across), when the matrix was

constructed via the various quadrature schemes. We also give the condition number of the system.

We see that most schemes result in 14 iterations and a condition number of around 3.5; this

reflects the fact that the underlying integral equation is Fredholm 2nd-kind and well-conditioned.

However, 6th-order and particularly 10th-order Kapur–Rokhlin require many more iterations (a

factor 15 more in the latter case). In the latter case the condition number has also now become two

orders of magnitude larger. In practical settings this could have negative consequences for both

solution time and accuracy.

In order to understand the cause of the above, in Figure 2.5 we study the spectra of the

system matrix; since the operator is of the form Id/2 + compact, the matrix eigenvalues should

also cluster at 1/2. Indeed, this is the case for all of the schemes. However, as subfigure (a) shows,

6th- and 10th-order Kapur–Rokhlin contain many additional eigenvalues that appear unrelated to

those of the operator. In the 10th-order case, these create a wide “spray” of many eigenvalues with

much larger magnitudes. Examining the latter in the complex plane in subfigures (b) and (c), we see

that spurious eigenvalues (there are around 200 of them) fall on both sides of the origin, and appear

to fill densely diagonal lines passing very close to the origin. It is well known that the GMRES

convergence rate can be related to the size of the potential at the origin for a certain electrostatic

problem in the plane [?]: if S ⊂ C is a compact set approximating the matrix spectrum, then one

enforces zero potential on S while fixing unit total charge on S. Thus when large parts of the

spectrum nearly surround the origin, as the spurious eigenvalues here appear to do, the potential

at the origin is nearly zero, causing a drastic decrease in convergence rate. We believe that this

explains the slow convergence of high-order Kapur–Rokhlin rules relative to the other schemes.



44

The corresponding spurious eigenvectors are oscillatory, typically alternating in sign from

node to node. Thus we believe this pollution of the spectrum arises from the large alternat-

ing weights γl in these rules. Note that one spurious eigenvalue falls quite near the origin; this

mechanism could induce an arbitrarily large condition number, even though the integral equation

condition number is small. Although an isolated eigenvalue does not have impact on the GMRES

convergence rate, the increased condition number can result in unnecessary loss of accuracy. Al-

though we do not test the very large N values where iterative methods become essential, we expect

that our conclusions apply also to larger N .

(a)

(b)

Figure 2.6: Domains used in numerical examples in Section 2.7.4. All items are rotated about the
vertical axis. (a) A sphere. (b) A starfish torus.



45

(a)

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N (number of nodes)

re
la

ti
v
e
 e

rr
o
r

 

 

mod. gauss.

2
nd

 K−R

6
th

 K−R

10
th

 K−R

2
nd

 Alpert

6
th

 Alpert

10
th

 Alpert

16
th

 Alpert

(b)

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N (number of nodes)

re
la

ti
v
e
 e

rr
o
r

 

 

mod. gauss.

2
nd

 K−R

6
th

 K−R

10
th

 K−R

2
nd

 Alpert

6
th

 Alpert

10
th

 Alpert

16
th

 Alpert

Figure 2.7: Error results for the 3D interior Dirichlet Laplace problem from section 2.7.4 solved on
the axisymmetric domains (a) and (b) respectively shown in Figure 2.6.



46

2.7.4 The Laplace BVP on axisymmetric surfaces in R3

In this section, we compare quadratures rules applied on kernels associated with BIEs on

rotationally symmetric surfaces in R3. Specifically, we considered integral equations of the form

σ(x) +

∫

Γ
k(x, x′)σ(x′) dA(x′) = f(x), x ∈ Γ, (2.50)

under the assumptions that Γ is a surface in R3 obtained by rotating a curve γ about an axis

and the kernel function k is invariant under rotation about the symmetry axis. Figure 2.6 depicts

domains used in numerical examples: the generating curves γ are shown in the left figures and the

axisymmetric surfaces Γ are shown in the right ones. The BIE (2.50) on rotationally symmetric

surfaces can via a Fourier transform be recast as a sequence of equations defined on the generating

curve in cylindrical coordinates, i.e.

σn(r, z) +
√

2π

∫

Γ
kn(r, z, r′, z′)σn(r′, z′) r′ dl(r′, z′) = fn(r, z), (r, z) ∈ γ, n ∈ Z, (2.51)

where σn, fn, and kn denote the Fourier coefficients of σ, f , and k, respectively. Details on how to

truncate the Fourier series and construct the coefficient matrices for Laplace problem and Helmholtz

problem can be found in [104]. In the following experiments, we consider the BIE (2.50) which

arises from the interior Dirichlet Laplace problem, in which case

k(x, x′) =
n(x′) · (x− x′)

4π|x− x′|3 . (2.52)

As we recast the BIE defined on Γ to a sequence of equations defined on the generating curve γ,

it is easy to see that the kernel function kn has a logarithmic singularity as (r′, z′) → (r, z). In

this experiment, 101 Fourier modes were used. For the axisymmetric kernels kn, analytic splits

that extract the singularity are known [75, 68], but are slightly tricky to implement, in particular

for contours involving “poles” such as, e.g., the one shown in Figure 2.6(a). We therefore did not

implement the quadrature of Kress for this example (even though it likely would perform very well).

Equation (2.50) was solved for Dirichlet data f corresponding to an exact solution u generated

by point charges placed outside the domain. The errors reported reflect the maximum of the point-



47

wise errors (compared to the known analytic solution) sampled at a set of target points inside the

domain.

The results are presented in Figure 2.7. The most apparent feature in (a) is that, because

the curve γ is open, the schemes based on the periodic trapezoidal rule fail to give high-order

convergence; rather, it appears to be approximately 3rd-order. Panel-based schemes are able to

handle open intervals as easily as periodic ones, thus modified Gaussian performs well: it reaches

12-digit accuracy with only around N = 100 points. (We remark that the problems associated with

an open curve are in this case artificial and can be overcome by a better problem formulation. We

deliberately chose to use a simplistic formulation to simulate an “open curve” problem.) In (b),

all functions are again periodic since γ is closed; modified Gaussian performs similarly to the three

highest-order Alpert schemes with around 1.5 to 2 times the number of points.

2.8 Concluding remarks

To conclude, we make some informal remarks on the relative advantages and disadvantages

of the different quadrature rules that we have discussed. Our remarks are informed primarily by

the numerical experiments in section 5.6.

Comparing the three schemes based upon nodes equi-spaced in parameter (Kapur–Rokhlin,

Alpert, and Kress), we see that Kress always excels due to its superalgebraic convergence; it

reaches a small saturation error of 10−13 to 10−15 at only 6 points per wavelength. However, the

analytic split required for Kress is not always available or convenient, and Kress is not amendable to

standard FMM-style fast matrix algebra. Kapur–Rokhlin and Alpert show their expected algebraic

convergence rates at orders 2, 6, and 10, and both seem to saturate at around 10−12. However,

Alpert outperforms Kapur–Rokhlin since its prefactor is much lower, resulting in 2-8 extra digits of

accuracy at the same N . Another way to compare these two is that Kapur–Rokhlin requires around

6 to 10 times the number of unknowns as Alpert to reach comparable accuracy. The difference in

a high-frequency problem is striking, as in Figure 2.4. The performance of 16th-order Alpert is

usually less than 1 digit better than 10th-order Alpert, apart from at high frequency when it can



48

be up to 3 digits better.

Turning to the panel-based modified Gaussian scheme, we see that in the low-frequency

settings it behaves like 10th-order Alpert but requires around 1.5 to 2 times the N to reach similar

accuracy. This may be related to the fact that Gauss–Legendre panels would need a factor π/2

higher N than the trapezoidal rule to achieve the same largest spacing between nodes; this is the

price to pay for a panel-based scheme. However, for medium and high frequencies, 10th-order Alpert

has little distinguishable advantage over modified Gaussian. Both are able to reach around 10 digit

accuracy at 15 points per wavelength. Modified Gaussian errors seem to saturate at around 10−11

to 10−12. It therefore provides a good all-round choice, especially when adaptivity is anticipated,

or global parametrizations are not readily constructed. One disadvantage relative to the other

schemes is that the auxiliary nodes require kernel evaluations that are very close to the singularity

(10−7 or less; for Alpert the minimum is only around 10−3).

We have not tested situations in which adaptive quadrature becomes essential; in such cases

modified Gaussian would excel. However, a hint of the convenience of modified Gaussian is given by

its effortless handling of an open curve in Figure 2.7(a) where the other (periodic) schemes become

low-order (corner-style reparametrizations would be needed to fix this [27, Sec. 3.5]).

In addition, we have showed that, in an iterative solution setting, higher-order Kapur–Rokhlin

can lead to much slower GMRES convergence than any of the other schemes. We believe this is

because it introduces many large eigenvalues into the spectrum, unrelated to those of the underlying

operator. Thus 10th-order Kapur–Rokhlin should be used with caution. With that said, Kapur–

Rokhlin is without doubt the simplest to implement of the four schemes, since no interpolation or

new kernel evaluations are needed.

We have chosen to not report computational times in this note since our MATLAB implemen-

tations are far from optimized for speed. However, it should be mentioned that both the Alpert

method and the method based on modified Gaussian quadrature require a substantial number

(between 20N and 30N in the examples reported) of additional kernel evaluations.

For simplicity, in this note we limited our attention to the case of smooth contours, but both



49

the Alpert and the modified Gaussian rule can with certain modifications be applied to contours

with corners, see, e.g., [83, 14, 15, 11, 60, 56]. We plan to include the other recent schemes shown

in Table 2.1, and curves with corners, in future comparisons.



Chapter 3

A simplified technique for the efficient and highly accurate discretization of

boundary integral equations in 2D on domains with corners

A. Gillman, S. Hao, P.G. Martinsson

Note: The work described in this chapter was carried out in collaboration with Adrianna Gillman

of Dartmouth and Professor Per-Gunnar Martinsson of the University of Colorado. It appeared in

the Journal of Computational Physics (256(1), pages 214–219, 2014) under the title: “A simplified

technique for the efficient and highly accurate discretization of boundary integral equations in 2D

on domains with corners ” .

3.1 Background

This note comments on some recently developed techniques for computing an approximate

solution to a Boundary Integral Equation (BIE) like

α q(x) +

∫

Γ
K(x,y) q(y) ds(y) = f(x), x ∈ Γ, (3.1)

where Γ is a piecewise smooth contour in the plane, and where K is one of the standard kernels

of potential theory such as, e.g., the single or double layer kernels associated with the Laplace or

Helmholtz equations. A challenge in solving (3.1) is that its integrand exhibits complicated singular

behavior near the corner points of Γ. A classical technique for dealing with this difficulty has been to

expand the unknown q near the corner using specialized basis functions that incorporate analytical

knowledge about the singularity [16]. Recently, however, a remarkable observation has been made



51

[10, 55, 59, 53] that there exist general purpose techniques that do not require any analytical à

priori knowledge other than that the integrand of (3.1) be absolutely integrable.

In a nutshell, the idea of [10, 55, 59, 53] is to use a standard Nyström discretization of (3.1)

designed for a smooth contour. The discretization should use a panel based (i.e. non-global) quadra-

ture rule such as, e.g., a composite Gaussian rule. Then simply refine the computational mesh near

any corner. For any given computational tolerance ε (setting ε = 10−10 or smaller is often entirely

manageable), continue the refinement until the contribution from any panels directly touching a

corner is bounded by ε (this is possible since the integrand in (3.1) is absolutely integrable). Then

simply omit the two panels nearest to the corner from the discretization. Observe that on any

remaining panel, the function q is smooth enough to be accurately represented by the interpolant

implied by the chosen quadrature rule.

The apparent drawback of a simplistic refinement process like the one described is that it can

dramatically increase the number of degrees of freedom required in the Nyström discretization. A

key insight of [10, 55, 59, 53] is that the “superfluous” degrees of freedom added by the refinement

can be eliminated from the linear system via a strictly local process. Moreover, this local process

can be executed in time that scales linearly with the number of degrees of freedom added. The end

result is a linear system discretizing (3.1) that has about as many degrees of freedom as one would

have needed had the corner not been present in the first place. (For the case of regular polygonal

domains, the compression can even be performed in sublinear time [53].)

The task of “squeezing out” the degrees of freedom added by the local refinement near

the corner is in [10, 55, 59, 53] executed via purpose-built local compression techniques that can

be somewhat challenging to implement. The purpose of this note is to demonstrate that this

compression step can be executed via the general purpose direct solvers described in [36, 42, 63, 78].



52

3.2 A linear algebraic observation

The compression technique that allows us to eliminate the superfluous degrees of freedom is

based on the observation that certain off-diagonal blocks of the coefficient matrix resulting from

the discretization of (3.1) have low numerical rank. Critically, the important ranks do not depend

on how many degrees of freedom are used in the refinement near the corner. To illustrate how such

rank-deficiencies can be exploited, consider in general the task of solving the linear system




A11 A12

A21 A22







q1

q2


 =




f1

f2


 , (3.2)

where A11 is of size n1×n1 and A22 is of size n2×n2. Now assume that A12 and A21 each are of rank

k. Think of n1 as a large number (e.g. the number of degrees of freedom used in the refinement of

the corner, say n1 ∼ 103), and k as a small number (often in the range 20 – 50 ). Then A12 and

A21 admit factorizations

A12 = U1 B12

n1 × n2 n1 × k k × n2

and
A21 = B21 V∗1,

n2 × n1 n2 × k k × n1

(3.3)

where U1 and V1 are well-conditioned matrices. We further assume that the data vector f1 belongs

to the same k-dimensional space as the columns of A12 (if it does not, then the space can be

extended as needed),

f1 = U1 f̃1. (3.4)

When (3.3) and (26) hold, the linear system (3.2) with n1 + n2 unknowns is in a certain sense

equivalent to the smaller system




D11 B12

B21 A22







q̃1

q2


 =




f̃1

f2


 (3.5)

with only k + n2 unknowns. In (3.5), D11 and q̃1 are defined by

D11 =
(
V∗1A

−1
11 U1

)−1
and q̃1 = V∗1q1. (3.6)



53

When we say that (3.2) and (3.5) are “equivalent” we mean that the solution {q1, q2} of the larger

system (3.2) can be obtained from the solution {q̃1, q2} of the smaller system (3.5) via the formula

q1 = A−1
11 U1 D11 q̃1. (3.7)

To be precise, the equivalence holds when A11 and V∗1A
−1
11 U1 are both non-singular.

3.3 Matrix skeletons

For the low-rank factorizations (3.3), it is convenient to use a so-called interpolative decom-

position (ID) [22] in which B12 is a k × n2 matrix consisting of k rows of A12 and B21 is an n2 × k

matrix consisting of k columns of A21. The matrices U1 and V1 each hold a k × k identity matrix

as a submatrix, and have no entries whose magnitude exceeds 1.

The advantage of using an ID is that the matrices A12 and A21 need never be formed. Instead,

a local computation determines the index vectors pointing out which columns and rows are needed.

and then only those entries need to be computed to create the off-diagonal blocks B12 and B21 in

(3.5). Moreover, when skeletonization is used, the vector f̃1 can be formed by evaluating the vector

f1 only at the k nodes associated with the spanning rows of A12.

A strictly local technique for computing U1 and V1, and determining the corresponding index

vectors, is described in Section 6.2 of [36].

3.4 Outline of the solution process

To describe the refinement and the local compression, we consider a contour with a single

corner, like the one in Figure 3.1(a). We partition the contour into two disjoint parts, Γ = Γ1 ∪Γ2,

in such a way that Γ1 is a small piece containing the corner. The piece Γ2 is smooth, and can be

discretized into panels rather coarsely (since we use a high order rule, high accuracy does not require

many points). For the piece Γ1, we use a simplistic refinement strategy where we recursively cut

the panel nearest the corner in half. Once the innermost panel is small enough that its contribution

can be ignored (recall that we assume that the integrand is integrable), it is simply discarded and



54

the refinement stops. The Nyström discretization now results in a linear system like (3.2). Observe

that the block A11 can be very large since we may need thousands of points (or more [53]) to fully

resolve the singularity near the corner. The key observation is now that the rank k of A12 and A21

is essentially independent of how finely the corner has been refined. This allows us to employ the

direct solver of [36, 42, 63, 78] to compress the corner and eliminate the “extra” degrees of freedom

used to resolve the singularity. The output of the compression is (i) a set of k collocation points

inside Γ1 that are automatically picked by the algorithm from among the n1 points used in the

refinement and (ii) a k×k dense matrix D11 that represents self-interaction among the k remaining

points. The cost of this compression is O(n1 k
2). Once the compression has been completed, all

that remains is to solve the smaller system (3.5) to obtain the solution {q̃1, q2}, and, if required,

reconstructing the full vector q1 via (3.7).

For a contour with multiple corners, simply repeat the local compression for each corner. Note

that the compression processes are independent, meaning that they can be executed in parallel on

a multi-core machine. The authors of [10, 55, 59, 53] have demonstrated the astonishing power of

this observation by solving numerical examples involving tens of thousands of corners to close to

full double precision accuracy.

Note: To achieve optimal accuracy, it is important to scale the matrix elements in the

Nyström discretization as described in [12, 10]. The idea is to scale the vectors in the discretiza-

tion by the quadrature weights so that for a panel Γp corresponding to an index vector Ip, we have

||q||L2(Γp) ≈ ||q(Ip)||`2. The matrix elements in the coefficient matrix are scaled analogously so that

||α q(·) +
∫

Γ k(·,y) q(y) ds(y)||L2(Γp) ≈ ||[Aq](Ip)||`2. The idea is to not give disproportionate weight

to a region of the contour that ends up with a high density of discretization points due to a local

refinement.



55

(a) (b) (c)

Figure 3.1: The boundary Γtear considered in the numerical experiments. (a) The original Gaussian
grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid. (c) The grid
after local compression.

(a) (b) (c)

Figure 3.2: The boundary Γpacman considered in the numerical experiments. (a) The original
Gaussian grid before refinement, red nodes in Γ1 and blue in Γ2. (b) The locally refined grid. (c)
The grid after local compression.



56

3.5 Generalizations

The general idea of first discretizing very finely to fully resolve complicated behavior, and

then compressing the resulting linear system to reduce the number of degrees of freedom to one

appropriate for resolving macro-scale interactions can be applied not only to corners, but to many

situations where the solution to a PDE or an integral equation exhibits complicated, but localized,

behavior. For an application to a BIE defined on a contour that comes very close to touching itself

(but does not actually touch), see [59, Sec. 10.3]. For an application to modeling of composite

materials, see, e.g., [38, Sec. 4].

3.6 Numerical illustration

Let Ω denote a bounded domain with piece-wise smooth boundary Γ. On the exterior domain

Ωc, we consider a Dirichlet boundary value problem





∆u(x) + ω2u(x) = 0 x ∈ Ωc

u(x) = g(x) x ∈ Γ = ∂Ω

(D)

and a Neumann boundary value problem





∆u(x) + ω2u(x) = 0 x ∈ Ωc

∂u
∂ν (x) = f(x) x ∈ Γ = ∂Ω,

(N)

where ω is the wavenumber, ν(x) represents the normal vector to Γ at the point x ∈ Γ pointing

into Ωc. Both (D) and (N) are coupled with the radiation condition
√
|x|
(

∂
∂|x| − iω

)
u(x)→ 0 as

|x| → ∞.

For the Dirichlet problem (D), we make the ansatz that the solution u can be represented by

u(x) =

∫

Γ

(
i

4

∂

∂ν(y)
H0(ω|x− y|)

)
q(y)∂s(y)

where i
4H0(ω|x − y|) is the fundamental solution to the Helmholtz equation. By enforcing the

boundary condition, the boundary charge distribution q is given by the solution of the integral



57

equation

1

2
q(x) +

i

4

∫

Γ

∂

∂ν(y)
(H0(ω|x− y|)) q(y)∂s(y) = g(x), for x ∈ Γ. (8)

For the Neumann problem (N), we make the ansatz that the solution u can be represented by

u(x) =

∫

Γ

i

4
H0(ω|x− y|)q(y)∂s(y).

Now, the boundary charge distribution q is given determined by the equation

−1

2
q(x) +

i

4

∫

Γ

∂

∂ν(x)
(H0(ω|x− y|)) q(y)∂s(y) = f(x), for x ∈ Γ. (9)

The equations (8) and (9) were discretized using a Nyström technique based on a 16-point

composite Gaussian quadrature [67]. Certain matrix elements near the diagonal were modified to

maintain high accuracy in spite of the (weakly) singular kernels as described in [50]. All exper-

iments were run on a Lenovo laptop computer with 8GB of RAM and a 2.6GHz Intel i5-2540M

processor. The compression technique was implemented rather crudely in MATLAB, which means

that significant further gains in speed should be achievable.

For the Dirichlet problem, we considered a tear shaped geometry given by

x(t) =
(

2| sin(πt)|,− tan(π/4) sin(2πt)
)

for t ∈ [−0.5, 0.5] with arc-length approximately 1.3π, cf. Figure 3.1. For the Neumann problem, we

considered a “pacman” shaped geometry given by x(t) =
(

sign(2πt) sin(3πt), tan(3π/4) sin(2πt)
)

for t ∈ [−0.5, 0.5] with arc-length of approximately 2.4π, cf Figure 3.2. We used the values

ω = 1, 10, and 100 (meaning the tear is 0.65, 6.5, and 65 wavelengths; while the pacman is 1.2, 12,

and 120 wavelengths). The boundary data is given by the incident wave uinc(x) = eiωx2 , so

g(x) = uinc(x) and f(x) = ∂
∂ν(x)u

inc(x). We measured the error in the computed boundary charge

q by

Echarge =
‖q − qexact‖L2(Γ)

‖qexact‖L2(Γ)

and the error in the potential u (evaluated on the boundary of a circle S with radius 3 enclosing

Ω) via

Epot =
‖u− uexact‖L2(S)

‖uexact‖L2(S)
.



58

Since the exact solution was not available, we measured against a very highly over-resolved reference

solution.

The computed solutions q for our two problems are shown in Figure 3.3. They both belong

to L2(Γ), but the solution associated with the Neumann problem on the pacman geometry is

unbounded.

Rows 1, 5, 9, 13, 17, and 21 of Table 3.1 reports the errors Echarge and Epot when there

is no refinement of the corner for the Dirichlet and Neumann boundary value problems. In all

other experiments, the corner is discretized with 1024 points and is compressed for three prescribed

tolerances ε. (We also tried solving the Dirichlet problem on the pacman geometry, but found that

for such domains nine digits of accuracy was obtained without local refinement in the corner.) The

remainder of Table 3.1 reports the size of the original system (N ×N), the size of the compressed

system (Ncompressed×Ncompressed), the number of skeleton nodes in the corner k, the time Tcompress

in seconds for the compression. We observe that very high accuracy can be attained for every

wave-number. We also observe that the rank k of interaction between the corner patch (Γ1) and

the rest of the domain (Γ2) is always very small, it depends only weakly on the requested accuracy,

and it hardly depends at all on the wave-number.

Solution q of the BIE (8) on Γtear Solution q for the BIE (9) on Γpacman

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

 

 

t
−0.5 0 0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

t

Figure 3.3: Plots of the solutions q for the BIEs (8) and (9) associated with, respectively, the
Dirichlet problem (D) and the Neumann problem (N). The solid line is the real part, and the
dotted line is the imaginary part.



59

3.7 Acknowledgements

The authors are grateful to James Bremer for the use of his high order quadrature.



60

ω N ε Ncompressed k Tcompress Echarge Epot

D
ir

ic
h

le
t

on
Γ

te
a
r

1

128 — — — — 2.6e− 01 5.2e− 05

1152 1e− 7 154 26 0.45 1.2e− 06 2.1e− 07

1152 1e− 10 167 39 0.61 1.2e− 09 8.0e− 11

1152 1e− 12 175 47 0.73 9.3e− 12 3.2e− 13

10

576 — — — — 4.8e− 01 5.1e− 05

1600 1e− 7 603 27 0.67 1.3e− 05 6.5e− 07

1600 1e− 10 616 40 0.75 2.4e− 08 3.0e− 10

1600 1e− 12 624 48 0.85 2.8e− 10 6.14e− 12

100

1856 — — — — 1.1e− 01 8.3e− 05

2880 1e− 7 1888 32 0.53 1.2e− 06 1.3e− 06

2880 1e− 10 1898 42 0.76 1.0e− 09 8.0e− 10

2880 1e− 12 1906 50 0.90 4.6e− 11 7.4e− 12

N
eu

m
an

n
on

Γ
p

a
cm

a
n

1

224 — — — — 6.3e− 01 1.0e− 02

1248 1e− 7 251 27 0.52 4.0e− 05 6.8e− 07

1248 1e− 10 264 40 0.70 3.3e− 08 5.8e− 10

1248 1e− 12 273 49 0.84 1.1e− 09 4.6e− 12

10

576 — — — — 2.6e− 01 1.7e− 02

1600 1e− 7 607 31 0.58 4.4e− 05 1.2e− 06

1600 1e− 10 619 43 0.76 2.7e− 08 7.6e− 10

1600 1e− 12 627 51 0.94 4.3e− 10 1.1e− 11

100

1856 — — — — 6.0e− 02 4.5e− 03

3660 1e− 7 2369 33 0.64 4.5e− 06 1.1e− 06

3660 1e− 10 2381 45 0.84 1.4e− 08 9.6e− 10

3660 1e− 12 2389 53 1.1 1.3e− 10 3.9e− 12

Table 3.1: Results from solving the external Helmholtz boundary value problems (D) and (N) on
the geometries in Figures 3.1(a) and 3.2(a) for three different values of the wave-number ω. The
errors Echarge and Epot report the relative errors in the computed charge distribution q, and the
evaluated potential, respectively. k is the rank of interaction (to precision ε) between the corner
piece in Γ1 and the rest of the contour, and Ncompress is the size of the compressed system. Tcompress

is the time in seconds required for compressing the corner.



Chapter 4

A high-order Nyström discretization scheme for Boundary Integral Equations

Defined on Rotationally Symmetric Surfaces

P. Young, S. Hao, P.G. Martinsson

Note: The work described in this chapter was carried out in collaboration with Patrick Young

and Professor Per-Gunnar Martinsson of the University of Colorado. It appeared in the Journal

of Computational Physics (231(11), pages 4142-4159, 2012) under the title: “A high-order Nyström

discretization scheme for Boundary Integral Equations Defined on Rotationally Symmetric Surfaces ”

Abstract: A scheme for rapidly and accurately computing solutions to boundary integral equa-

tions (BIEs) on rotationally symmetric surfaces in R3 is presented. The scheme uses the Fourier

transform to reduce the original BIE defined on a surface to a sequence of BIEs defined on a gen-

erating curve for the surface. It can handle loads that are not necessarily rotationally symmetric.

Nyström discretization is used to discretize the BIEs on the generating curve. The quadrature

used is a high-order Gaussian rule that is modified near the diagonal to retain high-order accuracy

for singular kernels. The reduction in dimensionality, along with the use of high-order accurate

quadratures, leads to small linear systems that can be inverted directly via, e.g., Gaussian elim-

ination. This makes the scheme particularly fast in environments involving multiple right hand

sides. It is demonstrated that for BIEs associated with the Laplace and Helmholtz equations, the

kernel in the reduced equations can be evaluated very rapidly by exploiting recursion relations for

Legendre functions. Numerical examples illustrate the performance of the scheme; in particular,

it is demonstrated that for a BIE associated with Laplace’s equation on a surface discretized using

320 800 points, the set-up phase of the algorithm takes 1 minute on a standard laptop, and then

solves can be executed in 0.5 seconds.



62

4.1 Introduction

The premise of the paper is that it is much easier to solve a Boundary Integral Equation

(BIE) defined on a curve in R2 than one defined on a surface in R3. With the development of

high order accurate Nyström discretization techniques [64, 2, 67, 11, 50], it has become possible

to attain close to double precision accuracy in 2D using only a very moderate number of degrees

of freedom. This opens up the possibility of solving a BIE on a rotationally symmetric surface

with the same efficiency since such an equation can in principle be written as a sequence of BIEs

defined on a generating curve. However, there is a practical obstacle: The kernels in the BIEs

on the generating curve are given via Fourier integrals that cannot be evaluated analytically. The

principal contribution of the present paper is to describe a set of fast methods for constructing

approximations to these kernels.

4.1.1 Problem formulation

This paper presents a numerical technique for solving boundary integral equations (BIEs)

defined on axisymmetric surfaces in R3. Specifically, we consider second kind Fredholm equations

of the form

σ(x) +

∫

Γ
k(x,x′)σ(x′) dA(x′) = f(x), x ∈ Γ, (1)

under two assumptions: First, that Γ is a surface in R3 obtained by rotating a curve γ about an

axis. Second, that the kernel k is invariant under rotation about the symmetry axis in the sense

that

k(x,x′) = k(θ − θ′, r, z, r′, z′), (2)

where (r, z, θ) and (r′, z′, θ′) are cylindrical coordinates for x and x′, respectively,

x = (r cos θ, r sin θ, z), (3)

x′ = (r′ cos θ′, r′ sin θ′, z′), (4)



63

see Figure 5.2. Under these assumptions, the equation (1), which is defined on the two-dimensional

surface Γ, can via a Fourier transform in the azimuthal variable be recast as a sequence of equations

defined on the one-dimensional curve γ. To be precise, letting σn, fn, and kn denote the Fourier

coefficients of σ, f , and k, respectively (so that (11), (12), and (13) hold), the equation (1) is

equivalent to the sequence of equations

σn(r, z) +
√

2π

∫

γ
kn(r, z, r′, z′)σn(r′, z′) r′ dl(r′, z′) = fn(r, z), (r, z) ∈ γ, n ∈ Z. (5)

Whenever f can be represented with a moderate number of Fourier modes, the formula (5) provides

an efficient technique for computing the corresponding modes of σ. The conversion of (1) to (5)

appears in, e.g., [86], and is described in detail in Section 4.2. Note that the conversion procedure

does not require the data function f to be rotationally symmetric.

4.1.2 Applications and prior work

Equations like (1) arise in many areas of mathematical physics and engineering, commonly

as reformulations of elliptic partial differential equations. Advantages of a BIE approach include a

reduction in dimensionality, often a radical improvement in the conditioning of the mathematical

equation to be solved, a natural way of handling problems defined on exterior domains, and a

relative ease in implementing high-order discretization schemes, see, e.g., [3].

The observation that BIEs on rotationally symmetric surfaces can conveniently be solved by

recasting them as a sequence of BIEs on a generating curve has previously been exploited in the

context of stress analysis [5], scattering [30, 73, 92, 98, 99], and potential theory [45, 85, 86, 91].

Most of these approaches have relied on collocation or Galerkin discretizations and have generally

used low-order accurate discretizations.

4.1.3 Kernel evaluations

A complication of the axisymmetric formulation is the need to determine the kernels kn

in (5). Each kernel kn is defined as a Fourier integral of the original kernel function k in the



64

azimuthal variable θ in (2), cf. (8), that cannot be evaluated analytically, and would be too expensive

to approximate via standard quadrature techniques. The FFT can be used to a accelerate the

computation in certain regimes. For many points, however, the function which is to be transformed

is sharply peaked, and the FFT would at these points yield inaccurate results.

4.1.4 Principal contributions of present work

This paper resolves the difficulty of computing the kernel functions kn described in Section

4.1.3. For the case of kernels associated with the Laplace equation, it provides analytic recursion

relations that are valid precisely in the regions where the FFT loses accuracy. The kernels associated

with the Helmholtz equation can then be obtained via a perturbation technique.

The paper also describes a high-order Nyström discretization of the BIEs (5) that provides

far higher accuracy and speed than previously published methods. The discretization scheme

converges fast enough that for simple generating curves, a relative accuracy of 10−10 is obtained

using as few as a hundred points, cf. Section 5.6. The rapid convergence of the discretization leads

to linear systems of small size that can be solved directly via, e.g., Gaussian elimination, making

the algorithm particularly effective in environments involving multiple right hand sides or when the

linear system is challenging for iterative solvers (as happens for many scattering problems).

Finally, the efficient techniques for evaluating the fundamental solutions to the Laplace and

Helmholtz equations in an axisymmetric environment have applications beyond solving boundary

integral equations, for details see Section 4.7.

4.1.5 Asymptotic costs

To describe the asymptotic complexity of the method, we let Ntot denote the total number

of discretization points, and assume that as Ntot grows, the number of Fourier modes required to

resolve the solution scales proportionate to the number of discretization points required along the

generating curve γ. Then the asymptotic cost of solving (1) for a single right-hand side f is O(N2
tot).

If additional right hand sides are given, any subsequent solve requires only O(N
3/2
tot ) operations.



65

Numerical experiments presented in Section 5.6 indicate that the constants of proportionality in

the two estimates are moderate. For instance, in a simulation with Ntot = 320 800, the scheme

requires 1 minute for the first solve, and 0.49 seconds for each additional right hand side (on a

standard laptop).

Observe that since a high-order discretization scheme is used, even complicated geometries

can be resolved to high accuracy with a moderate number Ntot of points.

4.1.6 Outline

Section 4.2 provides details on the conversion of a BIE on a rotationally symmetric surface to

a sequence of BIEs on a generating curve. Section 4.3 describes a high order methods for discretizing

a BIE on a curve. Section 4.4 summarizes the algorithm and estimates its computational costs.

Section 4.5 describes how to rapidly evaluate the kernels associated with the Laplace equation,

and then Section 4.6 deals with the Helmholtz case. Section 4.7 describes other applications of the

kernel evaluation techniques. Section 5.6 illustrates the performance of the proposed method via

numerical experiments.

4.2 Fourier Representation of BIE

Consider the BIE (1) under the assumptions on rotational symmetry stated in Section 4.1.1

(i.e. Γ is a rotationally symmetric surface generated by a curve γ and that k is a rotationally

symmetric kernel). Cylindrical coordinates (r, z, θ) are introduced as specified in (3). We write

Γ = γ × T where T is the one-dimensional torus, usually parameterized by θ ∈ (−π, π].



66

Figure 4.1: The axisymmetric domain Γ generated by the curve γ.



67

4.2.1 Separation of Variables

We define for n ∈ Z the functions fn, σn, and kn via

fn(r, z) =

∫

T

e−inθ√
2π

f(θ, r, z) dθ, (6)

σn(r, z) =

∫

T

e−inθ√
2π

σ(θ, r, z) dθ, (7)

kn(r, z, r′, z′) =

∫

T

e−inθ√
2π

k(θ, r, z, r′, z′) dθ. (8)

Formulas (6), (7), and (8) define fn, σn, and kn as the coefficients in the Fourier series of the

functions f , σ, and k about the azimuthal variable,

f(x) =
∑

n∈Z

einθ√
2π

fn(r, z), (9)

σ(x) =
∑

n∈Z

einθ√
2π

σn(r, z), (10)

k(x,x′) = k(θ − θ′, r, z, r′, z′) =
∑

n∈Z

ein(θ−θ′)
√

2π
kn(r, z, r′, z′). (11)

To determine the Fourier representation of (1), we multiply the equation by e−inθ/
√

2π and

integrate θ over T. Equation (1) can then be said to be equivalent to the sequence of equations

σn(r, z) +

∫

γ×T

[∫

T

e−inθ√
2π

k(x,x′) dθ

]
σ(x′) dA(x′) = fn(r, z), n ∈ Z. (12)

Invoking (13), we evaluate the bracketed factor in (12) as

∫

T

e−inθ√
2π

k(x,x′) dθ =

∫

T

e−inθ√
2π

k(θ − θ′, r, z, r′, z′) dθ

= e−inθ
′
∫

T

e−in(θ−θ′)
√

2π
k(θ − θ′, r, z, r′, z′) dθ = e−inθ

′
kn(r, z, r′, z′). (13)

Inserting (13) into (12) and executing the integration of θ′ over T, we find that (1) is equivalent to

the sequence of equations

σn(r, z) +
√

2π

∫

γ
kn(r, z, r′, z′)σn(r′, z′) r′ dl(r′, z′) = fn(r, z), n ∈ Z. (14)

For future reference, we define for n ∈ Z the boundary integral operators Kn via

[Kn σn](r, z) =
√

2π

∫

γ
kn(r, z, r′, z′)σn(r′, z′) r′ dl(r′, z′). (15)



68

Then equation (14) can be written

(
I +Kn)σn = fn, n ∈ Z. (16)

When each operator I +Kn is continuously invertible, we write the solution of (1) as

σ(r, z, θ) =
∑

n∈Z

einθ√
2π

[(I +Kn)−1fn](r, z). (17)

4.2.2 Truncation of the Fourier series

When evaluating the solution operator (9) in practice, we will choose a truncation parameter

N , and evaluate only the lowest 2N + 1 Fourier modes. If N is chosen so that the given function f

is well-represented by its lowest 2N + 1 Fourier modes, then in typical environments the solution

obtained by truncating the sum (9) will also be accurate. To substantiate this claim, suppose that

ε is a given tolerance, and that N has been chosen so that

||f −
N∑

n=−N

einθ√
2π
fn|| ≤ ε, (18)

We define an approximate solution via

σapprox =
N∑

n=−N

einθ√
2π

(I +Kn)−1fn. (19)

From Parseval’s identity, we then find that the error in the solution satisfies

||σ − σapprox||2 =
∑

|n|>N

||(I +Kn)−1fn||2 ≤
∑

|n|>N

||(I +Kn)−1||2 ||fn||2

≤
(

max
|n|>N

||(I +Kn)−1||2
) ∑

|n|>N

||fn||2 ≤
(

max
|n|>N

||(I +Kn)−1||2
)
ε2.

It is typically the case that the kernel k(x,x′) has enough smoothness that the Fourier modes

kn(r, z, r′, z′) decay as n → ∞. Then ||Kn|| → 0 as n → ∞ and ||(I + Kn)−1|| → 1. Thus, an

accurate approximation of f leads to an approximation in σ that is of the same order of accuracy.

Figure 4.4 illustrates how fast this convergence is for Laplace’s equation (note that in the case

illustrated, the original equation is 1
2σ +Kσ = f , and it is shown that ||(1

2I +Kn)−1|| → 1/2).



69

4.3 Nyström discretization of BIEs on the generating curve

We discretize the BIEs (5) defined on the generating curve γ using a Nyström scheme. In

describing the scheme, we keep the formulas uncluttered by discussing a generic integral equation

σ(x) +

∫

γ
k(x,x′)σ(x′) dl(x′) = f(x), x ∈ γ,

where γ is a simple smooth curve in the plane, and k is a weakly singular kernel function.

4.3.1 Quadrature nodes

Consider a quadrature rule on γ with nodes {xi}Ii=1 ⊂ γ and weights {wi}Ii=1. In other words,

for a sufficiently smooth function ϕ on γ,

∫

γ
ϕ(x) dl(x) ≈

I∑

i=1

ϕ(xi)wi. (20)

For the experiments in this paper, we use a composite Gaussian rule with 10 points per panel.

Such a rule admits for local refinement, and can easily be modified to accommodate contours with

corners that are only piece-wise smooth.

4.3.2 A simplistic Nyström scheme

The Nyström discretization of (20) corresponding to a quadrature with nodes {xi}Ii=1 takes

the form

σi +
I∑

j=1

ai,j σj = f(xi), i = 1, 2, 3, . . . , I, (21)

where {ai,j}Ii,j=1 are coefficients such that

∫

γ
k(xi,x

′)σ(x′) dl(x′) ≈
I∑

j=1

ai,j σ(xj), i = 1, 2, 3, . . . , I. (22)

The solution of (9) is a vector σ = [σi]
I
i=1 such that each σi is an approximation to σ(xi).

A simplistic way to construct coefficients ai,j so that (22) holds is to simply apply the rule

(20) to each function x′ 7→ k(xi,x
′)σ(x′) whence

ai,j = k(xi,xj)wj . (23)



70

This generally results in low accuracy since the kernel k(x,x′) has a singularity at the diagonal.

However, the formula (23) has the great advantage that constructing each ai,j costs no more than

a kernel evaluation; we seek to preserve this property for as many elements as possible.

4.3.3 High-order accurate Nyström discretization

It is possible to construct a high-order discretization that preserves the simple formula (23) for

the vast majority of coefficients ai,j [50]. The only ones that need to be modified are those for which

the target point xi is near1 to the panel τ holding xj . In this case, ai,j is conceptually constructed

as follows: First map the pointwise values {σj}xj∈τ to a polynomial interpolant on τ , then integrate

this polynomial against the singular kernel k using the quadratures of [67]. Operationally, the end

result is that ai,j is given by

ai,j =





∑m
p=1 k(xi,yi,j,p) vi,j,p if xi and xj are near,

k(xi,xj)wj if xi and xj are not near.

(24)

In (24), m is a small integer (roughly equal to the order of the Gaussian quadrature), the numbers

vi,j,p are coefficients that depend on γ but not on k, and yi,j,p are points on γ located in the same

panel as xj (in fact, yi,j,p = yi,j′,p when j and j′ belong to the same panel, so the number of kernel

evaluations required is less than it seems). For details, see [50].

4.4 The full algorithm

4.4.1 Overview

At this point, we have shown how to convert a BIE defined on an axisymmetric surface in R3

to a sequence of equations defined on a curve in R2 (Section 4.2), and then how to discretize each

of these reduced equations (Section 4.3). Putting the components together, we obtain the following

algorithm for solving (1) to within some preset tolerance ε:

1 To be precise, we say that xi is near a panel if is inside a circle of two times the radius of the smallest circle
enclosing the source panel.



71

i) Given f , determine a truncation parameter N such that ||f −∑N
n=−N

einθ√
2π
fn|| ≤ ε.

ii) Fix a quadrature rule for γ with nodes {(ri, zi)}Ii=1 ⊂ γ and form for each Fourier mode

n = −N, −N + 1, −N + 2, . . . , N the corresponding Nyström discretization as described

in Section 4.3. The number of nodes I must be picked to meet the computational tolerance

ε. Denote the resulting coefficient matrices {A(n)}Nn=−N .

iii) Evaluate via the FFT the terms {fn(ri, zi)}Nn=−N (as defined by (6)) for i = 1, 2, 3, . . . , I.

iv) Solve the equation (I + A(n))σn = fn for n = −N, −N + 1, −N + 2, . . . , N .

v) Construct σapprox using formula (19) evaluated via the FFT.

The construction of the matrices A(n) in Step ii can be accelerated using the FFT (as described

in Section 4.4.2), but even with such acceleration, it is typically by a wide margin the most expensive

part of the algorithm. However, this step needs to be performed only once for any given geometry.

The method therefore becomes particularly efficient when (1) needs to be solved for a sequence

of right-hand sides. In this case, it may be worth the cost to pre-compute the inverse (or LU-

factorization) of each matrix I + A(n).

4.4.2 Cost of computing the coefficient matrices

For each of the 2N + 1 Fourier modes, we need to construct an I× I matrix A(n) with entries

a
(n)
i,j . These entries are derived from the kernel functions kn defined by (8). Note that whenever

(r, z) 6= (r′, z′), the function θ 7→ k(θ, r, z, r′, z′) is C∞, but that as (r′, z′) → (r, z) it develops a

progressively sharper peak around θ = 0.

For two nodes (ri, zi) and (rj , zj) that are “not near” (in the sense defined in Section 4.3.3)

the matrix entries are given by the formula

a
(n)
i,j = kn(ri, zi, rj , zj)wj (25)



72

where kn is given by (8). Using the FFT, all 2N +1 entries can be evaluated at once in O(N logN)

operations. The FFT implicitly evaluates the integrals (8) via a trapezoidal rule which is highly

accurate since the points (ri, zi) and (rj , zj) are well-separated on the curve γ.

For two nodes (ri, zi) and (rj , zj) that are not well-separated on γ, evaluating a
(n)
i,j is dicier.

The first complication is that we must now use the corrected formula, cf. (24),

a
(n)
i,j =

m∑

p=1

kn(ri, zi, ri,j,p, zi,j,p) vi,j,p. (26)

The second complication is that the FFT acceleration for computing the kernels {kn}Nn=−N jointly

no longer works since the integrand in (8) is too peaked for the simplistic trapezoidal rule implicit

in the FFT. Fortunately, it turns out that for the kernels we are most interested in (the single and

double layer kernels associated with the Laplace and Helmholtz equations), the sequence {kn}Nn=−N

can be evaluated very efficiently via certain recurrence relations as described in Sections 4.5 and 4.6

(for the Laplace and Helmholtz equations, respectively). Happily, the analytic formulas are stable

precisely in the region where the FFT becomes inaccurate.

4.4.3 Computational Costs

The asymptotic cost of the algorithm described in Section 4.4.1 will be expressed in terms of

the number N of Fourier modes required, and the number I of discretization points required along

γ. The total cost can be split into three components:

(1) Cost of forming the matrices {A(n)}Nn=−N : We need to form 2N + 1 matrices, each of size

I × I. For O(I2) entries in each matrix, the formula (25) applies and using the FFT, all

2N + 1 entries can be computed at once at cost O(N logN). For O(I) entries close to the

diagonal, the formula (26) applies, and all the 2N + 1 entries can be computed at once at

cost O(N) using the recursion relations in Sections 4.5 and 4.6. The total cost of this step

is therefore O(I2N logN).



73

(2) Cost of transforming functions from physical space to Fourier space and back: The bound-

ary data f must be decomposed into Fourier modes {fn}Nn=−N , and after the linear systems

(I+A(n))σn = fn have been solved, the Fourier modes {σn}Nn=−N must be transformed back

to physical space. The asymptotic cost is O(IN log(N)).

(3) Cost of solving the linear systems (I+A(n))σn = fn: Using a direct solver such as Gaussian

elimination, the asymptotic cost is O(I3N).

We make some practical observations:

• The cost of executing FFTs is minimal and is dwarfed by the remaining costs.

• The scheme is highly efficient in situations where the same equation needs to be solved for

a sequence of different right hand sides. In this situation, one factors the matrices I + A(n)

once at cost O(I3N), and then the cost of processing an additional right hand side is only

O(I2N + IN logN) with a very small constant of proportionality.

• To elucidate the computational costs, let us express them in terms of the total number of

discretization points Ntot under the simplifying assumption that I ∼ N . Since Ntot = IN ,

we find I ∼ N1/2
tot and N ∼ N1/2

tot . Then:

Cost of setting up linear systems: O(N
3/2
tot logNtot)

Cost of the first solve: O(N2
tot)

Cost of subsequent solves: O(N
3/2
tot )

We observe that even though the asymptotic cost of forming the linear systems is less

than the cost of factoring the matrices, the set-up phase tends to dominate unless Ntot is

large. Moreover, the O(N
3/2
tot ) cost of the subsequent solves has a very small constant of

proportionality.



74

• The high order discretization employed achieves high accuracy with a small number of

points. In practical terms, this means that despite the O(N2
tot) scaling, the scheme is very

fast even for moderately complicated geometries.

• The system matrices I + A(n) often have internal structure that allow them to be inverted

using “fast methods” such as, e.g., those in [76]. The cost of inversion and application can

in fact be accelerated to near optimal complexity.

4.5 Accelerations for the Single and Double Layer Kernels Associated with

Laplace’s Equation

This section describes an efficient technique based on recursion relations for evaluating the

kernel kn, cf. (8), when k is either the single or double layer kernel associated with Laplace’s

equation.

4.5.1 The Double Layer Kernels of Laplace’s Equation

Let D ⊂ R3 be a bounded domain whose boundary is given by a smooth surface Γ, let E = D̄c

denote the domain exterior to D, and let n be the outward unit normal to D. Consider the interior

and exterior Dirichlet problems of potential theory [44],

∆u = 0 in D, u = f on Γ, (interior Dirichlet problem) (27)

∆u = 0 in E, u = f on Γ. (exterior Dirichlet problem) (28)

The solutions to (27) and (28) can be written in the respective forms

u(x) =

∫

Γ

n(x′) · (x− x′)
4π|x− x′|3 σ(x′) dA(x′), x ∈ D, (29)

u(x) =

∫

Γ

(
−n(x′) · (x− x′)

4π|x− x′|3 +
1

4π|x− x0|

)
σ(x′) dA(x′), x ∈ E, (30)



75

where σ is a boundary charge distribution that can be determined using the boundary conditions.

The point x0 can be placed at any suitable location in D. The resulting equations are

−1

2
σ(x) +

∫

Γ

n(x′) · (x− x′)
4π|x− x′|3 σ(x′) dA(x′) = f(x), (31)

−1

2
σ(x) +

∫

Γ

(
−n(x′) · (x− x′)

4π|x− x′|3 +
1

4π|x− x0|

)
σ(x′) dA(x′) = f(x), (32)

where x ∈ Γ in (31) and (32).

Remark 2 There are other integral formulations for the solution to Laplace’s equation. The double

layer formulation presented here is a good choice in that it provides an integral operator that leads

to well conditioned linear systems. However, the methodology of this chapter is equally applicable

to single-layer formulations that lead to first kind Fredholm BIEs.

4.5.2 Separation of Variables

Using the procedure given in Section 4.2, if Γ = γ ×T, then (27) and (28) can be recast as a

series of BIEs defined along γ. We express n in cylindrical coordinates as

n(x′) = (nr′ cos θ′, nr′ sin θ
′, nz′).

Further,

|x− x′|2 = (r cos θ − r′ cos θ′)2 + (r sin θ − r′ sin θ′)2 + (z − z′)2

= r2 + (r′)2 − 2rr′(sin θ sin θ′ + cos θ cos θ′) + (z − z′)2

= r2 + (r′)2 − 2rr′ cos(θ − θ′) + (z − z′)2

and

n(x′) · (x− x′) = (nr′ cos θ′, nr′ sin θ
′, nz′) · (r cos θ − r′ cos θ′, r sin θ − r′ sin θ′, z − z′)

= nr′r(sin θ sin θ′ + cos θ cos θ′)− nr′r′ + nz′(z − z′)

= nr′(r cos(θ − θ′)− r′) + nz′(z − z′).



76

Then for a point x′ ∈ Γ, the kernel of the internal Dirichlet problem can be expanded as

n(x′) · (x− x′)
4π|x− x′|3 =

1√
2π

∑

n∈Z
ein(θ−θ′)d(i)

n (r, z, r′, z′),

where

d(i)
n (r, z, r′, z′) =

1√
32π3

∫

T
e−inθ

[
nr′(r cos θ − r′) + nz′(z − z′)

(r2 + (r′)2 − 2rr′ cos θ + (z − z′)2)3/2

]
dθ.

Similarly, the kernel of the external Dirichlet problem can be written as

−n(x′) · (x− x′)
4π|x− x′|3 +

1

4π|x− x0|
=

1√
2π

∑

n∈Z
ein(θ−θ′)d(e)

n (r, z, r′, z′),

with

d(e)
n (r, z, r′, z′) =

1√
32π3

∫

T
e−inθ

(
− nr′(r cos θ − r′) + nz′(z − z′)

(r2 + (r′)2 − 2rr′ cos θ + (z − z′)2)3/2
+

+
1

(r2 + r2
0 − 2rr0 cos θ + (z − z0)2)1/2

)
dθ,

where x0 has been written in cylindrical coordinates as (r0 cos(θ0), r0 sin(θ0), z0). With the expan-

sions of the kernels available, the procedure described in Section 4.4 can be used to solve (31) and

(32) by solving

σn(r, z) +
√

2π

∫

γ
d(i)
n (r, r′, z, z′)σn(r′, z′) r′ dl(r′, z′) = fn(r, z) (33)

and

σn(r, z) +
√

2π

∫

γ
d(e)
n (r, r′, z, z′)σn(r′, z′) r′ dl(r′, z′) = fn(r, z), (34)

respectively for n = −N,−N+1, . . . , N . Note that the kernels d
(i)
n and d

(e)
n contain a log-singularity

as (r′, z′)→ (r, z).

4.5.3 Evaluation of Kernels

The values of d
(i)
n and d

(e)
n for n = −N,−N + 1, . . . , N need to be computed efficiently

and with high accuracy to construct the Nyström discretization of (33) and (34). Note that the

integrands of d
(i)
n and d

(e)
n are real valued and even functions on the interval [−π, π]. Therefore, d

(i)
n

can be written as

d(i)
n (r, z, r′, z′) =

1√
32π3

∫

T

[
nr′(r cos t− r′) + nz′(z − z′)

(r2 + (r′)2 − 2rr′ cos t+ (z − z′)2)3/2

]
cos(nt) dt. (35)



77

Note that d
(e)
n can be written in a similar form.

This integrand is oscillatory and increasingly peaked at the origin as (r′, z′) approaches (r, z).

As long as r′ and r as well as z′ and z are well separated, the integrand does not experience peaks

near the origin, and as mentioned before, the FFT provides a fast and accurate way for calculating

d
(i)
n and d

(e)
n .

In regimes where the integrand is peaked, the FFT no longer provides a means of evaluating

d
(i)
n and d

(e)
n with the desired accuracy. One possible solution to this issue is applying adaptive

quadrature to fully resolve the peak. However, this must be done for each value of n required and

becomes prohibitively expensive if N is large.

Fortunately, an analytical solution to (35) exists. As noted in [25], the single-layer kernel can

be expanded with respect to the azimuthal variable as

s(x,x′) =
1

4π|x− x′| =
1

4π(r2 + (r′)2 − 2rr′ cos(θ − θ′) + (z − z′)2)1/2

=
1√
2π

∑

n∈Z
ein(θ−θ′)sn(r, z, r′, z′),

where

sn(r, z, r′, z′) =
1√

32π3

∫

T

cos(nt)

(r2 + (r′)2 − 2rr′ cos(t) + (z − z′)2)1/2
dt

=
1√

8π3rr′

∫

T

cos(nt)√
8(χ− cos(t))

dt

=
1√

8π3rr′
Qn−1/2(χ),

Qn−1/2 is the half-integer degree Legendre function of the second kind, and

χ =
r2 + (r′)2 + (z − z′)2

2rr′
.

To find an analytical form for (35), first note that in cylindrical coordinates the double-layer



78

kernel can be written in terms of the single-layer kernel,

n(x′) · (x− x′)
4π|x− x′|3 =

nr′(r cos(θ − θ′)− r′) + nz′(z − z′)
4π(r2 + (r′)2 − 2rr′ cos(θ − θ′) + (z − z′)2)3/2

=
1

4π

[
nr′

∂

∂r′

(
1

(r2 + (r′)2 − 2rr′ cos(θ − θ′) + (z − z′)2)1/2

)
+

+ nz′
∂

∂z′

(
1

(r2 + (r′)2 − 2rr′ cos(θ − θ′) + (z − z′)2)1/2

)]
.

The coefficients of the Fourier series expansion of the double-layer kernel are then given by d
(i)
n ,

which can be written using the previous equation as

d(i)
n (r, z, r′, z′) =nr′

∫

T

∂

∂r′

(
cos(nt)

(32π3(r2 + (r′)2 − 2rr′ cos(t) + (z − z′)2))1/2

)
dt+

+ nz′

∫

T

∂

∂z′

(
cos(nt)

(32π3(r2 + (r′)2 − 2rr′ cos(t) + (z − z′)2))1/2

)
dt

=nr′
∂

∂r′

(
1√

8π3rr′
Qn−1/2(χ)

)
+ nz′

∂

∂z′

(
1√

8π3rr′
Qn−1/2(χ)

)

=
1√

8π3rr′

[
nr′

(
∂Qn−1/2(χ)

∂χ

∂χ

∂r′
−
Qn−1/2(χ)

2r′

)
+ nz′

∂Qn−1/2(χ)

∂χ

∂χ

∂z′

]
.

To utilize this form of d
(i)
n , set µ =

√
2

χ+1 and note that

∂χ

∂r′
=

(r′)2 − r2 − (z − z′)2

2r(r′)2
,

∂χ

∂z′
=
z′ − z
rr′

,

Q−1/2(χ) = µK(µ),

Q1/2(χ) = χµK(µ)−
√

2(χ+ 1)E(µ),

Q−n−1/2(χ) = Qn−1/2(χ),

Qn−1/2(χ) = 4
n− 1

2n− 1
χQn−3/2(χ)− 2n− 3

2n− 1
Qn−5/2(χ),

∂Qn−1/2(χ)

∂χ
=

2n− 1

2(χ2 − 1)

(
χQn−1/2 −Qn−3/2

)
,

where K and E are the complete elliptic integrals of the first and second kinds, respectively. The

first two relations follow immediately from the definition of χ and the relations for the Legendre

functions of the second kind can be found in [1]. With these relations in hand, the calculation of

d
(i)
n for n = −N,−N + 1, . . . , N can be done accurately and efficiently when r′ and r as well as z′

and z are in close proximity. The calculation of d
(e)
n can be done analogously.



79

Remark 3 Note that the forward recursion relation for the Legendre functions Qn−1/2(χ) is un-

stable when χ > 1. In practice, the instability is mild when χ is near 1 and the recursion relation

can still be employed to accurately compute values in this regime. Additionally, if stability becomes

an issue, Miller’s algorithm [32] can be used to calculate the values of the Legendre functions using

the backwards recursion relation, which is stable for χ > 1.

4.6 Fast Kernel Evaluation for the Helmholtz Equation

Section 4.5 describes how to efficiently evaluate the kernels kn as defined by (8) for kernels

associated with Laplace’s equation. This section generalizes these methods to a broad class of

kernels that includes the single and double layer kernels associated with the Helmholtz equation.

4.6.1 Rapid Kernel Calculation via Convolution

Consider a kernel of the form

f(x,x′) = s(x,x′) g(x,x′), (36)

where

s(x,x′) =
1

4π|x− x′|

is the single layer kernel of Laplace’s equation and g(x,x′) is a smooth function for all x,x′ ∈ R3.

Common examples of kernels that take this form include the fundamental solution of the Helmholtz

equation and screened Coulomb (Yukawa) potentials.

Letting

x = (r cos θ, r sin θ, z),

x′ = (r′ cos θ′, r′ sin θ′, z′),

we are interested in calculating the Fourier expansion of (36) in terms of the azimuthal variable.

When g(x,x′) = 1 (the Laplace kernel), we know how to rapidly compute these Fourier coefficients



80

rapidly and efficiently. However, when g takes a nontrivial form, this is not generally true; there is

no known analytical formula for calculating the Fourier coefficients of (36).

We will now describe an efficient technique for calculating the the Fourier coefficients of (36),

when the function g is sufficiently smooth. For a fixed value of (r, z) and (r′, z′), the functions s

and g are periodic in the azimuthal variable over the interval T. Dropping the dependence of s

and g on (r, z) and (r′, z′) for notational clarity, we define t = θ − θ′ ∈ T and the Fourier series

expansions of s and g as

s(t) =
∑

n∈Z

eint√
2π

sn, (37)

g(t) =
∑

n∈Z

eint√
2π

gn, (38)

where

sn =

∫

T

e−int√
2π

s(t) dt, (39)

gn =

∫

T

e−int√
2π

g(t) dt. (40)

The values given by (39) can be calculated as described in Section 4.5, while the values given by

(40) can be rapidly and accurately computed using the FFT.

Assuming the Fourier series defined by (37) and (38) are uniformly convergent, we find

fn =
1√
2π

∫

T
s(t) g(t) e−int dt =

∑

k∈Z
sk gn−k = [sk ∗ gk](n),

where sk ∗ gk is the discrete convolution of the sequences defined by (39) and (40).

In a practical setting, the Fourier series are truncated to finite length. Assuming that we

have kept −N,−N + 1, . . . , N terms, directly calculating the convolution would require O(N2) op-

erations. Fortunately, this computation can be accelerated to O(N logN) operations by employing

the discrete convolution theorem and the FFT [17].

Letting D denote the discrete Fourier transform (DFT), the discrete convolution theorem

states that the convolution of two periodic sequences {an} and {bn} is related by

D{an ∗ bn}k = αAkBk,



81

where {An} = D{an}, {Bn} = D{bn}, and α is a known constant depending upon the length of the

periodic sequences and the definition of the DFT. Thus, we can rapidly calculate the convolution

of two periodic sequences by taking the FFT of each sequence, computing the pointwise product

of the result, and then applying the inverse FFT.

Of course, the sequences that we need to convolute are not periodic. Applying the discrete

convolution to the sequences defined by (39) and (40) will not be exact, but the error incurred will

be small assuming that the Fourier coefficients decay rapidly and that N is large enough. To see

this, assume that

s(t) =
N∑

n=−N

eint√
2π

sn,

g(t) =
N∑

n=−N

eint√
2π

gn.

Then the exact Fourier representation of f can be found by taking the product of these two series,

which will be of length 4N + 1. As is well known, the coefficients of this product is given by

the discrete convolution of the sequences containing the coefficients of the two series, and these

sequences must first be padded with 2N zeros. Thus, we can effectively calculate the Fourier

coefficients of the function given by (36) by calculating 2N + 1 Fourier coefficients of s and g,

padding these sequences with zeros, calculating the discrete convolution of these sequences, and

truncating the resulting sequence. In practice, padding may not even be required if the Fourier

coefficients of s and g decay sufficiently fast.

Note that the procedure described in this section is quite general. The azimuthal Fourier

coefficients of many kernels that can be represented as the product of a singular function and a

smooth function can be found, assuming that there is an accurate technique for determining the

coefficients of the singular function.

4.6.2 Application to the Helmholtz Equation

In this section, we will apply the fast kernel calculation technique described in Section 4.6.1

to the exterior Dirichlet problem for the Helmholtz equation. Let D ⊂ R3 be a bounded domain



82

whose boundary is given by a smooth surface Γ, let E = D̄c denote the domain exterior to D, and

let n and be the outward unit normal to D. The partial differential equation representing this

problem is given by

∆u+ k2u = 0 in E, u = f on Γ, (41)

where k > 0 is the wavenumber, and u satisfies the Sommerfeld radiation condition

lim
r→∞

r

(
∂u

∂r
− i k u

)
= 0, (42)

where r = |x| and the limit holds uniformly in all directions x/|x|. Let the single and double layer

potentials for the Helmholtz equation be given by

φ(x,x′) =
eik|x−x

′|

4π|x− x′| , (single layer) (43)

∂φ(x,x′)

∂n(x′)
=
n(x′) · (x− x′)

4π|x− x′|3
[(

1− ik|x− x′|
)
eik|x−x

′|
]
. (double layer) (44)

The solution to (41) can be written in terms of the double layer potential,

u(x) =

∫

Γ

∂φ(x,x′)

∂n(x′)
σ(x′) dA(x′), x ∈ E,

where σ is a boundary charge density that can be determined using the boundary conditions. The

resulting boundary integral equation is given by

1

2
σ(x) +

∫

Γ

∂φ(x,x′)

∂n(x′)
σ(x′) dA(x′) = f(x). (45)

As is well known, (45) is not always uniquely solvable, even though (41) is uniquely solvable for

all k > 0. A common solution to this is to represent the solution to (41) as a combined single and

double layer potential,

u(x) =

∫

Γ

(
∂φ(x,x′)

∂n(x′)
− i ν φ(x,x′)

)
σ(x′) dA(x′), x ∈ E,

where ν > 0. We have freedom in choosing ν, see e.g., [18, 72], for some analysis on this choice.

The boundary integral equation we need to solve is

1

2
σ(x) +

∫

Γ

(
∂φ(x,x′)

∂n(x′)
− i ν φ(x,x′)

)
σ(x′) dA(x′) = f(x). (46)



83

4.7 Fast evaluation of fundamental solutions in cylindrical coordinates

The techniques for kernel evaluations described in Sections 4.4.2, 4.5, and 4.6 are useful not

only for solving BIEs, but for solving the Laplace and Helmholtz equations in a variety of contexts

where cylindrical coordinates are effective. To illustrate, observe that the free space equation

−∆u(x)− k2 u(x) = f(x), x ∈ R3 (47)

has the solution

u(x) =

∫

R3

φ(k)(x,x′) f(x′) dA(x′). x ∈ R3, (48)

where φ(k) is the fundamental solution

φ(k)(x) =
eik|x|

4π|x| .

In cylindrical coordinates, we write (48) as

u(x) =

∞∑

n=−∞

einθ√
2π

∫

H
φ(k)
n (r, z, r′, z′)fn(r′, z′)dA(r′, z′) (49)

where H = {(r, z) ∈ R2 : r ≥ 0} is a half-plane, and where un, fn, and φ
(k)
n are the Fourier

coefficients defined by

u(x) =
∞∑

n=−∞

einθ√
2π
un(r, z),

f(x) =

∞∑

n=−∞

einθ√
2π
fn(r, z),

φ(k)(x,x′) =
∞∑

n=−∞

ein(θ−θ′)
√

2π
φ(k)
n (r, z, r′, z′).

The kernel φ
(k)
n in (49) can be evaluated efficiently using the techniques of Sections 4.4.2, 4.5 and

4.6. If f has a rapidly convergent Fourier series, and if “fast” summation (e.g. the Fast Multipole

Method) is used to evaluate the integrals in (49), then very efficient solvers result.

More generally, we observe that the equation (47) can be expressed

−∂
2un
∂2r

− 1

r

∂un
∂r
− ∂2un

∂2z
+

(
n2

r2
− k2

)
un = fn, n ∈ Z. (50)

and that the function φ
(k)
n is the Green’s function of (50).



84

4.8 Numerical Results

This section describes several numerical experiments performed to assess the efficiency and

accuracy of the numerical scheme outlined in Section 4.4.1. The geometries investigated are de-

scribed in Figure 5.3. The generating curves were parameterized by arc length, and split into NP

panels of equal length. A 10-point Gaussian quadrature has been used along each panel, with the

modified quadratures of [67] used to handle the integrable singularities in the kernel. The algorithm

was implemented in FORTRAN, using BLAS, LAPACK, and the FFT library provided by Intel’s

MKL library. All numerical experiments in this section have been carried out on a Macbook Pro

with a 2.4 GHz Intel Core 2 Duo and 4GB of RAM.

4.8.1 Laplace’s equation

We solved Laplace’s equation in the domain interior to the surfaces shown in Figure 5.3. The

solution was represented via the double layer Ansatz (29) leading to the BIE (31). The kernels

dn defined via (35) were evaluated using the techniques described in Section 4.5.3. Tn this case

A(n) = A(−n), and so we need only to invert N + 1 matrices. Further, the FFT used here is

complex-valued, and a real-valued FFT would yield a significant decrease in computation time.

To investigate the speed of the proposed method, we solved a sequence of problems on the

domain in Figure 5.3(a). The timing results are given in Table 4.1. The reported results include:

NP the number of panels used to discretize the contour (each panel has I/NP nodes)

N the Fourier truncation parameter (we keep 2N + 1 modes)

Tmat time to construct the linear systems (utilizing the recursion relation)

Tinv time to invert the linear systems

Tfft time to Fourier transform the right hand side and the solution

Tapply time to apply the inverse to the right hand side

The most expensive component of the calculation is the kernel evaluation required to form

the coefficient matrices A(n). Table 4.2 compares the use of the recursion relation in evaluating the



85

(a)

(b)

(c)

Figure 4.2: Domains used in numerical examples. All items are rotated about the vertical axis. (a)
An ellipse. (b) A wavy block. (c) A starfish torus.

kernel when it is near-singular to using an adaptive Gaussian quadrature. The efficiency of the

recursion relation is evident.

Figure 4.3 plots the time to construct the linear systems as the number of degrees of freedom

Ntot = I(2N + 1) increases, for the case when I ≈ 2N + 1. The estimated asymptotic costs given

in this Figure match well with the estimates derived in Section 4.4.3. It is also clear that as Ntot

grows, the cost of inversion will eventually dominate. We remark that the asymptotic scaling of

this cost can be lowered by using fast techniques for the inversion of boundary integral operators,



86
NP 2N + 1 Tmat Tinv Tfft Tapply

5 25 1.70E-02 1.42E-03 7.81E-05 3.83E-05
10 25 3.64E-02 6.15E-03 1.68E-04 2.66E-04
20 25 9.73E-02 3.52E-02 3.69E-04 2.10E-03
40 25 3.09E-01 2.35E-01 6.69E-04 4.82E-03
80 25 1.20E+00 1.88E+00 1.36E-03 2.85E-02

5 51 2.83E-02 3.02E-03 2.38E-04 1.13E-04
10 51 6.71E-02 1.23E-02 4.48E-04 6.58E-04
20 51 2.02E-01 7.42E-02 9.17E-04 2.63E-03
40 51 7.28E-01 4.94E-01 1.92E-03 1.03E-02
80 51 3.07E+00 3.73E+00 3.59E-03 6.17E-02

5 101 5.08E-02 5.48E-03 7.27E-04 2.38E-04
10 101 1.35E-01 2.27E-02 1.41E-03 1.33E-03
20 101 4.39E-01 1.32E-01 2.73E-03 4.60E-03
40 101 1.98E+00 1.04E+00 6.20E-03 2.14E-02
80 101 7.13E+00 7.04E+00 1.12E-02 1.12E-01

5 201 1.07E-01 1.06E-02 1.80E-03 6.36E-04
10 201 3.33E-01 4.96E-02 3.83E-03 2.79E-03
20 201 1.12E+00 2.73E-01 7.05E-03 9.46E-03
40 201 4.63E+00 1.88E+00 1.46E-02 4.15E-02
80 201 1.71E+01 1.41E+01 2.93E-02 2.15E-01

5 401 1.87E-01 2.15E-02 3.43E-03 1.48E-03
10 401 5.85E-01 9.51E-02 6.59E-03 5.05E-03
20 401 2.15E+00 5.42E-01 1.33E-02 1.91E-02
40 401 8.40E+00 3.71E+00 2.78E-02 7.98E-02
80 401 3.15E+01 2.83E+01 5.56E-02 4.34E-01

Table 4.1: Timing results in seconds performed for the domain given in Figure 5.3(a) for the interior
Dirichlet problem.

but that little gain would be achieved for the problem sizes considered here.

We observe that the largest problem reported in Table 4.1 involves 320 800 degrees of free-

dom. The method requires 1 minute of pre-computation for this example, and is then capable of

computing a solution u from a given data function f in 0.49 seconds.

To test the accuracy of the approach, we have solved a both interior and exterior Dirichlet

problems on each of the domains given in Figure 5.3. Exact solutions were generated by placing a

few random point charges outside of the domain where the solution was calculated. The solution

was evaluated at points defined on a sphere encompassing (or interior to) the boundary. The errors



87
2N + 1 Composite Quadrature Recursion Relation

25 1.9 0.017
50 3.1 0.028
100 6.6 0.051
200 18.9 0.107

Table 4.2: Timing comparison in seconds for constructing the matrices (I + A(n)) using composite
Gaussian quadrature and the recursion relation described in Section 4.5.3 to evaluate kn for diagonal
and near diagonal blocks. The FFT is used to evaluate kn at all other entries. 2N + 1 is the total
number of Fourier modes used. 5 panels were used to discretize the boundary.

Figure 4.3: Timings of the algorithm as the number of degrees of freedom Ntot = I(2N + 1)
increases. The timings reported here are for the case I ≈ 2N + 1. The numbers in parentheses
provide estimates of the asymptotic complexity, i.e. the best fit to a curve T = C Nα

tot.

reported in Tables 4.3-4.5 are relative errors measured in the l∞-norm, ||uε − u||∞/||u||∞, where u

is the exact potential and uε is the potential obtained from the numerical solution.

For all geometries, 10 digits of accuracy has been obtained from a discretization involving

a relatively small number of degrees of freedom, due to the rapid convergence of the Gaussian

quadrature. This is especially advantageous, as the most expensive component of the algorithm is



88

the construction of the linear systems, the majority of the cost being directly related to the number

of panels used. Further, the number of Fourier modes required to obtain 10 digits of accuracy is on

the order of 100 modes. Although not investigated here, the discretization technique naturally lends

itself to nonuniform refinement in the rz-plane, allowing one to resolve features of the generating

curve that require finer resolution.

The number of correct digits obtained as the number of panels and number of Fourier modes

increases eventually stalls. This is a result of a loss of precision in determining the kernels, as

well as cancelation errors incurred when evaluating interactions between nearby points. This is

especially prominent with the use of Gaussian quadratures, as points cluster near the ends of the

panels. If more digits are required, high precision arithmetic can be employed in the setup phase

of the algorithm.

NP 2N + 1

- 25 51 101 201 401

5 3.9506E-04 4.6172E-04 4.6199E-04 4.6203E-04 4.6204E-04
10 1.3140E-05 1.1091E-08 4.8475E-09 4.8480E-09 4.8481E-09
20 1.7232E-05 7.7964E-09 4.7197E-12 4.7232E-12 4.7237E-12
40 2.7527E-05 2.7147E-08 2.8818E-14 5.7173E-14 5.7658E-14
80 2.118E-05 9.4821E-09 2.1529E-13 2.0392E-13 2.0356E-13

Table 4.3: Error in internal Dirichlet problem solved on domain (a) in Figure 5.3.

NP 2N + 1

- 25 51 101 201 401

5 8.6992E-04 1.3615E-03 1.3620E-03 1.3621E-03 1.3621E-03
10 2.2610E-04 9.6399E-05 9.6751E-05 9.6751E-05 9.6752E-05
20 2.6291E-04 4.6053E-07 2.4794E-07 2.4794E-07 2.4794E-07
40 3.1714E-04 2.8922E-07 2.2875E-11 2.3601E-11 2.3605E-11
80 3.0404E-04 3.5955E-07 3.3708E-11 3.3138E-11 3.3150E-11

Table 4.4: Error in external Dirichlet problem solved on domain (b) in Figure 5.3.

Finally, we investigated the conditioning of the numerical procedure. Figure 4.4 shows the

smallest and largest singular values of the matrices {1
2 I + A(n)}200

n=−200 on the domain shown in



89
NP 2N + 1

- 25 51 101 201 401

5 4.3633E-04 7.9169E-05 7.8970E-05 7.8970E-05 7.8971E-05
10 3.9007E-04 6.8504E-07 2.0274E-08 2.0272E-08 2.0272E-08
20 3.8803E-04 6.4014E-07 3.2138E-11 3.1624E-11 3.1625E-11
40 3.8456E-04 6.4098E-07 6.5742E-12 3.4529E-12 3.4530E-12
80 3.9828E-04 6.4486E-07 6.8987E-12 3.1914E-12 3.1913E-12

Table 4.5: Error in external Dirichlet problem solved on domain (c) in Figure 5.3.

−200 −150 −100 −50 0 50 100 150 200
0

0.5

1

1.5

2

2.5

n

 

 
!max
!min

Figure 4.4: Maximum and minimum singular values for the matrices resulting from an 80 panel
discretization of a sphere using 400 Fourier modes, where n is the the matrix associated with the
nth Fourier mode.

Figure 5.3(a). The convergence of both the smallest and the largest singular values to 1/2 follow

from the convergence ||A(n)|| → 0, cf. Section 4.2.2. Figure 4.4 indicates both that all matrices

involved are well-conditioned, and that truncation of the Fourier series is generally safe.



90

4.8.2 Helmholtz Equation

In this section, we repeat many of the experiments reported in Section 4.8.1, but now for the

Helmholtz equation on an exterior domain with the associated “combined field” BIE formulation

(46). The algorithm employed to solve the integral equation is the same as described in Section

4.4, with the caveat that the kernels are calculated using the fast procedure described in Section

4.6.1.

Table 4.6 presents timing results, with all variables defined as in Section 4.8.1.

NP 2N + 1 Tmat Tinv Tfft Tapply

5 25 4.51E-02 3.78E-03 2.59E-04 1.77E-04
10 25 1.18E-01 2.03E-02 4.42E-04 8.38E-04
20 25 3.77E-01 1.48E-01 8.47E-04 3.05E-03
40 25 1.27E+00 9.71E-01 1.71E-03 1.19E-02
80 25 5.37E+00 8.20E+00 3.68E-03 8.17E-02

5 51 8.06E-02 6.91E-03 5.09E-04 3.66E-04
10 51 2.25E-01 4.27E-02 1.10E-03 1.00E-03
20 51 7.53E-01 2.85E-01 2.08E-03 6.13E-03
40 51 2.69E+00 1.95E+00 3.83E-03 2.79E-02
80 51 1.01E+01 1.47E+01 7.55E-03 1.40E-01

5 101 1.57E-01 1.36E-02 1.33E-03 8.13E-04
10 101 4.74E-01 8.20E-02 2.55E-03 3.05E-03
20 101 1.58E+00 5.27E-01 5.03E-03 1.17E-02
40 101 5.95E+00 3.81E+00 1.01E-02 5.67E-02
80 101 2.11E+01 2.72E+01 1.90E-02 2.39E-01

5 201 3.02E-01 2.50E-02 2.56E-03 1.64E-03
10 201 9.40E-01 1.56E-01 5.09E-03 5.71E-03
20 201 3.23E+00 1.02E+00 1.01E-02 2.15E-02
40 201 1.19E+01 7.32E+00 2.05E-02 9.94E-02
80 201 4.35E+01 5.38E+01 4.04E-02 4.67E-01

5 401 5.90E-01 5.046E-02 5.66E-03 3.48E-03
10 401 1.86E+00 2.97E-01 1.05E-02 1.06E-02
20 401 6.60E+00 2.04E+00 2.20E-02 4.75E-02
40 401 2.40E+01 1.46E+01 4.42E-02 1.98E-01

Table 4.6: Timing results in seconds performed for a spherical domain.

The largest problem size considered here has 80 panels and 201 Fourier modes, leading to

160 800 unknowns discretizing the surface. Note that this problem size is slightly smaller than the



91

largest considered in Section 4.8.1, due to memory constraints. This is because the matrices now

contain complex entries, and thus use twice the memory compared with the Laplace case. The total

running time of the algorithm is 97 seconds for this problem size. If given additional right hand

sides, we can solve them in 0.51 seconds. We also remark that the asymptotic scaling of the cost

of this algorithm is identical to that of the Laplace case, it simply takes more operations (roughly

twice as many) to calculate the kernels and perform the required matrix operations.

We have assessed the accuracy of the algorithm for various domains, discretization parame-

ters, and Fourier modes. The boundary conditions used are determined by placing point charges

inside the domains, and we evaluate the solution at random points placed on a sphere that encom-

passes the boundary. In the combined field BIE (46), we set the parameter ν = k.

NP 2N + 1

- 25 51 101 201 401

5 4.2306E-04 4.0187E-04 4.0185E-04 4.0185E-04 4.0185E-04
10 3.4791E-06 2.3738E-06 2.3759E-06 2.3760E-06 2.376E-06
20 7.8645E-06 4.5707E-09 7.1732E-11 7.1730E-11 7.173E-11
40 1.3908E-05 1.5980E-08 2.9812E-13 3.1500E-13 3.148E-13
80 1.0164E-05 5.4190E-09 4.9276E-13 4.8895E-13 -

Table 4.7: Relative error in external Helmholtz problem for the domain in Figure 5.3(a). The
domain is 1 wavelength in length (the major axis).

NP 2N + 1

- 25 51 101 201 401

5 2.0516E+00 3.4665E+00 4.1762E+00 4.4320E+00 4.4951E+00
10 2.3847E-01 2.4301E-01 2.4310E-01 2.4312E-01 2.4313E-01
20 1.7792E-02 8.8147E-06 8.8075E-06 8.8081E-06 8.8082E-06
40 1.7054E-02 5.4967E-08 3.7994E-10 3.7999E-10 3.7998E-10
80 1.7302E-02 1.6689E-08 1.8777E-11 1.8782E-11 -

Table 4.8: Relative error in external Helmholtz problem for the domain in Figure 5.3(a). The
domain is 25 wavelengths in length (the major axis).

First, we consider the ellipsoidal domain given in Figure 5.3(a). The major axis of this

ellipse has a diameter of 2, and its minor axes have a diameter of 1/2. Table 4.7 lists the accuracy



92

achieved. We achieve 9 digits of accuracy in this problem with 20 panels and 51 Fourier modes.

We have not padded the two sequences in the convolution procedure described in Section 4.6.1, but

as more modes are used the tails of the sequence rapidly approach zero, increasing the accuracy of

the convolution algorithm utilized to calculate the kernels. Table 4.8 displays the same data, but

with the wavenumber increased so that there are 25 wavelengths along the length of the ellipsoid.

We see a minor decrease in accuracy as we would expect, but it only takes 40 panels and 51 Fourier

modes to achieve 8 digits of accuracy.

NP 2N + 1

- 25 51 101 201 401

5 2.6874E+00 2.5719E+00 2.5826E+00 2.2374E+00 1.9047E+00
10 1.6351E+00 4.2972E+00 4.6017E+00 1.0380E+00 1.0328E+00
20 4.3666E+00 2.6963E-03 2.6966E-03 2.6967E-03 2.6967E-03
40 4.4498E+00 9.1729E-08 4.1650E-08 4.1661E-08 4.1664E-08
80 4.3692E+00 7.3799E-08 1.4811E-10 1.4812E-10 -

Table 4.9: Relative error in external Helmholtz problem for the domain in Figure 5.3(b). The
domain is 10 wavelengths in length (the major axis).

NP 2N + 1

- 25 51 101 201 401

5 1.1140E+01 3.2400E+01 3.3885E+01 4.4322E+01 1.6151E+01
10 1.9626E+01 7.7739E+01 6.2931E+01 3.6335E-01 3.6344E-01
20 2.6155E+01 4.9485E+01 2.5796E+01 4.8239E-05 4.8245E-05
40 3.3316E+01 5.0645E+01 2.4330E+01 1.3841E-09 1.3846E-09
80 1.6966E+01 6.0163E+01 2.4354E+01 1.6510E-10 -

Table 4.10: Relative error in external Helmholtz problem for the domain in Figure 5.3(c). The
domain is 10 wavelengths in length (the major axis).

We now consider the more complex domains given in Figure 5.3(b) and 5.3(c). There are a

wavy shaped block and a starfish shaped block with the outer diameter of size roughly 1.5 and 1.0,

respectively. The accuracy for various values of NP and N are given in Table 4.9 and 4.10. We

achieve 8 digits of accuracy with 40 panels and 51 Fourier modes for the wavy block and 9 digits

of accuracy with 40 panels and 201 Fourier modes for the starfish block.



Chapter 5

An efficient and highly accurate solver for multi-body acoustic scattering

problems involving rotationally symmetric scatterers

S. Hao, P.G. Martinsson

Note: The work described in this chapter was carried out in collaboration with Professor Per-

Gunnar Martinsson of the University of Colorado. It appeared in the Advances in Computers and

Mathematics with Applications (69(4), pages 304 - 318, 2015) under the title: “An efficient and

highly accurate solver for multi-body acoustic scattering problems involving rotationally symmetric

scatterers ” .

Abstract: A numerical method for solving the equations modeling acoustic scattering is pre-

sented. The method is capable of handling several dozen scatterers, each of which is several

wave-lengths long, on a personal work station. Even for geometries involving cavities, solutions

accurate to seven digits or better were obtained. The method relies on a Boundary Integral

Equation formulation of the scattering problem, discretized using a high-order accurate Nyström

method. A hybrid iterative/direct solver is used in which a local scattering matrix for each body

is computed, and then GMRES, accelerated by the Fast Multipole Method, is used to handle re-

flections between the scatterers. The main limitation of the method described is that it currently

applies only to scattering bodies that are rotationally symmetric.

5.1 Introduction

The manuscript presents a robust and highly accurate numerical method for modeling fre-

quency domain acoustic scattering on a domain external to a group of scatterers in three dimensions.



94

The solver is designed for the special case where each scatterer is rotationally symmetric, and relies

on a Boundary Integral Equation (BIE) formulation of the scattering problem.

The contribution of the manuscript is to combine several recently developed techniques to

obtain a solver capable of solving scattering problems on complex multibody geometries in three

dimensions to seven digits of accuracy or more. In particular, the solver is capable of resolving

domains involving cavities such as, e.g., the geometry shown Figure 5.5(a).

The solution technique proposed involves the following steps:

(1) Reformulation. The problem is written mathematically as a BIE on the surface of the

scattering bodies using the “combined field” formulation [26, 81]. See Section 5.2 for

details.

(2) Discretization. The BIE is discretized using the Nyström method based on a high-order

accurate composite Gaussian quadrature rule. Despite the fact that the kernel in the

BIE is singular, high accuracy can be maintained using the correction techniques of [67,

51]. Following [86], we exploit the rotational symmetry of each body to decouple the

local equations as a sequence of equations defined on a generating contour [90, 92, 73, 99,

98]. This dimension reduction technique requires an efficient method for evaluating the

fundamental solution of the Helmholtz equation in cylindrical coordinates (the so called

“toroidal harmonics”); we use the technique described in [103]. See Section 6.2 for details.

(3) Iterative solver. The dense linear system resulting from the Nyström discretization of

the BIE is solved using the iterative solver GMRES [88], combined with a block-diagonal

pre-conditioner, as in, e.g., [62, Sec. 6.4]. This pre-conditioner exploits that a highly ac-

curate discrete approximation to the scattering matrix for each individual scatterer can be

computed efficiently. See Section 5.4 for details.

(4) Fast matrix-vector multiplication. The application of the coefficient matrix in the iterative

solver is accelerated using the Fast Multipole Method (FMM) [43], specifically the version



95

for the Helmholtz equation developed by Gimbutas and Greengard [39].

(5) Skeletonization. In situations where the individual scatterers are not packed very tightly,

the number of degrees of freedom in the global system can be greatly reduced by exploiting

rank deficiencies in the off-diagonal blocks of the coefficient matrix. Specifically, we use

a variation of the scheme introduced in [23], and further developed in [76]. Randomized

methods are used to accelerate the computation of low-rank approximations to large dense

matrices [48]. See Section 5.5 for details.

The present work draws on several recent papers describing techniques for multibody scatter-

ing, including [62], which applies a very similar technique to acoustic scattering in two dimensions.

[40] addresses the harder problem of electro-magnetic scattering in 3D (as opposed to the acoustic

scattering considered here), but uses classical scattering matrices expressed in spherical harmonics.

This is a more restrictive frame-work than the one used in [62] for problems in 2D, and in the

present work for problems in 3D. The more general model for a compressed scattering matrix that

we use here allows for larger scatterers to be handled, and also permits it to handle scatterers closely

packed together. For a deeper discussion of different ways of representing compressed scattering

matrices, see [13].

To describe the asymptotic cost of the method presented, let m denote the number of scat-

terers, let n denote the total number of discretization nodes on a single scatterer and let I denote

the number of iterations required in our pre-conditioned iterative solver to achieve convergence.

The cost of building all local scattering matrices is then O(mn2), and the cost of solving the

linear system consists of the time TFMM required for applying the coefficient matrices using the

FMM, and the time Tprecond required for applying the block-diagonal preconditioner. These scale as

TFMM ∼ Imn and Tprecond ∼ Imn3/2 (cf. Remark 7), but for practical problem sizes, the execution

time is completely dominated by the FMM. For this reason, we implemented a “skeletonization”

compression scheme [23] that reduces the cost of executing the FMM from Imn to Imk, where k

is a numerically determined “rank of interaction”. We provide numerical examples in Section 5.6



96

incident field v

scattered field u

Figure 5.1: Geometry of scattering problem. An incident field v propagates in a medium with
constant wave-speed and hits a scattering surface Γ =

⋃m
p=1 Γp (shown for m = 8). A charge

distribution σ is induced on the surface Γ and generates an outgoing field u.

that demonstrate that when the scatterers are moderately well separated, k can by smaller than n

by one or two orders of magnitude, leading to dramatic practical acceleration.

5.2 Mathematical formulation of the scattering problem

Let {Γp}mp=1 denote a collection of m smooth, disjoint, rotationally symmetric surfaces in R3,

let Γ = ∪mp=1Γp denote their union, and let Ω denote the domain exterior to Γ. Our task is to

compute the “scattered field” u generated by an incident field v that hits the scattering surface Γ,

see Figure 5.1. For concreteness, we consider the so called “sound-soft” scattering problem





−∆u(x)− κ2u(x) = 0 x ∈ Ωc,

u(x) = − v(x) x ∈ Γ,

∂u(x)

∂r
− iκu(x) = O(1/r) r := |x| → ∞.

(1)

We assume that the “wave number” κ is a real non-negative number. It is known [26] that (1) has

a unique solution for every incoming field v.

Following standard practice, we reformulate (1) as second kind Fredholm Boundary Integral

Equation (BIE) using a so called “combined field technique” [26, 81]. We then look for a solution



97

u of the form

u(x) =

∫

Γ
Gκ(x,x′)σ(x′) dA(x′), x ∈ Ωc, (2)

where Gκ is a combination of the single and double layer kernels,

Gκ(x,x′) =
∂φκ(x,x′)

∂n(x′)
+ iκ φκ(x,x′) (3)

and where φκ is the free space fundamental solution

φκ(x,x′) =
eiκ|x−x

′|

4π|x− x′| . (4)

Equation (2) introduces a new unknown function σ, which we refer to as a “boundary charge

distribution”. To obtain an equation for σ, we take the limit in (2) as x approaches the boundary

Γ, and find that σ must satisfy the integral equation

1

2
σ(x) +

∫

Γ
Gκ(x,x′)σ(x′) dA(x′) = −v(x), x ∈ Γ. (5)

The combined field equation (5) is known to be a second kind Fredholm equation whenever Γ is

smooth. Like the orignal boundary value problem (1), it is known to be well posed for every κ, see

[26, Theorem. 3.9], [81, Sec. 3.2.2] (in particular, it does not suffer from the problem of “artificial

resonances” that plague many alternative formulations).

5.3 Discretization of rotationally symmetric scattering bodies

In Section 5.2 we formulated the scattering problem as the BIE (5) defined on the scattering

surface Γ. In this section, we show how to discretize (5) to obtain a system of linear algebraic

equations Aσ = −v. We use a Nyström technique that combines high accuracy, and (relative) ease

of implementation. Section 5.3.1 gives a general overview of the Nyström method, Section 5.3.2

describes how rotational symmetry can be exploited to relatively easily discretize a single body

to high order, and then Section 5.3.3 describes how to generalize the procedure to a multibody

scattering problem.



98

5.3.1 Nyström discretization

The Nyström method provides a way of discretizing a BIE on a surface Γ from a quadrature

rule for the surface that is valid for smooth functions. To illustrate, suppose that we are given

nodes {xi}ni=1 and weights {wi}ni=1 such that

∫

Γ
ϕ(x) dS(x) ≈

n∑

i=1

ϕ(xi)wi, for ϕ smooth. (6)

The idea is then to first use the discretization nodes {xi}ni=1 as collocation points; in other words,

we require that

1

2
σ(xi) +

∫

Γ
Gκ(xi,x

′)σ(x′) dA(x′) = −v(xi), i = 1, 2, 3, . . . , n. (7)

Next, suppose that we can somehow (this can require some work) construct an n × n matrix A

such that for any sufficiently smooth function ϕ, the integral in (7) can be approximated from the

function values {σ(xi)}ni=1

1

2
σ(xi) +

∫

Γ
Gκ(xi,x

′)σ(x′) dA(x′) ≈
n∑

j=1

A(i, j)σ(xj) for σ smooth. (8)

Then a system of n equations for the n unknowns {σ(xi)}ni=1 is obtained by inserting the approx-

imation (8) into (7). Specifically, given a data vector v ∈ Cn given by v(i) = v(xi), we seek to

determine a vector σ ∈ Cn of approximations σ(i) ≈ σ(xi) by solving the linear system

n∑

j=1

A(i, j)σ(j) = −v(i), i = 1, 2, 3, . . . , n. (9)

The task of constructing a matrix A such that (8) holds is complicated by the fact that the

kernel Gκ(x,x′) has a singularity as x′ → x. Had this not been the case, one could simply have

applied the rule (6) to the integral in (7) to obtain

A(i, j) = Gκ(xi,xj)wj . (10)

In Sections 5.3.2 and 5.3.3 we will describe how to construct a basic quadrature rule {xi, wi}ni=1

that is suitable for the geometry under consideration, and also how to construct a matrix A such



99

that (8) holds to high accuracy despite the singular kernel. It turns out to be possible to do so

while having almost all elements of A given by the simple formula (10) — only matrix elements

A(i, j) for which ||xi − xj || is “small” need to be modified. As we will see in Section 5.4, this will

greatly help when forming fast algorithms for evaluating the matrix-vector product σ 7→ Aσ.

5.3.2 A single rotationally symmetric scatterer

We first consider the case where the scattering surface Γ is a single rotationally symmetric

surface. We let γ denote a generating curve of Γ, and can then view Γ as a tensor product between

γ and the circle T, so that Γ = γ ×T, see Figure 5.2. The idea is now to use a composite Gaussian

rule to discretize γ, and a trapezoidal rule with equispaced nodes to discretize T, and then take the

tensor product between these rules to obtain the global rule {xi, wi}ni=1 for Γ.

Figure 5.2: The axisymmetric domain Γ generated by the curve γ.

Remark 4 (Convergence order) Suppose that ϕ is a smooth (C∞) function on Γ. Then since

ϕ is periodic in the azimuthal direction, the Trapezoidal rule converges super-algebraically fast. If

we use p-point Gaussian quadrature on r intervals to discretize the generating curve γ, then the

error in (6) scales as (1/r)2p−1 as r, p→∞.



100

The technique for constructing a matrix A such that (8) holds is based on the observation

that when Γ is a rotationally symmetric surface, the equation (5) is diagonalized by the Fourier

transform. The process is somewhat involved and we will here give only a brief overview of the

key techniques, for details we refer to [103]. The first step is to introduce cylindrical coordinates

x = (r, θ, z) with the z-axis being the symmetry axis of Γ, and let vp, σp, and Gκ,p denote the

Fourier coefficients of the functions v, σ, and Gκ:

v(x) =
∑

p∈Z

eipθ√
2π

vp(r, z), (11)

σ(x) =
∑

p∈Z

eipθ√
2π

σp(r, z), (12)

Gκ(x,x′) = Gκ(θ − θ′, r, z, r′, z′) =
∑

p∈Z

eip(θ−θ
′)

√
2π

Gκ,p(r, z, r
′, z′). (13)

Then (5) is equivalent to the sequence of equations

1

2
σp(y) +

√
2π

∫

γ
Gκ,p(y,y

′)σp(y
′) dA(y′) = −vp(y), y ∈ γ, p ∈ Z. (14)

Converting the BIE (5) defined on a surface Γ to the sequence of BIEs (14) defined on the curve

γ has a crucial advantage in that constructing high-order Nyström discretizations of BIEs with

weakly singular kernels is well-understood and computationally cheap for curves, but remains a

challenge for surfaces. We use the modified quadrature of [67], as described in [103, 51].

Beyond ease of discretization, the other key benefit of the formulation (14) is that for each

Fourier mode p, the coefficient matrix arising from discretization of (14) is small enough that it

can often easily be inverted by brute force. For instance, for the geometries shown in Figure 5.3,

it is sufficient to use at most a couple of hundred nodes along γ to achieve ten digits accuracy. To

put it another way, the Fourier conversion allows to write the matrix A as a product

A = F∗ Ã F (15)

where F is the discrete Fourier transform (in the azimuthal variable), and Ã is a block-diagonal

matrix, where each diagonal block corresponds to one Fourier mode, and is relatively small. We



101

can pre-compute and store the block diagonal matrix Ã−1, and then very rapidly apply the inverse

A−1 = F∗ Ã−1 F, (16)

by using the FFT to apply F and F∗.

One complication to the procedure outlined in this section is that while the kernel Gκ in (5)

is given by the simple formula (3), the kernels Gκ,p must be evaluated computationally. Techniques

for doing so rapidly have been developed, and are described in [103].

Remark 5 (Cost of precomputation) To state the asymptotic cost of the algorithm, let NG

(“G” for Gaussian) denote the number of points on the generating curve γ of each scatter and let

NF (“F” for Fourier) denote the number of points used to discretize T. The total number of degrees

of freedom of each scatter is n = NGNF. Under the simplifying assumption that NG ∼ NF, the

cost of forming the block diagonal matrix Ã is O(n3/2 log n), while the cost of inverting Ã is O(n2),

see [103]. Applying F and F∗ is done via the FFT in negligible time.

5.3.3 Multibody scattering

Having described how to discretize the single-body scattering problem in Section 5.3.2, we

now proceed to the general case of m disjoint scattering surfaces Γ = ∪mp=1Γp. We assume that each

scatterer is discretized using the tensor product procedure described in Section 5.3.2. For notational

simplicity, we assume that each scatterer is discretized using the same n number of nodes, for a

total of N = mn discretization nodes {xi}Ni=1 with associated weights {wi}Ni=1. We then seek to

construct matrix blocks {Ap,q}mp,q=1 such that the Nyström discretization of (5) associated with this

quadrature rule takes the form




A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
...

...

Am,1 Am,2 · · · Am,m







σ1

σ2

...

σm




= −




v1

v2

...

vm




, (17)



102

where each block Ap,q is of size n×n. The diagonal blocks Ap,p are constructed using the technique

described in Section 5.3.2. Next observe that in the off-diagonal blocks, the “naive” formula (10)

works well since the kernel Gκ(x,x′) is smooth when x and x′ belong to different scatterers.

Remark 6 In this paper, we avoid considering the complications of scatterers that touch or are

very close. The procedure described works well as long as the minimal distance between scatterers is

not small compared to the resolution of the quadrature rules used. This means that if two scatterers

are moderately close, high accuracy can be maintained by discretizing these two scatterers more

finely.

5.4 A block-diagonal pre-conditioner for the multibody scattering problem

We solve the linear system (17) using the iterative solver GMRES [88], accelerated by a

block-diagonal pre-conditioner. To formalize, let us decompose the system matrix as

A = D + B,

where

D =




A1,1 0 0 · · ·

0 A2,2 0 · · ·

0 0 A3,3 · · ·
...

...
...




and B =




0 A1,2 A1,3 · · ·

A2,1 0 A2,3 · · ·

A3,1 A3,2 0 · · ·
...

...
...




.

Then we use GMRES to solve the linear system

σ + D−1Bσ = −D−1v. (18)

We apply the matrix B using the Fast Multipole Method [43, 21]; specifically the implementation

[39] by Zydrunas Gimbutas and Leslie Greengard.

Remark 7 The cost of evaluating the term D−1Bσ in (18) consists of two parts: applying B to

vector σ via FMM costs O(mn) operations and applying the block-diagonal pre-conditioner costs

O(mn3/2) operations. Observe that the matrix D−1 can be precomputed since each matrix A−1
p,p is



103

itself block-diagonal in the local Fourier basis, cf. formula (16). Applying A−1
p,p to a vector w ∈ Cn

is executed as follows: (1) form Fw using the FFT at cost O(n log n), (2) for each Fourier mode

apply D−1 to Fw at cost O(n3/2), and (3) use the FFT to apply F∗ to D−1Fw.

5.5 Accelerated multibody scattering

In situations where the scatterers are not tightly packed, it is often possible to substantially

reduce the size of the linear system (18) before applying an iterative solver. We use a technique

that was introduced in [23] for problems in two dimensions, which exploits that when the scatterers

are somewhat separated, the off-diagonal blocks Ap,q are typically rank deficient. Specifically, we

assume that for some finite precision ε (say ε = 10−10), each such block admits a factorization

Ap,q = Up Ãp,q V∗q + Rp,q

n× n n× k k × k k × n n× n
(19)

where n is the number of nodes originally used to discretize a single scatterer, and k is the numerical

rank of the factorization. The remainder term Rp,q satisfies ||Rp,q|| ≤ ε in some suitable matrix

norm (we typically use the Frobenius norm since it is simple to compute).

Now write the linear system (18) in block form as

σp +
∑

q 6=p
A−1
p,pAp,qσq = −A−1

p,pvp, p = 1, 2, 3, . . . , m. (20)

We left multiply (20) by V∗p, and insert the factorization (19) to obtain

V∗pσp +
∑

q 6=p
V∗pA

−1
p,pUpÃp,qV

∗
qσq = −V∗pA−1

p,pvp, p = 1, 2, 3, . . . , m. (21)

We now define quantities {σ̃p}mp=1, {ṽp}mp=1, and {S̃p}mp=1 via

σ̃p = V∗pσp, ṽp = V∗pA
−1
p,pvp Sp,p = V∗pA

−1
p,pUp, for p = 1, 2, 3, . . . , m. (22)

Then the system (21) can be written

σ̃p +
∑

q 6=p
SpÃp,qσ̃q = −ṽp, p = 1, 2, 3, . . . , m. (23)



104

To write (23) in block form, we introduce matrices

S =




S1 0 0 · · ·

0 S2 0 · · ·

0 0 S3 · · ·
...

...
...




and B̃ =




0 Ã1,2 Ã1,3 · · ·

Ã2,1 0 Ã2,3 · · ·

Ã3,1 Ã3,2 0 · · ·
...

...
...




, (24)

whence equation (23) takes the form, cf. (18),

σ̃ + SB̃σ̃ = −ṽ. (25)

The process of first forming the linear system (25), and then solving it using GMRES is very

computationally efficient when the following techniques are used:

• The matrices {Up,Vp}mp=1 in the factorizations (19) can be computed via a purely local

procedure in O(n2k) operations, independent of the number of scatterers m. The idea is

to use representation techniques from scattering theory to construct a local basis for all

possible incoming harmonic fields (to within precision ε), see [42, Sec. 5.1] or [36, Sec. 6.2].

• In constructing the factorization (19), the so called interpolatory decomposition [23] should

be used. Then each matrix Up and each matrix Vp contains the k × k identity matrix Ik.

Specifically, there exists for each k an index vector Ĩp ⊂ {1, 2, . . . , n} such that U(Ĩp, :) =

V(Ĩp, :) = Ik. Then each off-diagonal block Ãp,q is given as a submatrix Ãp,q = Ap,q(Ĩp, Ĩq).

In consequence, the matrix B̃ is a sub-matrix of B and can be rapidly applied using the

FMM in O(mk) operations.

• In evaluating the formula Sp,p = V∗pA
−1
p,pUp, we exploit that A−1

p,p can be applied rapidly in

Fourier space, cf. (16), to reduce the complexity of this step from O(n3) to O(n3/2k) if A−1
p,p

was precomputed and stored and to O(n2k) if A−1
p,p is computed at this step.

Remark 8 Efficient techniques for computing interpolative decompositions are described in [23].

More recently, techniques based on randomized sampling have proven to be highly efficient on



105

modern computing platforms, in particular for problems in potential theory where the low-rank

matrices to be approximated have very rapidly decaying singular values. We use the specific

technique described in [48].

5.6 Numerical examples

This section describes numerical experiments to assess the performance of the numerical

scheme outlined in previous sections. All the experiments are carried out on a personal work-station

with an Intel Xeon E-1660 3.3GHz 6-core CPU, and 128GB of RAM. The experiments explore (1)

the accuracy of the algorithm, (2) the computational cost, (3) the performance of block-diagonal

pre-conditioner and (4) the performance of the acceleration scheme when scatterers are separated

suitably. In all the experiments below, we measure accuracy against a known analytic solution

uexact. This solution is generated by randomly placing one point source inside each scatterer, and

then solving (1) with the Dirichlet data v set to equal the field generated by these radiating sources.

Let uexact and uapprox denote the vectors holding the exact and the computed solutions at a set of

10 randomly chosen target points, placed at random on a sphere that is concentric to the smallest

sphere holding all scatterers, but of twice the radius. The relative error, measured in `∞-norm, is

then given by

Erel
∞ =

||uapprox − uexact||∞
||uexact||∞

=
maxi |uapprox(i)− uexact(i)|

maxj |uexact(j)|
.

In addition to Erel
∞ , we report:

n number of nodes discretizing each body (in form of n = NG ×NF, cf. Section 5.3.2)

N total degree of freedom N = m× n, where m is the number of scatterers

Ncompressed number of skeleton points after applying the compression scheme, cf. Section 5.5

Tpre time (in seconds) of precomputation

Tsolve total time (in seconds) to solve for the surface charges σ via GMRES

Tcompress time (in seconds) to do compression in the accelerated scheme

I number of GMRES iterations required to reduce the residual to 10−9.

All the numerical experiments in this section are executed on domains composed of the three



106

sample scatterers shown in Figure 5.3.

(a)

(b)

(c)

Figure 5.3: Domains used in numerical examples. All items are rotated about their symmetry axis.
(a) An ellipsoid. (b) A bowl-shaped cavity. (c) A starfish-shaped cavity.

5.6.1 Laplace’s equation

We first solve the Laplace equation exterior to the domains shown in Figures 5.4 and 5.5(a)

(Examples 1 and 2, respectively). A combination of the single and double layer kernels is chosen

to represent the potential outside the domain. The integral equation to be solved is

1

2
σ(x) +

∫

Γ

1

4π

(
1

|x− x′| +
n(x′) · (x− x′)
|x− x′|3

)
σ(x′) dA(x′) = f(x), x ∈ Γ.



107

5.6.1.1 Example 1

This example solves the exterior Laplace equation on the domain depicted in Figure 5.4. The

domain consists of 125 ellipsoids contained in the box [0, 10.2]3, where each ellipse has a major axis

of length 2 and a minor axis of length 1. The minimal distance between any two ellipsoids is 0.05.

We did not apply the compression technique since the scatterers are packed tightly. We compare

the performance of the algorithm with and without using block-diagonal pre-conditioner in Table

5.1 and find that for this example, the pre-conditioning does not make any real difference. The

scheme quickly reaches 9 digits of accuracy with 10 100 discretization nodes per scatterer, with an

overall solve time of about 40 minutes.

Figure 5.4: Domain contains 125 randomly oriented ellipsoids. Distance between any two ellipsoids
is 0.05.

5.6.1.2 Example 2

This time the domain consists of 8 bowl-shaped cavities contained in the box [0, 4.1]3 in

Figure 5.5(a). The minimal distance between any two cavities is 0.5. Results are shown in Table

5.2. The scheme achieves 8 digits of accuracy with 400 discretization nodes on the generating curve

and 201 Fourier modes. Again, the pre-conditioning is superfluous.

Remark 9 All examples described in this section involve geometries where all the scatterers are



108

N n Tpre
I Tsolve Erel

∞(precond /no precond ) (precond /no precond)

156 250 50× 25 1.09e+00 31 /33 3.16e+02 /3.29e+02 9.731e-05
312 500 100× 25 3.44e+00 31 /33 6.84e+02 /6.82e+02 9.203e-05
625 000 200× 25 1.29e+01 31 /34 1.10e+03 /1.18e+03 9.814e-05

318 750 50× 51 1.53e+00 31 /33 6.29e+02 /7.44e+02 1.571e-06
637 500 100× 51 4.36e+00 31 /34 1.18e+03 /1.23e+03 1.529e-06

1 275 000 200× 51 1.36e+01 32 /34 2.70e+03 /2.53e+03 1.711e-06

631 250 50× 101 2.44e+00 31 /34 1.11e+03 /1.22e+03 2.165e-08
1 262 500 100× 101 6.11e+00 32 /34 2.45e+03 /2.60e+03 1.182e-09

Table 5.1: Example 1: exterior Laplace problem solved on the domain in Figure 5.4.

(a) (b)

Figure 5.5: (a) Domain contains 8 bowl-shaped cavities. Distance between any two cavities is 0.5.
(b) Domain contains 8 randomly oriented ellipsoids. Distance between any two ellipsoids is 0.05.



109

N n Tpre
I Tsolve Erel

∞(precond /no precond ) (precond /no precond)

20 400 50×51 2.09e-01 398 /402 4.65e+02 /6.05e+02 1.251e-04
40 800 100×51 4.55e-01 20 /23 4.94e+01 /6.09e+01 3.909e-05
81 600 200×51 9.83e-01 20 /23 1.05e+02 /1.14e+02 3.164e-05

40 400 50×101 2.25e-01 20 /23 4.72e+01 /6.17e+01 5.850e-05
80 800 100×101 4.49e-01 20 /23 9.50e+01 /1.13e+02 1.627e-05

161 600 200×101 1.35e+00 20 /24 2.05e+02 /2.39e+02 6.825e-06

80 400 50× 201 2.93e-01 20 /23 9.13e+01 /1.12e+02 5.704e-05
160 800 100× 201 7.05e-01 20 /24 1.96e+02 /2.40e+02 8.000e-06
321 600 200× 201 1.97e+00 20 /24 4.43e+02 /5.25e+02 1.931e-07
643 200 400× 201 5.78e+00 21 /24 7.68e+02 /8.19e+02 1.726e-08

Table 5.2: Example 2: exterior Laplace problem solved on the domain in Figure 5.5(a).



110

copies of the basic shapes shown in Figure 5.3. In our experience, this restriction on the geometry

does not in any way change the overall accuracy or efficiency of the solver. The only advantage we

benefit from is that the pre-computation gets faster, as only a small number of scattering matrices

need to be pre-computed. However, it is clear from the numbers given that even for a fully general

geometry (without repetitions), the pre-computation time would be dominated by the time required

for the FMM.

5.6.2 Helmholtz Equation

We now consider the exterior Helmholtz problem (1). We represent the potential by a combi-

nation of the single and double layer kernels, see (3), and end up with the “combined field” integral

equation (5).

5.6.2.1 Example 3

The domain in this experiment contains 8 ellipsoids in the box [0, 4.05]3, whose minimal

distance between any two is 0.05. The wavelength is 10π so that the scatterers are approximately

10 wavelengths in size and the whole region is about 20× 20× 20 wavelengths in size. Results are

presented in Table 5.3. We also compare the results without using block-diagonal pre-conditioner in

the same table. Around twice of the iteration numbers are required resulting in twice of the compu-

tation time. Table 5.4 reports the results from an analogous experiment, but now the wavenumber

increases such that each scatterer contains 20 wavelengths.

5.6.2.2 Example 4

This example solves the exterior Helmholtz problem on the cavity domain in Figure 5.5(a).

Tables 5.5 and 5.6 show the results from experiments involving cavities of diameters 2 and 5

wavelengths, respectively. In this case, computing the actual scattering matrix for each scatterer

was essential, without using these to pre-condition the problem, we did not observe any convergence

in GMRES.



111

N n Tpre
I Tsolve Erel

∞(precond /no precond ) (precond /no precond)

20 400 50× 51 1.58e-01 35 /67 7.71e+02 /1.56e+03 1.364e-03
40 800 100× 51 4.20e-01 36 /67 1.75e+03 /3.43e+03 1.183e-03
81 600 200× 51 1.26e+00 36 /68 3.52e+03 /6.85e+03 1.639e-04

40 400 50× 101 2.64e-01 36 /68 1.71e+03 /3.35e+03 1.312e-03
80 800 100× 101 6.05e-01 36 /68 3.45e+03 /6.76e+03 1.839e-06

161 600 200× 101 1.87e+00 37 /69 6.18e+03 /1.19e+04 5.126e-08

80 400 50× 201 4.61e-01 36 /69 3.40e+03 /6.70e+03 1.312e-03
160 800 100× 201 1.09e+00 37 /69 6.07e+03 /1.18e+04 1.851e-06
321 600 200× 201 3.11e+00 37 /69 1.20e+04 /1.97e+04 1.039e-09

Table 5.3: Example 3: exterior Helmholtz problem solved on the domain in Figure 5.5(b). Each
ellipsoid is 10 wavelengths in diameter.

N n Tpre
I Tsolve Erel

∞(precond /no precond ) (precond /no precond)

20 400 50× 51 2.03e-01 58 /119 3.59e+03 /8.10e+03 4.362e+00
40 800 100× 51 4.44e-01 39 /102 3.98e+03 /1.11e+04 1.071e+00
81 600 200× 51 1.36e+00 39 /106 6.72e+03 /1.92e+04 1.008e+00

40 400 50× 101 2.78e-01 54 /94 5.43e+03 /1.02e+04 5.039e+00
80 800 100× 101 6.18e-01 36 /82 6.11e+03 /1.46e+04 8.919e-04

161 600 200× 101 1.93e+00 36 /83 9.44e+03 /2.32e+04 5.129e-07

80 400 50× 201 4.28e-01 55 /95 9.19e+03 /2.41e+04 5.031e+00
160 800 100× 201 1.07e+00 36 /83 9.49e+03 /2.31e+04 8.916e-04
321 600 200× 201 3.10e+00 37 /83 1.45e+04 /3.57e+04 8.781e-09

Table 5.4: Example 3: exterior Helmholtz problem solved on the domain in Figure 5.5(b). Each
ellipsoid is 20 wavelengths in diameter.

N n Tpre
I Tsolve Erel

∞(precond /no precond ) (precond /no precond)

40 800 100× 51 4.29e-01 59 /181 2.17e+03 /6.73e+03 1.127e-02
81 600 200× 51 1.28e+00 60 / – 4.23e+03 / – 1.131e-02

80 800 100× 101 6.83e-01 60 / – 4.18e+03 / – 3.953e-03
161 600 200× 101 1.90e+00 60 / – 8.93e+03 / – 3.802e-04
323 200 400× 101 6.07e+00 61 / – 1.91e+04 / – 3.813e-04

160 800 100× 201 1.09e+00 60 / – 8.35e+03 / – 4.788e-05
321 600 200× 201 3.07e+00 61 / – 1.88e+04 / – 5.488e-06
643 200 400× 201 9.61e+00 61 / – 4.03e+04 / – 8.713e-08

Table 5.5: Example 4: exterior Helmholtz problem solved on the domain in Figure 5.5(a). Each
cavity is 2 wavelength in diameter.



112

N n Tpre
I Tsolve Erel

∞(precond /no precond ) (precond /no precond)

80 800 100× 101 6.54e-01 62 /304 5.17e+03 / 2.64e+04 1.555e-03
161 600 200× 101 1.82e+00 63 / – 9.88e+03 / – 1.518e-04
323 200 400× 101 6.46e+00 64 / – 2.19e+04 / – 3.813e-04

160 800 100× 201 1.09e+00 63 / – 9.95e+03 / – 1.861e-03
321 600 200× 201 3.00e+00 64 / – 2.19e+04 / – 2.235e-05
643 200 400× 201 1.09e+01 64 / – 4.11e+04 / – 8.145e-06

641 600 200× 401 5.02e+00 64 / – 4.07e+04 / – 2.485e-05
1 283 200 400× 401 1.98e+01 65 / – 9.75e+04 / – 6.884e-07

Table 5.6: Example 4: exterior Helmholtz problem solved on the domain in Figure 5.5(a). Each
cavity is 5 wavelength in diameter.



113

5.6.3 Accelerated scheme

In this section, we provide two examples illustrating the efficiency of the accelerated scheme

in Section 5.5 when applied to the geometries shown in Figures 5.6 (for the Laplace and Helmholtz

equations) and 5.8 (for the Helmholtz equation). Recall that the idea here is to discretize each

scatterer finely enough to fully resolve the local incoming and outgoing fields. This requires a

somewhat large n number of points per scatterer, which for a system with p scatterers leads to a

global coefficient matrix of size np×np. Using the compression technique described in Section 5.5,

we compute a “reduced” system of size kp× kp, where now k is the (computed) rank of interaction

between the scatterers. The number k is largely independent of the local geometry of a scatterer

(an accurate upper bound can be derived by considering the speed of convergence when expanding

the fundamental solution in terms of spherical harmonics). These examples illustrate representative

sizes of k and n, and investigate whether the convergence of GMRES is affected by the compression.

5.6.3.1 Example 5

We apply the accelerated scheme in Section 5.5 to solve the Laplace’s equation on the domain

exterior to the bodies depicted in Figure 5.6. This geometry contains p = 50 different shaped

scatterers (ellipsoids, bowls, and rotated “starfish”) and is contained in the box [0, 18]×[0, 18]×[0, 6].

The minimal distance between any two bodies is 4.0. In this example, we have three different shapes

of scatterers, and the relevant numbers n and k are given in Figure 5.7. The results obtained when

solving the full np × np system are shown in Table 5.7, while the ones resulting from working

with the compressed kp× kp system are shown in Table 5.8. We see that the compression did not

substantially alter either the convergence speed of GMRES, or the final accuracy. Since the time

for matrix-vector multiplications is dramatically reduced, the total solve time was reduced between

one and two orders of magnitude.



114

Figure 5.6: Domain contains 50 randomly oriented scatters.

(a) (b) (c)

Figure 5.7: Example of skeletonization of three different scatterers before and after compression.
With n = 10 100 original discretization points (denoted by black dots), after compression (a) for an
ellipsoid, only ka = 435 points survive (denoted by red dots); (b) for a bowl-shaped cavity domain,
only kb = 826 points survive; (c) for a starfish-shaped cavity, only kc = 803 points survive.



115

N n Tpre I Tsolve Erel
∞

127 500 50× 51 2.29e+00 18 1.52e+02 2.908e-05
255 000 100× 51 4.70e+00 18 2.94e+02 2.329e-05
510 000 200× 51 1.22e+01 18 5.85e+02 2.034e-05

252 500 50× 101 3.23e+00 19 2.85e+02 3.677e-05
505 000 100× 101 7.08e+00 19 5.29e+02 1.705e-06

1 010 000 200× 101 1.93e+01 19 1.06e+03 4.128e-07

502 500 50× 201 5.07e+00 19 5.02e+02 3.674e-05
1 050 000 100× 201 1.28e+01 19 9.88e+02 1.673e-06
2 010 000 200× 201 3.63e+01 19 2.07e+03 1.568e-08

Table 5.7: (Example 5) Results from solving an exterior Laplace problem on the domain in Figure
5.6 with p = 50 scatterers. Here the system with the full np × np coefficient matrix is solved (no
compression).

N n Ncompressed (ka, kb, kc) Tcompress I Tsolve Erel
∞

127 500 50× 51 30 286 (411,797,746) 3.33e+01 18 3.85e+01 3.042e-05
255 000 100× 51 33 876 (434,824,805) 7.00e+01 19 4.25e+01 1.458e-05
510 000 200× 51 35 042 (449,847,838) 1.46e+02 19 4.26e+01 1.285e-05

252 500 50× 101 32 186 (413,795,752) 6.66e+01 19 3.94e+01 3.008e-05
505 000 100× 101 33 894 (435,826,803) 1.40e+02 19 4.04e+01 9.134e-06

1 010 000 200× 101 35 094 (451,846,840) 3.20e+02 19 4.12e+01 5.287e-07

502 500 50× 201 32 286 (414,797,754) 1.33e+02 19 3.98e+01 3.013e-05
1 050 000 100× 201 33 798 (437,830,802) 3.00e+02 19 4.06e+01 9.130e-06
2 010 000 200× 201 35 194 (453,848,842) 5.78e+02 19 4.21e+01 4.725e-08

Table 5.8: (Example 5) Results from solving an exterior Laplace problem on the domain in Figure
5.6 using the accelerated scheme with a reduced size coefficient matrix. The ranks ka, kb, and kc
for the three “species” of scatterers are given.



116

5.6.3.2 Example 6

The accelerated scheme is applied to solve Helmholtz equation on domain containing 64

randomly placed ellipsoids depicted in Figure 5.8. The minimal distance between any two bodies

is 6.0. Each ellipsoid is 5 wavelengths in diameter. The results for solving this problem without

compression are given in Table 5.9, and with compression in Table 5.10. Again, we see that the

convergence speed of GMRES is largely unaffected, and that the accelerated scheme is much faster.

Figure 5.8: Domain contains 64 randomly oriented ellipsoids, where the minimal distance between
any two is 6.0.

5.6.3.3 Example 7

The accelerated scheme is applied to solve the Helmholtz equation on the domain in Figure

5.6. Each scatterer is two wavelengths in diameter. The results obtained when solving the original

np × np system are given in Table 5.11, and the ones from the small kp × kp system are given in

Table 5.12. The tables substantiate our claim regarding the efficiency of the acceleration scheme.

Note that in Table 5.11, due to limitation of the memory, only estimations of the run time are

reported when four million discretization nodes were used.



117

N n Tinit I Tsolve Erel
∞

80 000 50× 25 4.41e-01 28 3.60e+03 7.009e-03
160 000 100× 25 8.44e-01 28 5.69e+03 5.755e-03

163 200 50× 51 8.22e-01 28 5.78e+03 1.239e-04
326 400 100× 51 1.65e+00 29 8.75e+03 4.806e-05
652 800 200× 51 3.36e+00 29 1.54e+04 5.552e-05

323 200 50× 101 1.58e+00 29 8.64e+03 8.223e-06
646 400 100× 101 3.24e+00 29 1.69e+04 1.354e-07

1 292 800 200× 101 6.67e+00 29 3.01e+04 2.823e-08

Table 5.9: (Example 6) Results from solving an exterior Helmholtz problem on the domain in
Figure 5.8 with p = 64 scatterers without compression (the system with the full np×np coefficient
matrix is solved). Each ellipsoid is 5 wavelengths in diameter.

N n Ncompressed k Tcompressed I Tsolve Erel
∞

80 000 50× 25 61 184 956 1.92e+01 28 4.42e+03 2.339e-02
160 000 100× 25 75 648 1182 6.58e+01 29 4.79e+03 8.656e-03

163 200 50× 51 87 744 1371 8.50e+01 29 4.92e+03 2.798e-04
326 400 100× 51 100 288 1567 2.83e+02 30 5.25e+03 5.892e-05
652 800 200× 51 105 216 1644 9.06e+02 30 5.51e+03 6.056e-05

323 200 50× 101 91 648 1432 2.40e+02 30 5.09e+03 9.485e-06
646 400 100× 101 102 400 1552 8.55e+02 31 5.50e+03 2.150e-07

1 292 800 200× 101 106 944 1671 2.91e+03 31 5.73e+03 8.441e-08

Table 5.10: (Example 6) Results from solving an exterior Helmholtz problem on the domain in
Figure 5.8 using the accelerated scheme. Each ellipsoid is 5 wavelengths in diameter.

N n Tinit I Tsolve Erel
∞

252 500 50× 101 5.33e+00 50 1.01e+04 3.211e-03
505 000 100× 101 1.07e+01 50 2.04e+04 2.260e-03

1 010 000 200× 101 2.21e+01 51 4.16e+04 8.211e-04

502 500 50× 201 1.02e+01 51 2.15e+04 8.273e-03
1 005 000 100× 201 2.01e+01 51 4.20e+04 3.914e-03
2 010 000 200× 201 3.90e+01 51 8.42e+04 5.044e-06
4 020 000 400× 201 – – ∼ 48h –

2 005 000 100× 401 3.89e+01 51 8.30e+04 4.244e-04
4 010 000 200× 401 – – ∼ 48h –

Table 5.11: (Example 7) Results from solving the exterior Helmholtz problem on the domain in
Figure 5.6 with p = 50 scatterers, using the full np× np coefficient matrix (no compression). Each
scatterer is 2 wavelengths in diameter.



118

N n Ncompressed (ka, kb, kc) Tcompressed I Tsolve Erel
∞

252 500 50× 101 53 390 (775,1254,1211) 2.26e+02 52 2.48e+03 4.941e-03
505 000 100× 101 57 934 (823.1358,1337) 5.17e+02 53 2.72e+03 2.026e-03

1 010 000 200× 101 60 512 (856,1420,1399) 1.14e+03 54 2.89e+03 4.865e-04

502 500 50× 201 54 538 (789,1283,1238) 4.89e+02 53 2.63e+03 9.276e-03
1 005 000 100× 201 59 036 (838,1384,1363) 1.10e+03 54 2.90e+03 4.392e-03
2 010 000 200× 201 61 488 (872,1443,1419) 2.70e+03 56 3.10e+03 7.709e-06
4 020 000 400× 201 61 664 (888,1428,1427) 1.50e+04 57 3.31e+03 1.856e-06

2 005 000 100× 401 60 106 (853,1409,1388) 2.58e+03 56 3.04e+03 9.632e-04
4 010 000 200× 401 61 818 (885,1441,1427) 1.54e+04 57 3.32e+03 2.452e-07

Table 5.12: (Example 7) Results from solving an exterior Helmholtz problem on the domain in
Figure 5.6 using the accelerated scheme with a reduced size coefficient matrix. Each scatterer is 2
wavelengths in diameter. The ranks ka, kb, and kc, for each of the three types of scatterer is given.



119

5.7 Conclusions and Future work

We have presented a highly accurate numerical scheme for solving acoustic scattering prob-

lems on domains involving multiple scatterers in three dimensions, under the assumption that each

scatterer is axisymmetric. The algorithm relies on a boundary integral equation formulation of the

scattering problem, combined with a highly accurate Nyström discretization technique. For each

scatterer, a scattering matrix is constructed via an explicit inversion scheme. Then these individual

scattering matrices are used as a block-diagonal pre-conditioner to GMRES to solve the very large

system of linear equations. The Fast Multiple Method is used to accelerate the evaluation of all

inter-body interactions. Numerical experiments show that while the block-diagonal pre-conditioner

does not make almost any different for “zero-frequency” scattering problems (governed by Laplace’s

equation), it dramatically improves the convergence speed at intermediate frequencies.

Furthermore, for problems where the scatterers are well-separated, we present an accelerated

scheme capable of solving even very large scale problems to high accuracy on a basic personal work

station. In one numerical example in Section 5.6, the numbers of degrees of freedom required to

solve the Laplace equation to eight digits of accuracy on a complex geometry could be reduced by

a factor of 57 resulting in a reduction of the total computation time from 35 minutes to 10 minutes

(9 minutes for compression and 42 seconds for solving the linear system). For a Helmholtz problem

the reduction of computation time is even more significant: the numbers of degrees of freedom

to reach seven digits of accuracy was in one example reduced by a factor of 65; consequently the

overall computation time is reduced from 48 hours to 5 hours (4 hours for compression and 1 hour

for solving the linear system).

The scheme presented assumes that each scatterer is rotationally symmetric; this property

is used both to achieve higher accuracy in the discretization, and to accelerate all computations

(by using the FFT in the azimuthal direction). It appears conceptually straight-forward to use the

techniques of [12, 59] to generalize the method presented to handle scatterers with edges (generated

by “corners” in the generating curve). The idea is to use local refinement to resolve the singular



120

behavior of solutions near the corner, and then eliminate the added “superfluous” degrees of freedom

added by the refinement via a local compression technique, see [34].



Chapter 6

A composite spectral scheme for 2D variable coefficient elliptic PDEs with

local mesh refinement

6.1 Introduction

The chapter describes a numerical method for solving boundary value problems in situations

where non-uniform grids are necessary due to change of regularity of the solution across the domain.

We focus on the problems of the form





−∇(c(x)∇u(x)) + b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

(1)

where Ω is domain in the plane with boundary Γ = ∂Ω, where b and c are smooth, where c > 0

and b ≥ 0, and where f is a given function that can be either smooth or non-smooth.

6.1.1 Outline of solution procedure

We solve (1) by combining the spectral discretization, hierarchical direct solve and local mesh

refinement scheme. Basically, there are three steps:

(1) Discretization: The domain is split into small rectangular patches. On each patch, the

solution u to (1) is approximated via tabulation on a tensor product grid of Chebyshev

points to high-order accuracy. The elliptic operator in (1) is then approximated via spectral

differential matrix defined on each local grid.



122

(2) Local mesh refinement: If the positions required for refinement is known in advance, we

partition the patches containing those points into smaller patches based on how close these

points are to the four corners of the holding patches.

(3) Direct solver: To solve the linear system hierarchically, we build a hierarchical tree by

organizing the patches in binary way. The direct solver involves two way paths along the

tree, upwards and downwards:

• Upwards pass: we construct the local solution operator and Dirichlet-to-Neumann

(DtN) operator for each leaf patch. For a parent patch, the solution operator and

DtN operator are constructed by glueing together the DtN operators of its children.

• Downwards pass: we take a vector of Dirichlet boundary data as input and construct

the tabulated values of u at all internal grid points via local solution operator, moving

downwards through the hierarchical tree.

6.1.2 Outline of the chapter

This chapter is organized as follows: Section 6.2 introduces notations and spectral interpola-

tion and differentiation. Section 7.3 describes how to compute the solution operator and the DtN

operator for a leaf in the tree. Section 7.4.1 describes how the DtN operator for a larger patch

consisting of two small patches can be computed if the DtN operators for the smaller patches are

given. Section 6.5 describes the full hierarchical scheme. Implementation details of mesh refinement

are given in Section 6.6. In Section 7.7 we illustrate the performance of the local refinement scheme

with a variety of numerical examples.

6.2 Spectral discretization

This section introduces notations for spectral differentiation on tensor product grids of Cheby-

shev nodes on the square domain [−a, a]2. This material is classical, see, e.g., Trefethen [94].



123

Let p denote a positive integer. The Chebyshev nodes on [−a, a] are points

ti = a cos ((i− 1)π/(p− 1)), i = 1, 2, . . . , p.

Let {xk}p
2

k=1 denote the set of points of the form (ti, tj) for 1 ≤ i, j ≤ p. Let Pp denote the linear

space of sums of tensor products of polynomials of degree p−1 or less. Pp has dimension p2. Given

a vector u ∈ Rp2 , there is a unique function u ∈ Pp such that u(xk) = u(k) for 1 ≤ k ≤ p2. We next

define D(1), D(2) and L as the matrix equivalents of the differentiation operators ∂/∂x1, ∂/∂x2, and

−∆, respectively. To be precise, these p2 × p2 matrices are the unique matrices for which

[Lu](k) = [−∆u](xk), k = 1, 2, . . . , p2, (2)

[D(1)u](k) = [∂1u](xk), k = 1, 2, . . . , p2, (3)

[D(2)u](k) = [∂2u](xk), k = 1, 2, . . . , p2. (4)

6.3 Leaf computation

This section describes the construction of a discrete approximation to the Dirichlet-to-

Neumann operator associated with the an elliptic equation such as (1) for a square patch Ω.

We in this section assume that the patch is small enough that it can readily be handled via a

“single-domain” (non-composite) spectral method using a tensor product grid of Chebyshev nodes

on Ω. In addition to the DtN operator, we also construct a solution operator to (1) that maps the

Dirichlet data on the nodes on the boundary of Ω to the value of u at all internal interpolation

nodes.

6.3.1 Notation and basic equilibrium conditions

Let Ω denote a square patch. Let {xk}p
2

k=1 denote the nodes in a tensor product grid of p× p

Chebyshev nodes. Partition the index set

{1, 2, . . . , p2} = Iext ∪ Iint



124

(a) (b)

Figure 6.1: Notation for the leaf computation in Section 7.3. (a) A leaf before elimination of interior
(white) nodes. (b) A leaf after elimination of interior nodes.



125

in such a way that Iext contains all nodes on the boundary of Ω, and Iint denotes the set of interior

nodes, see Figure 6.1. Let u be a function that satisfies (1) on Ω and let ũ ∈ Rp2 denote a vector

holding tabulated values of u on nodes {xk}p
2

k=1, in other words

ũ = [u(xk)]
p2

k=1.

The operator (1) is then locally approximated via the p2 × p2 matrix

A = −D(1)CD(1) − D(2)CD(2) + B, (5)

where B and C are diagonal matrices with diagonal entries {b(xk)}p
2

k=1 and {c(xk)}p
2

k=1. The equation

we enforce on Ω is that Aũ should evaluate to zero at all internal nodes, i.e.

Aint,int ũint + Aint,ext ũext = 0, (6)

where

Aint,int = A(Iint, Iint), Aint,ext = A(Iint, Iext).

Solving (6) for ũi, we obtain

ũint = U ũext, (7)

where

U = −(Aint,int)
−1 Aint,ext. (8)

U is defined as the solution operator, which is of size (p− 1)2 × (4p− 4).

6.3.2 Constructing the DtN operator

We will next construct a matrix that maps given Dirichlet conditions on the boundary of the

square Ω to fluxes on the boundary. As a first step, we define vectors {ṽs, ṽe, ṽn, ṽw} that each

hold the boundary fluxes on the four sides (south, east, north, west). To be precise

ṽs = {∂2u(xk)}k∈Is , ṽe = {∂1u(xk)}k∈Ie , ṽn = {∂2u(xk)}k∈In , ṽw = {∂1u(xk)}k∈Iw ,



126

where Is, Ie, In, Iw, are index vectors that each mark the p nodes on the respective sides. We

aggregate these vectors into a 4p× 1 vector

ṽ =




ṽs

ṽe

ṽn

ṽw




.

Note that ṽ represents an outgoing flux on certain boxes and an incoming flux on others. This is

a deliberate choice to avoid problems with signs when matching fluxes of touching boxes. Further-

more, note that each corner node contributes to two entries in ṽ. We define the short-hands

ũint = ũ(Iint) and ũext = ũ(Iext).

With L, D(1) and D(2) denoting spectral differentiation matrices corresponding to the operators

−∆, ∂1 and ∂2 respectively, as defined in Section 6.2, we use the short-hands

D
(k)
int,ext = D(k)(Iint, Iext), for k = 1, 2

to denote the part of the differentiation matrix D(1) and D(2) that map exterior nodes to interior

nodes, etc.

We are now ready to construct a matrix V of size 4p× 4(p− 1) that maps Dirichlet data to

Neumann data, so that

ṽ = V ũext. (9)

Conceptually we proceed as follows: Given the potential ũext on the boundary, we reconstruct ũint

in the interior via (7). Since the potential is then known on all Chebyshev nodes in Ω, we can

determine the gradient on each boundary via spectral differentiation on the entire domain. To

formalize, the gradient on the south boundary can be written

ṽs = D
(2)
s,extũext + D

(2)
s,intũint = D

(2)
s,extũext + D

(2)
s,intU ũext. (10)



127

The gradient on the other sides can be determined similarly. In this way we define a DtN operator

V of size 4p× (4p− 4) via, cf. (9),

V =




D
(2)
s,ext + D

(2)
s,intU

D
(1)
e,ext + D

(1)
e,intU

D
(2)
n,ext + D

(2)
n,intU

D
(1)
w,ext + D

(1)
w,intU.




(11)

6.3.3 Interpolating the solution and DtN operators to Gaussian nodes

In practical implementations, we prefer to tabulate the boundary solution u on Gaussian

nodes instead of on Chebyshev nodes. Using Gaussian nodes makes the computation much easier

when we merge two boxes into a bigger one since the Gaussian nodes do not lie on the corners of

the boxes.

In addition to the p × p tensor product Chebyshev nodes {xk}p
2

k=1 on Ω that we defined in

Section 6.3.1, we now also introduce a vector {z`}4q`=1 of 4q Gaussian discretization nodes lying on

the four edges of Ω. The sets of boundary Gaussian and Chebyshev nodes are both ordered in a

counter-clockwise fashion, starting from the “southwest” order.

Let PC2G and PG2C denote the standard interpolation operators that map between a set of p

Chebyshev nodes and a set of q Gaussian nodes, respectively. In other words, PC2G and PG2C are

the unique matrices such that

[φ(zi)]
q
i=1 = PC2G [φ(xj)]

p
j=1, for every polynomial φ of degree at most p− 1

[φ(xi)]
p
i=1 = PG2C [φ(zj)]

q
j=1, for every polynomial φ of degree at most q − 1.

The idea is now to build large interpolation operators LC2G and LG2C that interpolate between

the 4q boundary Gaussian nodes and the 4(p− 1) boundary Chebyshev nodes, and then form the

“Gauss-to-Gauss” DtN matrix via

T
4q×4q

= LC2G
4q×4p

◦ V
4p×4(p−1)

◦ LG2C
4(p−1)×4q

, (12)



128

where V is the “Chebyshev-to-Chebyshev” DtN matrix defined in Section 7.3.2. The 4q×4p matrix

LC2G is obtained simply by forming the block-diagonal matrix

LC2G =




PC2G

PC2G

PC2G

PC2G




. (13)

Building the 4(p− 1)× 4q matrix LG2C requires us to decide how to assign values to the 4 corner

nodes. For instance, the node on the “southest” corner can be assigned a value either by interpo-

lation from the q Gaussian nodes on the south side, or from the q Gaussian nodes on the east side.

(To be precise, these are extrapolations, but only by a tiny amount, and quite stable.) We chose to

form the average of these two values, which leads to the definition

LG2C =




1
2PG2C(1, :) 1

2PG2C(p, :)

PG2C(2 : (p− 1), :)

1
2PG2C(p, :) 1

2PG2C(1, :)

PG2C(2 : (p− 1), :)

1
2PG2C(p, :) 1

2PG2C(1, :)

PG2C(2 : (p− 1), :)

1
2PG2C(p, :) 1

2PG2C(1, :)

PG2C(2 : (p− 1), :)




. (14)

Finally, we define for future reference a solution operator S of size p2×4q that maps Dirichlet

data specified on the Gaussian nodes, to a solution defined on the Chebyshev nodes on the patch.

This map is easily formed by combining the big interpolation matrix LG2C with the Chebyshev

solution operator U defined in Section 6.3.1,

S
p2×4q

= U
p2×4(p−1)

◦ LG2C
4(p−1)×4q

. (15)



129

Figure 6.2: Notation for the merge operation described in Section 7.4.1. The rectangular domain
Ω is formed by two squares Ωα and Ωβ. The sets J1 (boundary nodes of Ωα that are not boundary
nodes of Ωβ) and J2 (boundary nodes of Ωβ that are not boundary nodes of Ωα) form the exterior
nodes (black), while J3 (boundary nodes of both Ωα and Ωβ that are not boundary nodes of the
union box) consists of the interior nodes (white).



130

6.4 The merge operation

Let Ω denote a rectangular domain consisting of the union of the two smaller rectangular

domains,

Ω = Ωα ∪ Ωβ,

as shown in Figure 7.1. Moreover, suppose that approximations to the DtN operators for Ωα and

Ωβ are available, represented as matrices Tα and Tβ that map boundary values of u to boundary

values of ∂1u and ∂2u. This section describes how to compute a solution operator S that maps the

value of a function u that is tabulated on the boundary of Ω to the value of u on interpolation

nodes on the internal boundary, as well as DtN operators T that maps boundary values of u on the

boundary of Ω to values of the ∂1u and ∂2u tabulated on the boundary.

6.4.1 Notation

We start with introducing some notations: Let Ω denote a box with children Ωα and Ωβ. For

concreteness, let us assume that Ωα and Ωβ share a vertical edge. We partition the points on ∂Ωα

and ∂Ωβ into three sets:

J1 Boundary nodes of Ωα that are not boundary nodes of Ωβ.

J2 Boundary nodes of Ωβ that are not boundary nodes of Ωα.

J3 Boundary nodes of both Ωα and Ωβ that are not boundary nodes of the union box Ω.

Figure 7.1 illustrates the definitions of the Jj ’s. Let u denote a solution to (1), with tabulated

values uj and boundary fluxes vj restricted to the nodes in the set “j”. Set

ui = u3, and ue =




u1

u2


 . (16)

Finally, let Tα and Tβ denote the operators that map values of the potential values on the boundaries

to values of ∂1u or ∂2u on the boundaries of the boxes Ωα and Ωβ, as described in Section 7.3.2.



131

We partition these matrices according to the numbering of nodes in Figure 7.1,




v1

v3


 =




Tα1,1 Tα1,3

Tα3,1 Tα3,3







u1

u3


 and




v2

v3


 =




Tβ2,2 Tβ2,3

Tβ3,2 Tβ3,3







u2

u3


 . (17)

6.4.2 Equilibrium condition

Suppose that we are given a tabulation of boundary values of a function u that satisfies (1)

on Ω. In other words, we are given the vectors u1 and u2. We can then reconstruct the values of

the potential on the interior boundary (tabulated in the vector u3) by using information in (17).

Simply observe that there are two equations specifying the normal derivative across the internal

boundary (tabulated in v3), and combine these equations:

Tα3,1u1 + Tα3,3u3 = v3 = Tβ3,2u2 + Tβ3,3u3. (18)

Solving (18) for u3 we get

u3 =
(
Tα3,3 − Tβ3,3

)−1(
Tβ3,2u2 − Tα3,1u1

)
. (19)

Now set

S =
(
Tα3,3 − Tβ3,3

)−1[−Tα3,1
∣∣ Tβ3,2], (20)

to find that (19) is (in view of (16)) precisely the desired formula

ui = Sue. (21)

6.4.3 Constructing the DtN operators for the union box

Our next object is to construct a DtN matrix T such that



v1

v2


 = T



u1

u2


 . (22)

To this end, observe from (17) that

v1 = Tα1,1u1 + Tα1,3u3, (23)



132

1 2 3

4

5

6

7

8 9

10 11

12 13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 6.3: The square domain Ω is split into 4 × 4 leaf boxes. These are then gathered into a
binary tree of successively larger boxes as described in Section 6.5.1. One possible enumeration of
the boxes in the tree is shown, but note that the only restriction is that if box τ is the parent of
box σ, then τ < σ.

v2 = Tβ2,3u2 + Tβ2,3u3. (24)

By eliminating u3 from the above two equations using (19), we obtain



v1

v2


 =

(


Tα1,1 0

0 Tβ2,2


+




Tα1,3

Tβ2,3



(
Tα3,3 − Tβ3,3

)−1[−Tα3,1
∣∣ Tβ3,2

]
)

u1

u2


 . (25)

In other words,

T =




Tα1,1 0

0 Tβ2,2


+




Tα1,3

Tβ2,3



(
Tα3,3 − Tβ3,3

)−1[−Tα3,1
∣∣ Tβ3,2

]
. (26)

6.5 The full hierarchical scheme

At this point, we know how the construct the solution and DtN operators for a leaf patch

(Section 7.3), and how to merge two DtN operators of neighboring patches to form the DtN operator

of their union (Section 7.4.1). We are ready to describe the full hierarchical scheme for solving the

Dirichlet problem (1). We start by describing the scheme for a uniform mesh, and will then in

Section 6.6 proceed to describe the modifications required to handle locally refined meshes.

6.5.1 The algorithm

To begin with, we partition the domain Ω into a collection of rectangular boxes, called leaf

boxes. These should be small enough that a small spectral mesh with p × p nodes (for, say,

p = 20) accurately interpolates both any potential solution u of (1) and its derivatives ∂1u, ∂2u,



133

and −∆u. Let vector u denote the tabulated approximations to u at the Gaussian nodes {z`}N`=1 on

all interior edges. Next construct a binary tree on the collection of boxes by hierarchically merging

them, making sure that all boxes on the same level are roughly of the same size, cf. Figure 6.3.

The boxes should be ordered so that if τ is a parent of a box σ, then τ < σ. We also assume that

the root of the tree (i.e. the full box Ω) has index τ = 1.

With each box τ , we define two index vectors Iτi and Iτe as follows:

Iτe A list of all indices of the nodes on the boundary of τ .

Iτi For a leaf τ , Iτi is a list of all interior nodes of τ .

For a parent τ , Iτi is a list of all its interior nodes that are not interior nodes of its children.

Next we execute a “build stage” in which for every box τ , we construct the following two

matrices:

Sτ The matrix that maps the values of u on ∂Ωτ to the values of u on the interior nodes of

Ωτ . In other words, u(Iτi ) = Sτ u(Iτe ).

Tτ The matrix that maps the values of u on ∂Ωτ to the values of v (tabulating du/dn) on ∂Ωτ .

In other words, v(Iτe ) = Tτ u(Iτe ).

The build stage consists of a single sweep over all nodes in the tree. Any bottom-up ordering

in which any parent box is processed after its children can be used. For each leaf box τ , an

approximation to the local DtN map Tτ is constructed using the procedure described in Section

7.3. For a parent box τ with children σ1 and σ2, the matrices Sτ and Tτ are formed from the DtN

operators Tσ1 and Tσ2 via the process described in Section 7.4.1. Figure 6.4 summarizes the build

stage.

Once all the matrices {Sτ}τ have been formed, the vector u holding approximations to the

solution u of (1) can be constructed for all discretization points by starting at the root box Ω and

moving down the tree toward the leaf boxes. The values of u for the points on the boundary of Ω

can be obtained by tabulating the boundary function f . When any box τ is processed, the value

of u is known for all nodes on its boundary (i.e. those listed in Iτe ). The matrix Sτ directly maps



134

these values to the values of u on the nodes in the interior of τ (i.e. those listed in Iτi ). When all

nodes have been processed, approximations to u have been constructed for all tabulation nodes on

interior edges. Figure 6.5 summarizes the solve stage.

Pre-computation

This program constructs the global Dirichlet-to-Neumann operator for (1).
It also constructs all matrices Sτ required for constructing u at any interior point.
It is assumed that if node τ is a parent of node σ, then τ < σ.

for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
if (τ is a leaf)

Construct Sτ and Tτ via the process described in Section 7.3.
else

Let σ1 and σ2 be the children of τ .
Partition Iσ1e and Iσ2e into vectors I1, I2, and I3 as shown in Figure 7.1.

Sτ =
(
Tσ13,3 − Tσ23,3

)−1[−Tσ13,1

∣∣ Tσ23,2

]

Tτ =

[
Tσ11,1 0

0 Tσ22,2

]
+

[
Tσ11,3

Tσ22,3

]
Sτ .

Delete Tσ1 and Tσ2 .
end if

end for

Figure 6.4: Pre-computation

6.6 Mesh refinement

Oftentimes, there are situations where a refinement algorithm is needed to retain the accuracy.

For example, these situations can be when the boundary data is non-smooth, when the solution ex-

hibits sharp gradient somewhere, or when the solutions develops local singularities around corners.

To resolve these problems, a refinement criteria is demanding to identify the regions where the grid

needs to be refined. In this section, we describe how the scheme described in Section 6.5.1 can be

modified to allow for local refinement. We restrict attention to the case where the user specifies

the refined grid. (The development of automatic grid refinement strategies is a work in progress.)

The core technical difficulty that we need to address is that upon refinement, the Gaus-

sian interpolation nodes on the edges of domains no longer line up perfectly, which necessitates



135
Solver

This program constructs an approximation u to the solution u of (1).
It assumes that all matrices Sτ have already been constructed in a pre-computation.
It is assumed that if node τ is a parent of node σ, then τ < σ.

u(`) = f(z`) for all ` ∈ I1
e .

for τ = 1, 2, 3, . . . , Nboxes

u(Iτi ) = Sτ u(Iτe ).
end for

Figure 6.5: Solve stage.

modifications to the merge process described in Section 7.4.1.

6.6.1 Refinement criteria

Suppose that (x0, y0) denotes a point where the solution exhibits local loss of regularity. For

instance, (x0, y0) could be a corner of the domain, or a point on the boundary where the prescribed

boundary data is non-smooth. Our refinement criteria is then to split any box that contains the

point (x0, y0) itself into four equi-sized smaller boxes, unless this box is smaller than some preset

minimum size Lmin. In addition to splitting any box that contains the singular point, we also split

any boxes that are “close”. Specifically, for any box Ωτ , let d denote the distance from (x0, y0) to

Ωτ , and let 2 lτ denote the side-length of Ωτ . We then split Ωτ into four equi-sized boxes if

d < α lτ

for some fixed parameter α. We proceed recursively, stopping while boxes reach the pre-scribed

minimal size Lmin. Empirically, we found that α =
√

2 is often a good choice for the refinement

parameter.

6.6.2 New data structures

Note that after introducing refinement, any one edge can now have different, overlapping sets

of nodes associated with refined boxes. Therefore, we need to introduce an extended set of Gaussian



136

nodes {zi}Ni=1 on all interior edges of Ω such that for a refined box Ωref
τ , it contains both the coarser

Gaussian nodes on ∂Ωref
τ as defined in Section 6.3.3 and the boundary nodes of its children. Let

{ui}Ni=1 be the vector of tabulated approximate values at these points so that

ui ≈ u(zi) for i = 1, . . . , N.

6.6.3 Interpolation of solution and DtN operators

Ωα Ωβ

Ωα Ωβ

(a) (b)

Figure 6.6: (a) Grid with refinement at the center; (b) Jα denote the indices of Gaussian nodes on
∂Ωα denoted by blue dots, while Jβ denote the indices of Gaussian nodes on ∂Ωβ denoted by red
circles.

In this section, we describe the technique to handle the issues when the tabulation nodes

for two touching boxes do not coincide. This typically happens when one of the two neighboring

boxes is refined or when they have different levels of refinements. Figure 6.6 depicts an example

involving two adjacent boxes Ωα and Ωβ of equal size. One box, Ωα, is a leaf node, while the other,

Ωβ, was refined and has four children. On the shared edge of Ωα there are q Gaussian nodes (in

the figure, q = 10), while on Ωβ there are two panels with q Gaussian nodes each. To eliminate the

troubles when merging such boxes, we keep the nodes on the shared edge consistent by applying

interpolation operators. For a better illustration, we first introduce some notations.

Let Jα and Jβ denote the boundary nodes of Ωα and Ωβ respectively, which are subsets of the



137

extended set {zi}Ni=1. Assume on the shared edge of Ωα and Ωβ there are s and t nodes respectively.

For simplicity, we assume the number of nodes on the other edges of the two boxes are the same,

say r nodes. Figure 6.6 illustrates the definitions of Jα and Jβ. For this specific example we have

t > s since Ωβ contains refined nodes on the shared edge.

Recall that for uniform grid we define the solution operator in (15) which maps the potential

value tabulated on exterior Gaussian nodes to interior Chebyshev nodes. For leaf boxes that do

not touch any refined boxes, calculations of the solution operators remain the same. However for

those boxes adjacent to refined boxes, the solution operator now maps the refined boundary nodes

to interior Chebyshev nodes by applying an interpolation matrix. Like what we did in Section

6.3.3, we construct two interpolation operators P1 and P2 that map between nodes {zi}i∈Jα and

{zj}j∈Jβ . In other words,

[φ(zi)]i∈Jα = P1 [φ(zj)]j∈Jβ , for every polynomial φ of degree at most t− 1

[ϕ(zj)]j∈Jβ = P2 [ϕ(zi)]i∈Jα , for every polynomial ϕ of degree at most s− 1.

Let L1 be a 4× 4 block matrix having P1 and three identity matrices on the diagonal, such that

u(Jα)
(s+r)×1

= L1
(s+r)×(t+r)

u(Jβ)
(t+r)×1

. (27)

Then the solution operator for Ωα is computed via

Sα,ref

p2×(t+r)
= Sα

p2×(s+r)
◦ L1

(s+r)×(t+r)
. (28)

The DtN operator can be constructed in a similar way by applying two interpolation matrices

Tα,ref

(t+r)×(t+r)
= L2

(t+r)×(s+r)
◦ Tα

(s+r)×(s+r)
◦ L1

(s+r)×(t+r)
, (29)

where L2 is a block matrix of size (t+ r)× (s+ r) such that

u(Jβ)
(t+r)×1

= L2
(t+r)×(s+r)

u(Jα)
(s+r)×1

. (30)

Remark 10 In practice, standard Lagrange interpolation is unstable to approximate P2 since s is

usually a smaller number than t. Hence, we approximate P2 by Barycentric Lagrange interpolation

[7] which is more stable. But we stick to Lagrange interpolation to approximate P1.



138

6.7 Numerical experiments

This section describes numerical experiments to explore the performance the refinement

scheme outlined in previous sections. All the experiments are carried out on a desktop with 2.8GHz

Intel Core 2 Duo and 12GB of RAM, and executed in a MATLAB environment.

The performance of the scheme are illustrated by solving variety of problems. In Section

6.7.1 we apply the refinement scheme to Helmholtz problems on square domain with non-smooth

or non-continuous boundary data. Section 6.7.2 presents results from applying the scheme to solving

problems on domains with corners such as a tunnel-shaped domain. In Section 6.7.3 and 6.7.4 we

solve the variable coefficient problem and free space problem where the scattering term exhibits

non-smoothness.

In all the experiments below, to check for convergence of the potential, we compute the

solution at some chosen interior points x̂ pointwisely via

ENint = |uN (x̂)− u2N (x̂)|,

where uN denote the solution at the N × N Chebyshev grid. To check the convergence of the

normal derivative on the boundary, we compute the total fluxes across the boundary of the domain

via

ENflux = |fN − f2N |,

where fN =
∑

zi∈Γ v(zi)ωi with v(zi) denoting the derivative of u evaluated at Gaussian nodes zi

on Γ and weights ωi. Moreover, we fix the refinement parameter α =
√

2 based on experimental

performance.

6.7.1 Helmholtz equation on square domain with non-smooth boundary data

We first solve the Helmholtz equation





−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

(31)



139

in domain Ω = [0, 1]2 and Γ = ∂Ω. Let the wavenumber κ = 62.8 such that there are 10 × 10

wavelength across the domain. In Example 1 and 2, we let the boundary data f(x) to be non-

smooth functions while in Example 3 and 4 f(x) are set to be non-continuous functions.

In all these experiments, the number of Gaussian nodes per leaf box is fixed at q = 20, and

21 × 21 tensor product grids of Chebyshev nodes are used for leaf computations. The number of

panels each side is fixed at Np = 8.

6.7.1.1 Example 1

In this example, we increase the numbers of refinement positions. On each of the four sides

of the square domain Ω, let the Dirichlet boundary data be given

f(x) =





|x− 0.3|β x ≤ 0.5,

|x− 0.7|β x > 0.5.

(32)

Therefore there are totally 16 positions to be refined and the refinement grid with four levels of

refinement is shown in Figure 6.7. In Figure 6.8 we plot the boundary data with respect to different

values of β. We present the convergence of the error u and fluxes with respect to the number of

levels of refinements in Figures 6.9.

6.7.1.2 Example 2

In this example, the boundary data on each of the four sides of the domain is given by

f(x) = |x− 0.5| − 0.5, (33)

such that the grid is refined at the center point of each side. In Figure 6.10 we plot the approximated

solution as well as the Dirichlet boundary data. The convergence of error versus the levels of

refinement is shown in Figure 6.11.



140

Figure 6.7: (Example 1) Grid of the exterior Gaussian nodes with four levels of refinement.



141

β = 0.1 β = 0.5

β = 0.8 β = 1

β = 3 β = 5

Figure 6.8: (Example 1) Dirichlet data f(x) for various β given in (32).



142

0 2 4 6 8 10 12 14 16
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Level of refinements

E
r
r
o
r

Eint
Eflux

0 2 4 6 8 10 12 14 16
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Level of refinements

E
r
r
o
r

Eint
Eflux

β = 0.1 β = 0.5

0 2 4 6 8 10 12 14 16
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Level of refinements

E
r
r
o
r

Eint
Eflux

0 2 4 6 8 10 12 14 16
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Level of refinements

E
r
r
o
r

Eint
Eflux

β = 0.8 β = 1

0 2 4 6 8 10 12 14 16
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Level of refinements

E
r
r
o
r

Eint
Eflux

0 2 4 6 8 10 12 14 16
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Level of refinements

E
r
r
o
r

Eint
Eflux

β = 3 β = 5

Figure 6.9: (Example 1) Convergence of the errors from solving the interior Helmholtz problem
(31) on domain Ω = [0, 1]2 with boundary data given in (32) with respect to the number of levels
of refinement.



143

Figure 6.10: (Example 2) Approximated solution and Dirichlet boundary data given in (33).

0 2 4 6 8 10 12 14 16
10−15

10−10

10−5

100

Level of refinements

E
r
r
o
r

Eint
Eflux

Figure 6.11: (Example 2) Convergence of the errors from solving the interior Helmholtz problem
(31) on domain Ω = [0, 1]2 with boundary data given in (33) with respect to the number of levels
of refinement.



144

6.7.1.3 Example 3

In this example, the Dirichlet condition on the boundary is not only non-smooth, but also

non-continuous. Specifically, the boundary data of each side is given by the function

f(x) =





− x 0 ≤ x ≤ 0.5,

1− x 0.5 < x ≤ 1,

(34)

such that the refinement is carried out at the center point of each side. In Figure 6.12 we plot the

approximated solution as well as the Dirichlet boundary data. The convergence of error versus the

levels of refinement is shown in Figure 6.13.

Figure 6.12: (Example 3) Approximated solution and Dirichlet boundary data given in (34).



145

0 2 4 6 8 10 12 14 16
10−15

10−10

10−5

100

Level of refinements

E
r
r
o
r

Eint
Eflux

Figure 6.13: (Example 3) Convergence of the errors from solving the interior Helmholtz problem
(31) on domain Ω = [0, 1]2 with boundary data given in (34) with respect to the number of levels
of refinement.



146

6.7.2 Helmholtz equation on domain with corners

6.7.2.1 Example 4

In this section, we illustrate the performance of the refinement scheme by solving interior

Helmholtz equation (31) on an on a tunnel-shaped domain as shown in Figure 6.14. The number

of Gaussian nodes per leaf box is fixed at q = 20, and 21 × 21 tensor product grids of Chebyshev

nodes are used for leaf computations. The number of panels each side is fixed at Np = 8. The

wavenumber is set as κ = 3.37 such at the domain is 15 wavelength in length. The pointwise errors

were estimated at the interior points x̂ = (−5, 0). We pick the Dirichlet boundary data f that

generates a sort of plane wave and is given by

f(x) = cos (34x1). (35)

Figure 6.14: (Example 4) Approximated solution of problem (31) with Dirichlet boundary data
(35) on a tunnel-shaped domain.



147

0 2 4 6 8 10 12 14 16
10−12

10−10

10−8

10−6

10−4

10−2

100

Level of refinements

Er
ro

r

Figure 6.15: (Example 4) Convergence of the relative errors from solving problem (31) on a tunnel-
shaped domain with respect to the number of levels of refinement.



148

6.7.3 Variable coefficient problem on square domain

In this section, we solve the variable coefficient problems on the square domain Ω = [0, 1]2

and Γ = ∂Ω. Consider the problem





−∆u(x)− κ2(1− b(x))u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

(36)

where b(x) are functions exhibiting sharp gradient at points where we need to implement our

refinement scheme.

6.7.3.1 Example 5

In this example, let b(x) = e−10000|x−x̃|2 , where x̃ = (0.25, 0.25) and the boundary data

be f(x) = cos(κx1). The Helmholtz parameter was kept fixed at κ = 62.8, corresponding to the

domain size of 10 × 10 wave lengths. Again we compute the pointwise errors at x̂ = (0.75, 0.25)

and compute the total fluxes towards the south boundary.

(a) (b)

Figure 6.16: (Example 5)(a) Scattering potential b(x) = e−10000|x−x̂|2 , (b) approximated solution.



149

0 2 4 6 8 10 12 14 16
10−15

10−10

10−5

100

Level of refinements

E
r
r
o
r

Eint
Eflux

Figure 6.17: (Example 5) Convergence of the errors from solving problem (36) on a square domain
with respect to the number of levels of refinement.



150

6.7.4 Free space scattering problem

In this section, we consider the free space problem




−∆u(x)− k2 (1− b(x))u(x) = f(x),

lim
|x|→∞

√
|x|
(
∂|x|u(x)− ik u(x)

)
= 0.

(37)

We assume b is compactly supported inside the domain Ω, and that f is supported outside Ω. Details

on the how to construct the solution using spectral composite method and integral equation method

are fully described in [33].

Example 6 Consider the free space scattering problem (37) with

b(x) =





1

a4
(a2 − x2

1)(a2 − x2
2), |x1| ≤ a and |x2| ≤ a,

0, elsewhere,

(38)

where a = 0.24. The scatter field as well as the approximated solution are depicted in Figure 6.19.

The grid with three levels of refinement along the edges of b(x). The accuracy results for different

numbers of wavelength are presented in Table 6.1 - 6.4. We compute the pointwise errors at points

both inside the square domain Ω = [−0.5, 0.5]2 where spectral composite method is executed and

outside the domain. Specifically, the interior error Eint is computed at x̂1 = (0.25, 0) and exterior

error Eext is computed at x̂2 = (1, 0.5). Nwave denotes the number of wavelength across each side

of Ω while N is the total number of Chebyshev points to discretize Ω. In Figure 6.20 we plot the

set up time and solve time against the number of Chebyshev discretization points of Ω, where the

set up time presents linear scale.

6.8 Concluding remarks

We have described a high-order local refinement scheme for variable coefficient elliptic PDEs

in the plane, where the regularity of the solution changes across the domain. The algorithm relies

on the composite spectral scheme [79] on uniform grid. When the positions needed for refinement

are known in advance, the boxes containing these points are split into smaller ones according to the

refinement criteria presented (Section 6.6). A direct solver is then executed after the hierarchical



151

Figure 6.18: (Example 6) Grid of the exterior Gaussian nodes with three levels of refinement. The
edges of b(x) where refinements are executed are denoted by blue lines.

(a) (b)

Figure 6.19: (Example 6)(a) Scatter potential b(x) defined in (38), (b) approximated solution.



152

Nwave
Nref = 0 Nref = 2 Nref = 4 Nref = 6 Nref = 8

N Eint N Eint N Eint N Eint N Eint

3.2
1681 3.00e− 04 9425 8.48e− 05 52017 1.27e− 05 230129 1.05e− 05 942577 1.04e− 05
6561 8.81e− 05 25921 3.86e− 06 114977 1.86e− 06 471201 2.48e− 08 1 896 097 3.62e− 08
25921 8.29e− 05 68513 9.76e− 06 246625 5.09e− 07 959073 1.92e− 08 3 812 737 6.23e− 10

6.4
1681 2.13e− 03 9 425 1.16e− 03 52 017 1.64e− 03 230 129 1.62e− 03 942577 1.62e− 03
6561 4.52e− 04 25 921 2.00e− 05 114 977 2.00e− 05 471 201 1.39e− 05 1 896 097 1.37e− 05
25921 2.46e− 04 68513 3.46e− 05 246625 1.77e− 06 959073 6.83e− 08 3 812 737 6.45e− 09

12.7
1681 5.80e− 01 9425 7.75e− 01 52017 4.41e− 01 230129 4.43e− 01 942577 4.43e− 01
6561 1.80e− 03 25921 5.31e− 03 114977 4.64e− 03 471201 4.63e− 03 1 896 097 4.63e− 03
25921 5.56e− 04 68513 6.48e− 05 246625 9.27e− 06 959073 9.43e− 06 3 812 737 9.45e− 06

Table 6.1: (Example 6) Interior accuracies resulting from solving free space scattering problem (37)
and (38) for different wavenumbers. 11× 11 tensor product grids of Chebyshev nodes are used for
leaf computations.

Nwave
Nref = 0 Nref = 2 Nref = 4 Nref = 6 Nref = 8

N Eext N Eext N Eext N Eext N Eext

3.2
1681 3.59e− 04 9425 9.30e− 05 52017 1.14e− 05 230129 2.18e− 06 942577 1.53e− 06
6561 1.01e− 04 25921 2.06e− 06 114977 2.49e− 06 471201 1.09e− 07 1 896 097 3.11e− 08
25921 9.04e− 05 68513 1.29e− 05 246625 6.69e− 07 959073 2.45e− 08 3 812 737 2.10e− 10

6.4
1681 6.27e− 03 9 425 7.01e− 03 52 017 7.57e− 03 230 129 7.53e− 03 942577 7.53e− 03
6561 3.01e− 04 25 921 1.53e− 05 114 977 1.22e− 05 471 201 5.18e− 06 1 896 097 4.95e− 06
25921 2.93e− 04 68513 3.86e− 05 246625 2.09e− 06 959073 1.54e− 07 3 812 737 8.04e− 08

12.7
1681 1.18e+ 00 9425 1.18e+ 00 52017 1.14e+ 00 230129 1.14e+ 00 942577 1.14e+ 00
6561 1.65e− 02 25921 1.50e− 02 114977 1.52e− 02 471201 1.52e− 02 1 896 097 1.52e− 02
25921 8.81e− 04 68513 9.83e− 05 246625 1.33e− 05 959073 8.42e− 06 3 812 737 8.24e− 06

Table 6.2: (Example 6) Exterior accuracies resulting from solving free space scattering problem
(37) and (38) for different wavenumbers. 11×11 tensor product grids of Chebyshev nodes are used
for leaf computations.

Nwave
Nref = 0 Nref = 2 Nref = 4 Nref = 6

N Eint N Eint N Eint N Eint

3.2
6561 6.34e− 05 34785 6.44e− 06 190017 5.18e− 07 839169 2.79e− 07
25921 4.28e− 05 96481 8.05e− 06 421057 6.66e− 07 1719361 1.14e− 08
103041 6.23e− 06 258273 7.09e− 07 907425 5.61e− 09 3504033 7.49e− 09

6.4
6561 1.81e− 04 34785 5.70e− 05 190017 3.90e− 05 839169 4.08e− 05
25921 1.24e− 04 96481 2.63e− 05 421057 2.56e− 06 1719361 6.29e− 07
103041 1.50e− 05 258273 2.16e− 06 907425 2.44e− 08 3504033 2.56e− 08

12.7
6561 5.15e− 01 34785 5.02e− 01 190017 5.07e− 01 839169 5.04e− 01
25921 5.35e− 04 96481 7.07e− 04 421057 7.32e− 04 1719361 7.30e− 04
103041 6.39e− 05 258273 4.26e− 06 907425 8.77e− 07 3504033 8.29e− 07

Table 6.3: (Example 6) Interior accuracies resulting from solving free space scattering problem (37)
and (38) for different wavenumbers. 21× 21 tensor product grids of Chebyshev nodes are used for
leaf computations.



153

Nwave
Nref = 0 Nref = 2 Nref = 4 Nref = 6

N Eext N Eext N Eext N Eext

3.2
6561 6.55e− 05 34785 5.93e− 06 190017 4.89e− 07 839169 6.41e− 07
25921 5.09e− 05 96481 1.03e− 05 421057 8.59e− 07 1719361 1.47e− 08
103041 5.39e− 06 258273 8.68e− 07 907425 8.29e− 09 3504033 9.79e− 09

6.4
6561 3.61e− 04 34785 5.52e− 04 190017 5.35e− 04 839169 5.37e− 04
25921 1.59e− 04 96481 3.00e− 05 421057 4.15e− 06 1719361 1.66e− 06
103041 1.97e− 05 258273 2.70e− 06 907425 2.30e− 08 3504033 3.01e− 08

12.7
6561 4.10e− 02 34785 3.92e− 02 190017 3.99e− 02 839169 3.98e− 02
25921 8.77e− 04 96481 7.88e− 04 421057 8.03e− 04 1719361 8.02e− 04
103041 6.36e− 05 258273 8.49e− 06 907425 3.16e− 06 3504033 3.15e− 06

Table 6.4: (Example 6) Exterior accuracies resulting from solving free space scattering problem
(37) and (38) for different wavenumbers. 21×21 tensor product grids of Chebyshev nodes are used
for leaf computations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

1

2

3

4

5

6

ntot

Ti
m

e 
in

 b
ui

ld
 s

ta
ge

 (s
ec

)

 

 

Tbuild

Linear scale

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

0.01

0.02

0.03

0.04

0.05

0.06

N

Ti
m

e 
to

 s
ol

ve
 (s

ec
)

(a) Tbuild (b) Tsolve

Figure 6.20: (Example 6) Computational time Tbuild and solve time Tsolve are plotted against the
total degrees of freedom for refinement levels varying from 0, 2, 4, 6. The domain is of size 3.2× 3.2
wave-lengths and p = 15.



154

tree is built which solves the problem in a single sweep. After all the solution operators are

constructed for every box in the hierarchical tree, solutions can be obtained almost instantaneously

for multiple righthand-sides without recomputing the solution operators.

Numerical experiments indicate the method is able to retain the high-order accuracy. For

Helmholtz problem involving non-smooth Dirichlet boundary data on a domain of size 10 × 10

wavelengths, the method takes 8 to 16 levels of refinements to achieve 9 to 12 digits of accuracy.

For variable coefficient problem where the b(x) exhibits sharp gradient, the scheme only takes 4

levels refinement to get 12 digits of accuracy.

The refinement scheme presented only works for situations when the positions where the

regularity of the solutions changes known in advance. We expect to develop an adaptive refinement

scheme that can be applied to a broader range of problems.



Chapter 7

Spectral method for solving three-dimensional scattering problem

7.1 Introduction

This chapter describe an O(N4/3) algorithm to solve boundary value problem





Au(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

(1)

where Ω = [0, 1]3 is a three-dimensional rectangular domain with boundary Γ, and A is an elliptic

partial differential operator

[Au](x) =− c11(x)[∂2
1 u](x)− c22(x)[∂2

2 u](x)− c33(x)[∂2
3 u](x)− 2c12(x)[∂1∂2 u](x)− 2c13(x)[∂1∂3 u](x)

(2)

− 2c23(x)[∂2∂3 u](x) + c1(x)[∂1 u](x) + c2(x)[∂2 u](x) + c3(x)[∂3 u](x) + c(x)u(x).

Note that to enforce the above equation to be an elliptic equation, we need to guarantee the

coercivity: 


c11 c12 c13

0 c22 c23

0 0 c33



> 0.

The scheme presented in this chapter is an extension of the early work [79, 35]. Similar to

the scheme described in Chapter 6, the method is based on a composite spectral discretization. In

a single sweep, we construct approximations to the solution operators. One of the advantages of



156

the proposed method compared to iterative solvers (e.g. , GMRES or multigrid) is that once all

the solutions operators have been built and stored, solutions can be obtained extremely rapidly,

usually within a few seconds to minutes, for different right-hand sides. Another advantage is that

the proposed method is able to solve problems for which iterative solvers converge slowly or not at

all.

The direct solver is composite of three steps: 1) discretization, 2) build stage and 3) solver

stage. Specifically, the three-dimensional domain Ω is split into small rectangular domains (called

patches). On each patch, the solution u to (1) is approximated via tabulation on a tensor product

grid of Chebyshev points to high-order accuracy. The elliptic operator in (1) is then approximated

via spectral differential matrix defined on each local grid. At build stage, we construct the local

solution operator and Dirichlet-to-Neumann (DtN) operator for each leaf patch. For a parent patch,

the solution operator and DtN operator are constructed by glueing together the DtN operators of

its children. At solve stage, we take a vector of Dirichlet boundary data as input and construct

the tabulated values of u at all internal grid points via local solution operator, moving downwards

through the hierarchical tree.

The complexity of the direct solver stated above is dominated by building DtN operators at

top levels, which is of O(N2) complexity. The novelty of the proposed method is to explore the

internal structures of the dense matrices representing DtN operators at top levels. The acceleration

technique, which is similar to the work [74, 89, 100], improves the complexity to O(N4/3).

Remark 11 Although in this chapter we only apply the method to solving PDEs on simple rect-

angular domains, it can be easily generalized to other domains Ω ⊆ R3, including curved domains.

Details on how to extend the methodology to two-dimensional domains that can be mapped to a

rectangle or a union of rectangles with smooth parameterizations can be found in sections 6.3 and

6.4 of [79].



157

7.1.1 Outline

Section 7.2 describes the Gaussian grid on the surface of the domain which forms the com-

putational grid. Section 7.3 describes how to compute the solution operator and the DtN operator

for a leaf box. Section 7.4 describes how to compute the DtN operator for parent boxes as well as

the full hierarchical algorithm. Sections 7.5 and 7.6 describe how to improve the asymptotic com-

putational complexity at build stage from O(N2) to O(N4/3) by exploring the internal structures

of the DtN operators. In Section 7.7, we illustrate the performance of the algorithm with a set of

numerical examples. Section 7.8 summarizes the key features of the algorithm, as well as limitation

and future work.

7.2 Discretization

We start with partitioning the domain Ω into a collection of three-dimensional rectangular

domains, called leaf boxes. On each face of the leaf box, place q×q tensor product grid of Gaussian

interpolation nodes to interpolate the potential function u as well as its first, second and third

derivatives to high-order of accuracy. Let {z`}N`=1 denote the collection of Gaussian nodes on the

boundaries. Let u be the vector holding approximation to the solution function u tabulated on

{z`}N`=1, in other words,

u` ≈ u(z`).

Furthermore, let v denote a 6q2-length vector holding approximated values of the boundary flux of

u, say

v` ≈





∂1u(z`), when z` lies on the right and left faces,

∂2u(z`), when z` lies on the front and back faces,

∂3u(z`), when z` lies on the bottom and up faces.

7.3 Leaf computation

This section describes a spectral method for computing approximations to Dirichlet-to-

Neumann operators associated with a leaf box Ωτ . In other words, we seek a matrix Tτ such



158

that

v = Tτu(Jτe ), (3)

where Jτe denote the set of Gaussian nodes lying on the boundaries of Ωτ . To this end, we first

discretize the leaf boxes using tensor product grid of Chebyshev nodes. This approximates the

smooth function u and its derivatives to spectral accuracy. Then we construct a solution operator

that maps the potential values tabulated on exterior Chebyshev nodes to values on interior nodes,

from where we construct the DtN operator that maps the potential values to boundary fluxes

on Chebyshev nodes. Applying purpose specified interpolation matrices enable us to re-tabulate

boundary fluxes to the exterior Gaussian nodes.

7.3.1 Spectral discretization.

On each leaf box, we construct approximations to the smooth function u satisfying (1) and its

derivatives using a classic spectral collocation method as described in [94]. Specifically, for a small

number p, we place a p× p× p tensor product grid of Chebyshev nodes denoted by {xk}p
3

k=1. Let

ũ ∈ Rp3 denote a vector holding approximations to u at {xk}p
3

k=1 and let D(1), D(2), D(3) denote the

spectral differentiation matrices corresponding to the partial differential operators ∂/∂x1, ∂/∂x2

and ∂/∂x3. Then the operator in (1) can be approximated via a p3 × p3 matrix

A =− C11(D(1))2 − C22(D(2))2 − C33(D(3))2 − 2C12D
(1)D(2) − 2C13D

(1)D(3) − 2C23D
(2)D(3) (4)

+ C1D
(1) + C2D

(2) + C3D
(3) + C,

where Cij are coefficient matrices with diagonal entries {ci,j(xk)} as well as Ci and C.

Partition the index set of Chebyshev nodes as

{1, 2, . . . , p3} = Ie ∪ Ii

where Ie contains the 6(p−1)2 exterior nodes on the boundaries and Ii contains the (p−2)3 interior

nodes of Ωτ . Then partition the vector ũ according to its value at internal and exterior nodes via

ũi = ũ(Ii) and ũe = ũ(Ie).



159

We also partition the A into four parts via

Ai,i = A(Ii, Ii), Ai,e = A(Ii, Ie), Ae,i = A(Ie, Ii), Ae,e = A(Ie, Ie).

We also introduce notations relating to Gaussian nodes that will be used in next section.

Specifically, on each face of the rectangular box, we place q× q Gaussian nodes denoted by {z`}6q
2

`=1.

Let u ∈ R6q2 denote a vector holding approximations to u at these Gaussian nodes.

7.3.2 Constructing the DtN operator.

On each leaf box, as what we do in Chapter 6, we construct an approximation to the Dirichlet-

to-Neumann operator which maps the Dirichlet boundary data defined on the exterior nodes of Ωτ

to its normal derivatives across the boundary. Specifically the DtN operator T is defined as

T : u|∂Ωτ 7→ un|∂Ωτ .

To this end, we first compute the solution operator. Specifically, in (1) we enforce

Aũ = 0

at all interior nodes of Ωτ . Then the matrix representation of the equation in (1) can be partitioned

as
[
Ai,i Ai,e

]


ũi

ũe


 = 0.

Therefore, the potential values at interior nodes of Ωτ can be constructed from its values at exterior

nodes by applying the solution operator

ũi = S ũe, (5)

where S = −A−1
i,i Ai,e.

Construction of DtN operator consists for three steps:

Step 1 - re-tabulation from Gaussian nodes to Chebyshev nodes: On each surface of Ω, form a

unique polynomial of degree no more than q − 1 that interpolates q potential values at



160

Gaussian nodes. Evaluate the kronecker tensor product of these polynomials at p2 exterior

Cheybshev nodes. Let LG2C denote the matrix that achieves the interpolation.

Step 2 - spectral differentiation on Chebyshev grids: We can determine the gradient on each surface

via spectral differentiation on the entire domain since the potential is known on all Cheby-

shev nodes in Ω. Specifically, let ṽbot denote the boundary flux on the bottom surface, then

the gradient on that surface can be formed via

ṽbot = D
(3)
bot,eũe + D

(3)
bot,iũi = (D

(3)
bot,e + D

(3)
bot,iS) ũe,

where D
(3)
bot,e is a sub-matrix of D(3) with entries corresponding to nodes at bottom face and

all exterior nodes. Boundary fluxes on the other five faces can be computed in the same

way. Denote V the DtN operator that maps boundary potential values to boundary fluxes

at Chebyshev nodes.

Step 3 - re-tabulation from Cheyshev nodes back to Gaussian nodes: Now the boundary fluxes are

known at Chebyshev exterior nodes. Similar to Step 1, we form a unique polynomial of

degree no more than p − 1 that interpolates the potential values at Chebyshev boundary

nodes. Evaluating the kronecker tensor product of the polynomials at q2 Gaussian nodes

at each surface gives the vector v. Denote the corresponding interpolation matrix by LC2G.

Putting everything together, we form the DtN operator T as a product of three matrices

T = LC2G ◦ V ◦ LG2C. (6)

7.4 Direct solver via composite spectral method

In this section, we present how to construct the DtN operator for a rectangular domain Ωτ

which is the union of two smaller domains, i.e.

Ωτ = Ωσ1 ∪ Ωσ2

when the approximations to the DtN operators for Ωσ1 and Ωσ2 are available.



161

7.4.1 Merge two DtN operators.

For a box Ωτ with two children boxes Ωσ1 and Ωσ2 , see Figure 7.1, the DtN operator Tτ can

be formed by “merging” Tσ1 and Tσ2 . We start with partitioning the nodes on ∂Ωσ1 and ∂Ωσ2 into

three sets:

J1 Boundary nodes of Ωσ1 but not boundary nodes of Ωσ2 .
J2 Boundary nodes of Ωσ2 but not boundary nodes of Ωσ1 .
J3 Boundary nodes shared by Ωσ1 and Ωσ2 but are not boundary nodes of Ωτ .

Let u denote the vector holding tabulated solution values and v denotes the vector holding

boundary fluxes values as in Section 7.2. Letting ui and ue denote the solution tabulated on the

interior and exterior nodes of Ωτ , we have

ui = u3, and ue =



u1

u2


 .

By definition of DtN operators, we have



v1

v3


 =



Tσ11,1 Tσ11,3

Tσ13,1 Tσ13,3






u1

u3


 and



v2

v3


 =



Tσ22,2 Tσ22,3

Tσ23,2 Tσ23,3






u2

u3


 . (7)

Noting that u3 and v3 are shared in both of the equations, we have

Tσ13,1u1 + Tσ13,3u3 = Tσ23,2u2 + Tσ23,3u3.

Therefore,

u3 = (Tσ13,3 − Tσ23,3)−1(−Tσ13,1u1 + Tσ23,2u2) = Sτ



u1

u2


 , (8)

where

Sτ = (Tσ13,3 − Tσ23,3)−1[−Tσ13,1 | Tσ23,2]. (9)

Likewise, we construct the DtN operator of Ωτ by solving the equilibrium equation on v3 and

obtain 

v1

v2


 = Tτ



u1

u2


 ,



162

Figure 7.1: The three-dimensional rectangular domain Ωτ = Ωσ1 ∪ Ωσ2 . J1 are denoted by blue
dots while J2 are denoted by black dots. Red nodes present the interior nodes of Ωτ denoted by
J3.



163

where

Tτ =



Tσ11,1 0

0 Tσ22,2


+



Tσ11,3

Tσ22,3


Sτ . (10)

7.4.2 The full hierarchical scheme.

Now we know how to construct the DtN operator for a leaf (Section 7.3), and how to merge

the DtN operators of two neighboring patches to form the DtN operator of their union (Section

7.4.1), we are ready to describe the full hierarchical scheme for solving (1). To start with, partition

the domain Ω into into a hierarchical tree, called leaf boxes. Form a hierarchical binary tree on the

collection of leaf boxes, making sure that the boxes on the same level are roughly of the same size.

Order the boxes in the way that if box τ is a parent of σ then τ < σ. Let L denote the number of

levels, starting from 0 where Ω has index τ = 1. We assume the root of the tree (i.e. the full box

Ω) has index τ = 1. Figure 7.2 shows the boxes on levels 0 to 3.

1 32 7
6

5
4

13

15

12

14

9

11

8

10

` = 0 ` = 1 ` = 2 ` = 3

Figure 7.2: The rectangular domain Ω is split into 2× 2× 2 leaf boxes. These are then organized
into a binary tree of successively larger boxes as described in Section 7.2. Note that if box τ is the
parent of a box σ, we have τ < σ.

The algorithm is composed of three steps:

(1) Discretization: The domain is partitioned into a hierarchical tree where in each leaf box

a p × p × p tensor product grid of Chebyshev nodes are placed to interpolate smooth

potential function u to spectral accuracy. The elliptic operator in (1) is then approximated

via spectral differentiation matrices.

(2) Upwards pass: For each leaf box, a solution operator and DtN operator are constructed as



164

shown in Section 7.3. Then we do a single sweep moving upwards, constructing the DtN

operator of a parent box by “merging” the DtN operators of its two children.

(3) Downwards pass: After collecting all the solution and DtN operators for all boxes on each

level, we take a vector holding the Dirichlet boundary data as input and apply the solution

operator to map the solution values on the exterior nodes to its values on the interior nodes.

Moving downwards along the hierarchical tree, we finally obtain the approximated values

of the solution on the Chebyshev grid points.

7.5 Fast algorithms of compressible matrices

The cost of the algorithm presented in Section 7.4.2 is dominated by constructing DtN opera-

tors at top levels. The matrix operations involve inverting dense matrices of size O(N2/3)×O(N2/3)

where N is total number of discretization nodes, resulting in O(N2) total cost. However there are

internal structures in these dense matrices that can be explored to accelerate the computation.

Specifically, the off-diagonal blocks of these matrices are rank-deficient to high precision and the

diagonal blocks can be represented as Hierarchical Semi-Separable (HSS) matrices. By HSS, we

mean a matrix is amenable to a telescoping block factorization. In this section, we give definitions

to HSS matrices and briefly describe their properties.

7.5.1 Compressible matrices.

We first give definition of block separable matrix. Let A be a matrix of size np × np such

that it is partitioned into p× p blocks, each of size m×m, i.e.

A =




D1 A1,2 . . . A1,p

A2,1 D2 . . . A2,p

...
...

...

Ap,1 Ap,2 . . . Dp




(11)



165

A is called block separable if each off-diagonal block admits the factorization

Aσ,τ
m×m

= Uσ
m×k

Ãσ,τ
k×k

V∗τ
k×m

, σ, τ ∈ {1, 2, . . . , p}, σ 6= τ, (12)

where U and V are m× k matrices. Therefore, the matrix A admits the factorization

A
mp×mp

= U
mp×kp

Ã
kp×kp

V∗
kp×mp

+ D
mp×mp

, (13)

where U = diag(U1,U2, . . . ,Up), V = diag(V1,V2, . . . ,Vp) and D = diag(D1,D2, . . . ,Dp). Moreover,

Ã =




0 Ã1,2 Ã1,3 . . .

Ã2,1 0 Ã2,3 . . .

Ã3,1 Ã3,2 0 . . .

...
...

...




.

Remark 12 In constructing the factorization (12), we use the so-called interpolative decomposition

B = B(:, J)X,

where J is an index vector pointing to k columns of B, and the k×m matrix X is well-conditioned

and has a k×k identity matrix as a submatrix. In this sense, U and V are matrices with k columns

and rows that form column basis and row basis for the range of A, respectively. The factorization

costs O(mk2) asymptotically.

7.5.1.1 Hierarchically semi-separable (HSS) matrices.

To give the definition of HSS matrices, we first define the binary tree structure associated

with the discretization nodes with index I = [1, 2, . . .M ]. Basically, let I denote the root of the

tree and partition the index set into two roughly equi-sized subsets level by level. Specifically, we

call an index set as leaf node if there is no further split. For a non-leaf node τ we call two nodes

σ1 and σ2 as the children of τ if Iτ = Iσ1 ∪ Iσ2 , and call τ the parent node of σ1 and σ2.

By now, we are ready to give definition of hierarchical semi-separable with respect to a given

binary tree associated with index set I. Let ` = 0, 1, . . . , L denote the levels from the coarsest level

to the finest level. A matrix is called a HSS matrix if it satisfies two conditions:



166

(1) For each leaf node pair {τ, τ ′} (τ 6= τ ′) on level L, there exists integer k such that the

off-diagonal blocks Aτ,τ ′ admits factorization

Aτ,τ ′
m×m

= Uτ
m×k

Ãτ,τ ′
k×k

V∗τ
k×m

. (14)

(2) For off-diagonal blocks on level ` = L − 1, L − 2, . . . , 1, the rank-deficiency property at

level ` can be constructed based on the next finer level `+ 1. Specifically, for any distinct

non-leaf nodes τ and τ ′ on level ` with children σ1, σ2 and σ′1 and σ′2, define

Aτ,τ ′ =



Ãσ1,σ′1 Ãσ1,σ′2

Ãσ2,σ′1 Ãσ2,σ′2


 .

There exists factorization

Aτ,τ ′
2k×2k

= Uτ
2k×k

Ãτ,τ ′
k×k

V∗τ
k×2k

. (15)

Define

Dτ = A(Iτ , Iτ )

for each leaf node τ , and define

Bτ =




0 Ãσ1,σ2

Ãσ2,σ1 0




for non-leaf node τ with children σ1 and σ2. An HSS matrix A can then be fully described if

• for every leaf node, we are given the diagonal matrices Dτ , as well as column basis and row

basis Uτ and Vτ ;

• for every non-leaf node, we are given the interaction matrix Bτ between the children of τ ,

as well as column basis and row basis Uτ and Vτ .

In other words, the HSS matrix A admits telescoping factorization given U, V, D and B hierarchi-

cally:

(1) Ã(0) = B(0),



167

(2) Ã(`)

k2`×k2`
= U(`)

k2`×k2`−1
Ã(`−1)

k2`−1×k2`−1
(V(`))∗

k2`−1×k2`
+ B(`)

k2`×k2`
for ` = 1, 2, . . . , L− 1,

(3) A
m2L×n2L

= U(L)

m2L×k2L
Ã(L−1)

k2L×k2L
(V(L))∗

k2L×n2L
+ D(L)

m2L×m2L
.

7.5.2 Fast algorithms on HSS matrices.

Fast algorithms on how to add two HSS matrices, apply HSS matrices to vector and invert

HSS matrices are presented in [37]. Here we briefly summarize the fast matrix-vector multiplication

and inversion algorithms.

7.5.2.1 Fast matrix inversion algorithm

The inverse of a HSS matrix can be rapidly constructed using a variation of the classical

Sherman-Morrison-Woodbury formula by exploring the low-rank deficiency hierarchically. The

total computational cost is reduced by turning the task of inverting matrix of size mp × mp to

inverting matrix of size kp× kp at each level. Firstly, we define several matrices on each node τ

D̂τ = (V∗τ D̃
−1
τ Uτ )−1, (16)

Eτ = D̃−1
τ Uτ D̂τ , (17)

Fτ = (D̂τV
∗
τ D̃
−1
τ )∗, (18)

Gτ = D̃−1
τ − D̃−1

τ Uτ D̂τV
∗
τ D̃
−1
τ . (19)

In above equations, we define

D̃τ = Dτ

if τ is a leaf node and define

D̃τ =




D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2




if τ is a non-leaf node. Note that all the matrices {D̂τ ,Eτ ,Fτ ,Gτ}τ can be computed cheaply level

by level. Using the formula

A−1 = E(Ã + D̂)−1F∗ + G, (20)



168

we can express A−1 hierarchically via

(Ã(`) + D̂(`))−1 = E(`−1)(Ã(`−1) + D̂(`−1))−1(F(`−1))∗ + G(`−1) (21)

for ` = L,L− 1, . . . , 2, and

(Ã(1) + D̂(1))−1 =



D̂2 B2,3

B3,2 D̂3




−1

= G(0) = G1. (22)

Algorithm 3 summarizes inversion procedure of HSS matrices.

7.5.2.2 Fast matrix-vector multiplication algorithm.

In this section, we briefly describe how to compute y = A−1x, for given x, using the compressed

representation of A−1 resulting from the inversion algorithm. Using equations (21) and (22), y can

be computed hierarchically as

y = A−1x = (Ã(L) + D̂(L))−1x

= E(L−1)(Ã(L−1) + D̂(L−1))−1(F(L−1))∗x + G(L−1)x

= E(L−1)E(L−2)(Ã(L−2) + D̂(L−2))−1(F(L−2))∗(F(L−1))∗x + G(L−2)G(L−1)x

= E(L−1)E(L−2) . . .E(1)G1(F(1))∗ . . . (F(L−2))∗(F(L−1))∗x + G(1) . . .G(L−2)G(L−1)x.

Details on fast matrix-vector multiplication algorithm are given in Algorithm 4.

7.6 Accelerating the direct solver

In this section, we describe how to accelerate the direct solver in Section 7.4.2 using the fast

algorithms described in Section 7.5.2 to achieve O(N4/3) complexity. We claim that the O(N2)

computational cost of the direct solver is dominated by executing matrix inversion at top levels

which is

Tτ =



Tσ11,1 0

0 Tσ22,2


+



Tσ11,3

Tσ22,3


 (Tσ13,3 − Tσ23,3)−1[−Tσ13,1 | Tσ23,2],



169

Algorithm 3 (inversion of an HSS matrix)

Given factors {Uτ , Vτ , Dτ , Bτ}τ representing an HBS matrix H, this algorithm constructs factors
{Eτ , Fτ , Gτ}τ representing H−1.

loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all boxes τ on level `,

if τ is a leaf node

D̃τ = Dτ
else

Let σ1 and σ2 denote the children of τ .

D̃τ =

[
D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2

]

end if

D̂τ =
(
V∗τ D̃

−1
τ Uτ

)−1
.

Eτ = D̃−1τ Uτ D̂τ .

F∗τ = D̂τ V
∗
τ D̃
−1
τ .

Gτ = D̃−1τ − D̃−1τ Uτ D̂τ V
∗
τ D̃
−1
τ .

end loop
end loop

G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1
.

Algorithm 4 (application of the inverse of an HSS matrix)

Given x, compute y = H−1 x using the factors {Eτ , Fτ , Gτ}τ resulting from Algorithm 3.

loop over all leaf boxes τ
x̂τ = F∗τ x(Iτ ).

end loop

loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all parent boxes τ on level `,

Let σ1 and σ2 denote the children of τ .

x̂τ = F∗τ

[
x̂σ1

x̂σ2

]
.

end loop
end loop[

ŷ2
ŷ3

]
= G1

[
x̂2
x̂3

]
.

loop over all levels, coarser to finer, ` = 1, 2, . . . , L− 1
loop over all parent boxes τ on level `

Let σ1 and σ2 denote the children of τ .[
ŷσ1

ŷσ2

]
= Eτ x̂τ + Gτ

[
x̂σ1

x̂σ2

]
.

end loop
end loop

loop over all leaf boxes τ
y(Iτ ) = Eτ q̂τ + Gτ x(Iτ ).

end loop



170

where matrices Tσ13,3 and Tσ23,3 are of size O(N2/3)×O(N2/3). Exploring the inner structures of the

DtN operator, we claim that the off-diagonal blocks are low numerical rank and the diagonal blocks

are HSS matrices with low HSS rank.

7.6.1 Memory efficiency.

In cases where memory efficiency is more important than time efficiency, we keep matrices

Tσ11,1, Tσ22,2, Tσ13,3 and Tσ23,3 in dense form and perform low-rank computations on Tσ11,3,T
σ1
3,1,T

σ2
2,3 and

Tσ23,2. The cause of rank deficiency is that for PDEs with non-oscillatory solutions, the corresponding

DtN operators have smooth kernels. Technically, we compute QR factorizations to each blocks of

Tσ11,3,T
σ1
3,1,T

σ2
2,3 and Tσ23,2 corresponding to interactions between different faces. For Laplace’s and

low-frequency Helmholtz problems, storing the QR factors takes much less memory than storing

the whole dense matrices.

7.6.2 Memory and Time efficiency.

In the case for time efficiency, note that Tσ11,1 and Tσ22,2 are stored as HSS matrices as well as

Tσ13,3 and Tσ23,3. Assume the low rank factors associated with Tσ11,3,T
σ1
3,1,T

σ2
2,3 and Tσ23,2 are {Q1,3, R1,3},

{Q3,1, R3,1}, {Q2,3, R2,3} and {Q3,2, R3,2}. We execute the following computations to accelerate the

build stage:

(1) Add two HSS matrices Tσ13,3 and −Tσ23,3 resulting a new HSS matrix Tσ13,3 − Tσ23,3.

(2) Invert the HSS matrix Tσ13,3 − Tσ23,3.

(3) Apply the thin low rank factor



R1,3

R2,3


 to the inverse (in HSS form). The resulting matrix

together with another low rank factor [−Q3,1 | Q3,2] form the low rank approximation to

the solution operator Sτ .

(4) Performing matrix products Tσ11,3 S
τ and Tσ22,3 S

τ are analogous, just exploiting all factors

are low rank.



171

(5) Perform a low-rank update to the block-diagonal matrix



Tσ11,1 0

0 Tσ22,2


 , whose blocks are

provided in HSS-form to construct the new HSS matrix Tτ .

7.6.3 Complexity analysis.

There are two kinds of hierarchical structures involved in this algorithm. One is the hierar-

chical structure of the direct solver, described in Section 7.2. Within this “outer” tree, we store

many matrices associated with large patches in a structured format that has its own hierarchical

tree. This hierarchical structure is involved in the HSS representation of the DtN operators as

described in Section 7.5.1.1.

7.6.3.1 Cost of fast algorithm of HSS matrices.

To investigate the cost of the inversion algorithm described in Section 7.5.2.1, notice that we

need to compute D̂`τ ,E
`
τ ,F

`
τ ,G

`
τ on each level `. The cost is dominated by performing dense matrix

inversion of matrices of size 2k × 2k on each level, where there are 2` nodes totally. Therefore the

total cost is

Tinv =
L∑

`=1

2`(2k)3 ∼ 2L+4k3 ∼Mk2.

Moreover, the total cost of fast matrix-vector multiplication is

Tmulti =

L∑

`=1

2`(2k)2 ∼ 2L+3k2 ∼Mk.

7.6.3.2 Cost of direct solver.

Let N be the total number of degrees of freedom to discretize the three-dimensional rectan-

gular domain Ω and let L be the number of levels in the octree. Therefore there are 8L leaf boxes.

If on each leaf box, p3 Chebyshev discretization nodes are placed to discretize the potential, then

N = 8L p3.

Leaf computation: Since computing the DtN operators for each leaf box involves inverting dense



172

matrices of p3 × p3, the total cost for all the bottom level is

Tleaf =
N

p3
× (p3)3 ∼ Np6.

Merge operation: For each box on level `, the operators T and S are constructed via (9) and (10),

where the computation cost is dominated by inverting matrices of size 4−`N2/3×4−`N2/3.

Note that there are 8` boxes on each level. If the matrices are inverted densely, then the

cost on each level ` of the merge operation is

8` × (4−`N2/3)3 ∼ 2−3`N2.

The total cost for all merge operation has complexity

Tmerge =
L−1∑

`=0

2−3`N2 ∼ N2.

If we store the matrices in HSS form and execute fast inversion algorithms, then the cost

on each level is

8` × (4−`N2/3k2) ∼ 2`N2/3k2,

where k is the numerical rank in HSS compression and

k ∼ 2−`N1/3. (23)

Therefore all the merge procedures cost

Tmerge =

L−1∑

`=0

(2`N2/3)(2−`N1/3)2 ∼ N4/3.

Solve stage: The cost of solve stage is dominated by matrix-vector multiplication of applying

the solution operator to the solution values on the exterior nodes. For each leaf box on the

bottom level, the solution operator is of size (p− 2)3 × 6 p2, while for any non-leaf box on

level `, the solution operator of size approximately 4−`N2/3× 4−`N2/3. Therefore the total

cost of solve stage is

Tsolve =
N

p3
× p3 p2 +

L−1∑

`=0

8`(4−`N2/3)2 ∼ Np2 +

L−1∑

`=0

2−`N4/3 ∼ Np2 +N4/3.



173

Remark 13 Notice that the estimation of the numerical rank in (23) is an upper bound at top

levels. In practice, the performance should be better since at lower levels, the numerical ranks do

not reach this upper bound.

Remark 14 The above derivation of the complexity on merge operator involving HSS structures

is theoretically true when the number of wavelength across the domain is fixed. In practice, this

asymptotic estimate works well for Laplace’s and low-frequency Helmholtz problems. In the case

when the number of wavelength increases along with the total number of discretization points, the

above analysis is not going to hold anymore.

7.7 Numerical experiments

This section presents numerical experiments to explore the performance of the accelerated

direct solver for solving three-dimensional elliptical equations. All the experiments are carried

out on a personal work-station with an Intel Xeon E-1660 3.3GHz 6-core CPU, and 128GB of

RAM. The experiments serves two purposes. The first is to systematically measure the speed and

memory requirements (the amount of RAM used in the build stage in GB) for different problems.

The second is to measure the accuracy of the algorithm. Specifically, we report:

Ntot Total number of Chebyshev discretization nodes

Tbuild Time for building the solution operator

Tsolve Time to solve for solution at interior nodes once solution operator is built

R Amount of memory required at build stage to store the solution operator.

Moreover, for all the experiments in this section, we choose the compression parameter ε =

10−5 which is small enough to obtain at least eight digits of accuracy. Finally, due to the overhead

cost of HSS construction, we only execute HSS compression stated in Section 7.6 at the highest

level.

Example 7.1: Laplace problem with known exact solution



174

We first consider the Laplace problem





−∆u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

(24)

on domain Ω = [0, 1]3. The number of Chebyshev nodes are fixed p = 5 on each panel while the

number of panels on each side is increased. The boundary data is chosen to coincide with the

known solution

uexact(x) =
1

4π|x− x̂|

where x̂ = (−2, −1, 0). To measure the accuracy, we present both the error E∞ in `∞-norm as

well as the relative error Erel given by

E∞ = ||uapprox − uexact||`∞ and Erel =
||uapprox − uexact||`∞

||uexact||`∞
,

where uexact and uapprox denote the vectors holding the exact and the computed solutions evaluated

at all interior Chebyshev nodes. Speed, memory and accuracy results are shown in Table 7.1. With

only 20 seconds of build time and 0.032 second of solve time, we are able to obtain 7 digits of

accuracy. Note that the off-diagonal blocks of DtN operators at top levels are stored in low-

rank form which saves roughly 1.6 times of the memory compared to dense form. If no low-rank

computation is executed, the computation runs out of memory (over 128GB) at degrees of freedom

2 146 689. Figure 7.3 shows the scales of time spent at build stage and solve stage.

Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

4 913 0.04 0.97 0.004 1.20e-06 3.38e-05
35 937 0.52 20.34 0.032 1.45e-08 4.08e-07

274 625 6.33 522.78 0.24 5.48e-08 1.54e-07
2 146 689 76.59 17103.21 1121.0 6.51e-09 1.83e-07

Table 7.1: Results for solving Laplace’s equation (24) in Example 7.1 with known exact solution.

Example 7.2: Helmholtz problems with known exact solution



175

10
3

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
tot

T
im

e
 i
n

 s
e

c
o

n
d

s

T
build

 

 

T
build

O(N
3/2

)

O(N
4/3

)

O(N
2
)

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

N
tot

T
im

e
 i
n
 s

e
c
o
n
d
s

T
solve

 

 

T
solve

O(N)

(a) (b)

Figure 7.3: (Example 7.1)(a) Time at build stage in seconds, (b) time at solve stage.



176

We next consider a Helmholtz problem




−∆u(x)− κ2u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

∂u(x)

∂r
− iκu(x) = O(1/r) r := |x| → ∞,

(25)

on domain Ω = [0, 1]3. In this example and the following examples, we fixed the number of panels

on each side to be eight and change the number Chebyshev nodes on each panel. The boundary

data is chosen to coincide with the known solution

uexact(x) =
eiκ|x−x̂|

4π|x− x̂|

where x̂ = (−2, −1, 0). Accuracy is measured in the same way as Example 7.1. Table 7.7 reports

the results when κ = 62.8 such that there are 10 × 10 × 10 wavelengths across the whole domain.

Table 7.7 reports an analogous experiment, but now for a domain of size 20× 20× 20 wavelengths.

Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

274 625 6.79 850.5 0.2 1.55e-03 4.28e-02
531 441 15.03 2427.2 0.6 6.51e-05 1.80e-03
912 673 29.51 4967.0 1.1 1.83e-06 5.06e-05

1 442 897 52.80 10133.1 2.7 3.57e-08 9.86e-07
2 146 689 89.15 19831.9 558.8 1.14e-08 3.15e-07

Table 7.2: Results for solving Helmholtz equation (25) in Example 7.2 with 10×10×10 wavelength
across the domain.

Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

274 625 8.65 1034.3 0.2 1.34e+00 3.76e+01
531 441 18.40 2910.6 0.5 1.70e-01 4.78e+00
912 673 34.55 7573.7 1.1 7.50e-03 2.11e-01

1 442 897 59.53 14161.1 2.8 9.45e-04 2.65e-02
2 146 689 97.73 25859.3 978.7 5.26e-05 1.48e-03

Table 7.3: Results for solving Helmholtz equation (25) in Example 7.2 with 20×20×20 wavelength
across the domain.

Example 7.3: Laplace’s equation with unknown exact solution

In this example, we solve the Laplace’s equation (24) with Dirichlet boundary data given by

f(x) = cos(8x1)(1− 2x2) ex3 . (26)



177

Since we have no knowledge of an exact solution, we report pointwise convergence. Letting uN1

and uN2 denote the value of u computed using N1 and N2 degrees of freedom where N2 > N1, we

used

E∞ = |uN1(x̂)− uN2(x̂)| and Erel =
|uN1(x̂)− uN2(x̂)|

|uN1(x̂)|

as estimations for the pointwise errors at point x̂ = (0.5, 0.25, 0.75). Results are reported in Table

7.4.

Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

117 649 2.13 84.7 0.06 -0.32055891842 1.10e-06 3.44e-06
274 625 6.09 540.1 0.2 -0.32055781677 9.43e-08 2.94e-07
531 441 14.35 1517.3 0.4 -0.32055772259 2.56e-08 7.98e-08
912 673 29.11 2822.4 0.7 -0.32055769701 1.24e-07 3.87e-07

1 442 897 50.44 9130.9 1.4 -0.32557572862 7.34e-08 2.29e-07
2 146 689 86.12 18076.5 541.5 -0.32055776368

Table 7.4: Results for solving Laplace’s equation (24) with Dirichlet boundary data (26).

Example 7.4: Helmholtz equation with unknown exact solution

In this example, we solve the Helmholtz equation (25) with Dirichlet boundary data given in (26).

The wavenumber is set κ = 62.8 such that there are 10×10×10 wavelength across the domain. Table

7.5 presents the convergence as well as time and memory results. Pointwise errors are computed

the same as Example 7.3.

Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

274 625 6.58 662.9 0.2 1.93279205417 1.87e+00 9.68e-01
531 441 15.13 1382.9 0.3 3.80381724805 9.55e-02 2.51e-02
912 673 30.25 2992.5 0.7 3.70818462313 2.91e-03 7.84e-04

1 442 897 55.23 7895.9 2.3 3.71109259971 6.16e-05 1.66e-05
2 146 689 89.15 21190.2 789.8 3.71103088491

Table 7.5: Results for solving Helmholtz equation (25) with Dirichlet boundary data (26).

Example 7.5: Variable coefficient Helmholtz



178

We solve the variable coefficient problem





−∆u(x)− κ2(1− b(x))u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

(27)

where Ω = [0, 1]3, where Γ = ∂Ω and where

b(x) = (sin(4πx1) sin(4πx2) sin(4πx3))2.

The Helmholtz parameter was chosen as κ = 62.8, corresponding to a domain of size 10× 10× 10

wavelengths. The Dirichlet boundary data was given by in (26). Again we measure the pointwise

errors since we don’t know the exact solution. Results are reported in Table 7.6. We observe that

the accuracy as almost as good as constant coefficient case.

Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

274 625 6.55 639.3 0.2 10.22765480303 6.13e-02 5.99e-03
531 441 15.15 1443.4 0.3 10.16634235402 8.69e-03 8.55e-04
912 673 30.35 3701.0 0.7 10.17503224623 4.56e-04 4.48e-05

1 442 897 55.39 5639.6 1.4 10.17548843592 1.35e-04 1.33e-05
2 146 689 89.27 20854.3 874.7 10.17535090141

Table 7.6: Results for solving variable coefficient problem (27).

Example 7.6: Constant convection diffusion problem

Our last example is to solve a convection diffusion problem





−∆u(x)− 1000 ∂3u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

(28)

on domain Ω = [0, 1]3 with Dirichlet boundary data given in (26).

7.8 Conclusions and Future work

In this chapter, we present a numerical algorithm to solve three-dimensional variable coeffi-

cient elliptic equation on rectangular domains, under the assumption that the solution as well as

its first, second and third derivatives are smooth functions. The scheme is based on a composite



179
Ntot R (GB) Tbuild (sec) Tsolve (sec) uint(x) E∞ Erel

117 649 2.41 136.0 0.08 -0.90989632585 3.33e-02 3.66e-02
274 625 6.65 524.9 0.1 -0.87662189265 2.30e-03 2.62e-02
531 441 15.33 1806.0 0.3 -0.87432365086 4.36e-05 4.99e-05
912 673 30.45 3524.9 0.7 -0.87428002798 1.23e-05 1.41e-05

1 442 897 55.35 6719.9 1.3 -0.87429233218 3.30e-06 3.77e-06
2 146 689 88.03 19313.7 656.2 -0.87429562890

Table 7.7: Results for solving constant convection problem (28).

spectral discretization and is an extension of the work in two dimensional case [79, 35]. To improve

the asymptotic complexity from O(N2) to O(N4/3), we explore HSS and low-rank structures of

matrix representation of the Dirichlet-to-Neumann maps at top levels. Once the solution operator

is built, executing solve stage is extremely fast.

The direct solver requires more storage than classical iterative solvers because of the use of

high-order discretizations. Right now memory is the major limit to the algorithm since we have

to store most of the matrices in dense form in RAM. In Section 7.6.3, we theoretically derive the

computational cost at build stage is O(N4/3). However, in numerical experiments presented in

Section 7.7, due to the limitation of the problems sizes we are not able to achieve this asymptotic

complexity. The build time presented by the numerical experiments scale as O(N1.5). However,

since the computation of the DtN operators are highly localized, the scheme is particularly well

suited for implementations on parallel machines with distributed memory. This is a future direction

to improve the performance of the algorithm.



Chapter 8

Conclusion

A collection of fast and highly accurate direct solvers for elliptic boundary value problems

are presented in this dissertation.

Converting the boundary value problems to boundary integral equations is a widely used

method for solving problems whose fundamental solutions are known. The resulting reduced di-

mensionality and geometric simplicity allow for high-order accurate numerical solutions with much

more efficiency than standard finite-difference or finite element discretizations. Recently, a set of

high-order Nyström discretization schemes have been developed to resolve the difficulties brought by

the logrithmic singularity when utilizing the BIE method to solve elliptic partial differential equa-

tions. Numerical examples in Chapter 2 show that these schemes are highly accurate. For example,

with only 1600 modified Gaussian discretization nodes the BIE associated with the Helmholtz prob-

lem with up to 50 wavelength across the domain can be solved to 11 to 12 digits of accuracy. These

discretization schemes also makes it possible to solve BIEs defined on piecewise smooth contours in

plane where corners are exhibited to high-order accuracy. In the algorithm presented in Chapter

3, we solve such problems via a general direct solver where the panel based quadrature rules are

used to discretize the contour. The degrees of freedom added to refine the corners can be largely

reduced via a local compression scheme. Numerical experiments show that the algorithm can be

executed in time that scales linearly with the number of degrees of freedom added.

In Chapters 4 and 5, a robust and highly accurate numerical method for modeling frequency

domain acoustic scattering on domain external to a single scatter and a group of scatterers in



181

three dimensions is presented where the scatterers are rotational symmetric. The algorithm relies

on a boundary integral equation formulation of the scattering problem, combined with a highly

accurate Nyström discretization technique. A dense linear system is formed by constructing the

scattering matrix for each scatter and is solved via GMRES in which Fast Multiple Method is used

to accelerate all inter-body interactions. The algorithm is highly accurate. For example, the scheme

quickly reaches 9 digits of accuracy for solving Laplace’s equation exterior to a domain having 125

ellipsoids that are lying closely with 10 100 discretization nodes per scatterer, with an overall solve

time of about 40 minutes. We also present an accelerated scheme that enables us to reduce the

problem size greatly for problems where the scatterers are well-separated thus to fit the problem

on a basic personal work station. In one numerical example on solving Helmholtz problem, the

numbers of degrees of freedom to reach seven digits of accuracy was in one example reduced by a

factor of 65; consequently the overall computation time is reduced from 48 hours to 5 hours.

For variable coefficient problems that are defined on rectangular domains, we developed a fast

and accurate scheme combining a spectral multidomain technique with a hierarchical direct solver.

One advantage is that once the solution operator has been built, solves can be executed extremely

rapidly, making the scheme excel when solving a sequence of equations with the same operator but

different boundary data. Each additional solve only takes 1.5 seconds for problems discretized with

over one million degrees of freedom. Based on the direct solver, we also proposed a refinement

scheme that enables us to retain high-order accuracy for problems exhibiting change of regularity

of the solution across the domain. For example, for Helmholtz problem involving non-smooth

Dirichlet boundary data on a domain of size 10× 10 wavelengths, the method takes 8 to 16 levels

of refinements to achieve 9 to 12 digits of accuracy. We also extend the scheme to solving variable

coefficient problems on three-dimensional rectangular domains. Similar to the linear system that

arises from the discretization of many boundary integral equation, the dense matrices representing

DtN maps have internal structure that enables us to improve the computational complexity from

O(N2) to O(N4/3). Numerical examples carried on a personal workstation show that the scheme

is highly accurate to solve Laplace and low-frequency Helmholtz problems. However, memory



182

constraints become far more limiting than for problems in 2D. We expect the algorithm to show

its power on machines with larger memories.



Bibliography

[1] M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, Dover, New York, 1965.

[2] B. K. Alpert, Hybrid gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20 (1999),
pp. 1551–1584.

[3] K. Atkinson, The numerical solution of integral equations of the second kind, Cambridge
University Press, Cambridge, 1997.

[4] K. E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge
University Press, Cambridge, 1997.

[5] A. Bakr, The boundary integral equation method in axisymmetric stress analysis problems,
Springer-Verlag, Berlin, 1985.

[6] J. Barnes and P. Hut, A hierarchical o(n log n) force-calculation algorithm, Nature, 324
(1986).

[7] J. Berrut and L. Trefethen, Barycentric lagrange interpolation, SIAM Review, 46
(2004), pp. 501–517.

[8] G. Beylkin, R. Coifman, and V. Rokhlin, Wavelets in numerical analysis, Wavelets and
their applications, (1992), pp. 181–210.

[9] J. Bremer, A fast direct solver for the integral equations of scattering theory on planar
curves with corners, Journal of Computational Physics, 231 (2012), pp. 1879 – 1899.

[10] J. Bremer, A fast direct solver for the integral equations of scattering theory on planar
curves with corners, Journal of Computational Physics, 231 (2012), pp. 1879–1899.

[11] , A fast direct solver for the integral equations of scattering theory on planar curves with
corners, Journal of Computational Physics, 231 (2012), pp. 1879–1899.

[12] J. Bremer, On the nyström discretization of integral equations on planar curves with corners,
Applied and Computational Harmonic Analysis, 32 (2012), pp. 45–64.

[13] J. Bremer, A. Gillman, and P.-G. Martinsson, A high-order accurate accelerated direct
solver for acoustic scattering from surfaces, arXiv preprint arXiv:1308.6643, (2013).



184

[14] J. Bremer and V. Rokhlin, Efficient discretization of Laplace boundary integral equations
on polygonal domains, J. Comput. Phys., 229 (2010), pp. 2507–2525.

[15] J. Bremer, V. Rokhlin, and I. Sammis, Universal quadratures for boundary integral
equations on two-dimensional domains with corners, Journal of Computational Physics, 229
(2010), pp. 8259 – 8280.

[16] , Universal quadratures for boundary integral equations on two-dimensional domains
with corners, Journal of Computational Physics, 229 (2010), pp. 8259 – 8280.

[17] B. Briggs and V. Henson, The DFT: An Owner’s Manual for the Discrete Fourier
Transform, SIAM, Philadelphia, 1995.

[18] O. Bruno and L. Kunyansky, A fast, high-order algorithm for the solution of surface
scattering problems: basic implementation, test, and applications, J. Comput. Phys., 169
(2001), pp. 80–110.

[19] S. Chandrasekaran, M. Gu, X. Li, and J. Xia, Some fast algorithms for hierarchically
semiseparable matrices, Tech. Rep. 08-24, UCLA/CAM, 2008.

[20] Y. Chen, A fast, direct algorithm for the lippmann-schwinger integral equation in two
dimensions, Adv. Comp. Math., 16 (2002), pp. 175–190.

[21] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge,
J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, A wideband fast multipole method for
the Helmholtz equation in three dimensions, J. Comput. Phys., 216 (2006), pp. 300–325.

[22] H. Cheng, Z. Gimbutas, P. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM Journal of Scientific Computing, 26 (2005), pp. 1389–1404.

[23] , On the compression of low rank matrices, SIAM Journal of Scientific Computing, 26
(2005), pp. 1389–1404.

[24] H. Cheng, V. Rokhlin, and N. Yarvin, Nonlinear optimization, quadrature, and
interpolation, SIAM Journal on Optimization, 9 (1999), pp. 901–923.

[25] H. Cohl and J. Tohline, A compact cylindrical green’s function expansion for the solution
of potential problems, Astrophys. J., 527 (1999), pp. 86–101.

[26] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,
Springer-Verlag, New York, 2nd ed., 1998.

[27] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, vol. 93
of Applied Mathematical Sciences, Springer-Verlag, Berlin, second ed., 1998.

[28] Z.-H. Duan and R. Krasny, An adaptive treecode for computing nonbonded potential
energy in classical molecular systems, Journal of Computational Chemistry, 22 (2001),
pp. 184–195.

[29] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, Oxford, 1989.

[30] J. Fleming, A. Wood, and W. W. Jr., Locally corrected nyström method for em
scattering by bodies of revolution, J. Comput. Phys., 196 (2004), pp. 41–52.



185

[31] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press,
1996.

[32] A. Gil, J. Segura, and N. Temme, Numerical methods for special functions, SIAM,
Philadelphia, 2007.

[33] A. Gillman, A. Barnett, and P.-G. Martinsson, A spectrally accurate direct solution
technique for frequency-domain scattering problems with variable media, BIT Numerical
Mathematics, (2014), pp. 1–30.

[34] A. Gillman, S. Hao, and P. Martinsson, Short note: A simplified technique for the
efficient and highly accurate discretization of boundary integral equations in 2d on domains
with corners, Journal of Computational Physics, 256 (2014), pp. 214–219.

[35] A. Gillman and P. G. Martinsson, A direct solver with $o(n)$ complexity for variable
coefficient elliptic pdes discretized via a high-order composite spectral collocation method,
SIAM Journal on Scientific Computing, 36 (2014), pp. A2023–A2046.

[36] A. Gillman, P. Young, and P.-G. Martinsson, A direct solver o(n) complexity for
integral equations on one-dimensional domains, Frontiers of Mathematics in China, 7 (2012),
pp. 217–247. 10.1007/s11464-012-0188-3.

[37] A. Gillman, P. Young, and P.-G. Martinsson, A direct solver with o(n) complexity for
integral equations on one-dimensional domains, Frontiers of Mathematics in China, 7 (2012),
pp. 217–247.

[38] A. Gillman, P. Young, and P.-G. Martinsson, Numerical homogenization via
approximation of the solution operator, in Numerical Analysis of Multiscale Computations,
B. Engquist, O. Runborg, and Y.-H. R. Tsai, eds., vol. 82 of Lecture Notes in Computational
Science and Engineering, Springer Berlin Heidelberg, 2012, pp. 187–216.

[39] Z. Gimbutas and L. Greengard, FMMLIB3D, fortran libraries for fast multiple method
in three dimensions, 2011. http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html.

[40] Z. Gimbutas and L. Greengard, Fast multi-particle scattering: A hybrid solver for the
maxwell equations in microstructured materials., J. Comput. Physics, 232 (2013), pp. 22–32.

[41] L. Grasedyck, R. Kriemann, and S. Le Borne, Domain decomposition based h -lu
preconditioning, Numerische Mathematik, 112 (2009), pp. 565–600.

[42] L. Greengard, D. Gueyffier, P.-G. Martinsson, and V. Rokhlin, Fast direct
solvers for integral equations in complex three-dimensional domains, Acta Numer., 18 (2009),
pp. 243–275.

[43] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput.
Phys., 73 (1987), pp. 325–348.

[44] R. Guenther and J. Lee, Partial differential equations of mathematical physics and
integral equations, Dover, New York, 1988.

[45] A. Gupta, The boundary integral equation method for potential problems involving
axisymmetric geometry and arbitrary boundary conditions, Master’s thesis, University of
Kentucky, 1979.



186

[46] W. Hackbusch, A sparse matrix arithmetic based on H-matrices; Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108.

[47] W. Hackbusch, B. Khoromskij, and S. Sauter, OnH2-matrices, in Lectures on Applied
Mathematics, Springer Berlin, 2002, pp. 9–29.

[48] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[49] S. Hao, A. Barnett, and P. Martinsson, Nyström quadratures
for BIEs with weakly singular kernels on 1D domains, 2012.
http://amath.colorado.edu/faculty/martinss/Nystrom/.

[50] S. Hao, A. Barnett, P. Martinsson, and P. Young, High-order accurate nystrom
discretization of integral equations with weakly singular kernels on smooth curves in the
plane, 2011. arXiv.org report #1112.6262.

[51] S. Hao, A. Barnett, P. Martinsson, and P. Young, High-order accurate methods
for nyström discretization of integral equations on smooth curves in the plane, Advances in
Computational Mathematics, (2013), pp. 1–28.

[52] J. Helsing, Integral equation methods for elliptic problems with boundary conditions of
mixed type, J. Comput. Phys., 228 (2009), pp. 8892–8907.

[53] J. Helsing, The effective conductivity of arrays of squares: large random unit cells and
extreme contrast ratios, Journal of Computational Physics, 230 (2011), pp. 7533–7547.

[54] J. Helsing, A fast and stable solver for singular integral equations on piecewise smooth
curves, SIAM J. Sci. Comput., 33 (2011), pp. 153–174.

[55] J. Helsing, A fast and stable solver for singular integral equations on piecewise smooth
curves, SIAM Journal on Scientific Computing, 33 (2011), pp. 153–174.

[56] J. Helsing, Solving integral equations on piecewise smooth boundaries using the RCIP
method: a tutorial, 2012. preprint, 34 pages, arXiv:1207.6737v3.

[57] J. Helsing and A. Karlsson, An accurate boundary value problem solver applied to
scattering from cylinders with corners, arXiv preprint arXiv:1211.2467, (2012).

[58] J. Helsing and R. Ojala, Corner singularities for elliptic problems: Integral equations,
graded meshes, quadrature, and compressed inverse preconditioning, J. Comput. Phys., 227
(2008), pp. 8820–8840.

[59] J. Helsing and R. Ojala, Corner singularities for elliptic problems: Integral equations,
graded meshes, quadrature, and compressed inverse preconditioning, Journal of Computa-
tional Physics, 227 (2008), pp. 8820 – 8840.

[60] J. Helsing and R. Ojala, Corner singularities for elliptic problems: Integral equations,
graded meshes, quadrature, and compressed inverse preconditioning, J. Comput. Phys., 227
(2008), pp. 8820–8840.



187

[61] R. Henderson, Adaptive spectral element methods for turbulence and transition, in High-
Order Methods for Computational Physics, T. Barth and H. Deconinck, eds., vol. 9 of Lecture
Notes in Computational Science and Engineering, Springer Berlin Heidelberg, 1999, pp. 225–
324.

[62] K. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM Journal on Scientific Computing, 34 (2012), pp. 2507–2532.

[63] L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM J. on Scientific Computing, 34 (2012), pp. A2507–A2532.

[64] S. Kapur and V. Rokhlin, High-order corrected trapezoidal quadrature rules for singular
functions, SIAM J. Numer. Anal., 34 (1997), pp. 1331–1356.

[65] A. Klöckner, A. H. Barnett, L. Greengard, and M. O’Neil, Quadrature by
expansion: a new method for the evaluation of layer potentials, 2012. submitted.

[66] P. Kolm and V. Rokhlin, Numerical quadratures for singular and hypersingular integrals,
Comput. Math. Appl., 41 (2001), pp. 327–352.

[67] , Numerical quadratures for singular and hypersingular integrals, Comput. Math. Appl.,
41 (2001), pp. 327–352.

[68] R. Kress, On constant-alpha force-free fields in a torus, Journal of Engineering Mathematics,
20 (1986), pp. 323–344.

[69] R. Kress, Boundary integral equations in time-harmonic acoustic scattering, Mathematical
and Computer Modelling, 15 (1991), pp. 229–243.

[70] R. Kress, Boundary integral equations in time-harmonic acoustic scattering, Mathl. Com-
put. Modelling, 15 (1991), pp. 229–243.

[71] R. Kress, Linear Integral Equations, vol. 82 of Applied Mathematical Sciences, Springer,
second ed., 1999.

[72] R. Kress and W. Spassov, On the condition of boundary integral operators for the exterior
dirichlet problem for the Helmholtz equation, Numer. Math., 42 (1983), pp. 77–95.

[73] A. Kuijpers, G. Verbeek, and J. Verheij, An improved acoustic fourier boundary
element method formulation using fast fourier transform integration, J. Acoust. Soc. Am.,
102 (1997), pp. 1394–1401.

[74] S. Le Borne, L. Grasedyck, and R. Kriemann, Domain-decomposition based ?-lu
preconditioners, in Domain decomposition methods in science and engineering XVI, Springer,
2007, pp. 667–674.

[75] E. Martensen, Über eine methode zum räumlichen neumannschen problem mit einer
anwendung für torusartige berandungen, Acta mathematica, 109 (1963), pp. 75–135.

[76] P. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., 205 (2004), pp. 1–23.



188

[77] , A fast direct solver for boundary integral equations in two dimensions, Journal of
Computational Physics, 205 (2005), pp. 1 – 23.

[78] P. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comp. Phys., 205 (2005), pp. 1–23.

[79] P.-G. Martinsson, A direct solver for variable coefficient elliptic pdes discretized via a
composite spectral collocation method, J. Comput. Phys., 242 (2013), pp. 460–479.

[80] E. Michielssen, A. Boag, and W. Chew, Scattering from elongated objects: direct
solution in o(n log2 n) operations, Microwaves, Antennas and Propagation, IEE Proceedings,
143 (1996), pp. 277–283.

[81] J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for
Harmonic Functions, Springer, New York, 2012.

[82] E. Nyström, Über die praktische Auflösung von Integralgleichungen mit Andwendungen
aug Randwertaufgaben, Acta Math., 54 (1930), pp. 185–204.

[83] R. Ojala, Towards an All-Embracing Elliptic Solver in 2D, PhD thesis, Department of
Mathematics, Lund University, Sweden, 2011.

[84] H. P. Pfeiffer, L. E. Kidder, M. A. Scheel, and S. A. Teukolsky, A multidomain
spectral method for solving elliptic equations, Computer Physics Communications, 152
(2003), pp. 253 – 273.

[85] C. Provatidis, A boundary element method for axisymmetric potential problems with
non-axisymmetric boundary conditions using fast fourier transform, Engrg. Comput., 15
(1998), pp. 428–449.

[86] F. Rizzo and D. Shippy, A boundary integral approach to potential and elasticity problems
for axisymmetric bodies with arbitrary boundary conditions, Mech. Res. Commun., 6 (1979),
pp. 99–103.

[87] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied
Mathematics, 2nd ed. ed., 2003.

[88] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on scientific and statistical computing, 7 (1986),
pp. 856–869.

[89] P. G. Schmitz and L. Ying, A fast direct solver for elliptic problems on general meshes in
2d, Journal of Computational Physics, 231 (2012), pp. 1314 – 1338.

[90] A. F. Seybert, B. Soenarko, F. J. Rizzo, and D. J. Shippy, A special integral equation
formulation for acoustic radiation and scattering for axisymmetric bodies and boundary
conditions, The Journal of the Acoustical Society of America, 80 (1986).

[91] D. Shippy, F. Rizzo, and A. Gupta, Boundary-integral solution of potential problems
involving axisymmetric bodies and nonsymmetric boundary conditions, in Developments in
Theoretical and Applied Mechanics, J. Stoneking, ed., 1980, pp. 189–206.



189

[92] B. Soenarko, A boundary element formuluation for radiation of acoustic waves from
axisymmetric bodies with arbitrary boundary conditions, J. Acoust. Soc. Am., 93 (1993),
pp. 631–639.

[93] P. Starr and V. Rokhlin, On the numerical solution of two-point boundary value problems
ii, Communications on Pure and Applied Mathematics, 47 (1994), pp. 1117–1159.

[94] L. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, 2000.

[95] L. N. Trefethen, Spectral methods in MatLab, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 2000.

[96] , Spectral methods in MATLAB, vol. 10 of Software, Environments, and Tools, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[97] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2012.
http://www.maths.ox.ac.uk/chebfun/ATAP.

[98] S. Tsinopoulos, J. Agnantiaris, and D. Polyzos, An advanced boundary element/fast
fourier transform axisymmetric formulation for acoustic radiation and wave scattering
problems, J. Acoust. Soc. Am., 105 (1999), pp. 1517–1526.

[99] W. Wang, N. Atalla, and J. Nicolas, A boundary integral approach for accoustic
radiation of axisymmetric bodies with arbitrary boundary conditions valid for all wave
numbers, J. Acoust. Soc. Am., 101 (1997), pp. 1468–1478.

[100] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically
semiseparable matrices, Numerical Linear Algebra with Applications, 17 (2010), pp. 953–976.

[101] B. Yang and J. Hesthaven, Multidomain pseudospectral computation of maxwell’s
equations in 3-d general curvilinear coordinates, Applied Numerical Mathematics, 33 (2000),
pp. 281 – 289.

[102] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole method
in two and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626.

[103] P. Young, S. Hao, and P. G. Martinsson, A high-order nyström discretization scheme
for boundary integral equations defined on rotationally symmetric surfaces, J. Comput. Phys.,
231 (2012), pp. 4142–4159.

[104] P. M. Young, S. Hao, and P. G. Martinsson, A high-order Nyström discretization
scheme for boundary integral equations defined on rotationally symmetric surfaces, J. Com-
put. Phys., 231 (2012), pp. 4142–4159.



Appendix A

Tables of Kapur–Rokhlin Quadrature weights

2nd-order Kapur–Rokhlin correction weights

integrals of the form
∫ 1

0
f(x) + g(x) log(x) dx

INDEX l WEIGHTS γl + γ−l

1 1.825748064736159e+00

2 -1.325748064736159e+00

6th-order Kapur–Rokhlin correction weights

integrals of the form
∫ 1

0
f(x) + g(x) log(x) dx

INDEX l WEIGHTS γl + γ−l

1 4.967362978287758e+00

2 -1.620501504859126e+01

3 2.585153761832639e+01

4 -2.222599466791883e+01

5 9.930104998037539e+00

6 -1.817995878141594e+00



191

10th-order Kapur–Rokhlin correction weights

integrals of the form
∫ 1

0
f(x) + g(x) log(x) dx

INDEX l WEIGHTS γl + γ−l

1 7.832432020568779e+00

2 -4.565161670374749e+01

3 1.452168846354677e+02

4 -2.901348302886379e+02

5 3.870862162579900e+02

6 -3.523821383570681e+02

7 2.172421547519342e+02

8 -8.707796087382991e+01

9 2.053584266072635e+01

10 -2.166984103403823e+00



Appendix B

Tables of Alpert Quadrature rules

2nd-order Alpert Quadrature Rule for

integrals of the form
∫ 1

0 f(x) + g(x) log(x) dx,

with a = 1

NODES WEIGHTS

1.591549430918953e-01 5.000000000000000e-01

6th-order Alpert Quadrature Rule for

integrals of the form
∫ 1

0 f(x) + g(x) log(x) dx,

with a = 3

NODES WEIGHTS

4.004884194926570e-03 1.671879691147102e-02

7.745655373336686e-02 1.636958371447360e-01

3.972849993523248e-01 4.981856569770637e-01

1.075673352915104e+00 8.372266245578912e+00

2.003796927111872e+00 9.841730844088381e+00



193

10th-order Alpert Quadrature Rule for

integrals of the form
∫ 1

0 f(x) + g(x) log(x) dx,

with a = 6

NODES WEIGHTS

1.175089381227308e-03 4.560746882084207e-03

1.877034129831289e-02 3.810606322384757e-02

9.686468391426860e-02 1.293864997289512e-01

3.004818668002884e-01 2.884360381408835e-01

6.901331557173356e-01 4.958111914344961e-01

1.293695738083659e+00 7.077154600594529e-01

2.090187729798780e+00 8.741924365285083e-01

3.016719313149212e+00 9.661361986515218e-01

4.001369747872486e+00 9.957887866078700e-01

5.000025661793423e+00 9.998665787423845e-01



194

16th-order Alpert Quadrature Rule for

integrals of the form
∫ 1

0 f(x) + g(x) log(x) dx,

with a = 10

NODES WEIGHTS

8.371529832014113e-04 3.190919086626234e-03

1.239382725542637e-02 2.423621380426338e-02

6.009290785739468e-02 7.740135521653088e-02

1.805991249601928e-01 1.704889420286369e-01

4.142832599028031e-01 3.029123478511309e-01

7.964747731112430e-01 4.652220834914617e-01

1.348993882467059e+00 6.401489637096768e-01

2.073471660264359e+00 8.051212946181061e-01

2.947904939031494e+00 9.362411945698647e-01

3.928129252248612e+00 1.014359775369075e+00

4.957203086563112e+00 1.035167721053657e+00

5.986360113977494e+00 1.020308624984610e+00

6.997957704791519e+00 1.004798397441514e+00

7.999888757524622e+00 1.000395017352309e+00

8.999998754306120e+00 1.000007149422537e+00



Appendix C

Tables of Modified Gaussian Quadrature rules

10 Point Gauss-Legendre Rule for

integrals of the form
∫ 1

−1
f(x) dx

NODES WEIGHTS

-9.739065285171716e-01 6.667134430868814e-02

-8.650633666889845e-01 1.494513491505806e-01

-6.794095682990244e-01 2.190863625159820e-01

-4.333953941292472e-01 2.692667193099963e-01

-1.488743389816312e-01 2.955242247147529e-01

1.488743389816312e-01 2.955242247147529e-01

4.333953941292472e-01 2.692667193099963e-01

6.794095682990244e-01 2.190863625159820e-01

8.650633666889845e-01 1.494513491505806e-01

9.739065285171716e-01 6.667134430868814e-02

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x1 − x| dx,

where x1 is a Gauss-Legendre node

NODES WEIGHTS

-9.981629455677877e-01 4.550772157144354e-03

-9.915520723139890e-01 8.062764683328619e-03

-9.832812993252168e-01 7.845621096866406e-03

-9.767801773920733e-01 4.375212351185101e-03

-9.717169387169078e-01 1.021414662954223e-02

-9.510630103726074e-01 3.157199356768625e-02

-9.075765988474132e-01 5.592493151946541e-02

-8.382582352569804e-01 8.310260847601852e-02

-7.408522006801963e-01 1.118164522164500e-01

-6.147619568252419e-01 1.401105427713687e-01

-4.615244999958006e-01 1.657233639623953e-01

-2.849772954295424e-01 1.863566566231937e-01

-9.117593460489747e-02 1.999093145144455e-01

1.119089520342051e-01 2.046841584582030e-01

3.148842536644393e-01 1.995580161940930e-01

5.075733846631832e-01 1.841025430283230e-01

6.797470718157004e-01 1.586456191174843e-01

8.218833662202629e-01 1.242680229936124e-01

9.258924858821892e-01 8.273794370795576e-02

9.857595961761246e-01 3.643931593123844e-02



196

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x2 − x| dx,

where x2 is a Gauss-Legendre node

NODES WEIGHTS

-9.954896691005256e-01 1.141744473788874e-02

-9.775532683688947e-01 2.368593568061651e-02

-9.500346715183706e-01 3.027205199814611e-02

-9.192373372373420e-01 3.021809354380292e-02

-8.916563772395616e-01 2.397183723558556e-02

-8.727728136507039e-01 1.253574079839078e-02

-8.607963163061316e-01 2.070840476545303e-02

-8.201318720954396e-01 6.080709508468810e-02

-7.394732321355052e-01 1.002402801599464e-01

-6.204853512352519e-01 1.371499151597280e-01

-4.667290485167077e-01 1.693838059093582e-01

-2.840823320902124e-01 1.945292086962893e-01

-8.079364608026202e-02 2.103223087093422e-01

1.328455136645940e-01 2.149900928447852e-01

3.451233500669768e-01 2.074984762344433e-01

5.437321547508867e-01 1.877085225595498e-01

7.167077216635750e-01 1.564543949958065e-01

8.534299232009863e-01 1.156104890379952e-01

9.458275339169444e-01 6.859369195724087e-02

9.912353127269481e-01 2.390220989094312e-02

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x3 − x| dx,

where x3 is a Gauss-Legendre node

NODES WEIGHTS

-9.930122613589740e-01 1.779185041193254e-02

-9.643941806993207e-01 3.870503119897836e-02

-9.175869559770760e-01 5.371120494602663e-02

-8.596474181980754e-01 6.073467932536858e-02

-7.990442708271941e-01 5.901993373645797e-02

-7.443700671611690e-01 4.905519963921684e-02

-7.031684479828371e-01 3.249237036645046e-02

-6.811221147275545e-01 1.335394660596527e-02

-6.579449960254029e-01 4.151626407911676e-02

-5.949471688137100e-01 8.451456165895121e-02

-4.893032793226841e-01 1.262522607368499e-01

-3.441659232382107e-01 1.628408264966550e-01

-1.665388322404095e-01 1.907085686614375e-01

3.344207582228461e-02 2.071802230953481e-01

2.434356263087524e-01 2.105274833603497e-01

4.498696863725133e-01 2.000282912446872e-01

6.389777518528792e-01 1.760212445284564e-01

7.978632877793501e-01 1.399000904426490e-01

9.155180703268415e-01 9.402669072995991e-02

9.837258757826489e-01 4.161927873514264e-02



197

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x4 − x| dx,

where x4 is a Gauss-Legendre node

NODES WEIGHTS

-9.903478871133073e-01 2.462513260640712e-02

-9.504025146897784e-01 5.449201732062665e-02

-8.834986023815121e-01 7.799498604905293e-02

-7.974523551287549e-01 9.241688894090601e-02

-7.022255002503461e-01 9.619882322938848e-02

-6.087194789244920e-01 8.902783806614303e-02

-5.275278952351541e-01 7.181973054766198e-02

-4.677586540799037e-01 4.663017060126023e-02

-4.360689210457623e-01 1.794303974050253e-02

-4.121945474875853e-01 4.061799823415495e-02

-3.494226766911471e-01 8.507517518447759e-02

-2.425993523586304e-01 1.277525783357134e-01

-9.646839923908594e-02 1.628510773009247e-01

7.921243716767302e-02 1.863323765408308e-01

2.715178194484646e-01 1.958227701927855e-01

4.658440358656903e-01 1.903138548150517e-01

6.472213975763533e-01 1.700731513381802e-01

8.015601619414859e-01 1.365784674773513e-01

9.168056007307982e-01 9.239595239693155e-02

9.839468743284722e-01 4.103797108164931e-02

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x5 − x| dx,

where x5 is a Gauss-Legendre node

NODES WEIGHTS

-9.883561797860961e-01 2.974603958509255e-02

-9.398305159297058e-01 6.657945456889164e-02

-8.572399919019390e-01 9.731775484182564e-02

-7.482086250804679e-01 1.190433988432928e-01

-6.228514167093102e-01 1.297088242013777e-01

-4.928317114329241e-01 1.282900896966494e-01

-3.702771193724617e-01 1.148917968875341e-01

-2.666412108172461e-01 9.074932908233864e-02

-1.916083010783277e-01 5.818196361216740e-02

-1.521937160593461e-01 2.224697059733435e-02

-1.233125650067164e-01 4.788826761346366e-02

-5.257959675044444e-02 9.237500180593534e-02

5.877314311857769e-02 1.287410543031414e-01

2.012559739993003e-01 1.541960911507042e-01

3.627988191760868e-01 1.665885274544506e-01

5.297121321076323e-01 1.648585116745725e-01

6.878399330187783e-01 1.491408089644010e-01

8.237603202215137e-01 1.207592726093190e-01

9.259297297557394e-01 8.212177982524418e-02

9.856881498392895e-01 3.657506268226379e-02



198

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x6 − x| dx,

where x6 is a Gauss-Legendre node

NODES WEIGHTS

-9.856881498392895e-01 3.657506268226379e-02

-9.259297297557394e-01 8.212177982524418e-02

-8.237603202215137e-01 1.207592726093190e-01

-6.878399330187783e-01 1.491408089644010e-01

-5.297121321076323e-01 1.648585116745725e-01

-3.627988191760868e-01 1.665885274544506e-01

-2.012559739993003e-01 1.541960911507042e-01

-5.877314311857769e-02 1.287410543031414e-01

5.257959675044444e-02 9.237500180593534e-02

1.233125650067164e-01 4.788826761346366e-02

1.521937160593461e-01 2.224697059733435e-02

1.916083010783277e-01 5.818196361216740e-02

2.666412108172461e-01 9.074932908233864e-02

3.702771193724617e-01 1.148917968875341e-01

4.928317114329241e-01 1.282900896966494e-01

6.228514167093102e-01 1.297088242013777e-01

7.482086250804679e-01 1.190433988432928e-01

8.572399919019390e-01 9.731775484182564e-02

9.398305159297058e-01 6.657945456889164e-02

9.883561797860961e-01 2.974603958509255e-02

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x7 − x| dx,

where x7 is a Gauss-Legendre node

NODES WEIGHTS

-9.839468743284722e-01 4.103797108164931e-02

-9.168056007307982e-01 9.239595239693155e-02

-8.015601619414859e-01 1.365784674773513e-01

-6.472213975763533e-01 1.700731513381802e-01

-4.658440358656903e-01 1.903138548150517e-01

-2.715178194484646e-01 1.958227701927855e-01

-7.921243716767302e-02 1.863323765408308e-01

9.646839923908594e-02 1.628510773009247e-01

2.425993523586304e-01 1.277525783357134e-01

3.494226766911471e-01 8.507517518447759e-02

4.121945474875853e-01 4.061799823415495e-02

4.360689210457623e-01 1.794303974050253e-02

4.677586540799037e-01 4.663017060126023e-02

5.275278952351541e-01 7.181973054766198e-02

6.087194789244920e-01 8.902783806614303e-02

7.022255002503461e-01 9.619882322938848e-02

7.974523551287549e-01 9.241688894090601e-02

8.834986023815121e-01 7.799498604905293e-02

9.504025146897784e-01 5.449201732062665e-02

9.903478871133073e-01 2.462513260640712e-02



199

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x8 − x| dx,

where x8 is a Gauss-Legendre node

NODES WEIGHTS

-9.837258757826489e-01 4.161927873514264e-02

-9.155180703268415e-01 9.402669072995991e-02

-7.978632877793501e-01 1.399000904426490e-01

-6.389777518528792e-01 1.760212445284564e-01

-4.498696863725133e-01 2.000282912446872e-01

-2.434356263087524e-01 2.105274833603497e-01

-3.344207582228461e-02 2.071802230953481e-01

1.665388322404095e-01 1.907085686614375e-01

3.441659232382107e-01 1.628408264966550e-01

4.893032793226841e-01 1.262522607368499e-01

5.949471688137100e-01 8.451456165895121e-02

6.579449960254029e-01 4.151626407911676e-02

6.811221147275545e-01 1.335394660596527e-02

7.031684479828371e-01 3.249237036645046e-02

7.443700671611690e-01 4.905519963921684e-02

7.990442708271941e-01 5.901993373645797e-02

8.596474181980754e-01 6.073467932536858e-02

9.175869559770760e-01 5.371120494602663e-02

9.643941806993207e-01 3.870503119897836e-02

9.930122613589740e-01 1.779185041193254e-02

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x9 − x| dx,

where x9 is a Gauss-Legendre node

NODES WEIGHTS

-9.912353127269481e-01 2.390220989094312e-02

-9.458275339169444e-01 6.859369195724087e-02

-8.534299232009863e-01 1.156104890379952e-01

-7.167077216635750e-01 1.564543949958065e-01

-5.437321547508867e-01 1.877085225595498e-01

-3.451233500669768e-01 2.074984762344433e-01

-1.328455136645940e-01 2.149900928447852e-01

8.079364608026202e-02 2.103223087093422e-01

2.840823320902124e-01 1.945292086962893e-01

4.667290485167077e-01 1.693838059093582e-01

6.204853512352519e-01 1.371499151597280e-01

7.394732321355052e-01 1.002402801599464e-01

8.201318720954396e-01 6.080709508468810e-02

8.607963163061316e-01 2.070840476545303e-02

8.727728136507039e-01 1.253574079839078e-02

8.916563772395616e-01 2.397183723558556e-02

9.192373372373420e-01 3.021809354380292e-02

9.500346715183706e-01 3.027205199814611e-02

9.775532683688947e-01 2.368593568061651e-02

9.954896691005256e-01 1.141744473788874e-02



200

20 point quadrature rule for integrals

of the form
∫ 1

−1
f(x) + g(x) log |x10 − x| dx,

where x10 is a Gauss-Legendre node

NODES WEIGHTS

-9.857595961761246e-01 3.643931593123844e-02

-9.258924858821892e-01 8.273794370795576e-02

-8.218833662202629e-01 1.242680229936124e-01

-6.797470718157004e-01 1.586456191174843e-01

-5.075733846631832e-01 1.841025430283230e-01

-3.148842536644393e-01 1.995580161940930e-01

-1.119089520342051e-01 2.046841584582030e-01

9.117593460489747e-02 1.999093145144455e-01

2.849772954295424e-01 1.863566566231937e-01

4.615244999958006e-01 1.657233639623953e-01

6.147619568252419e-01 1.401105427713687e-01

7.408522006801963e-01 1.118164522164500e-01

8.382582352569804e-01 8.310260847601852e-02

9.075765988474132e-01 5.592493151946541e-02

9.510630103726074e-01 3.157199356768625e-02

9.717169387169078e-01 1.021414662954223e-02

9.767801773920733e-01 4.375212351185101e-03

9.832812993252168e-01 7.845621096866406e-03

9.915520723139890e-01 8.062764683328619e-03

9.981629455677877e-01 4.550772157144354e-03

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where x̄ ≥ 10−1

NODES WEIGHTS

3.916216329415252e-02 4.880755296918116e-02

8.135233983530081e-02 3.196002785163611e-02

1.123448211344994e-01 3.883416642507362e-02

1.595931983965030e-01 5.148898992140820e-02

2.085759027831349e-01 4.219328148763533e-02

2.426241962027560e-01 3.420686213633789e-02

2.886190312538522e-01 5.512488680719239e-02

3.469021762354675e-01 6.007112809843418e-02

4.072910101569611e-01 6.022350479415180e-02

4.664019722595442e-01 5.735022004401478e-02

5.182120817844112e-01 4.167923417118068e-02

5.501308436771654e-01 3.346089628879600e-02

5.970302980854608e-01 5.574716218423796e-02

6.548457960388209e-01 5.847838243344473e-02

7.119542126106005e-01 5.464156990092474e-02

7.607920420946340e-01 4.092186343704961e-02

7.953017051155684e-01 3.283728166050225e-02

8.303900341517088e-01 3.438233273473095e-02

8.612724919009394e-01 3.022585192226418e-02

8.954049128027080e-01 3.700769701277380e-02

9.315909369155358e-01 3.410213679365162e-02

9.621742249068356e-01 2.665791885274193e-02

9.843663446380599e-01 1.754420526360429e-02

9.970087425823398e-01 7.662283104388867e-03



201

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−2 ≤ x̄ ≤ 10−1

NODES WEIGHTS

1.940564616937581e-02 2.514022176052795e-02

4.545433992382339e-02 2.703526530535647e-02

7.378866604396420e-02 2.980872487617485e-02

1.054147718077606e-01 3.360626237885489e-02

1.412997888401000e-01 3.829678083416609e-02

1.822325567811081e-01 4.365651045780837e-02

2.287282121202408e-01 4.935846322319046e-02

2.809170925514041e-01 5.495967924055210e-02

3.384320962237970e-01 5.991162198705084e-02

4.003108031244078e-01 6.356960862248889e-02

4.648605571606025e-01 6.506868552467118e-02

5.290714994276687e-01 6.219588235225894e-02

5.829663557386375e-01 3.889986041695310e-02

6.128301889979477e-01 3.573431931940621e-02

6.606072156240962e-01 5.296315368353523e-02

7.139495966128518e-01 5.369033999927759e-02

7.677830914961244e-01 5.340793573367282e-02

8.187382423336450e-01 4.704756013998560e-02

8.587068551739496e-01 3.276576301747068e-02

8.906873285570645e-01 3.449175311880027e-02

9.267772492129903e-01 3.560168848238671e-02

9.592137652582382e-01 2.857367151127661e-02

9.830962712794008e-01 1.894042942442201e-02

9.967621546194148e-01 8.291994770212826e-03

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−3 ≤ x̄ ≤ 10−2

NODES WEIGHTS

7.571097817272427e-03 9.878088201321919e-03

1.800655325976786e-02 1.109316819462674e-02

3.003901004577040e-02 1.313311581321880e-02

4.462882147989575e-02 1.624262442061470e-02

6.295732618092606e-02 2.065168462990214e-02

8.644035241970913e-02 2.657795406825320e-02

1.166164809306920e-01 3.399052299072427e-02

1.546690628394902e-01 4.208214612865170e-02

1.999554346680615e-01 4.732516974042797e-02

2.434683359132119e-01 3.618419415803922e-02

2.800846274146029e-01 4.547346840583578e-02

3.368595257878888e-01 6.463153575242817e-02

4.044418359833648e-01 6.859104457897808e-02

4.685002493634456e-01 5.589917935916451e-02

5.185062817085154e-01 5.199232318335285e-02

5.811314144990846e-01 7.089840644422261e-02

6.545700991450585e-01 7.427400331494240e-02

7.276588861478224e-01 7.125308736931726e-02

7.960626077582168e-01 6.513697474660338e-02

8.572037183403355e-01 5.682298546820264e-02

9.091330485015775e-01 4.678000924507099e-02

9.503131649503738e-01 3.538488886617123e-02

9.795718963793163e-01 2.299723483013955e-02

9.961006479199827e-01 9.993597414733579e-03



202

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−4 ≤ x̄ ≤ 10−3

NODES WEIGHTS

2.625961371586153e-03 3.441901737135120e-03

6.309383772392260e-03 3.978799794732070e-03

1.073246133489697e-02 4.958449505644980e-03

1.645170499644402e-02 6.620822501994994e-03

2.433800511777796e-02 9.385496468197222e-03

3.582530925992294e-02 1.396512052439178e-02

5.315827372101662e-02 2.119383832447796e-02

7.917327903614484e-02 3.124989308824302e-02

1.162053707416708e-01 4.291481168916344e-02

1.648139164451449e-01 5.400832278279924e-02

2.231934088488800e-01 6.197424674301215e-02

2.864519293820641e-01 6.297221626131570e-02

3.466729491189400e-01 5.794981636764223e-02

4.076175535528108e-01 6.650501614478806e-02

4.800964107543535e-01 7.716379373230733e-02

5.594105009204460e-01 8.047814122759604e-02

6.395390292352857e-01 7.917822434973971e-02

7.167410782176877e-01 7.477646096014055e-02

7.882807127957939e-01 6.793424765652059e-02

8.519356675821297e-01 5.906852968947303e-02

9.058606177202579e-01 4.853108558910315e-02

9.485539755760567e-01 3.666228059710319e-02

9.788566874094059e-01 2.380850649522536e-02

9.959649506960162e-01 1.034186239262945e-02

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−5 ≤ x̄ ≤ 10−4

NODES WEIGHTS

7.759451679242260e-04 1.049591733965263e-03

1.952854410117286e-03 1.314968855711329e-03

3.429053832116395e-03 1.651475072547296e-03

5.301128540262913e-03 2.135645684467029e-03

7.878118775220067e-03 3.165043382856636e-03

1.205537050949829e-02 5.479528688655274e-03

1.965871512055557e-02 1.028817002915096e-02

3.403328641997047e-02 1.923291785614007e-02

5.947430305925957e-02 3.212643438782854e-02

9.873500543531440e-02 4.638626850049229e-02

1.518862681939413e-01 5.960676923068444e-02

2.171724325134259e-01 7.052360405410943e-02

2.919941878735093e-01 7.863451090237836e-02

3.734637353255530e-01 8.381771698595157e-02

4.586710018443288e-01 8.612755554083525e-02

5.448057416999684e-01 8.569938467103264e-02

6.292158981939618e-01 8.271051499695768e-02

7.094415843889587e-01 7.736692567834522e-02

7.832417328632321e-01 6.990012937760461e-02

8.486194141302759e-01 6.056687669667680e-02

9.038469149367938e-01 4.964868706783169e-02

9.474898150194623e-01 3.745026957972177e-02

9.784290662963747e-01 2.429741981889855e-02

9.958843370550371e-01 1.054906616108520e-02



203

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−6 ≤ x̄ ≤ 10−5

NODES WEIGHTS

3.126377187332637e-04 4.136479682893960e-04

7.671264269072188e-04 5.068714387414649e-04

1.359575160544077e-03 7.008932527842778e-04

2.238313285727558e-03 1.110264922990352e-03

3.770276623583326e-03 2.120108385941761e-03

7.146583956092048e-03 5.249076343206215e-03

1.635515250548719e-02 1.450809938905405e-02

3.828062855101241e-02 2.987724029376343e-02

7.628984500206759e-02 4.593298717863718e-02

1.294255336121595e-01 5.987634475538021e-02

1.949876755761554e-01 7.065953519392547e-02

2.693852297828856e-01 7.729918562776261e-02

3.469762441631538e-01 7.556635340171830e-02

4.122748928895491e-01 5.234123638339037e-02

4.662499202239145e-01 6.532130125393047e-02

5.421402737123784e-01 8.188272080198840e-02

6.248832413655412e-01 8.237354882288161e-02

7.053258496784840e-01 7.795795664563893e-02

7.798841313231049e-01 7.076514272025076e-02

8.461534275163378e-01 6.145788741452406e-02

9.022312524979976e-01 5.044339641339403e-02

9.465899812310277e-01 3.807817118430632e-02

9.780549563823810e-01 2.471549011101626e-02

9.958125149101927e-01 1.073289672726758e-02

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−7 ≤ x̄ ≤ 10−6

NODES WEIGHTS

1.019234906342863e-04 1.349775051746596e-04

2.506087227631447e-04 1.663411550150506e-04

4.461429005344285e-04 2.328782111562424e-04

7.422845421202523e-04 3.804721779784063e-04

1.289196091156456e-03 7.930350452911450e-04

2.739287668024851e-03 2.600694722423854e-03

9.075168969969708e-03 1.212249113599252e-02

2.968005234555358e-02 2.946708975720586e-02

6.781742979962609e-02 4.647771960691390e-02

1.217792474402805e-01 6.095376889009233e-02

1.886625378438471e-01 7.224844725827559e-02

2.650602155844836e-01 7.986429603884565e-02

3.465113608339080e-01 8.143206462900546e-02

4.178374197420536e-01 5.040529357007135e-02

4.597624982511183e-01 5.592137651001418e-02

5.348065111487157e-01 8.398073572656715e-02

6.194640153146728e-01 8.402586870225486e-02

7.013481004172354e-01 7.922223490159952e-02

7.770386175609082e-01 7.177919251691964e-02

8.442211768916794e-01 6.227551999401272e-02

9.010272836291835e-01 5.108407212719758e-02

9.459409782755001e-01 3.854783279333592e-02

9.777905486554876e-01 2.501496650831813e-02

9.957622871041650e-01 1.086176801402067e-02



204

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−8 ≤ x̄ ≤ 10−7

NODES WEIGHTS

3.421721832247593e-05 4.559730842497453e-05

8.533906255442380e-05 5.840391255974745e-05

1.563524616155011e-04 8.761580900682040e-05

2.746612401575526e-04 1.617264666294872e-04

5.408643931265062e-04 4.433543035169213e-04

1.782382096488333e-03 3.116175111368442e-03

1.101243912052365e-02 1.655494413772595e-02

3.553172024884285e-02 3.242539256461602e-02

7.554170435463801e-02 4.734426463929677e-02

1.295711894941649e-01 6.032614603579952e-02

1.953213037793089e-01 7.069975187373848e-02

2.699680545714222e-01 7.806973621204365e-02

3.503697281371090e-01 8.216350598137868e-02

4.330838596494367e-01 8.261286657092808e-02

5.141801680435878e-01 7.883476216668445e-02

5.895097016206093e-01 7.157205125318401e-02

6.582708672338614e-01 6.703064468754417e-02

7.252543617887320e-01 6.706137273719630e-02

7.914154485613720e-01 6.449984116349734e-02

8.528383935857844e-01 5.775434959088197e-02

9.059696536862878e-01 4.812600239023880e-02

9.484664124578303e-01 3.661415869304224e-02

9.787863313133854e-01 2.386304203446463e-02

9.959482975155097e-01 1.038268695581411e-02

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−9 ≤ x̄ ≤ 10−8

NODES WEIGHTS

6.538987938840374e-06 1.500332421093607e-05

2.613485075847413e-05 2.367234654253158e-05

5.664183720634991e-05 4.007286246706405e-05

1.179374114362569e-04 9.497743501485505e-05

3.299119431334128e-04 4.619067037944727e-04

3.626828607577001e-03 9.985382463808036e-03

2.265102906572155e-02 2.805741744607257e-02

5.896796231680340e-02 4.404106103008398e-02

1.092496277855923e-01 5.548413172821072e-02

1.666701689499393e-01 5.693235996372726e-02

2.196889385898800e-01 5.087307376046002e-02

2.770352260035617e-01 6.593729718379782e-02

3.483163928268329e-01 7.335680008972614e-02

4.153287664837260e-01 5.675029500743735e-02

4.695624219668608e-01 6.117926027541254e-02

5.421129318998841e-01 8.004805067067550e-02

6.238832212055707e-01 8.196991767042605e-02

7.041842972237081e-01 7.800219127200407e-02

7.788817007552110e-01 7.097175077519494e-02

8.453877637047045e-01 6.171193295041172e-02

9.017178251963006e-01 5.068671319716005e-02

9.462999385952402e-01 3.827738423897266e-02

9.779333485180249e-01 2.485063762733620e-02

9.957890687155009e-01 1.079284973329516e-02



205

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−10 ≤ x̄ ≤ 10−9

NODES WEIGHTS

6.725520559705825e-06 8.128391913974039e-05

6.986424152770461e-06 -7.773900735768282e-05

1.217363416714366e-05 1.287386499666193e-05

2.677746219601529e-05 1.895577251914526e-05

5.597036348896741e-05 4.732580352158076e-05

2.729343280943077e-04 9.857909615386162e-04

9.445526806263141e-03 1.756872897270054e-02

3.556725025161542e-02 3.439422017906772e-02

7.765556668177810e-02 4.944188361792970e-02

1.336848150648662e-01 6.219733934997792e-02

2.011576917683550e-01 7.228007436918939e-02

2.772736854314979e-01 7.944986391225688e-02

3.590124362607926e-01 8.347646288178011e-02

4.430074035214462e-01 8.380433020121207e-02

5.247388219574510e-01 7.832768209682506e-02

5.961053238782420e-01 6.300796225242940e-02

6.547331131213409e-01 5.923406014585053e-02

7.192258519628951e-01 6.834293563803810e-02

7.874251789073102e-01 6.660337204499726e-02

8.505852012775045e-01 5.911988751082552e-02

9.047824617894323e-01 4.893575310568894e-02

9.479045131744448e-01 3.708256438629509e-02

9.785770588866582e-01 2.411463784693618e-02

9.959104692340199e-01 1.048087156697020e-02

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−11 ≤ x̄ ≤ 10−10

NODES WEIGHTS

2.828736694877886e-08 1.665602686704325e-05

2.302233157554212e-06 2.577419924039251e-06

5.853587143444178e-06 4.957941112780975e-06

1.451588770083244e-05 1.537074702915107e-05

9.711965099273031e-05 4.640075239797995e-04

9.004761967373848e-03 1.705687938176189e-02

3.442077924035546e-02 3.349724914160473e-02

7.543926781582543e-02 4.820210872119093e-02

1.300373356318913e-01 6.054547286337976e-02

1.955182772803384e-01 6.984354388121057e-02

2.683608546664295e-01 7.498721497014774e-02

3.430029178740901e-01 7.240620145057083e-02

4.085056107803621e-01 5.774925310174693e-02

4.660198270439085e-01 6.238505554837956e-02

5.336124745634699e-01 6.940394677081842e-02

5.985245800106473e-01 5.910843483407385e-02

6.564089719608276e-01 6.059752321454190e-02

7.216666024232565e-01 6.823362237770209e-02

7.893712241343741e-01 6.593839664071163e-02

8.518883782001418e-01 5.853014420243146e-02

9.055688088881344e-01 4.849217100974983e-02

9.483163097840529e-01 3.677417821170115e-02

9.787413692715607e-01 2.392585642844202e-02

9.959413203611228e-01 1.040149939671874e-02



206

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−12 ≤ x̄ ≤ 10−11

NODES WEIGHTS

6.147063879573664e-07 8.763741095000331e-07

2.102921984985835e-06 1.784696796288373e-05

2.188366117432289e-06 -1.795398395983826e-05

3.482602942694880e-06 5.117514567175025e-06

2.768001888608636e-05 1.698863549284390e-04

8.942779215792784e-03 1.701975216672032e-02

3.432218364237253e-02 3.346025972593909e-02

7.530931328026620e-02 4.817949622196712e-02

1.298983048592572e-01 6.055152664710045e-02

1.954020797117703e-01 6.988313730886592e-02

2.682970870436427e-01 7.504602275463067e-02

3.429540704041702e-01 7.230942674874111e-02

4.080399755202422e-01 5.705952259766429e-02

4.652562798154792e-01 6.265021180818162e-02

5.333220999210325e-01 6.993669694523695e-02

5.986982369433125e-01 5.937130986945129e-02

6.564773600603511e-01 6.026572020863567e-02

7.215159032030418e-01 6.815292696374753e-02

7.892098210760941e-01 6.596804590657802e-02

8.517672777806986e-01 5.857483758149194e-02

9.054906995605498e-01 4.853209199396977e-02

9.482736017320823e-01 3.680469214176019e-02

9.787238593479314e-01 2.394561701705853e-02

9.959379852805677e-01 1.041005152890511e-02

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−13 ≤ x̄ ≤ 10−12

NODES WEIGHTS

4.523740015216508e-08 4.418138082366788e-07

4.281855233588279e-07 4.389108058643120e-07

1.036900153156159e-06 9.539585150737866e-07

7.825849325746907e-06 5.823980947200484e-05

8.617419723953112e-03 1.634464263521301e-02

3.268881163637599e-02 3.129682188728318e-02

6.988441391437043e-02 4.212468617589480e-02

1.142202307676442e-01 4.505120897719191e-02

1.596471081833281e-01 4.769069780026684e-02

2.135336418959620e-01 6.038503382768951e-02

2.781100275296151e-01 6.695343672694180e-02

3.433392803364457e-01 6.163298712826237e-02

4.019960595528027e-01 5.877742624357513e-02

4.656415679416787e-01 6.800053637773440e-02

5.334880548894250e-01 6.516918103589647e-02

5.943298528903542e-01 5.853785375926075e-02

6.562968737815924e-01 6.639396325654251e-02

7.250343344601498e-01 6.948738324081696e-02

7.928820737781136e-01 6.538801703374268e-02

8.546103048745466e-01 5.761503751629250e-02

9.073762310762705e-01 4.761344859555310e-02

9.493253659835347e-01 3.607033097268266e-02

9.791606801267259e-01 2.345690720840071e-02

9.960217573957566e-01 1.019557402722854e-02



207

24 point quadrature rule for integrals

of the form
∫ 1

0
f(x) + g(x) log(x+ x̄)dx,

where 10−14 ≤ x̄ ≤ 10−13

NODES WEIGHTS

6.025980282801020e-08 9.079353616441234e-07

6.411245262925473e-08 -8.390389042773805e-07

1.862815529429129e-07 2.782460677485016e-07

2.029190208906422e-06 1.821115881362725e-05

8.902881307076499e-03 1.695809650660321e-02

3.420089035164912e-02 3.336370146025145e-02

7.508687525931594e-02 4.807898681796971e-02

1.295858123029775e-01 6.047672723211479e-02

1.950409815188335e-01 6.986774906175534e-02

2.679751967812604e-01 7.515608233194288e-02

3.428525062164689e-01 7.264249904037610e-02

4.080941369413548e-01 5.672507168477261e-02

4.646644511900009e-01 6.220316364524964e-02

5.328071517215501e-01 7.032362652293805e-02

5.978508749698001e-01 5.742730804758014e-02

6.521214523350964e-01 5.644075454541152e-02

7.134921670665336e-01 6.318643666150391e-02

7.679317896479284e-01 3.945995610428228e-02

8.029718487208403e-01 4.324200884758527e-02

8.551101435866935e-01 5.478223695609097e-02

9.067319102017767e-01 4.740856250832772e-02

9.487765213293372e-01 3.633314063504751e-02

9.788979796532736e-01 2.372788917088821e-02

9.959684838634199e-01 1.033036588606145e-02


