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Abstract: This papers presents a direct solution algorithm for the scattering of
time-harmonic waves from a bounded region of the plane in which the wavenum-
ber varies smoothly in space. The algorithm constructs the interior Dirichlet-to-
Neumann (DtN) map for the bounded region via bottom-up recursive merges of
(dicretizations of) certain boundary operators on a quadtree of boxes. These op-
erators take the form of impedance-to-impedance (ItI) maps. Since ItI maps are
unitary, this formulation is inherently numerically stable, and is immune to prob-
lems of artificial internal resonances. The ItI maps on the smallest (leaf) boxes
are built by spectral collocation on tensor-product grids of Chebyshev nodes. At
the top level the DtN map is recovered from the ItI map and coupled to a bound-
ary integral formulation of the free space exterior problem, to give a provably
second kind equation. We show that the scheme can solve challenging problems
70 wavelengths on a side to 9-digit accuracy with 4 million unknowns, in under
5 minutes on a desktop workstation. Each additional solve corresponding to a
different incident wave (right-hand side) then requires only 0.04 seconds.

1. Introduction

1.1. Problem formulation. Consider time-harmonic waves propagating in a medium where the
wave speed varies smoothly, but is constant outside of a bounded domain Ω ⊂ R

2. This manuscript
presents a technique for numerically solving the scattering problem in such a medium. Specifially, we
seek to compute the scattered wave us that results when a given incident wave ui (which satisfies the
free space Helmholtz equation) impinges upon the region with variable wave speed, as in Figure 1.
Mathematically, the scattered field us satisfies the variable coefficient Helmholtz equation

(1) ∆us(x) + κ2(1− b(x))us(x) = κ2b(x)ui(x), x ∈ R
2,

and the outgoing Sommerfeld radiation condition

(2)
∂us

∂r
− iκus = o(r−1/2), r := |x| → ∞,

uniformly in angle. The real number κ in (1) and (2) is the free space wavenumber (or frequency),
and the so called “scattering potential” b = b(x) is a given smooth function that specifies how the
wave speed (phase velocity) v(x) at the point x ∈ R

2 deviates from the free space wave speed vfree,

(3) b(x) = 1−
(

vfree
v(x)

)2

.

One may intepret
√
1− b as a spatially-varying refractive index. Observe that b is identically zero

outside Ω. Together, equations (1) and (2) completely specify the problem. For 1 − b everywhere
real and positive, the problem is known to have a unique solution for each positive κ [9, Thm. 8.7].

This transmission problem (1)-(2), and its generalizations, has applications in acoustics, electro-
magnetics, optics, and quantum mechanics; in particular we might mention underwater acoustics [3],
ultrasound and microwave tomography [13, 34], wave propagation in metamaterials and photonic
crystals, and seismology [35]. The solution technique in this paper is high-order accurate, yet robust
and computationally highly efficient. It is based on a direct (as opposed to iterative) solver, and
thus is particularly effective when the response of a given potential b to multiple incident waves ui
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Figure 1. Geometry of scattering problem. Waves propagate in a medium with
constant wave speed vfree everywhere except in the shaded areas, where the wave
speed is given by v(x) = vfree/

√

1− b(x) where b = b(x) is a given, smooth, compactly
supported “scattering potential.” An incident field ui hits the scattering potential and
induces the scattered field us. The dashed line marks the artificial domain Ω which
encloses the support of the scattering potential.

is desired, as arises in optical device characterization, or computing radar scattering cross-sections.
The complexity of the method is O(N3/2) where N is the number of discretization points in Ω.
Additional solves with the same scattering potential b and wavenumber κ require only O(N) oper-
ations. (Further reductions in asymptotic complexity can sometimes be attained; see section 4.2.)
For simplicity of presentation, the solution technique is presented in R

2; however, the method can
be directly extended to R

3.

Remark 1.1. Equation (1) is derived by requiring that the total field u = us + ui should satisfy the
variable coefficient Helmholtz equation

(4) ∆u(x) + κ2
(

vfree
v(x)

)2

u(x) = 0, x ∈ R
2.

Now simply combine (4) with the condition that the incident field ui satisfy the free space equation
(∆ + κ2)ui = 0 inside Ω, and the definition of the scattering potential (3), to obtain (1).

1.2. Outline of proposed method. We will solve (1)-(2) by splitting the problem into two parts,
namely a variable-coefficient problem on the bounded domain Ω, and a constant coefficient problem
on the exterior domain Ωc := R

2\Ω. For each of the two domains, we will construct a solution
operator in the form of a Dirichlet-to-Neumann (DtN) map on the boundary ∂Ω, and then we will
“glue” the two solution operators together on ∂Ω to form a solution operator for the full problem.
The end result will be a discretized boundary integral operator that takes as input the restriction of
the incoming field ui (and its normal derivative) to ∂Ω, and constructs the restriction of the scattered
field us on ∂Ω (and its normal derivative). Once these quantities are known, the total field can rapidly
be computed at any point x ∈ R

2.

1.2.1. Solution technique for the variable-coefficient problem on Ω. For the interior domain Ω, we
will construct a solution operator for the homogeneous variable-coefficient equation that the total
field u = us + ui must satisfy, namely,

∆u(x) + κ2(1− b(x))u(x) = 0, x ∈ Ω,(5)

u(x) = h(x) x ∈ ∂Ω.(6)
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Note that, for now, we specify the Dirichlet data h; when we consider the full problem h will become
an unknown that will also be solved for. It is known that, for all but a countable set of wavenumbers,
the interior Dirichlet BVP (5)-(6) has a unique solution u [25, Thm. 4.10]. The values {κj}∞j=1 at

which the solution is not unique are (the square roots of) the interior Dirichlet eigenvalues of the
penetrable domain Ω; we will call them resonant wavenumbers.

Definition 1.1 (interior Dirichlet-to-Neumann map). Suppose that κ > 0 is not a resonant wavenum-
ber of Ω. Then the interior Dirichlet-to-Neumann (DtN) operator1 Tint : H

1(∂Ω) → L2(∂Ω) is defined
by

(7) Tinth = un,

where u the solution to (5)–(6) corresponding to Dirichlet data h, for any h ∈ H1(∂Ω).

Remark 1.2. The operator Tint is a pseudo-differential operator of order +1 [14]; that is, in the limit
of high-frequency boundary data it behaves like a differentiation operator on ∂Ω. The boundedness
as a map Tint : H1(∂Ω) → L2(∂Ω) holds for Ω any bounded Lipschitz domain since the PDE is
strongly elliptic [25, Thm. 4.25].

We will construct a discrete approximation to Tint via a variation of recent composite spectral
methods in [15, 24]. These methods partition Ω into a collection of small “leaf” boxes and construct
approximate DtN operators for each box via a brute force calculation on a local spectral grid. The
DtN operator for Ω is then constructed via a hierarchical merge process. Unfortunately, at any given
κ, each of the many leaves and merging subdomains may hit a resonance as described above, causing
its DtN to fail to exist. As κ approaches any such resonance the norm of the DtN grows without
bound. Thus a technique based on the DtN alone is not robust.

Remark 1.3. We remind the reader that any such “box” resonance is purely artificial and is caused
by the introduction of the solution regions. It is important to distinguish these from resonances that
the physical scattering problem (1)-(2) itself might possess (e.g. due to nearly trapped rays), whose
effect of course cannot be avoided in any accurate numerical method.

One contribution of the present work is to present a robust improvement to the methods of
[15, 24], built upon hierarchical merges of impedance-to-impedance (ItI) rather than DtN operators;
see section 2. The idea of using impedance coupling builds upon the work of Kirsch–Monk [21].
ItI operators are inherently stable, with condition number O(1), and thus exclude the possibility of
inverting arbitrarily ill-conditioned matrices as in the original DtN formulation. For instance, for the
lens experiment in section 5, the DtN method has condition numbers as large as 2 × 105, while for
the new ItI method the condition number never grows larger than 20. We do still need to handle the
DtN of the whole domain Ω; however, if Ω has a resonance, we may simply change its size slightly
to avoid the resonance (see remark 2.6).

The discretization methods in [15, 24], and in this paper are related to earlier work on spectral
collocation methods on composite (“multi-domain”) grids, such as, e.g., [22, 38], and in particular
Pfeiffer et al [28]. For a detailed review of the similarities and differences, see [24].

1.2.2. Solution technique for the constant coefficient problem on Ωc. On the exterior domain, we
build a solution operator for the constant coefficient problem

∆us(x) + κ2us(x) = 0, x ∈ Ωc,(8)

us(x) = h(x), x ∈ ∂Ω,(9)

∂us

∂r
− iκus = o(r−1/2), r := |x| → ∞,(10)

1this is also known as the Steklov–Poincaré operator [25].
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obtained by restricting (1)-(2) to Ωc. (Again, the Dirichlet data h later will become an unknown
that is solved for.) It is known that (8)-(10) has a unique solution for every wavenumber κ [9, Ch. 3].
This means that the following DtN for the exterior domain is always well-defined.

Definition 1.2 (exterior Dirichlet-to-Neumann map). Suppose that κ > 0. The exterior DtN
operator Text : H

1(∂Ω) → L2(∂Ω) is defined by

(11) Texth = us

n

for us the unique solution to the exterior Dirichlet BVP (8)-(10).

Numerically, we construct an approximation to Text by reformulating (8)-(10) as a boundary
integral equation (BIE), as described in section 3.1, and then discretizing it using a Nyström method
based on a high order Gaussian composite quadrature [18].

1.2.3. Combining the two solution operators. Once the DtN operators Tint and Text have been de-
termined (as described in sections 1.2.1 and 1.2.2), and the restriction of the incident field to ∂Ω is
given, it is possible to determine the scattered field on ∂Ω as follows. First observe that the total
field u = us + ui must satisfy

(12) Tint(u
i|∂Ω + us|∂Ω) = ui

n + us

n.

We also know that the scattered field us must satisfy

(13) Textu
s|∂Ω = us

n.

Combining (12) and (13) to eliminate us

n, we obtain the equation (analogous to [21, Eq. (2.12)]),

(14) (Tint − Text)u
s|∂Ω = ui

n − Tintu
i|∂Ω.

As discussed in Remark 1.2, both Tint and Text have order +1. Lamentably, this behavior adds

rather than cancels in (14), so that (Tint − Text) also has order +1, and is therefore unbounded. This
makes any numerical discretization of (14) ill-conditioned, with condition number growing linearly in
the number of boundary nodes. To remedy this, we present in section 3 a new method for combining
Tint and Text to give a provably second kind integral equation, which thus gives a well-conditioned
linear system.

Once the scattered field is known on the boundary, the field at any exterior point may be found via
Green’s representation formula; see section 3.3. The interior transmitted wave umay be reconstructed
anywhere in Ω by applying solution operators which were built as part of the composite spectral
method.

1.3. Prior work. Perhaps the most common technique for solving the scattering problem stated
in Section 1.1 is to discretize the variable coefficient PDE (1) via a finite element or finite differ-
ence method, while approximating the radiation condition in one of many ways, including perfectly
matched layers (PML) [19], absorbing boundary conditions (ABC) [11], separation of variables or
their perturbations [26], local impedance conditions [7], or a Nyström method [21] (as in the present
work). However, the accuracy of finite element and finite difference schemes for the Helmholtz equa-
tion is limited by so-called “pollution” (dispersion) error [2, 4], demanding an increasing number of
degrees of freedom per wavelength in order to maintain fixed accuracy as wavenumber κ grows. In
addition, the resulting linear system will be large and sparse and is often ill-conditioned in such a
way that standard pre-conditioning techniques fail, although hybrid direct-iterative solvers such as
[12] have proven effective in certain environments. While there do exist fast direct solvers for such
linear systems (for low wavenumbers κ) [31, 30, 36, 23], the accuracy of the solution is limited by the
discretization. The solver’s performance worsens when increasing the order of the discretization—
and yet high order is precisely what would be required to overcome the above-mentioned pollution
error.
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Scattering problems on infinite domains are also commonly handled by rewriting them as volume
integral equations (e.g. the Lippmann–Schwinger equation) defined on a domain (such as Ω) that
contains the support of the scattering potential [1, 8]. This approach is appealing in that the
Sommerfeld condition (2) is enforced analytically, and in that high-order discretizations can be
implemented without loss of stability [10]. Principal drawbacks are that the resulting linear systems
have dense coefficient matrices, and tend to be challenging to solve using iterative solvers [10].

1.4. Outline. Section 2 describes in detail the stable hierarchical procedure for constructing an
approximation to the DtN map Tint for the interior problem (5)-(6). Section 3 describes how boundary
integral equation techniques are used to approximate the DtN map Text for the exterior problem (8)-
(10), how to couple the DtN maps Tint and Text to solve the full problem (1)-(2), and the proof
(Theorem 3.1) that the formulation is second kind. Section 4 details the computational cost of the
method and explains the reduced cost for multiple incident waves. Finally, section 5 illustrates the
performance of the method in several challenging scattering potential configurations.

2. Constructing and merging impedance-to-impedance maps

This section describes a technique for building a discrete approximation to the Dirichlet-to-
Neumann (DtN) operator for the interior variable coefficient BVP (5)-(6) on a square domain Ω.
It relies on the hierarchical construction of impedance-to-impedance (ItI) maps; these are defined in
section 2.1. Section 2.2 defines a hierarchical tree on the domain Ω. Section 2.3 explains how the
ItI maps are built on the (small) leaf boxes in the tree. Section 2.4 describes the merge procedure
whereby the global ItI map is built, and then how the global DtN map is recovered from the global
ItI map.

2.1. The impedance-to-impedance map. We start by defining the ItI map on a general Lipschitz
domain, and giving some of its properties. (In this section only, Ω will refer to such a general domain.)

Proposition 2.1. Let Ω ⊂ R
2 be a bounded Lipschitz domain, and b(x) be real. Let η ∈ C, and

Re η 6= 0. Then the interior Robin BVP,

[∆ + κ2(1− b(x))]u(x) = 0 x ∈ Ω ,(15)

un + iηu|∂Ω = f on ∂Ω ,(16)

has a unique solution u for all real κ > 0.

Proof. We first prove uniqueness. Consider u a solution to the homogeneous problem f ≡ 0. Then
using Green’s 1st identity and (15), (16),

−iη

∫

∂Ω
|u|2 =

∫

∂Ω
uun =

∫

Ω
|∇u|2 − κ2(1− b)|u|2.

Taking the imaginary part shows that u, and hence un, vanishes on ∂Ω, hence u ≡ 0 in Ω by unique
continuation of the Cauchy data. Existence of u ∈ H1(Ω) now follows for data f ∈ H−1/2(∂Ω) from
the Fredholm alternative, as explained in this context by McLean [25, Thm. 4.11]. �

Definition 2.1 (interior impedance-to-impedance map). Fix η ∈ C, and Re η 6= 0. Let

f := un + iηu|∂Ω(17)

g := un − iηu|∂Ω(18)

be Robin traces of u. We will refer to f and g as the “incoming” and “outgoing” (respectively)
impedance data. For any κ > 0, the interior ItI operator R : L2(∂Ω) → L2(∂Ω) is defined by

(19) Rf = g

for f and g the Robin traces of u the solution of (15)–(16), for all f ∈ L2(∂Ω).
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Figure 2. The square domain Ω shown split hierarchically into boxes. The case
where there are 4 × 4 leaf boxes is shown, ie there are M = 2 levels. These are
then gathered into a binary tree of successively larger boxes as described in Section
2. One possible enumeration of the boxes in the tree is shown, but note that the only
restriction is that if box τ is the parent of box σ, then τ < σ.

We shall choose the impedance parameter η (on dimensional grounds) to be η = κ. Numerically,
in what follows, we observe very little sensitivity to the exact value or sign of η.

For the following, we will need the result that the DtN map Tint is self-adjoint for real κ and b(x).
This hold since, for any functions u and v satisfying (∆+κ2(1−b))u = 0 in Ω and (∆+κ(1−b))v = 0
in Ω,

0 =

∫

Ω
v(∆ + ω2(1− b))u− u(∆ + κ2(1− b))v =

∫

∂Ω
vun − uvn = (v|∂Ω, Tintu|∂Ω)− (Tintv|∂Ω, u|∂Ω)

by Green’s second identity. This allows us to prove the following property of the ItI map that will
be the key to the numerical stability of the method.

Proposition 2.2. Let Ω be a bounded Lipschitz domain, let b(x) be real, and let η ∈ C and Re η 6= 0.
Then the ItI map R for Ω exists for all real frequencies κ, and is unitary whenever η is also real.

Proof. Existence of R for all real κ follows from Proposition 2.1. To prove R is unitary, we insert the
definitions of f and g into (19) and use the definition of the DtN to rewrite un = Tintu|∂Ω, giving
(20) R(Tint + iη)u|∂Ω = (Tint − iη)u|∂Ω ,

which holds for any data u|∂Ω ∈ H1(∂Ω). Thus we have as operators,

(21) R = (Tint − iη)(Tint + iη)−1 .

Since Tint is self-adjoint and η is real, this formula shows that R is unitary. �

As a unitary operator, R has unit operator L2-norm, pseudo-differential order 0, and eigenvalues
lying on the unit circle. From (21) and the pseudo-differential order of Tint one may see that the
eigenvalues of R accumulate only at +1.

2.2. Partitioning of Ω into hierarchical tree of boxes. Recall that Ω is the square domain
containing the support of b. We partition Ω into a collection of 4M equally-sized square boxes called
leaf boxes, where M sets the number of levels; see Figure 2. We place q Gauss–Legendre interpolation
nodes on each edge of each leaf, which will serve to discretize all interactions of this leaf with its
neighbors; see Figure 3(a). The size of the leaf boxes, and the parameter q, should be chosen so that
any potential transmitted wave u, as well as its first derivatives, can be accurately interpolated on
each box edge from their values at these nodes.

Next we construct a binary tree over the collection of leaf boxes. This is achieved by forming the
union of adjacent pairs boxes (forming rectangular boxes), then forming the pairwise union of the
rectangular boxes. The result is a collection of squares with twice the side length of a leaf box. We
continue the process until the only box is Ω itself, as in Figure 2. The boxes should be ordered so



7

12 3 q
q+1
q+2

q4

Js

Je

n

wJ

J

τΩ

(a) (b)

Ji

Figure 3. (a) The set of 4q Gauss–Legendre points used to represent the ItI on the
boundary of a leaf box Ωτ . The case q = 14 is shown. (b) Chebyshev discretization
used for the PDE spectral solution on the same leaf box, for the case p = 16. Interior
nodes Ji are shown by small black dots. The four sets of p− 1 Chebyshev boundary
nodes are shown (each a different color); each set includes the start corner (in counter-
clockwise ordering) but not the end corner. The set of all Chebyshev boundary nodes
is Jb = [Js, Je, Jn, Jw].

that if τ is a parent of a box σ, then τ < σ. We also assume that the root of the tree (i.e. the full
box Ω) has index τ = 1. We let Ωτ denote the domain associated with box τ .

Remark 2.1. The method we present easily generalizes to rectangular boxes, and to more compli-
cated domains Ω in the same manner as [24].

2.3. Spectral approximation of the ItI map on a leaf box. Let Ωτ denote a single leaf box,
and let f = fτ and g = gτ be a pair of vectors of associated incoming and outgoing impedance data,
sampled at the 4q Gauss–Legendre boundary nodes, with entries ordered in a counter-clockwise
fashion starting from the leftmost node of the bottom edge of the box, as in Figure 3(a). In this
section we describe how to construct a matrix approximation to the ItI operator on this leaf box.
Namely, we build a 4 q × 4 q matrix R such that

g ≈ Rf

holds to high-order accuracy, for all incoming data vectors f ∈ R
4q corresponding to smooth trans-

mitted wave solutions u.

We discretize the PDE (15) on the square leaf box Ωτ using a spectral method on a p× p tensor
product Chebyshev grid filling the box, as in Figure 3(b), comprised of the nodes at locations

(

a+ b

2
+ hxi,

c+ d

2
+ hxj

)

, i, j = 1, . . . , p

where xj := cos π(j−1)
p−1 , j = 1, . . . , p are the Chebyshev points on [−1, 1]. We label the Chebyshev

node locations xj ∈ R
2, for j = 1, . . . , p2. For notational purposes, we order these nodes in the

following fashion: the indices Jb = {1, 2, . . . , 4(p − 1)} correspond to the Chebyshev nodes lying
on the boundary of Ωτ , ordered counter-clockwise starting from the node located at the south-west
corner (a, c). The remaining (p− 2)2 interior nodes have indices Ji = {4(p− 1)+ 1, . . . , p2} and may
be ordered arbitrarily (a Cartesian ordering is convenient).

Let D(1),D(2) ∈ R
p2×p2 be the standard spectral differentiation matrices constructed on the full

set of Chebyshev nodes, which approximate the ∂/∂x1 (horizontal) and ∂/∂x2 (vertical) derivative
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operators, respectively. As explained in [32, Ch. 7], these are constructed from Kronecker prod-
ucts of the p × p identity matrix and h−1D, where D ∈ R

p×p is the usual one-dimensional differ-
entiation matrix on the nodes {xi}pi=1. Namely D has entries Dij =

wj

wi(xi−xj)
where {wj}pj=1 =

[1/2,−1, 1,−1, . . . , (−1)p, (−1)p−1/2] is the vector of barycentric weights for the Chebyshev nodes

(see [32, Ch. 6] and [29, Eqn.(8)].) Let the matrix A ∈ R
p2×p2 be the spectral discretization of the

operator ∆ + κ2(1− b(x)) on the product Chebyshev grid, namely

A = (D(1))2 + (D(2))2 + diag {κ2(1− b(xj))}p
2

j=1 ,

where “diag S” indicates the diagonal matrix whose entries are the elements of the ordered set S.

Remark 2.2. The matricesD(1), D(2), and Amust have rows and columns ordered as explained above
(i.e. boundary then interior) for the Chebyshev nodes; this requires permuting rows and columns of
the matrices constructed by Kronecker products. For example, the structure of A is

[

Abb Abi

Aib Aii

]

,

where the notation Abi indicates the submatrix block A(Jb, Ji), etc.

We now break the 4(p−1) boundary Chebyshev nodes into four sets Jb = [Js, Je, Jn, Jw], denoting
the south, east, north, and west edges, as in Figure 3(b). Note that Js includes the south-western
corner Js(1) but not the south-eastern corner (which in turn is the first element of Je), etc.

We are now ready to derive the linear system required for constructing the approximate ItI oper-

ator. We first build a matrix N ∈ R
4(p−1)×p2 which maps values of u at all Chebyshev nodes to the

outgoing normal derivatives at the boundary Chebyshev nodes, as follows,

(22) N =









−D(2)(Js, :)

D(1)(Je, :)

D(2)(Jn, :)

−D(1)(Jw, :)









,

where (as is standard in MATLAB) the notation A(S, :) denotes the matrix formed from the subset

of rows of a matrix A given by the index set S. Then, recalling (16), the matrix F ∈ R
4(p−1)×p2

which maps the values of u at all Chebyshev nodes to incoming impedance data on the boundary
Chebyshev nodes is

(23) F = N + iηIp2(Jb, :) ,

where Ip2 denotes the identity matrix of size p2. Using u ∈ R
p2 for the vector of u values at all

Chebyshev nodes, the linear system for the unknown u that imposes the spectral discretization of
the PDE at all interior nodes, and incoming impedance data fc ∈ R

4(p−1) at the boundary Chebyshev
nodes, is

(24) Bu =

[

fc
0

]

where 0 is an appropriate column vector of zeros, and the square size-p2 system matrix is

B :=

[

F

A(Ji, :)

]

.

Remark 2.3. At each of the four corner nodes, only one boundary condition is imposed, namely
the one associated with the edge lying in the counter-clockwise direction. This results in a square
linear system, which we observe is around twice as fast to solve as a similar-sized rectangular one.
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To construct the p2 × 4(p − 1) “solution matrix” X for the linear system, we solve (24) for each

unit vector in R
4(p−1), namely

BX =

[

I4p−4

0(p−2)2×(4p−4)

]

.

In practice, X is found using the backwards-stable solver available via MATLAB’s mldivide com-
mand. If desired, the tabulated solution u can now be found at all the Chebyshev nodes by applying
X to the right hand side of (24).

Recall that the goal is to construct matrices that act on boundary data on Gauss (as opposed
to Chebyshev) nodes. With this in mind, let P be the matrix which performs Lagrange polynomial
interpolation [33, Ch. 12] from q Gauss to p Chebyshev points on a single edge, and let Q be the

matrix from Chebyshev to Gauss points. Let P0 ∈ R
(p−1)×q be P with the last row omitted. For

example, P0 maps from Gauss points on the south edge to the Chebyshev points Js.

Then the solution matrix which takes incoming impedance data on Gauss nodes to the values u

at all Chebyshev nodes is

(25) Y = X









P0

P0

P0

P0









.

Finally, we must extract outgoing impedance data on Gauss nodes from the vector u, to construct
an approximation R to the full ItI map on the Gauss nodes. This is done by extracting (as in (22))
the relevant rows of the spectral differentiation matrices, then interpolating back to Gauss points.
Let J ′

s := [Js, Je(1)] be the indices of all p Chebyshev nodes on the south edge, and correspondingly
for the other three edges. Then the index set J ′

b := [J ′
s, J

′
e, J

′
n, J

′
w] counts each corner twice.2 Then

let G ∈ R
4p×p2 be the matrix mapping values of u to the outgoing impedance data with respect to

each edge, given by

G =









−D(2)(J ′
s, :)

D(1)(J ′
e, :)

D(2)(J ′
n, :)

−D(1)(J ′
w, :)









− iηIp2(J
′
b, :) .

Then, in terms of (25),

R =









Q

Q

Q

Q









GY

is the desired spectral approximation to the ItI map on the leaf box.

The computation time is dominated by the solution step for X, which takes effort O(p6). We
observe empirically that one must choose p > q+1 in order that R not acquire a spurious numerical
null space. We typically choose q = 14 and p = 16.

2.4. Merging ItI maps. Once the approximate ItI maps are constructed on the boundary Gauss
nodes on the leaf boxes, the ItI map defined on Ω is constructed by merging two boxes at a time,
moving up the binary tree as described in section 2.2. In this section, with τ labeling a box in the
tree with children α and β, we first demonstrate the purely local construction of the ItI operator Rτ

from Rα and Rβ .

2Including both endpoints will allow more accurate interpolation back to Gauss nodes; functions on each edge are
available at all Chebyshev nodes for that edge.
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We begin by introducing some notation. Let Ωτ denote a box with children Ωα and Ωβ where
Ωτ = Ωα∪Ωβ. For concreteness, consider the case where Ωα and Ωβ share a vertical edge. As shown
in Figure 4, we partition the Gauss points on ∂Ωα and ∂Ωβ into three sets:

J1: Boundary nodes of Ωα that are not boundary nodes of Ωβ .
J2: Boundary nodes of Ωβ that are not boundary nodes of Ωα.
J3: Boundary nodes of both Ωα and Ωβ that are not boundary nodes of the union box Ωτ .

We now define interior and exterior outgoing data via

gi = gα3 and ge =

[

gα1
g
β
2

]

.

The incoming vectors fi and fe are defined similarly. Our goal is to obtain an equation mapping fe

to ge. Since we already have ItI operators for α and β, we have the following two equations

(26)

[

Rα
11 Rα

13

Rα
31 Rα

33

] [

fα1
fα3

]

=

[

gα1
gα3

]

;

[

R
β
22 R

β
23

R
β
32 R

β
33

][

f
β
2

f
β
3

]

=

[

g
β
1

g
β
3

]

.

Since the normals of the two leaf boxes are opposed on the interior “3” edge, from (17)-(18) we have

gα3 = −f
β
3 and fα3 = −g

β
3 . These allow us to rewrite the bottom row equations using only α on the

interior edge, namely

(27) Rα
31f

α
1 + Rα

33f
α
3 = gα3

and

(28) R
β
32f

β
2 − R

β
33g

α
3 = −fα3 .

Let W :=
(

I− R
β
33R

α
33

)−1
. Plugging (27) into (28) results in the following equation

R
β
32f

β
2 − R

β
33 (R

α
31f

α
1 + Rα

33f
α
3 ) = −fα3 .

By collecting like terms and solving for fα3 , we find

(29)

fα3 = W
(

R
β
33R

α
31f

α
1 − R

β
32f

β
2

)

=
[

WR
β
33R

α
31 −WR

β
32

]

[

fα1
f
β
2

]

.

Note that the matrix Sα :=
[

WR
β
33R

α
31 −WR

β
32

]

maps the incoming impedance data on τ to

the incoming (with respect to α) impedance data on the interior edge. By combining the re-

lationship between the impedance boundary data on neighbor boxes and (27), the matrix Sβ =

−
[

Rα
33 +WR

β
33R

α
31 −WR

β
32

]

computes the impedance data f
β
3 .

The outgoing impedance data gα3 is found by plugging fα3 into equation (27). Now the top row
equations of (26) can be rewritten without reference to the interior edge. The top row equation of
(26) from Ωα is now

(

Rα
11 + Rα

13WR
β
33R

α
31

)

fα1 − Rα
13QR

β
32f

β
2 = gα1

and the top row equation of (26) from Ωβ is
(

R
β
22 + R

β
23R

α
33WR

β
32

)

f
β
2 − R

β
23 (R

α
31 + Rα

33WRα
33R

α
31) f

α
1 = g

β
2 .

Writing these equations as a system, we find fα1 and f
β
2 satisfy

(30)

[

Rα
11 + Rα

13WR
β
33R

α
31 −Rα

13WR
β
32

−R
β
23 (R

α
31 + Rα

33WRα
33R

α
31) R

β
22 + R

β
23R

α
33QR

β
32

]

[

fα1
f
β
2

]

=

[

gα1
g
β
2

]

.
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Ωα ΩβJ1 J2J3

Figure 4. Notation for the merge operation described in Section 2.4. The rectangular
domain Ωτ is the union of two squares Ωα and Ωβ . The sets J1 and J2 form the
exterior Gauss nodes (black), while J4 consists of the interior Gauss nodes (white).
(An unrealistically small node number q = 7 is used for visual clarity.)

Thus the block matrix on the left hand side of (30) is Rτ , the ItI operator for τ .

Remark 2.4. In practice, the matrix products WR
β
33R

α
31 and WR

β
32 should be computed once per

merge.

Remark 2.5. We note that the formula (30) is quite different from that for merging DtN maps
appearing in prior work [15, 24]. The root cause is the way the equivalence of incoming and outgoing
data on the interior edge differs from the case of Dirichlet and Neumann data.

Algorithm 1 outlines the implementation of the hierarchical construction of the impedance oper-
ators, by repeated application of the above merge operation. Algorithm 2 illustrates the downwards
sweep to construct from incoming impedance data f the solution at all Chebyshev discretization
points in Ω. Note that the latter requires the solution matrices S at each level, and Y for each of the
leaf boxes, that were precomputed by Algorithm 1.

The resulting approximation to the top-level ItI operator R = R1 is a square matrix which acts
on incoming impedance data living on the total of 4q2M composite Gauss nodes on ∂Ω. An approx-
imation Tint to the interior DtN map on these same nodes now comes from inverting equation (20)
for Tint, to give

(31) Tint = −iη (R− I)−1 (R+ I) ,

where I is the identity matrix of size 4q2M . The need for conversion from the ItI to the DtN for the
domain Ω will become clear in the next section.

Remark 2.6. Due to the pseudo-differential order +1 of Tint, we expect the norm of Tint to grow
linearly in the number of boundary nodes. However, it is also possible that κ falls close enough to
a resonant wavenumber of Ω that the norm of Tint is actually much larger, resulting in a loss of
accuracy due to the inversion of the nearly-singular matrix R− I in (31). In our extensive numerical
experiments, this latter problem has never happened. However, it is important to include a condition
number check when formula (31) is evaluated. Should there be a problem, it would be a simple matter
to modify slightly the domain to avoid a resonance. For instance, one can add a column of leaf boxes
to the side of Ω, and then inexpensively update the computed ItI operator for Ω to the enlarged
domain.
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Algorithm 1 (build solution matrices)

This algorithm builds the global Dirichlet-to-Neumann matrix Tint for (5)-(6). For
τ a leaf box, the algorithm builds the solution matrix Yτ that maps impedance data
at Gauss nodes to the solution at the interior Chebyshev nodes. For non-leaf boxes
τ , it builds the matrices Sτ required for constructing f impedance data on interior
Gauss nodes. It is assumed that if box τ is a parent of box σ, then τ < σ.

(1) for τ = Nboxes, Nboxes − 1, Nboxes − 2, . . . , 1
(2) if (τ is a leaf)
(3) Construct Rτ and Yτ via the process described in Section 2.3.
(4) else

(5) Let α and β be the children of τ .

(6) Split Jα
b and Jβ

b into vectors J1, J2, and J3 as shown in Figure 4.

(7) W =
(

I− R
β
33R

α
33

)−1

(8) Rτ =

[

Rα
11 + Rα

13WR
β
33R

α
31 −Rα

13WR
β
32

−R
β
23 (R

α
31 + Rα

33WRα
33R

α
31) R

β
22 + R

β
23R

α
33QR

β
32

]

(9) Sα =
[

WR
β
33R

α
31 −WR

β
32

]

.

(10) Sβ = −
[

Rα
33 +WR

β
33R

α
31 −WR

β
32

]

.

(10) Delete Rα and Rβ.
(11) end if

(12) end for

(13) Tint = −iη(R1 − I)−1(R1 + I)

Algorithm 2 (solve BVP (15)-(16) once solution matrices have been built)

This program constructs an approximation u to the solution u of (15)-(16). It
assumes that all matrices Sτ ,Yτ have already been constructed. It is assumed that
if box τ is a parent of box σ, then τ < σ. The indices of nodes in box τ we call Jτ .

(1) for τ = 1, 2, 3, . . . , Nboxes

(2) if (τ is a leaf)
(3) u(Jτ ) = Yτ fτ .
(4) else

(5) Let α and β be the children of τ .

(6) fα3 = Sαfτ , fβ3 = Sβfτ .
(7) end if

(8) end for

3. Well-conditioned boundary integral formulation for scattering

In this section, we present an improved boundary integral equation alternative to the scattering
formulation (14) from the introduction.

3.1. Formula for the exterior DtN operator Text. We first construct the exterior DtN operator
Text via potential theory. The starting point is Green’s exterior representation formula [9, Thm. 2.5],



13

which states that any radiative solution us to the Helmholtz equation in Ωc may be written,

(32) us(x) = (Dus|∂Ω) (x)− (Sus

n) (x), for x ∈ Ωc,

where (Dφ) (x) :=
∫

∂Ω
∂

∂ny

(

i
4H

(1)
0 (κ|x−y|)

)

φ(y)dsy and (Sφ) (x) :=
∫

∂Ω
i
4H

(1)
0 (κ|x−y|)φ(y)dsy are

respectively the frequency-κ Helmholtz double- and single-layer potentials with density φ, with H
(1)
0

the outgoing Hankel function of order zero. ny denotes the outward unit normal vector at y ∈ ∂Ω.
Letting x approach ∂Ω in (32), one finds via the jump relations,

(33) 1

2
us(x) = (Dus|∂Ω) (x)− (Sus

n) (x), x ∈ ∂Ω,

whereD and S are the double- and single-layer boundary integral operators on ∂Ω. See [9, Ch. 3.1] for
an introduction to these representions and operators. Rearranging (33) gives us

n = S−1
(

D − 1

2
I
)

us|∂Ω,
thus the exterior DtN operator is given in terms of the operators of potential theory by

(34) Text = S−1
(

D − 1

2
I
)

.

3.2. The new integral formulation. We apply from the left the single layer integral operator S
to both sides of (14), and use (34), to obtain

(35)
(

1

2
I −D + STint

)

us|∂Ω = S
(

ui

n − Tintu
i|∂Ω

)

,

a linear equation for us|∂Ω, the restriction of the scattered wave to the domain boundary ∂Ω. Let

(36) A := 1

2
I −D + STint

be the boundary integral operator appearing in the above formulation. In the trivial case b ≡ 0
(no scattering potential) it is easy to check that A = I, by using Tint = S−1(D + 1

2
I) which can be

derived in this case similarly to (34). However, we now prove that introducing a general scattering
potential perturbs A only compactly, that is, our left-regularization of the original ill-conditioned
(14) has produced a well-conditioned equation.

Theorem 3.1. Let Ω ∈ R
2 be a bounded Lipschitz domain containing the support of a bounded

scattering potential function b. Let κ > 0 not be a resonant wavenumber of Ω. Then the operator

(36) takes the form

A = I +K

where K : L2(∂Ω) → L2(∂Ω) is compact; thus the formulation (35) is of Fredholm second kind.

Proof. Let u satisfy (5) in Ω, then by Green’s interior representation formula (third identity) [9,
Eq. (2.4)],

(37) u(x) = (Sun) (x)− (Du|∂Ω) (x)− κ2(V bu)(x) for x ∈ Ω ,

where (Vφ)(x) :=
∫

Ω
i
4H

(1)
0 (κ|x − y|)φ(y)dy denotes the Helmholtz volume potential [9, Sec. 8.2]

acting on a function φ with support in Ω. By defining P to be the solution operator for the interior
Dirichlet problem (5)-(6), i.e. u(y) = (Pu|∂Ω)(y) for y ∈ Ω, and B the operator that multiplies a
function pointwise by b(y), we can write the last term in (37) as −κ2VBPu|∂Ω. Taking x to ∂Ω from
inside in (37), the jump relations give

1

2
u(x) = (Sun) (x)− (Du|∂Ω) (x)− κ2(V BPu|∂Ω)(x), x ∈ ∂Ω ,

where V is V restricted to evaluation on ∂Ω. We substitute un = Tintu∂Ω, and since the above must
hold for all data u|∂Ω, we have as operators

STint =
1

2
I +D + κ2V BP

which, substituting into (36) results in cancellation of the D terms, giving

A = I + κ2V BP .
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Figure 5. Eigenvalues of the discretized operators plotted in the complex plane. (a)
shows the operator Tint−Text from (14), whilst (b) shows the new regularized operator

A from (35). In both cases Ω = (−0.5, 0.5)2, κ = 20 and b(x) = −1.5e−160|x|2 .

Now P : L2(∂Ω) → L2(Ω) is bounded [25, Thm. 4.25], and B is bounded. V is two orders of
smoothing: it is bounded from L2(Ω) to H2(R) for R any bounded domain, and thus also bounded
to H1(R). For ∂Ω Lipschitz the Sobolev trace theorem has certain restrictions on the order [25,

Thm. 3.38], but, for example, the trace operator is bounded from H1(Ω) to H1/2(∂Ω). Thus V :

L2(Ω) → H1/2(∂Ω) is bounded. Since H1/2(∂Ω) compactly imbeds into L2(∂Ω) on a Lipschitz
boundary [25, Thm. 3.27 and p.99], the operator V BP is compact and the proof complete. �

Note that D in (36) is not compact when ∂Ω has corners [9, Sec. 3.5], yet the theorem holds with
corners since D is cancelled in the proof.

Figure 5 compares the spectrum of the unregularized (14) and regularized (35) operators, in a
simple computational example. The improvement in the eigenvalue distribution is dramatic: the
spectrum of (14) has small eigenvalues but extends to large eigenvalues of order 105, while the
spectrum of (35) is tightly clustered around +1 with no eigenvalues of magnitude larger than 2.

3.3. Reconstructing the scattered field on the exterior. Once equation (35) is solved for the
scattered wave on ∂Ω, we are able to find the scattered wave at any point in Ωc via the representation
(32). All that is needed is the normal derivative of us on ∂Ω, which we easily get from equation (12)
to be

(38) us

n = Tint

(

ui|∂Ω + us|∂Ω
)

− ui

n .

For evaluation of (32), the native Nyström quadrature on ∂Ω is sufficient for 10-digit accuracy for
all points further away from Ω than the size of one leaf box; however, as with any boundary integral
method, for highly accurate evaluation very close to ∂Ω a modified quadrature would be needed.

3.4. Numerical discretization of the boundary integral equation. We discretize the BIE (35)
on ∂Ω via a Nyström method with composite (panel-based) quadrature with n nodes in total. These
panels on ∂Ω are coincident with the edges of the leaf boxes from the interior discretization, apart
from the eight panels touching corners, where six levels of dyadic panel refinement are used on each
to achieve around 10-digit accuracy.3 On each of these panels, a 10-point Gaussian rule is used.

3We note that some refinement is necessary even though the solution is smooth near the (fictitious) corners. However,
the extra cost of refinement, as opposed to, say, local corner rounding, is negligible.
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For building n × n matrix approximations to the operators S and D in (35), the plain Nyström
method is used for matrix elements corresponding to non-neighboring panels, while generalized Gauss-
ian quadrature for matrix elements corresponding to the self- or neighbor-interaction of each panel
[18]. The matrix Tint computed by (31) must also be interpolated from the 4q2M Gauss nodes on
∂Ω to the n new nodes; since the panels are mostly coincident, this is a local operation analogous to
the use of P and Q matrices in section 2.3.

4. Computational complexity

The computational cost of the solution technique is determined by the cost of constructing the
approximate DtN operator Tint and the cost of solving the boundary integral equation (35). Let N
denote the total number of discretization points in Ω required for constructing R. As there are p2

Chebyshev points for each leaf box, the total number of discretization points is roughly 4Mp2 (to be
precise, since points are shared on leaf box edges, it is N = 4M (p − 1)2 + 2M+1(p − 1) + 1). Recall

that n is the number of points on ∂Ω required to solve the integral equation. Note that n ∼
√
N .

4.1. Using dense linear algebra. Using dense linear algebra, the cost of constructing R via the
technique in section 2 is dominated by the cost at the top level where a matrix of size

√
N ×

√
N

is inverted. Thus the computational cost is O(N3/2). The cost of approximating the DtN operator

Tint is also O(N3/2). However, the computational cost of applying T is O(N). If the solution in the
interior of Ω is desired, the computation cost of the solve is O(N) as well.

The cost of inverting the linear system resulting from the (eg. Nyström) discretization of (35) is
O(n3). It is possible to accelerate the solve by using iterative methods such as GMRES, which, given
its second kind nature, would converge in O(1) iterations.

When there are multiple incident waves at the same wavenumber κ, the solution technique should
be separated into two steps: precomputation and solve. The precomputation step consist of con-
structing the approximate ItI, and DtN operators R and Tint, respectively. Also included in the
precomputation should be the discretization and inversion of the BIE (35). The solve step then
consist of applying the inverse of the system in (35). The precomputation need only be done once

per wavenumber with a computational cost O(N3/2). The cost of each solve (one for each incident
wave) is simply the cost of applying an n× n dense matrix ∼ O(N).

4.2. Using fast algorithms. The matrices Rτ in Algorithm 1 that approximate ItI operators, as
well as the matrices Tint and Text approximating DtN operators, all have internal structure that could
be exploited to accelerate the matrix algebra. Specifically, the off-diagonal blocks of these matrices
tend to have low numerical ranks, which means that they can be represented efficiently in so called
“data-sparse” formats such as, e.g., H or H2-matrices [17, 6, 5], or, even better, the Hierarcahically
Block Separable (HBS) format [16, 20] (which is closely related to the “HSS” format [37]). If the
wavenumber κ is kept fixed as N increases, it turns out to be possible to accelerate all computations
in the build stage to optimal O(N) asymptotic complexity, and the solve stage to optimal O(N1/2)
complexity, see [15]. However, the scaling constants suppressed by the big-O notation depend on κ
in such a way that the use of accelerated matrix algebra is worthwhile primarily for problems of only
moderate size (say a few dozen wavelengths across). Moreover, for high-order methods such as ours,
it is common to keep the number of discretization nodes per wavelength fixed as N increases (so that

κ ∼ N1/2), and in this environment, the scaling of the “accelerated” methods revert to O(N3/2) and
O(N) for the build and the solve stages, respectively.
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(a) (b)

(c) (d)

Figure 6. Plots (a) and (b) illustrate b(x) for experiments Bumps 1 and Bumps

2 in section 5.1. Plots (c) and (d) illustrate the real part of the total field for each
experiment respectively.

5. Numerical experiments

This section reports on the performance of the new solution technique for several choices of po-
tential b(x) where the (numerical) support of b is contained in Ω = (−0.5, 0.5)2. The incident wave
is a plane wave ui(x) = eiκw·x with incident unit direction vector w ∈ R

2.

Firstly, in section 5.1 the method is applied to problems where b(x) is a single Gaussian “bump.”
In this case the radial symmetry allows for an independent semi-analytic solution, which we use
to verify the accuracy of the method. Then section 5.2 reports on the performance of the method
when applied to more complicated problems. Finally, section 5.3 illustrates the computational cost
in practice.

For all the experiments, for the composite spectral method described in section 2 we use a p × p
Chebyshev tensor product grid of points per leaf with p = 16, and the number of Gaussian nodes
per side of a leaf is q = 14.
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We implemented the methods based on dense matrix algebra with O(N3/2) asymptotic complexity
described in section 4.1. (We do not use the O(N) accelerated techniques of section 4.2 since we are
primarily interested in scatterers that are large in comparison to the wavelength.)

All experiments were executed on a desktop workstation with two quad-core Intel Xeon E5-2643
processors and 128 GB of RAM. All computations were done in MATLAB (version 2012b), apart
from the evaluation of Hankel functions in the Nyström and scattered wave calculations, which use
Fortran. We expect that, by careful implementation of the whole scheme in a compiled language,
execution times could be improved substantially.

5.1. Accuracy of the method. In this section, we consider problems where the scattering potential
b(x) is given by a Gaussian bump. Since b has radial symmetry, we may compute an accurate reference
scattering solution by solving a series of ODEs, as explained in Appendix A. With κ = 40 (so that the
square Ω is around six free-space wavelengths on a side), and w = (1, 0), we consider two problems
given as follows,

Bump 1 : b(x) = −1.5e−160|x|2 ,
Bump 2 : b(x) = 1.5e−160|x|2 .
For Bump 1 the bump region has an increased refractive index, varying from 1 to around 1.58,

which can be interpreted as an attractive potential. For Bump 2 the potential is repulsive, causing
the waves to become slightly evanescent near the origin (here the refractive index decreases to zero
then becomes purely imaginary, but note that this does not correspond to absorption.) Figure 6
illustrates the geometry and the resulting real part of the total field for each experiment.

Let ũ denote the approximate total field constructed via the proposed method, and u denote the
reference total field computed as in Appendix A. Table 1 reports

N : the number of discretization points used by the composite spectral method in Ω,
n: the number of discretization points used for discretizing the BIE,

Re ũ(0.5, 0): real part of the approximate solution at (0.5, 0) (on ∂Ω),
e1: = |u(0.5, 0)− ũ(0.5, 0)|,

Re ũ(1, 0.5): real part of the approximate solution at (1, 0.5) (outside of Ω),
e2: = |u(1, 0.5)− ũ(1, 0.5)|.

In the table, the number of levels M grows from 2 to 5, roughly quadrupling N each time. High-
order convergence is apparent, reaching an accuracy of 9-10 digits (accuracy does not increase much
beyond 10 digits). At the highest N , there are about 50 gridpoints per wavelength at the shortest
wavelength occurring at the center of Bump 1.

N n Re ũ(0.5, 0) e1 Re ũ(1, 0.5) e2

Bump 1

3721 640 -0.98792561833285 7.75e-05 -1.12207402682737 5.09e-05
14641 800 -0.987981264965721 1.78e-07 -1.12205758254400 8.18e-08
58081 1120 -0.987981217277174 2.56e-09 -1.12205766387011 1.15e-10
231361 1760 -0.987981215350216 9.31e-10 -1.12205766378840 7.90e-11

Bump 2

3721 640 -0.0470314782486572 4.82e-05 -1.01063677552351 3.23e-05
14641 800 -0.0470619180279044 4.25e-08 -1.01065022958956 7.32e-08
58081 1120 -0.0470619010992819 1.32e-09 -1.01065028579517 1.29e-10
231361 1760 -0.0470619007119554 5.07e-10 -1.01065028569638 4.36e-11

Table 1. Approximate solutions and pointwise errors for the experiments in section 5.1

5.2. Performance for challenging scattering potentials. This section illustrates the perfor-
mance of the numerical method for problems with smoothly varying wave speed inside of Ω.
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(a) (b)

(c)

Figure 7. Plots of the different scattering potentials b inside Ω in section 5.2.

We consider three different test cases of scattering potential b. They are

Lens: A vertically-graded lens (Figure 7(a)), at wavenumber κ = 300.
Specifically, b(x) = 4(x2 − 0.2)[1− erf(25(|x| − 0.3))], where x = (x1, x2).
The maximum refractive index is around 2.1

Random bumps: The sum of 200 wide Gaussian bumps randomly placed in Ω, rolled off to zero
(see Figure 7(b)) giving a smooth random potential. Wavenumber κ = 160.
The maximum refractive index is around 4.3.

Photonic crystal : 20× 20 square array of small Gaussian bumps (with peak refractive index 6.7)
with a “waveguide” channel removed (Figure 7(c)). The wavenumber κ = 77.1
is chosen carefully to lie in the first complete bandgap of the crystal.

For the first two cases, Ω is around 70 wavelengths on a side, measured using the typical wave-
length occurring in the medium (for the lens case, it is 100 wavelengths on a side at the minimum
wavelength). This is quite a high frequency for a variable-medium problem at the accuracies we
achieve. In these two cases the waves mostly propagate; in constrast, in the third case the waves
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mostly resonate within each small bump, in such a way that large-scale propagation through the
crystal is impossible (hence evanescent), except in the channel.4

For each choice of varying wave speed, the incident wave is in the direction w = (1, 0) (we remind
the reader that the method works for arbitrary incident direction.) For the Photonic crystal, we also
consider the incident wave direction w = (−

√
2/2,

√
2/2). There are no reference solutions available

for these problems, hence we study convergence.

In addition to the number of discretization points N and n, Table 2 reports

Re ũ(0.25, 0): real part of the approximate solution at (0.25, 0) (inside of Ω),
e1: = |ũN (0.25, 0)− ũ4N (0.25, 0)|, an estimate of the pointwise error,

Re ũ(1, 0.5): real part of the approximate solution at (1, 0.5) (outside of Ω),
e2: = |ũN (1, 0.5)− ũ4N (1, 0.5)|, an estimate of the pointwise error.

N n Re ũ(0.5, 0) e1 Re ũ(1, 0.5) e2

Lens

58081 1120 -0.373405022283892 2.02e-01 -0.547735180732198 5.09e-01
231361 1760 -0.221345395796661 3.53e-03 0.161212542340161 2.86e-03
923521 3040 -0.218651605400620 1.61e-07 0.158422280450864 1.87e-07
3690241 5600 -0.218651458554288 6.85e-10 0.158422464920298 6.99e-10
14753281 10720 -0.218651458391577 - 0.158422464625727 -

Bumps

58081 1120 1.29105948477323 1.91 -0.612141744074168 0.44
231361 1760 0.359271869087464 1.99e-02 -0.931198083868205 1.87e-02
923521 3040 0.374697595070227 2.76e-06 -0.945752835546445 7.95e-07
3690241 5600 0.374698518812982 3.06e-09 -0.945753626496863 1.58e-09
14753281 10720 0.374698518930658 - -0.945753627849080 -

Crystal

58081 1120 -0.406418011063883 2.03 -0.129067996215635 3.42e-01
231361 1760 0.0424527158875615 1.53e-03 0.195870563479998 1.82e-4
923521 3040 0.0437392735790711 7.30e-07 0.195981633749759 2.81e-07
3690241 5600 0.0437393320806644 4.84e-10 0.195981570696692 7.56e-10
14753281 10720 0.0437393324622741 - 0.195981570519668 -

Crystal
58081 1120 -0.0420633119821246 1.28 -1.20915538109562 1.37e-01
231361 1760 0.0367128964251903 3.47e-03 -1.09529393341122 1.10e-3

w =
(

−
√
2
2 ,

√
2
2

)
923521 3040 0.0376839447575234 1.58e-06 -1.09445429347097 7.25e-07
3690241 5600 0.0376833752064704 6.79e-10 -1.09445431363369 4.90e-9
14753281 10720 0.0376833752704930 - -1.09445430874556 -

Table 2. Convergence results for the experiments in section 5.2.

Table 2 shows that typically 9-digit accuracy is reached when N ≈ 3.7 × 106 (M = 7), which
corresponds to 1921 Chebyshev nodes in each direction, or around 20 nodes per wavelength at the
shortest wavelengths in each medium.

5.3. Scaling of the method. Recall that in the case of multiple incident waves, the solution tech-
nique should be broken into two steps: precomputation and solve. Since a direct solver is used, the
timing results are independent of the particular scattering potential.

For each choice of N and n, Table 3 reports

4The choice of bump height and width needs to be made carefully to ensure that a usable bandgap exists; this was
done by creating a separate spectral solver for the band structure of the periodic problem.
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(a) (b)

(c) (d)

Figure 8. Plots of the real part of the total field for the four experiments in sec-
tion 5.2 whose scattering potentials are shown in Figure 7: (a) lens, (b) random
bumps, (c) and (d) photonic crystal with different incident wave directions.

Tbuild: Time in seconds to building the approximate ItI and DtN,
Tsolve: Time in seconds to discretize and invert the BIE (35),
Tapply: Time in seconds to apply the inverse A−1 of the discretized integral equation
Rbuild: Memory in MB required to store the ItI and solution operators in the hierarchical scheme,
Rsolve: Memory in MB required to store the discretized inverse A−1.

Figure 9 plots the timings against the problem size N . (The total precomputation time is the
sum of Tbuild and Tsolve.) The results show that even at the largest N tested, the precomputation

time has not reached its asymptotic O(N3/2); the large dense linear algebra has not yet started to
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dominate Tbuild (this may be due to MATLAB overheads). However, the cost for solving (35) and
applying the inverse scale closer to expectations.

The memory usage scales as the expected O(N logN). We are not able to test beyond 15 million
unknowns (M = 8) since by that point the memory usage approaches 100 GB. However, note that
if all that is needed is the far-field solution for arbitrary incident waves at one wavenumber, the Sτ

and Yτ solution matrices need not be stored, reducing memory significantly, and the final solution
matrix only requires 2 GB. We note that, extrapolating from the convergence study, this N should
be sufficient for 9-digit accuracy for problems up to 200 wavelengths on a side.

N n Tbuild Tsolve Tapply Rbuild Rsolve

3721 640 0.506 1.78 5.39e-04 9.71 6.25
14641 800 0.709 2.01 8.28e-04 48.07 9.77
58081 1120 2.90 3.01 1.73e-03 229.05 19.14
231361 1760 12.09 5.40 3.32e-03 1063.23 47.37
923521 3040 51.67 13.23 1.05e-02 4841.01 141.02
3690241 5600 231.18 40.79 4.03e-02 21716.21 478.52
14753281 10720 1081.09 185.54 1.13e-01 96273.17 1753.52

Table 3. Tbuild and Rbuild report the time in seconds and memory in MB, respec-
tively, required for building the interior ItI operator and constructing the discretized
integral equation (35). Tsolve reports the time in seconds required to invert the dis-
cretized system, while Rsolve reports the memory in MB to store the inverse. Tapply

reports the time in seconds required to apply the inverse to the incident wave depen-
dent data. This table is independent of the choice of potential or wavenumber.
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Figure 9. Time in seconds for each step in the proposed method. (For the compar-
ison power law graphs, the prefactors are C1 = 2× 10−7 and C2 = 2× 10−9.)

6. Concluding remarks

This paper presents a robust, high accuracy direct method for solving scattering problems involv-
ing smoothly varying media. Numerical results show that the method converges to high order, as
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expected, for choices of refractive index that are representative of challenging problems that occur
in applications. Namely, for problems dominated either by propagation (lenses) or by resonances
(a bandgap photonic crystal), with of order 100 wavelengths on a side, the method converges to
around 9-digit accuracy with 3.7 million unknowns. The method is ideal for problems where the far
field scattering is desired for multiple incident waves, since each additional incident wave requires
merely applying a dense matrix to its boundary data. For example, a problem involving 14 million
unknowns requires 21 minutes of precomputation (to build the necessary operators), but each addi-
tional solve takes approximately 0.1 seconds. As discussed in section 4.2, for low frequency problems,
these timings, and asymptotic behavior, could be improved by replacing the dense linear algebra by
faster algorithms exploiting compressed representations. Another open question is the existence of a
convenient second-kind formulation which involves the ItI map (and not the DtN map) of the domain
Ω.
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Appendix A. Reference solution for plane wave scattering from radial potentials

In this appendix we describe how we generate reference solutions with around 13 digits of accuracy
for the scattering problem from smooth radially-symmetric potentials such as

(39) b(r) = ±1.5e−160r2 ,

which are needed in section 5.1. Here (r, θ) are polar coordinates; in what follows (x1, x2) ∈ R
2

indicate Cartesian coordinates. We choose a solution domain radius R > 0 such that b is numerically
negligible outside the ball r < R. A plane wave incident in the positive x1-direction is decomposed
into a polar Fourier (“angular momentum”) basis via the Jacobi–Anger expansion [27, 10.12.5],

eiκx1 = J0(κr) + 2
∞
∑

l=1

ilJl(κr) cos lθ .

We write Jl(z) = (H
(1)
l (z) + H

(2)
l (z))/2, and then notice that the effect of the potential b on this

field is to modify only the outgoing scattering coefficients. Thus, restricting to a maximum order L,
the full field becomes

(40) u(r, θ) ≈ 1

2
[H

(1)
0 (κr) + a0H

(2)
0 (κr)] +

L
∑

l=1

il[H
(1)
l (κr) + alH

(2)
l (κr)] cos lθ, r > R .

The coefficients {al} are known as scattering phases; by flux conservation they lie on the unit circle
if b(r) is a real-valued function. Convergence with respect to L is exponential, once L exceeds κR.
For the case of (39) we choose R = 0.5 and L = 30.

The phases are found in the following way. For each l = 0, . . . L we solve the homogeneous radial
ODE,

u′′l +
1

r
u′l +

[

− l2

r2
+ (1− b(r))κ2

]

ul = 0, 0 < r < R

with initial conditions that correspond to a regular solution of the form ul(r) ∼ crl as r → 0+ (we
implement the initial condition by restricting the domain to [r0, R] for some small number r0 > 0
chosen such that the solution growing with increasing r dominates sufficiently over the decaying one).
For the numerical solution we use MATLAB’s ode45 with machine precision requested for absolute
and relative tolerances. (We note that the standard transformation u(r) = rlU(r) which mollifies the
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behavior at r = 0 resulted in no improvement in accuracy.) After extracting each interior solution’s
Robin constant βl := u′l(R)/ul(R), and matching value and derivative to (40) at r = R, we get after
simplification,

al = −α∗
l

αl
, where αl = κH

(1)
l

′
(κR)−H

(1)
l (κR)βl ,

which completes the recipe for the phases. The computation time required is a few seconds, due to
the large number of steps required by ode45. A simple accuracy test is independence of the phases
with respect to variation in R. Values of u(r, θ) for r ≥ R may then be found via evaluating the sum
in (40), and for r < R by summation of the interior solutions {ul(r)}.

References

[1] W. Ang. A beginner’s course in boundary element methods. Universal Publishers, USA, 2007.
[2] I. M. Babuska and S. A. Sauter. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering

high wave numbers? SIAM J. Numer. Anal., 34(6):2392–2423, 1997.
[3] A. Bayliss, C. I. Goldstein, and E. Turkel. The numerical solution of the Helmholtz equation for wave propagation

problems in underwater acoustics. Comput. Math. Appl., 11(7–8):655–665, 1985.
[4] A. Bayliss, C. I. Goldstein, and E. Turkel. On accuracy conditions for the numerical computation of waves. J.

Comput. Phys., 59(3):396–404, 1985.
[5] M. Bebendorf. Hierarchical matrices, volume 63 of Lecture Notes in Computational Science and Engineering.

Springer-Verlag, Berlin, 2008.
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