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Abstract: The Fast Multipole Method (FMM) provides a highly efficient compu-
tational tool for solving constant coefficient partial differential equations (e.g. the
Poisson equation) on infinite domains. The solution to such an equation is given
as the convolution between a fundamental solution and the given data function,
and the FMM is used to rapidly evaluate the sum resulting upon discretization
of the integral. This paper describes an analogous procedure for rapidly solving
elliptic difference equations on infinite lattices. In particular, a fast summation
technique for a discrete equivalent of the continuum fundamental solution is con-
structed. The asymptotic complexity of the proposed method is O(Nsource), where
Nsource is the number of points subject to body loads. This is in contrast to FFT
based methods which solve a lattice Poisson problem at a cost O(NΩ logNΩ)
independent of Nsource, where Ω is an artificial rectangular box containing the
loaded points and NΩ is the number of points in Ω.

1. Introduction

This paper describes an efficient technique for solving Poisson problems defined on the
integer lattice Z

2. For simplicity of presentation, we limit our attention to the equation

(1.1) [Au](m) = f(m), m ∈ Z
2,

where f = f(m) and u = u(m) are scalar valued functions on Z
2, and where A is the

so-called discrete Laplace operator

(1.2) [Au](m) = 4u(m)−u(m+ e1)−u(m− e1)−u(m+ e2)−u(m− e2), m ∈ Z
2.

In (1.2), e1 = [1, 0] and e2 = [0, 1] are the canonical basis vectors in Z
2. If f ∈ L1(Z2)

and
∑

m∈Z2 |f(m)| = 0, equation (1.1) is well-posed when coupled with a suitable decay
condition for u, see [19] for details.

We are primarily interested in the situation where the given function f (the source) is
supported at a finite number of points which we refer to as source locations, and where the
function u (the potential) is sought at a finite number of points called target locations. While
the solution technique is described for the equation (1.1) involving the specific operator
(1.2), it may readily be extended to a broad range of lattice equations involving constant
coefficient elliptic difference operators.

Variations of the equation (1.1) are perhaps best known as a set of equations associated
with the discretization of elliptic partial differential equations. However, such equations
also emerge in their own right as natural models in a broad range of applications: random
walks [9], analyzing the Ising model (in determining vibration modes of crystals), and many
others in engineering mechanics including micro-structural models, macroscopic models,
simulating fractures [23, 16] and as models of periodic truss and frame structures [6, 25,
19, 24].

Of particular interest in many of these applications is the situation where the lattice
involves local deviations from perfect periodicity due to either broken links, or lattice in-
clusions. The fast technique described in this paper can readily be modified to handle such
situations, see Section 10.1. It may also be modified to handle equations defined on finite
subsets of Z2, with appropriate conditions (Dirichlet / Neumann / periodic) prescribed on
the boundary, see Section 10.2 and [10].
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The technique described is a descendant of the Fast Multipole Method (FMM) [12, 13,
14], and, more specifically, of “kernel independent” FMMs [11, 21, 26]. A key application
of the original FMM was to rapidly solve the Poisson equation

(1.3) −∆u(x) = f(x), x ∈ R
2,

which is the continuum analog of (1.1). The FMM exploits the fact that the analytic
solution to (1.3) takes the form of a convolution

(1.4) u(x) =

∫

R2

φcont(x− y) f(y) dy,

where φcont is the fundamental solution of the Laplace operator,

(1.5) φcont(x) = −
1

2π
log |x|.

If the source function f corresponds to a number of point charges {qj}
N
j=1 placed at locations

{xj}
N
j=1, and if the potential u is sought at same set of locations, then the convolution (1.4)

simplifies to the sum

(1.6) ui =
N
∑

j=1

j 6=i

φcont(xi − xj) qj, i = 1, 2, . . . , N.

While direct evaluation of (1.6) requires O(N2) operations since the kernel is dense, the
FMM constructs an approximation to the potentials {ui}

N
i=1 in O(N) operations. Any

requested approximation error ε can be attained, with the constant of proportionality in
the O(N) estimate depending only logarithmically on ε.

In the same way that the FMM can be said to rely on the fact that the Poisson equation
(1.3) has the explicit analytic solution (1.4), the techniques described in this paper can
be said to rely on the fact that the lattice Poisson equation (1.1) has an explicit analytic
solution in the form

(1.7) u(m) = [φ ∗ f ](m) =
∑

n∈Z2

φ(m− n) f(n).

where φ is a fundamental solution for the discrete Laplace operator (1.2). This fundamental
solution is known analytically [7, 19, 20, 10] via the normalized Fourier integral

(1.8) φ(m) =
1

(2π)2

∫ π

−π

∫ π

−π

cos(t1m1 + t2m2)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dt1 dt2, m = [m1, m2] ∈ Z

2.

This paper presents an adaptation of the original Fast Multipole Method that enables
it to handle discrete kernels such as (1.8) and to exploit accelerations that are possible
due the geometric restrictions present in the lattice case. The method extends directly to
any problem that can be solved via convolution with a discrete fundamental solution. The
technique for numerically evaluating (1.8) extends directly to other kernels, see Section 3.

While we are not aware of any previously published techniques for rapidly solving the
free space problem (1.1) (or, equivalently, for evaluating (1.7)), there exist very fast solvers
for the closely related case of lattice Poisson equations defined on rectangular subsets of Z2

with periodic boundary conditions. Such equations become diagonal when transformed to
Fourier space, and may consequently be solved very rapidly via the FFT. The computational
time Tfft required by such a method satisfies

(1.9) Tfft ∼ Ndomain logNdomain as Ndomain → ∞,
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where Ndomain denotes the number of lattice nodes in the smallest rectangular domain
holding all source locations, and where the constant of proportionality is very small. Similar
complexity, sometimes without the logarithmic factor, and with fewer restrictions on the
boundary conditions, may also be achieved via multigrid methods [3].

The principal contribution of the present work is that the computational time TFMM

required by the method described here has asymptotic complexity

(1.10) TFMM ∼ Nsources, as Nsources → ∞,

where Nsources denotes the number of lattice nodes that are loaded (assuming that the
solution is sought only at the source points). In a situation where the source points are
relatively densely distributed in a rectangle, we would have Ndomain ≈ Nsources and there
would be no point in using the new method (in fact, an FFT based method is in this case
significantly faster since the constant of proportionality in (1.9) is smaller than that in
(1.10)). However, if the source and target points are relatively sparsely distributed in the
lattice, then the estimate (1.10) of the new method is clearly superior to that of (1.9) for
an FFT based method. As demonstrated in Section 9, very significant gains in speed can
be achieved. Perhaps even more importantly, much larger problems can be handled since
an FFT based method requires that the potential on all Ndomain nodes be held in memory.

Example: The distinction between Ndomain in (1.9) and Nsources in (1.10) can be illus-
trated with the toy example shown in Figure 1.1. The figure illustrates a portion of an
infinite lattice in which Nsource = 11 nodes have been loaded. A rectangular domain
covering these loads is marked with a blue dashed line and holds Ndomain = 80 nodes.
Clearly Nsources = 11 ≪ 80 = Ndomain. A solution strategy for (1.1) based on the FFT
or multigrid would involve all Ndomain nodes inside the rectangle. In contrast, the lattice
fundamental solution allows the solution task to be reduced to evaluating the sum (1.7)
which involves an Nsources ×Nsources dense coefficient matrix.

Figure 1.1. A subset of the infinite lattice Z
2. The Nsources = 11 red

nodes are loaded. The smallest rectangle holding all sources is marked with
a dashed blue line. It has Ndomain = 80 nodes.

2. Review of fast summation techniques

In this section, we briefly outline the basic ideas behind the Fast Multipole Method,
and then describe the modifications required to evaluate a lattice sum such as (1.7). Our
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Ω

Figure 2.1. Geometry of the N -body problem in Section 2. Source i is
blue, the sources in Jnear

i as defined by (2.3) are red.

presentation assumes some familiarity with Fast Multipole Methods; for an introduction,
see, e.g., [2, 13]. As a model problem, we consider the task of evaluating the sum

(2.1) ui =

N
∑

j=1

φ(xi − xj) qj ,

where {xi}
N
i=1 is a set of N points in the plane, where {qi}

N
i=1 is a set of N given real

numbers called charges, where {qi}
N
i=1 is a set of N sought real numbers called potentials,

and where φ : R
2 × R

2 → R is a kernel function.

For simplicity, we consider in this review only the case where the sources are more or
less uniformly distributed in a computational box Ω in the sense that Ω can be split into
equi-sized small boxes, called leaves, in such a way that each small box holds about the
same number of sources. We let Nleaf denote an upper bound for the number of sources
held in any leaf. Then the sum (2.1) can be split into two parts

ui = uneari + ufari ,

where the near-field is defined by

(2.2) uneari =
∑

j∈Jnear

i
\{i}

φ(xi − xj) qj , i = 1, 2, . . . , N,

where Jnear
i is an index list marking all sources that lie either in the same box as charge i,

or in a box that is directly adjacent to the box holding source i,

(2.3) Jnear
i = {j : xi and xj are located in the same leaf or in directly adjacent leaves}.

The definition of Jnear
i is illustrated in Figure 2.1. The far-field is then defined by

(2.4) ufari =
∑

j /∈Jnear

i

φ(xi − xj) qj, i = 1, 2, . . . , N,

The near-field (2.2) can now be directly evaluated at low cost since at most 9Nleaf sources
are near any given source. In the lattice case, this step could potentially be rendered
expensive by the fact that the kernel is known only via the Fourier integral (1.8) which is
quite costly to evaluate via quadrature. We describe in Section 3 how this step may be
accelerated by pre-computing and storing the values of φ(m) for all small values of m and
then using an asymptotic expansion for large m. We observe that the local evaluation gets
particularly effective whenever the number of lattice cells along the side of any leaf box is
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bounded by some fixed number L of moderate size (say L ≤ 1000). In this case, there is in
the lattice situation only 16L2 possible relative positions of two charges that are near each
other which means that evaluation of the kernel for the near-field calculations amounts to
simply a table lookup. (In fact, due to symmetries, only 2L2 values need to be stored.)

The far-field (2.4) is as in the classical FMM evaluated via the computation of so-called
multipole expansions and incoming expansions. These in turn are constructed via a hierar-
chical procedure on a quad-tree such as the one shown in Figure 6.1. With the development
of so-called kernel independent FMMs, the multipole expansions of the original FMM were
superseded by more general representations valid for a broad range of kernels. The bulk of
this paper consists of a description of such a kernel independent FMM, adapted to exploit
geometrical restrictions imposed in the lattice case. Section 4 reviews a technique for com-
pactly representing charges and potentials, and Section 5 describes how it can be adapted
to the particular case of lattice equations. Section 6 introduces notation for handling quad-
trees, Section 7 describes the so-called translation operators, then the full lattice FMM is
described in Section 8.

3. Evaluation of the lattice fundamental solution

The numerical evaluation of the function φ in (1.8) requires some care since the integrand
has a singularity at the origin and gets highly oscillatory when |m| is large. The latter
issue can be handled quite easily since a highly accurate asymptotic expansion of φ(m)
as |m| → ∞ is known, see Section 3.1. When |m| is small, quadrature and Richardson
extrapolation may be used to compute φ(m) to very high accuracy, see Section 3.2. We note
that in the regime where |m| is small, there is only a limited number of possible values of
m, and the corresponding values of φ(m) can be pre-computed and stored. Consequently,
evaluating φ(m) in the near-field amounts simply to a table look-up, which is very fast.

3.1. Evaluation of fundamental solution for |m| large. It has been established (see
e.g. [7, 8, 18, 19, 20]) that as |m| → ∞, the fundamental solution φ defined by (1.8) has
the asymptotic expansion

(3.1) φ(m) = −
1

2π

(

log |m|+ γ +
log 8

2

)

+
1

24π

m4
1 − 6m2

1m
2
2 +m4

2

|m|6

+
1

480π

43m8
1 − 772m6

1m
2
2 + 1570m4

1m
4
2 − 772m2

1m
6
2 + 43m8

2

|m|12
+O(1/|m|6).

The number γ is the Euler constant (γ = 0.577206 · · · ).
For |m| large, we approximate φ by dropping the O(1/|m|6) term off the asymptotic

expansion. We found that for |m| > 30 the expansion (3.1) is accurate to at least 10−12.
The asymptotic expansion (3.1) is valid for the simple square lattice only. However,

there is a simple process for constructing analogous expansions for fundamental solutions
associated with a very broad class of constant coefficient elliptic difference operators [20].
The process can be automated and executed using symbolic software such as Maple [19].

3.2. Evaluation of fundamental solution for |m| small. When |m| is small enough
that the asymptotic expansion provides insufficient accuracy, we approximate the integral
(1.8) using a two-step quadrature procedure: First, the domain [−π, π]2 is split into n ×
n equisized boxes where n is an odd number chosen so that each box holds about one
oscillation of the integrand (in other words, n ≈ |m|). For each box not containing the
origin, the integral is approximated using a Cartesian Gaussian quadrature with 20 × 20
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nodes. This leaves us with the task of evaluating the integral

g(a) =
1

(2π)2

∫ a

−a

∫ a

−a

cos(t1m1 + t2m2)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dt1 dt2,

where a = π/n denotes the size of the center box. Now observe that

(3.2) g(a) =
∞
∑

n=0

(

g
( a

2n

)

− g
( a

2n+1

))

=
∞
∑

n=0

1

(2π)2

∫

Ωn

cos(t1m1 + t2m2)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dA,

where

Ωn = [2−n a, 2−n a]2\[2−n−1 a, 2−n−1 a]2, n = 1, 2, 3, . . .

is a sequence of annular domains whose union is the square [−a, a]2. All integrals in (3.2)
involve non-singular integrands, and can easily be evaluated via Gaussian quadratures. (We
split each Ωn into eight rectangular regions and use a 20 × 20 point Gaussian quadrature
on each.) Using Richardson extrapolation to accelerate the convergence, it turns out that
only about 14 terms are needed to evaluate the sum (3.2) to a precision of 10−14.

Remark 3.1. The particular integral (1.8) can be evaluated via a short-cut since it is
possible to evaluate the integral over t1 analytically, and then use quadrature only for the
resulting (non-singular) integral over t2, see [19]. Similar tricks are likely possible in many
situations involving mono-atomic lattices. However, we prefer to not rely on this approach
since it does not readily generalize to vector valued problems (such as those associated with
mechanical lattice problems) or multi-atomic lattices.

4. Outgoing and incoming expansions

In this section, we present techniques for efficiently approximating the far-field ufari to
any given positive precision ε. The parameter ε can be tuned to balance the computational
cost verses the accuracy. In the numerical examples reported in Section 9, ε = 10−10.

4.1. Interaction ranks. An essential component of the classical FMM is an efficient tech-
nique for representing potentials and source distributions via “expansions” of different
kinds. To illustrate the concept, let us consider a simplified problem in which a num-
ber of sources are placed in a “source box” Ωτ , and the potential induced by these sources
is to be evaluated at a number of locations in a “target box” Ωσ. The orientation of the
boxes is shown in Figure 4.1. To be precise, we suppose that sources {qτj }

N
j=1 are placed at

locations {xτ
j }

N
j=1 ⊂ Ωτ , and that we seek the potentials {uσi }

M
i=1 induced at some locations

{xσ
i }

M
i=1 ⊂ Ωσ,

(4.1) uσi =

N
∑

j=1

Φ(xσ
i , x

τ
j ) q

τ
j , i = 1, 2, . . . , M.

In this review of the classical FMM, the kernel Φ is defined by

Φ(x,y) = φcont(x− y) = −
1

2π
log |x− y|,

where φcont is the fundamental solution of the Laplace equation. For convenience, we write
(4.1) as a matrix-vector product

(4.2) uσ = A
σ,τ qτ ,

where uσ = [uσi ]
M
i=1 and qτ = [qτj ]

N
j=1, and where Aσ,τ is the M ×N matrix with entries

A
σ,τ
ij = Φ(xσ

i , x
τ
j ).
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Ωτ

Ωσ

Figure 4.1. Illustration of source box Ωτ and target box Ωσ.

A key observation underlying the FMM is that to any finite precision ε, the rank of a
matrix such as Aσ,τ is bounded independently of the numbers M and N of targets and
sources in the two boxes. In fact, the ε-rank P of Aσ,τ satisfies

P . log(1/ε), as ε → 0.

The constant of proportionality depends on the geometry of the boxes, but is typically very
modest. As a consequence of this rank deficiency, it is possible to factor the matrix Aσ,τ ,
say

(4.3)
Aσ,τ ≈ B C,

M ×N M × P P ×N

and then to evaluate the potential uτ in two steps:

(4.4) v = C qτ , u ≈ B v.

The cost of evaluating u via (4.4) is O((M + N)P ), which should be compared to the
O(M N) cost of evaluating u via (4.2).

4.2. Formal definitions of outgoing and incoming expansions. In the classical FMM,
a “multipole expansion” for a box is a short vector from which the potential caused by all
charges in the box can be evaluated; it can be viewed as a compressed representation of
all the charges inside the box. In this section, we introduce the “outgoing expansion”
as a generalization of this idea that allows representations other than classical multipole
expansions to be incorporated. The “incoming expansion” is analogously introduced to
generalize the concept of a “local expansion.”

Well-separated boxes: Let Ω be a box with side length 2a and center c as shown in Figure
4.2. We say that a point x is well-separated from Ω if it lies outside the square of side
length 6a centered at c. We say that two boxes Ω and Ω′ are well-separated if every point
in Ω′ is well-separated from Ω, and vice versa.

Outgoing expansion: Let Ω be a box containing a set of sources. We say that a vector q̂ is
an outgoing expansion for Ω if the potential caused by the sources in Ω can be reconstructed
from q̂ to within precision ε at any point that is well-separated from Ω.

Incoming expansion: Let Ω be a box in which a potential has been induced by a set of
sources located at points that are well-separated from Ω. We say that a vector û is an
incoming expansion for Ω if u can be reconstructed from û to within precision ε.
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6a 2a yc

y1

y2

y3

x1

x2

x3

x4

Ω

Figure 4.2. Illustration of well-separated points. Any point on or outside
of the dashed square is well-separated from Ω. Consequently, the points x2,
x3, and x4 are well-separated from Ω, but x1 is not.

4.3. Charge basis. The cost of computing a factorization such as (4.3) using a generic lin-
ear algebraic technique such as QR is O(M N P ), which would negate any savings obtained
when evaluating the matrix-vector product (unless a very large number of matrix-vector
products involving the same source and target locations is required). Fortunately, it is
possible in many environments to construct such factorizations much faster. The classical
FMM uses multipole expansions. As an alternative, an approach based on so-called “proxy
charges” has recently been developed [26]. It has been demonstrated [21, 22] that for any

given box Ω, it is possible to find a set of locations Ŷ = {ŷp}
P
p=1 ⊂ Ω with the property

that sources placed at these points can to high accuracy replicate any potential caused by
a source distribution in Ω. The number of points P required is given in Table 1. To be
precise, given any set of points Y = {yj}

N
j=1 ⊂ Ω and any sources q = {qj}

N
j=1, we can find

“equivalent charges” q̂ = {q̂p}
P
p=1 such that

(4.5)

N
∑

j=1

φcont(x − yj) qj ≈

P
∑

p=1

φcont(x − ŷp) q̂p,

whenever x is well-separated from Ω. The approximation (4.5) holds to some preset (rel-
ative) precision ε. Moreover, the map from q to q̂ is linear, and there exists a matrix

Tofs = Tofs(Ŷ , Y ) such that

(4.6) q̂ = Tofs q,

where “ofs” is an abbreviation of “outgoing [expansion] from sources.”

ǫ

l 10−6 10−8 10−10 10−13

1/32 19 27 37 49
1/16 19 27 36 49
1/4 19 28 37 49
1/2 21 29 37 51

Table 1. The number of points P required to replicate the field to accuracy
ǫ for a box Ω with side length l.

We say that the points {ŷp}
P
p=1 form an outgoing skeleton for Ω, and that the vector q̂

is an outgoing expansion of Ω.
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In addition, we can find an incoming skeleton X̂ = {x̂p}
P
p=1 ⊂ Ω with the property that

any incoming potential in Ω can be interpolated from its values on the incoming skeleton. To
be precise, suppose that U = U(x) is a potential caused by sources that are well-separated
from Ω, and that X = {xi}

M
i=1 is an arbitrary set of points in Ω. Then there exists a matrix

Ttfi = Ttfi(X, X̂) (‘tfi” stands for “targets from incoming [expansion]”) such that

u = Ttfi û,

where
u = [U(xi)]

M
i=1, and û = [U(x̂p)]

P
p=1.

When the kernel Φ is symmetric in the sense that Φ(x − y) = Φ(y − x) for all x and
y, any outgoing skeleton is also an incoming skeleton,

X̂ = Ŷ .

Moreover, if the target points equal the source points so that X = Y , then

Ttfi = (Tofs)
∗ .

Applied to the situation described in Section 4.1, where a set of sources were placed in
a source box Ωτ , and we sought to evaluate the potential induced at a set of target points
in a box Ωσ, the claims of this section can be summarized by saying that Aσ,τ admits an
approximate factorization

Aσ,τ ≈ Tσ
tfi T

σ,τ
ifo Tτ

ofs

M ×N M × P P × P P ×N

where the middle factor is simply a subsampling of the original kernel function

T
σ,τ

ifo,pq
= Φ(x̂σ

p , x̂
τ
q ).

Remark 4.1. For solving multiple problems involving different source and load distribu-
tions that involve the same kernel, one set of skeleton points may be used for all problems
by choosing the skeleton points to lie on the boundary of Ωσ and Ωτ . The interpolation
matrices Ttfi and Tofs need be constructed for each unique set of source and load distri-
butions using the techniques from [5]. In Section 5, we describe this generalization of the
skeletonization process in more detail for the lattice fundamental solution.

5. Constructing charge bases for the lattice fundamental solution

In this section, we describe how to construct the charge bases for the lattice fundamental
solution defined by (1.8).

From potential theory, we know that to capture the interaction between a set of source
points {mτ

j }
N
j=1 in box Ωτ and all points far from Ωτ , it is enough to capture the interaction

between the source points and a set of “proxy” points F that lie densely on the boundary
of a box that is concentric to Ωτ and has a boundary that is well-separated from Ωτ .

We choose the skeleton points to be a subset of the set of all points Y that lie on the
boundary of box τ . Either rank revealing QR factorization [15] or factorization techniques

from [5] are applied to the matrix AF,Y (whose entries are given by A
F,Y
i,j = Φ(mF

i − mY
j ))

to determine the rank P and which P points make up the set of skeleton points Ŷ of Ωτ .
Using the skeleton points and the techniques from [5], we find the P × N matrix Tofs

such that

(5.1) ‖AF,τ − A
F,Ŷ

Tofs‖ < ǫ.

We use a similar technique to find the incoming skeleton points and the translation
operator Ttfi.



10

Level ℓ = 0

Box τ = 1
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51
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66

67

68

69

82
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84

85

Figure 6.1. A binary tree with 4 levels of uniform refinement.

Remark 5.1. Because of the smoothness of the kernel, it is not required to use all the
points on the boundary of the well-separated box as “proxy” points. We found it is enough
to take 40 points per edge to approximate the far field with accuracy 10−10.

6. Tree structure

The separation of variables in the kernel that was described in Section 4 is all that
is needed to effectively evaluate a potential field whenever the set of target locations is
well-separated from the set of source locations. When the two sets coincide, we need
to tessellate the box containing them into smaller boxes, and use the expansion only for
interactions between boxes that are well-separated. In this section, we describe the simplest
such tessellation.

Suppose that we are given a set of points {xi}
N
i=1 in a box Ω. Given an integer Nleaf ,

we pick the smallest integer L such that when the box Ω is split into 4L equisized smaller
boxes, no box holds more than Nleaf points. These 4

L equisized small boxes form the leaves
of the tree. We merge the leaves by sets of four to form 4L−1 boxes of twice the side-length,
and then continue merging by pairs until we recover the original box Ω, which we call the
root.

The set consisting of all boxes of the same size forms what we call a level. We label
the levels using the integer ℓ = 0, 1, 2, . . . , L, with ℓ = 0 denoting the root, and ℓ = L
denoting the leaves. See Figure 6.1.

Definition 6.1. Let τ be a box in a hierarchical tree.

• The parent of τ is the box on the next coarser level that contains τ .



11

• The children of τ is the set Lchild
τ of boxes whose parent is τ .

• The neighbors of τ is the set Lnei
τ of boxes that are on the same level as τ and are

directly adjacent to it.
• The interaction list of τ is the set Lint

τ of all boxes σ such that:
(1) σ and τ are on the same level.
(2) σ and τ are not directly adjacent.
(3) The parents of σ and τ are directly adjacent.

Example: For the tree shown in Figure 6.1, we have, e.g.,

Lchild
14 = {54, 55, 56, 57},

Lnei
23 = {22, 24, 25, 26, 28},

Lnei
59 = {36, 37, 48, 58, 60, 61, 70, 72},

Lint
7 = {11, 13, 14: 21},

Lint
37 = {22: 29, 30: 33, 38: 41, 47, 49, 54: 57, 60, 61, 71, 72, 73}.

For the moment, we are assuming that the given point distribution is sufficiently uniform
that all the leaves hold roughly the same number of points. In this case,

L ∼ log
N

Nleaf

.

For non-uniform distributions of points, a uniform subdivision of Ω into 4L boxes of equal
length would be inefficient since many of the leaves would hold few or no points. In such
cases, adaptive subdivisions should be used [4].

7. Translation operators

In the FMM, five different so-called translation operators that construct outgoing or
incoming expansions are required. We will, in this section, describe how to construct them,
but we first list which operators we need:

Tτ
ofs The outgoing from sources translation operator: Let τ denote a box holding a set of

sources whose values are listed in the vector qτ . The outgoing expansion q̂τ of τ is
then constructed via

q̂τ = T
τ
ofs q

τ .

T
τ,σ
ofo The outgoing from outgoing translation operator: Suppose that a child σ of a box τ

holds a source distribution represented by the outgoing expansion q̂σ . The far-field
caused by these sources can equivalently be represented by an outgoing representa-
tion q̂τ of the parent, constructed via

q̂τ = T
τ,σ
ofo q̂

σ .

T
τ,σ
ifo The incoming from outgoing translation operator: Suppose that τ and σ are two

well-separated boxes, and that σ holds a source distribution represented by an out-
going expansion q̂σ. Then the field in τ caused by these sources can be represented
by an incoming expansion ûτ that is constructed via

ûτ = T
τ,σ
ifo q̂σ .
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T
τ,σ
ifi The incoming from incoming translation operator: Suppose that τ is the parent of

a box σ. Suppose further that the incoming expansion ûτ represents a potential in
τ caused by sources that are all well-separated from τ . Then these sources are also
well-separated from σ, and the potential in σ can be represented via an incoming
expansion ûσ given by

ûσ = T
τ,σ
ifi ûσ.

Tτ
tfi The targets from incoming translation operator: Suppose that τ is a box whose in-

coming potential is represented via the incoming representation ûτ . Then the po-
tential at the actual target points are constructed via

uτ = T
τ
tfi û

τ .

Techniques for constructing the matrix T τ
ofs were described in Section 5. Since in our

case, the kernel is symmetric (i.e. φ(x − y) = φ(y − x) for all x and y), these techniques
immediately give us the targets-from-incoming translation operator as well, since

T
τ
tfi = (Tτ

ofs)
∗ .

We next observe that when charge bases are used, the outgoing-to-incoming translation
operator is simply a sampling of the kernel function,

T
τ,σ

ifo,pq
= φ(x̂τ

p − x̂σ
q ), p, q = 1, 2, 3, . . . , P,

where {x̂τ
i }

P
i=1 and {x̂σ

j }
P
j=1 are the locations of the skeleton points of τ and σ, respectively.

All that remains is to construct Tτ,σ
ofo and T

σ,τ
ifi . In fact, since the kernel is symmetric,

T
σ,τ
ifi =

(

T
σ,τ
ofo

)∗
,

and all that actually remains is to construct the matrices T
τ,σ
ofo . To this end, let {σi}

l
i=1

denote children of box τ . The construction of Tτ,σi

ofo closely resembles the construction of
the Tofs operator described in Section 5. Instead of choosing the skeleton points from the
set of all points on the boundary of τ as was done in the construction of Tofs, we choose the
skeleton points for τ to be a subset of the skeleton points of its children, Y = [Ŷ σ1 , . . . , Ŷ σl ].
As in Section 5, we define a set of “proxy” points F that are well-separated from τ and use
a factorization technique such as rank revealing QR to determine which points in Y make
up the set of skeleton points Ŷ . Using the techniques from [5], we find the interpolation
matrix S such that

‖AP,Y − A
P,Ŷ

S‖ < ǫ.

The translation operator Tτ,σ1

ofo is then defined via T
τ,σ1

ofo = S(:, 1 : k1) where k1 is the number
of skeleton points of σ1, T

τ,σ2

ofo = S(:, (k1 +1) : (k1 + k2)) where k2 is the number of skeleton
points of σ2, etc.

8. A lattice Fast Multipole Method

While the classical FMM derives so-called “translation operators” based on asymptotic
expansions of the kernel function, the method we propose determines these operators com-
putationally. In this regard, it is similar to “kernel independent FMMs” such as [1, 17, 26].
Since the kernel is translation invariant, the computations need be carried out only for a sin-
gle box on each level. Thus the construction of the translation operators is very inexpensive
(less than linear complexity).
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8.1. Precomputing skeletons and translation operators. For each level l, we define
a “model” box which is centered at the origin and has the same size as the boxes on level
l. The skeleton points and the translation operators are found with respect to the model
box.

To illustrate the concept, suppose that we are given a source f that is non-zero set of
points {mi}

N
i=1 in a box Ω. We seek the potential at the source points.

The pre-computation consist of the following steps:

(1) Divide Ω into the tree structure as described in Section 6.
(2) Construct the lists described in Section 6.
(3) Construct the skeleton points, Tofo, and Tifi translation operators. At the lowest

level L, we construct the skeleton points for the level L model box using the proce-
dure described in Section 5. For each level i < L, we take four copies of the skeleton
points for level i+1 shifting them so that each copy makes up one quadrant of the
model box for level i. The skeleton points and the translation operators Tofo and
Tifi are constructed using the technique described in Section 7.

(4) Construct the Tifo translation operators. For each level i > 1, we construct the
Tifo translation operators for the model box. We assume that the model box is
completely surrounded with boxes such that the interaction list has the maximum
number of boxes possible which is 42. Let Ŷ be the outgoing skeleton points and
X̂ be the incoming skeleton points for the model box on level i. For each j ≤ 42,
we shift X̂ to be centered at the jth possible location for a box on the interaction
list and define

(8.1) T̃
j
ifo = A

X̂,Ŷ

Remark 8.1. In computing the sum, described in Section 8.2, it is easy to use the pre-
computed translation operators. For example, given a box τ that has a box σ on the

interaction list, we identify which j location σ is in relative to τ and define Tσ,τ = T̃
j
ifo.

Remark 8.2. For leaf boxes of size less than 8 × 8 on level l, we utilize the fact that
there are a finite number of points inside the box that are also in Z

2 and construct the
translation operator Tl

ofs for the model box assuming the source points are dense. For each
box τ on level l with N τ sources, we construct an index vector Jτ that notes the locations
of the sources {mτ

j }
Nτ

j=1 in the dense lattice. We define Tτ
ofs = Tl

ofs(:, J
τ ). The translation

operator Tτ
tfi is constructed in a similar manner.

8.2. Application. We have now assembled the tools for computing the sum (1.7) through
two passes through the hierarchical tree; one upwards, and one downwards.

(1) Sweep over all leaf boxes τ . For each box, construct its outgoing representation
from the values of the sources inside it:

q̂τ = T
τ
ofs q(J

τ ).

(2) Sweep over all non-leaf boxes τ , going from finer to coarser levels. Merge the
outgoing expansions of the children to construct the outgoing expansion for τ ,

q̂τ =
∑

σ∈Lτ

children

T
τ,σ
ofo q̂

σ .
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(3) Loop over all boxes τ . For each box, collect the contributions to its incoming
expansion from boxes in its interaction list:

ûτ =
∑

σ∈Lτ

int

T
τ,σ
ifo q̂σ.

(4) Loop over all parent boxes τ , going from coarser levels to finer. For each box τ ,
loop over all children σ of τ , and broadcast the the incoming expansion of τ to the
incoming expansions of σ:

ûσ = ûσ + T
σ,τ
ifi ûτ .

(5) Sweep over all leaf nodes τ . For each node, form the potential uτ by evaluating
the incoming representation and directly adding the contributions from the sources
inside τ and in all boxes that are not well-separated from τ :

uτ = u(Jτ ) = T
τ
tfi û

τ + A(Jτ , Jτ )q(Jτ ) +
∑

σ∈Lτ

nei

A(Jτ , Jσ)q(Jσ).

8.3. Asymptotic complexity of the proposed scheme. Since the kernel (1.8) is sepa-
rable, the cost of computing the skeleton points and the translation operators on any level
of the quad-tree is O(P M |F |) where P is the number of skeleton points, M is the number
of points on the boundary the box, and |F | is the number of well-separated proxy nodes
used [5]. The cost of solving the least squares problem (5.1) to find the matrix Tofs for a
leaf box is O(P 2 |F |+N P |F |) where N is the number of loaded points in the box. Hence,
the total complexity of the lattice FMM is O(Nsource).

Also notice that the memory needed to store the precomputed information is O(Nsource).

9. Numerical examples

In this section, we show that the lattice FMM speed compares favorably to FFT based
techniques except for situations where the source points populate the majority of some
rectangular computational box. We also show that the amount of memory required scales
linearly with the number of source terms.

All experiments are run on a Dell desktop computer with 2GB of RAM and an Intel
Pentium 4 3.4GHz dual processor. The method was run at a requested relative precision
of 10−10. The techniques were implemented rather crudely in Matlab, which means that
significant further gains in speed should be achievable.

We consider the lattice Poisson problem

(9.1) [Au](m) = f(m),

where the points where f(m) is non-zero are confined to an n× n square subdomain Ω of
Z
2. The FFT produces a slightly different solution than the lattice FMM since it enforces

periodic boundary conditions, but this is not important for our purposes. We suppose
throughout that n is a power of two to make the comparison as favorable to the FFT as
possible. We let Tfft denote the time required by the FFT, and TFMM the time for the
FMM.

In the first experiment, we suppose that every node in the lattice is loaded, see Figure
9.1(a), so that Nsource = Ndomain = n2. In this case, we expect

Tfft ∼ n2 log(n), and TFMM ∼ n2,
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and the purpose of the numerical experiment is simply to see how the constants of propor-
tionality compare. Figure 9.2(a) provides the answer. We see that the FMM is slower by
roughly two order of magnitude.

(a) Dense (b) Random (c) Embedded Circle

Figure 9.1. Illustration of load distributions for the three experiments.
Red dots are the source points.
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Figure 9.2. Computational profile for a dense source distribution in a
n × n domain. Computational times using the lattice FMM and FFT are
reported (a). The memory M (in KB) per source point (M/Nsource) used in
storing the precomputed information for the lattice FMM are reported (b).

In the next three experiments, we suppose that f is only sparsely supported in the domain
Ω, so that Nsource ≪ Ndomain. In this case, we expect

Tfft ∼ n2 log(n), and TFMM ∼ Nsource.

In the second experiment, we suppose that n loads are distributed according to a uniform
random distribution throughout the domain, see Figure 9.1(b). Figure 9.3(a) provides the
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measured times. It confirms our expectation that TFMM does not depend on Ndomain, and
indeed, that the FMM can handle a situation with n = 106 loaded nodes in a domain
involving Ndomain = 1012 lattice nodes. Figure 9.3(b) illustrates the memory (in KB)
per source point (M/Nsource) required for storing the pre-computation information. It
confirms our expectation that the memory (in KB) required for storing the pre-computation
information depends linearly with respect to Nsource.

In the third experiment, we distribute the load on a circle inscribed in the square Ω, see
Figure 9.1(c), in such a way thatNsource = αn nodes are loaded, for α = 1, 1/4, 1/16, 1/64.
Figure 9.4(a) provides the time measurements and again confirms our expectation that the
TFMM is not dependent on Ndomain.

In the final experiment, we fix the domain to be sized 2048×2048 and increase the number
of body loads distributed according to a uniform distribution. Figure 9.5(a) provides the
time measurements in comparison with the FFT. It illustrates that for sources occupying
less than 0.39% of the domain (corresponding to 16, 384 sources) the lattice FMM is the
faster method.
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Figure 10.1. A piece of an infinite lattice with some deviations from perfect
periodicity. One bar has been added, three bars have been removed, and two
bars have been strengthened. The set Ωinc of effected nodes has 11 elements,
which are marked with white circles.

10. Extensions

10.1. Lattices with inclusions. The lattice FMM described in this paper can be used to
handle many lattices featuring local deviations from perfect periodicity due to, e.g., missing
bars or lattice inclusions, see Figure 10.1. To illustrate, let us consider the equation

(10.1) [(A + B)u](m) = 0, m ∈ Z
2,

where A is the discrete Laplace operator (1.2), and where B is an operator corresponding to
some local modifications to the lattice, such as those illustrated in Figure 10.1. A typical
far-field condition of interest is to require that the potential u approaches a linear function,
say v(m) = c1m1 + c2m2 where c1 and c2 are given constants, at infinity. Formally, we
require

(10.2) lim
|m|→∞

∣

∣u(m)− v(m)
∣

∣ = 0.

(In what follows, any function v satisfying Av = 0 would work.) When we have access to
the solution operator S, defined via

[Su](m) =
∑

n∈Z2

φ(m− n)u(n),

then the equation (10.1), which is a sparse equation defined on the infinite lattice Z
2, can

be transformed to a dense equation defined only on the set Ωinc of nodes which connect to
bars whose conductivity has been changed, or to which new bars have been connected.

To execute the reduction of (10.1) to an equation defined on Ωinc, set

u = v +w,

and observe that since Av = 0 and (A+ B)u = 0, the new unknown w must satisfy

(10.3) (A+ B)w = −B v.

Since lim|m|→∞

∣

∣w(m)
∣

∣ = 0, we have SAw = w, and so application of BS to (10.3) results
in the equation

(10.4) µ+ BSµ = −BSB v,

where

µ = Bw.
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The key observation is now that B is a local operator on Ωinc, so equation (10.4) can be
restricted to Ωinc to obtain a closed equation for µ. Once µ has been solved from this
equation, the original potential u is recovered via

u = v − S (B v − µ).

It has been demonstrated [10] that iterative solvers in many situations converge rapidly
when used to solve a system such as (10.4). The dense coefficient matrix can rapidly be
applied to a vector since B is a sparse operator, and since S is amenable to the lattice FMM
described in this paper.

10.2. Finite lattice problems involving boundary conditions. The lattice FMM de-
scribed in this paper can also be used in a solution technique for boundary value problems.
To illustrate, let us consider the Dirichlet problem

(10.5)

{

[Au](m) = 0, m ∈ Ω,

u(m) = g(m), m ∈ Γ.

When we have access to the solution operator D, defined

(10.6) [Du](m) = ∂nφ(m− n)q(n)

where the subscript n in ∂n simply indicates that the difference operator is acting on the
variable n, then the equation (10.5) can be reduced to a problem defined on Γ.

An equation for q is obtained by simply restricting (10.6) to Γ:

(10.7)
∑

n∈Γ

d(m,n) q(n) = g(m), m ∈ Γ.

It has been shown in [10] that there exist an O(NΓ) inversion scheme for solving (10.7).
The operator D can be applied rapidly to q using the lattice FMM described in this paper.

Also in [10], the technique described in this section and in section 10.1 has been put
together to create a fast solver for finite lattice problems involving boundary conditions
and inclusions. A key tool for the fast solver is the lattice FMM described in this paper.

11. Concluding remarks

The paper presents a kernel independent FMM for solving Poisson problems defined on
the integer lattice Z

2. For simplicity of presentation, we focused on equations involving the
discrete Laplace operator. Techniques for evaluating the corresponding lattice fundamental
solutions are presented. The complexity of the proposed method is O(Nsource) whereNsource

is the number of locations in Z
2 subjected to body loads.

Numerical experiments demonstrate that for problems where the body loads are sparsely
distributed in a computational box the proposed method is faster and more robust than the
FFT. For instance, it was demonstrated that using a standard desktop PC, a lattice Poisson
equation on a lattice with Ndomain = 1012 nodes, of which Nsource = 106 were loaded, was
solved to ten digits of accuracy in three minutes. It should be noted that this problem is
about six orders of magnitude larger than the largest Poisson problem that can be handled
via the FFT. Also, it was demonstrated for a lattice Poisson problem in a domain with
Ndomain = 4, 194, 304 nodes, the lattice FMM is faster than the FFT when the number of
loaded points is less than Nsource = 16, 384.
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