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Gillman, A. (Ph.D., Applied Mathematics)

Fast direct solvers for elliptic partial differential equations

Thesis directed by Prof. Per-Gunnar Martinsson

The dissertation describes fast, robust, and highly accurate numerical methods for solving

boundary value problems associated with elliptic PDEs such as Laplace’s and Helmholtz’ equa-

tions, the equations of elasticity, and time-harmonic Maxwell’s equation. In many areas of science

and engineering, the cost of solving such problems determines what can and cannot be modeled

computationally.

Elliptic boundary value problems may be solved either via discretization of the PDE (e.g.,

finite element methods) or by first reformulating the equation as an integral equation, and then

discretizing the integral equation. In either case, one is left with the task of solving a system of

linear algebraic equations that could be very large. There exist a broad range of schemes with linear

complexity for solving these equations (multigrid, preconditioned Krylov methods, etc). Most of

these schemes are based on “iterative” techniques that build a sequence of approximate solutions

that converges to the exact solution. In contrast, the methods described here are “direct” in the

sense that they construct an approximation to the inverse (or LU/Cholesky factorization) of the

coefficient matrix. Such direct solvers tend to be more robust, versatile, and stable than iterative

methods, but have until recently been considered prohibitively expensive for large scale problems.

The objective of the dissertation is to demonstrate that in important environments it is possible to

construct an approximate inverse with linear computational cost. The methods are for a single solve

competitive with the best iterative methods, and can be far faster than any previously available

methods in situations where the same coefficient matrix is used in a sequence of problems.

In addition, a new discretization technique for elliptic boundary value problems is proposed.

The idea is to first compute the solution operator of a large collection of small domains. The

small domains are chosen such that the operator is easily computed to high accuracy. A global
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equilibrium equation is then built by equating the fluxes through all internal domain boundaries.

The resulting linear system is well-suited to the newly developed fast direct solvers.
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Chapter 1

Introduction

The dissertation describes fast solution techniques for elliptic boundary value problems, of

for example linear elasticity, Stokes, Helmholtz, and time-harmonic Maxwell equations, that are

commonly used in the modeling of physical phenomena and hence appear repeatedly in many

areas of science and engineering. By developing efficient techniques for solving these problems,

this thesis is a contribution in the effort to expand the range of problems that may be modeled

computationally.

Broadly speaking, existing numerical methods fall into two categories:

Direct discretization of the partial differential equation (PDE): This is probably the most used

solution approach. Common discretization methods include finite element, finite difference and

spectral element methods.

Recast the PDE as an integral equation: The integral equation is then discretized with for example

a Nyström method or boundary element method. This solution technique is possible when the

fundamental solution is known.

For any technique, after discretization one must solve a system of linear algebraic equations

that often involves a very large number of degrees of freedom.

Consider the linear system that arises from a discretization of an elliptic boundary value

problem

Au = f , (1.1)

where A is an N ×N matrix, u and f are vectors. To solve for u, the classic Gaussian elimination
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has computational cost O(N3). Over the last several decades, a number of fast methods (e.g.

multigrid, FFT, FMM) have been developed to solve these linear systems. By “fast,” we mean

that the computational cost of solving the problem grows as O(N logpN) where N is the size of

the problem and p is a small integer, normally p = 0, 1, or 2. Most fast schemes are based on

iterative techniques which build a sequence of approximate solutions and often need a problem

specific preconditioner in order to accelerate convergence. As an alternative, we propose the use of

fast direct solvers. A direct solver constructs an operator T such that

‖A−1 − T‖ < ǫ,

where ǫ is a given computational tolerance. (While the N × N matrix T is dense, usually it is

stored in some kind of data-sparse format requiring O(N) memory.)

Remark 1. Sometimes it is more practical to form an approximate factorization (e.g. LU, Cholesky)

of A, where linear solves involving the factors are fast. The construction of such factorizations is

technically very similar to the problem of constructing an approximate inverse. For the simplicity

of presentation, we limit our discussion to approximating the inverse.

1.1 Advantages of direct solvers

Direct solvers offer several advantages over iterative ones:

Speed-up by large factors for problems involving multiple right hand sides: In many situations,

an equation such as (A.1) needs to be solved for several different right-hand sides f . Iterative

techniques have a limited ability to take advantage of the fact that the operator is the same in

each solve. On the other hand, for a direct method each solve beyond the first simply involves a

matrix-vector multiply with the pre-computed inverse. The time required for applying the inverse

to a vector is typically much smaller than even the time required for a single application of the

original operator using standard techniques.

The ability to solve relatively ill-conditioned problems: Direct solvers allow for the rapid and ac-
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curate solution of linear systems involving relatively ill-conditioned matrices. In the context of

boundary value problems, such ill-conditioning can be caused by physical ill-conditioning (as ob-

served, e.g., when solving the equations of elasticity on domains with high aspect ratios, or when

solving scattering problems near a resonant frequency), but may also be introduced as a side-effect

of the mathematical formulation (e.g. when a PDE is discretized with high-order finite elements or

when an integral equation formulation based on first kind Fredholm equations is used.)

Increased reliability: Existing iterative methods can be extremely efficient, but their performance

relies in subtle ways on spectral properties of the coefficient matrix. In situations where good

preconditioners are not available, convergence can be slow, or even non-existent. Direct solvers

are inherently more robust, and the prospect of obtaining versatile solvers that work reliably for a

broad range of linear systems is one of the key motivations of the work presented.

1.2 Overview of direct solution techniques

The direct solvers described in this dissertation are applicable to several different computa-

tional environments. This section describes four such environments and how direct solvers apply

to each one.

1.2.1 Boundary integral equations

For some boundary value problems, it is possible to use potential theory to reformulate the

problem into a boundary integral equation (BIE) that is well-conditioned. Upon discretization

(via e.g. a Nyström or Boundary element method), the resulting linear system is data-sparse in

the sense that all off-diagonal blocks admit a low-rank factorization. In particular, for many one-

dimensional boundary integral equations (corresponding to PDEs defined in the plane), the matrix

that needs be inverted is Hierarchically Semi-separable (HSS) [71, 16]. Chapter 2 details a fast

inversion technique for HSS matrices that scales linearly with the number of discretization points.

Numerical results illustrate the robustness, accuracy and the scaling of the method. In particular,
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our implementation demonstrates that a linear system corresponding to an elongated domain with

corners involving approximately 105 discretization points can be solved to six digits of accuracy in

about 50 seconds on a standard desktop computer. This work is also presented in a manuscript

that is currently in review [39].

The fast inversion technique has a wide range of applications. For instance, the linear sys-

tem corresponding the discretization of a one-dimensional boundary integral equation where the

boundary is space filling, while not HSS, can be handled by this method. The method builds an

approximate inverse with computational cost O(N1.5), where N is the number of discretization

points. After this matrix is constructed, computing each solution requires linear computational

cost. In [38], we present a fast method for constructing the solution operator for boundary value

problems in non-homogeneous media by combining the HSS inversion scheme and homogenization

techniques. Additionally, the HSS inversion technique serves as a basis for many of the fast solution

techniques presented in this thesis.

1.2.2 Finite element or finite difference matrices

One of the first “fast” direct solution techniques for the large sparse system that arises from

the finite element or finite difference discretization of a PDE is the nested dissection method [35].

This divide and conquer technique is based on the advantageous reordering of the discretization

points minimizes fill-in and results in a method that has O(N1.5) computational cost, where N is

the number of discretization points. In Chapter 3, we describe a variation of the nested dissection

method. It turns out the intermediate worker arrays are HSS matrices. Thus using fast dense

matrix algebra for HSS matrices allows the solution technique to be accelerated to linear complexity.

Numerical results show that the first solve for a problem involving 16 million unknowns takes about

7 minutes on a standard desktop computer. Each additional solve takes about 0.04 seconds. We

are currently working on a manuscript presenting this work.
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1.2.3 Poisson problems on infinite regular lattices

The solution of the free-space Poisson problem

−∆u(x) = f(x), x ∈ R
2, (1.2)

takes the form of a convolution

u(x) =

∫

R2

φcont(x− y) f(y) dy, (1.3)

where φcont is the fundamental solution of the Laplace operator,

φcont(x) = −
1

2π
log |x|. (1.4)

Approximating the source function f by a sum of point charges, the integral (1.3) is converted

to a sum

ui =

N∑

j=1
j 6=i

φcont(xi − xj) f(xj), i = 1, 2, . . . , N (1.5)

which can be computed rapidly via the Fast Multiple method (FMM) [44, 42, 45]. (An analogous

conversion appears if the integral (1.3) is approximated via a quadrature rule.)

We mirror this solution technique for the Poisson problem on an infinite regular lattice

[Au](m) = f(m), m ∈ Z
2, (1.6)

where f = f(m) and u = u(m) are scalar valued functions on Z
2 and f has finite support. The

techniques we will describe apply to many constant coefficient elliptic difference operators, but for

simplicity, suppose that A is the so-called discrete Laplace operator

[Au](m) = 4u(m)− u(m+ e1)− u(m− e1)− u(m+ e2)− u(m− e2), m ∈ Z
2. (1.7)

In (1.7), e1 = [1, 0] and e2 = [0, 1] are the canonical basis vectors in Z
2. With the discrete

fundamental solution [27, 56, 60, 36] defined via the normalized Fourier integral

φ(m) =
1

(2π)2

∫ π

−π

∫ π

−π

cos(t1m1 + t2m2)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dt1 dt2, m = [m1, m2] ∈ Z

2, (1.8)
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the explicit analytic solution to (1.6) is

u(m) = [φ ∗ f ](m) =
∑

n∈Z2

φ(m− n) f(n). (1.9)

In Chapter 4, we describe a lattice FMM for computing (1.9) rapidly. This method is similar in

concept to the so-called “kernel-independent” FMMs but achieves additional speed up by exploiting

the discrete geometry. A manuscript presenting this work will be submitted for publication shortly

[37].

1.2.4 Elliptic difference equations defined on lattices

In Section 1.2.3, we described a lattice analog of the exact solution to the free space continuum

Poisson equation. In this section, we describe a lattice analog of a continuum Laplace boundary

value problem. To illustrate, consider the discrete boundary value problem







[Au](m) = 0, m ∈ Ω,

u(m) = g(m), m ∈ Γ,

(1.10)

where Ω is a subset of Z2 with boundary Γ, parallels the established solution technique for the

continuum problem






[−∆u](x) = 0, x ∈ Ω ⊂ R
2,

u(x) = g(x), x ∈ Γ.

(1.11)

Recall that the solution to (1.11) can be expressed as

u(x) =

∫

Γ
D(x,y)σ(y) dℓ(y), (1.12)

where D is the so called double layer kernel,

D(x,y) =
∂

∂n(y)
Φ(x− y) = n(y) · ∇yΦ(x− y) =

n(y) · (x− y)

2π |x− y|2 ,

where n(y) is the unit normal vector of Γ at y. The function σ(x) is the solution to the following

second kind Fredholm equation

1

2
σ(x) +

∫

Γ
D(x,y)σ(y) dℓ(y) = g(x), x ∈ Γ. (1.13)
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Hence, in Chapter 5, we propose the solution u of (1.10) may be written as

u(m) =
∑

n∈Γ

d(m,n)σ(n), (1.14)

where d is a discrete analog of the continuum double layer potential (1.13). The boundary charge

distribution σ(n) is chosen such that

∑

n∈Γ

d(m,n)σ(n) = g(m), m ∈ Γ. (1.15)

As with the linear system resulting from the Nyström discretization of (1.13), equation (1.15)

is well-conditioned and HSS. Thus σ can be found rapidly using the fast inversion technique pre-

sented in Chapter 2.

Chapter 5 also presents techniques for handling lattices with imperfections such as inclusions.

The technique introduces an additional unknown for every imperfection in the lattice. By doing

this, we are able to utilize both the lattice FMM and the HSS solver, resulting in a solution

technique that scales as O(Ninc + Nboundary), where Ninc denotes the number of inclusion points,

and Nboundary denotes the number of points on the boundary of Ω.

The paper [36] provides an additional presentation of this work.

1.3 Alternative discretization technique

In addition to the collection of direct solvers, this dissertation also presents a new discretiza-

tion technique for elliptic boundary value problems in Chapter 6.

The idea basic idea of the method is to first compute the solution operator also known as the

Neumann-to-Dirichlet operator for a large collection of small domains. These small domains are

chosen such that:

• The union of the small domains is the entire domain.

• Each small domain shares at most a portion of its boundary with any other domain.

• The solution operator may be computed easily via least squares technique.
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Using the fluxes through the boundary of each of the small domains as unknowns, a global

equilibrium equation is formed. The linear system is ideally suited for fast direct solvers. Prelimi-

nary results are presented.



Chapter 2

A linear complexity direct solver for integral equations on one-dimensional

domains

This chapter describes techniques for numerically solving equations of the type

a(t) q(t) +

∫ T

0
b(t, t′) q(t′) dt′ = f(t), t ∈ I, (2.1)

where I = [0, T ] is an interval on the line, and where a : I → R and b : I × I → R are given

functions. We observe that a boundary integral equation (BIE) such as

a(x) q(x) +

∫

Γ
b(x,x′) q(x′) dl(x′) = f(x), x ∈ Γ, (2.2)

where Γ is a simple curve in the plane takes the form (2.1) upon parameterization of the curve.

The case of a domain Γ that consists of several non-connected simple curves can also be handled.

Upon discretization, equation (2.1) takes the form

Aq = f (2.3)

where A is a dense matrix of size, say, N × N . When N is large, standard practice for rapidly

solving a system such as (2.3) is to use an iterative solver (such as GMRES, conjugate gradients,

etc.) in which the matrix-vector multiplications are accelerated via a “fast” method such as the

Fast Multipole Method (FMM) [44], panel clustering [48], Barnes-Hut [5], etc. When the integral

equation (2.1) is a Fredholm equation of the second kind, the iteration typically converges rapidly,

and a linear solver of effectively O(N) complexity results. In contrast, this chapter reviews and



10

extends a number of recently developed direct solvers that in a single pass compute a data-sparse

representation of a matrix S (a “solution operator”) that satisfies

S ≈ A−1.

Once a representation of S is available, the solution of (2.3) is of course easily constructed:

q ≈ S f . (2.4)

We will demonstrate that in many important environments (such as, e.g., the BIEs associated with

Laplace’s equation in the plane), the matrix S can be constructed in O(N) operations.

The direct solver presented scales linearly for most boundary integral equations associated

with the classical boundary value problems of mathematical physics (Laplace, elasticity, Helmholtz,

Yukawa, Stokes, etc.) There are two important exceptions for which it has O(N1.5) computational

cost (1) problems involving highly oscillatory kernels such as Helmholtz equation at short wave-

lengths, and (2) domain boundaries that tend to “fill space” in the sense illustrated in Figure 2.1.

We will demonstrate that both high accuracy and speed can be maintained even for non-smooth

boundaries.

The direct solver is also applicable to many integral equations of the form (2.1) that arise

in the analysis of special functions [76], in evaluating conformal maps [68], and in the analysis of

two-point boundary value problems [72].

Using the direct solver for (2.1) can be viewed as a process consisting of four steps. Letting

ε denote a user specified computational tolerance, the four steps are:

(i) Quadrature nodes and quadrature weights for a Nyström discretization are created: The interval

Figure 2.1: Contours for which the direct solver will not achieve O(N) complexity.
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[0, T ] is split into panels, and Gaussian nodes are placed on each panel. Customized quadrature

weights are constructed using the method of [79] which ensures high accuracy even in the presence

of weakly singular kernels (and for BIEs on domains with corners).

(ii) Construction of the coefficient matrix: The matrix A in (2.3) is an N ×N matrix that is dense,

but whose off-diagonal blocks are to high accuracy rank-deficient. We exploit this fact, and compute

an approximant Aapprox which is stored in the data-sparse format very similar to the Hierarchically

Semi-Separable (HSS) format of [71, 16].

(iii) Inversion of the coefficient matrix: The approximant Aapprox of the coefficient matrix is inverted

using a variation of the technique of [72, 61] to produce the solution operator S = A−1approx. The

inversion is exact up to round-off errors.

(iv) Application of the approximate inverse: The solution operator S is applied to the given data

vector f to produce the solution q, cf. (2.4).

Each of the four steps typically requires O(N) work when applied to the standard equations of math-

ematical physics (with the two exceptions mentioned previously). The constants of proportionality

depend on the specific environment, but in general, Step (ii) is the most expensive. The cost of

Step (iv) is tiny, meaning that the proposed procedure is particularly effective in environments

where a sequence of equations with the same coefficient matrix need to be solved.

Remark 2. The computations in Steps (iii) and (iv) are independent of the specific problem being

solved, and can be implemented as “black-box” codes.

The general idea of exploiting rank-deficiencies in the off-diagonal blocks of the matrix A

in (2.3) is the foundation for many “fast” matrix-vector multiplication algorithms (e.g. the Fast

Multipole Method [44], panel clustering [48], Barnes-Hut [5]) which improve the efficiency of iter-

ative solvers. The observation that such rank-deficiencies can also be to accelerate dense matrix

algebra, such as matrix inversion, matrix-matrix multiplication, etc., was made in earlier work on

H-matrices [49]. The early versions of these methods have O(N(logN)p) complexity for some small
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integer p. Some of these operations were later accelerated to O(N) complexity in the context of

H2-matrices [11].

The direct solver described in this chapter is an evolution of the scheme presented in [61],

which in turn draws on the earlier work [7, 66, 72]. The major difference between the method in

[61] is the separation of the compression and inversion steps. Besides making the presentation of

the algorithm much clearer, this separation allows for other improvements, including:

Improved versatility: Separating the task of compression from the task of inversion makes it much

easier to apply the direct solver to new applications. If a BIE with a different kernel is to be solved,

a slight modification of the compression step (Step (ii)) is sufficient. It also opens up the possibility

of combining the direct solver with generic compression techniques based on randomized sampling,

e.g., those described in [57].

Improved quadratures: The version of the algorithm described in this chapter is compatible with

the quadratures of [51, 12] which enable the handling of BIEs defined on domains with corners,

and the quadratures of [79] which simplify the handling of singular kernels.

Improved theoretical analysis: The presented direct solver is expressed transparently as a telescoping

matrix factorization. This allows for a simplified error and stability analysis, as illustrated by, e.g.,

Lemma 1 and Corollary 1.

Improved interoperability with other data-sparse matrix formats: The new version of the algorithm

makes it clear that the data-sparse format used to represent both the coefficient matrix and its

inverse are essentially identical to the Hierarchically Semi-Separable (HSS) format of [71, 16]. This

opens up the possibility of combining the compression techniques described in this chapter with

recently developed inversion and factorization algorithms for HSS matrices [19].

Remark 3. This chapter uses the terms “block separable” (BS) and “hierarchically block separable”

(HBS). The HBS format is essentially identical to the HSS format. The terms BS and HBS were

introduced for local purposes only since they clarify the description of the algorithm. There is no
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intention to replace the well-established term “HSS.”

The chapter proceeds by explaining in detail each of the four steps that comprise the direct

solver. Section 2.1 introduces notation and reviews the Nyström discretization method for integral

equations. Section 2.2 describes an accelerated direct solver based on a simplistic tessellation of

an N ×N matrix A into p× p blocks in such a way that all off-diagonal blocks are rank deficient.

This method has complexity O(p−2N3 + p3 k3) where k is the rank of the off-diagonal blocks. To

attain better asymptotic complexity, a more complicated hierarchical tessellation of the matrix

must be implemented. This data structure is described in Section 2.3, and an O(N k2) inversion

technique is then described in Section 2.4. Section 2.5 describes efficient techniques for computing

the data-sparse representation in the first place. Then some numerical experiments are presented

illustrating the performance of the proposed method. Section 2.7 describes possible extensions of

the work.

2.1 Preliminaries

This section introduces notation, and briefly reviews some known techniques.

2.1.1 Notation

We say that a matrix U is orthogonal if its columns form an orthonormal set. An orthonormal

matrix U preserves geometry in the sense that |Ux| = |x| for every vector x. We use the notation

of [41] to denote submatrices: If A is an m×n matrix with entries A(i, j), and if I = [i1, i2, . . . , ip]

and J = [j1, j2, . . . , jq] are two index vectors, then the associated p× q submatrix is expressed as

A(I, J) =










ai1,j1 · · · ai1,jq
...

...

aip,j1 · · · aip,jq










.

For column- and row-submatrices, we use the standard abbreviations

A( : , J) = A([1, 2, . . . , m], J), and A(I, : ) = A(I, [1, 2, . . . , n]).
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2.1.2 The Interpolatory Decomposition (ID)

An m× n matrix B of rank k admits the factorization

B = UB(J, : ),

where J = [j1, . . . , jk] is a vector of integers such that 1 ≤ ji ≤ m, and U is a m × k matrix

that contains the k × k identity matrix Ik (specifically, U(J, : ) = Ik). Moreover, no entry of U

is larger than one. Computing the ID of a matrix is in general combinatorially expensive, but if

the restriction on element size of U is relaxed slightly to say that, for instance, each entry of U is

bounded by 2, then very efficient schemes are available. See [46, 21] for details.

2.1.3 Nyström discretization of integral equations in one dimension

In this section, we very briefly describe some variations of the classical Nyström method for

discretizing an integral equation such as (2.1). The material is well-known and we refer to [3] for

details.

For an integral equation with a smooth kernel k(t, t′), the Nyström method is particularly

simple. The starting point is a quadrature rule for the interval [0, T ] with nodes {ti}Ni=1 ⊂ [0, T ]

and weights {ωi}Ni=1 such that

∫ T

0
b(ti, t

′) q(t′) dt′ ≈
n∑

j=1

b(ti, tj) q(tj)ωj, i = 1, 2, . . . , N.

Then the discretized version of (2.1) is obtained by enforcing that

a(ti) q(ti) +

n∑

j=1

b(ti, tj) q(tj)ωj = f(ti), i = 1, 2, . . . , N. (2.5)

We write (2.5) compactly as

Aq = f ,

where A is the N ×N matrix with entries

A(i, j) = δi,j a(ti) + b(ti, tj)ωj, i, j = 1, 2, 3, . . . , N.
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where f is the vector with entries

f(i) = f(ti), i = 1, 2, 3, . . . , N,

and where q is the approximate solution which satisfies

q(i) ≈ q(ti), i = 1, 2, 3, . . . , N.

We have found that using a composite quadrature rule with a 10-point standard Gaussian quadra-

ture on each panel is a versatile and highly accurate choice.

Remark 4 (Singular kernels). Some of the numerical examples described in Section 5.5 involve

kernels with logarithmically singular kernels,

k(t, t′) ∼ log |t− t′|, as t′ → t.

A standard quadrature rule designed for smooth functions would lose almost all accuracy on the

panels where t and t′ are close, but this can be remedied by modifying the matrix entries near the

diagonal. For instance, when Gaussian quadrature nodes are used, the procedure described in [79]

gives very accurate results. Alternatively, the Rokhlin-Kapur [52] procedure starts with a standard

trapezoidal rule and modifies the weights near the end points to achieve high order convergence.

This is a simpler method than the modified Gaussian rule of [79] but typically also produces lower

accuracy.

Remark 5 (Contours with corners). Discretizing an integral equation such as (2.2) may be chal-

lenging if the contour Γ is not smooth. When x ∈ Γ is a corner point, the function x′ 7→ b(x,x′)

typically has a singularity at x. It has been demonstrated [51, 12] that in many cases of practical

interest, it is nevertheless possible to use standard quadrature weights designed for smooth functions,

as long as the discretization is locally refined near the corner. The drawback is that such refinement

may increase the system size in an undesirable way but as [51] demonstrates, the system size can

be reduced via a local pre-computation. In this text, we demonstrate that it is alternatively possible

to use general purpose direct solvers to achieve the same effect.
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2.2 Inversion of block separable matrices

In this section, we define what it means for a matrix to be “block separable” and describe a

simple technique for inverting such a matrix.

Let A be an np× np matrix that is blocked into p× p blocks, each of size n× n:

A =













D1 A1,2 A1,3 · · · A1,p

A2,1 D2 A2,3 · · · A2,p

...
...

...
...

Ap,1 Ap,2 Ap,3 · · · Dp













. (2.6)

We say that A is “block separable” with “block-rank” k if for τ = 1, 2, . . . , p, there exist n × k

matrices Uτ and Vτ such that each off-diagonal block Aσ,τ of A admits the factorization

Aσ,τ = Uσ Ãσ,τ V∗τ , σ, τ ∈ {1, 2, . . . , p}, σ 6= τ.

n× n n× k k × k k × n

(2.7)

Observe that the columns of Uσ must form a basis for the columns of all off-diagonal blocks in row

σ, and analogously, the columns of Vτ must form a basis for the rows in all the off-diagonal blocks

in column τ . When (2.7) holds, the matrix A admits a block factorization

A = U Ã V∗ + D,

np× np np× kp kp× kp kp× np np× np

(2.8)

where

U = diag(U1, U2, . . . , Up), V = diag(V1, V2, . . . , Vp), D = diag(D1, D2, . . . , Dp),

and

Ã =













0 Ã12 Ã13 · · ·

Ã21 0 Ã23 · · ·

Ã31 Ã32 0 · · ·
...

...
...













.
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The block structure of formula (2.8) for p = 4 is illustrated below:

A = U Ã V∗ + D

(2.9)

The idea is that by excising the diagonal blocks from A, we obtain a rank-deficient matrix A − D

that can be factored with block diagonal flanking matrices: A− D = U ÃV∗.

The inverse of a block-separable matrix can rapidly be constructed using the following simple

variation of the classical Sherman-Morrison-Woodbury formula:

Lemma 1. Suppose that A is an N × N invertible matrix. Suppose further that K is a positive

integer such that K < N , that A admits the decomposition

A = U Ã V∗ + D,

N ×N N ×K K ×K K ×N N ×N

(2.10)

and that the matrices D, (V∗ D−1U), and
(
Ã+ (V∗D−1U)−1

)
are invertible. Then

A−1 = E (Ã + D̂)−1 F∗ + G, (2.11)

where

D̂ =
(
V∗D−1U

)−1
, (2.12)

E = D−1U D̂, (2.13)

F = (D̂ V∗ D−1)∗, (2.14)

G = D−1 − D−1U D̂V∗D−1. (2.15)

When A is block-separable, (2.10) holds with block diagonal matrices U, V, and D. The

matrices D̂, E, F, and G can then be evaluated rapidly, and Lemma 1 can be said to reduce the task

of inverting the np× np matrix A, to the task of inverting the kp× kp matrix Ã+ D̂.

Proof of Lemma 1: Consider the equation

(
U ÃV∗ + D

)
q = u. (2.16)
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We will prove that (2.11) holds by proving that the solution q of (2.16) is the right hand side of

(2.11) applied to u. First we set

q̂ = V∗ q. (2.17)

Then (2.16) can be written

U Ã q̂+ Dq = u. (2.18)

Solving (2.18) for q and inserting the result in (2.17), we obtain

(I + V∗ D−1U
︸ ︷︷ ︸

=D̂−1

Ã) q̂ = V∗ D−1 u. (2.19)

Multiplying (2.19) by D̂ we find that

(D̂+ Ã) q̂ = D̂ V∗ D−1
︸ ︷︷ ︸

=F∗

u. (2.20)

Now note that from (2.18) it also follows that

q = −D−1U Ã q̂ + D−1 u. (2.21)

From (2.20) we know that

Ã q̂ = −D̂ q̂+ F∗ u. (2.22)

Inserting (2.22) into (2.21), we obtain

q = −D−1U
(
−D̂ q̂+ F∗ u

)
+ D−1 u = D−1U D̂

︸ ︷︷ ︸

=E

q̂+
(
D−1 − D−1UF∗

)

︸ ︷︷ ︸

=G

u. (2.23)

Solving (2.20) for q̂ and inserting the result in (2.23), we obtain the expression (2.11).

The technique provided by the lemma is a useful tool in its own right. It often reduces the

cost of inverting an N × N matrix from the O(N3) cost of Gaussian elimination, to O(N1.8), see

Remark 6. Even more significant is that for many matrices, including the ones under consideration

in this chapter, the process described can be continued recursively which leads to an O(N) inversion

scheme. The required hierarchical representations of matrices are described in Section 2.3, and the

O(N) inversion scheme is given in Section 2.4.
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Remark 6. To assess the computational cost of applying Lemma 1, suppose that A is a BS matrix

whose p × p blocks of size n× n satisfy (2.7). Then evaluating the factors D̂, E, F, and G requires

O(p n3) operations. Evaluating (Ã + D̂)−1 requires O(p3 k3) operations. The total cost TBS of

evaluating the factors in formula (2.11) therefore satisfies:

TBS ∼ p n3 + p3 k3. (2.24)

The cost (2.24) should be compared to the O(p3 n3) cost of evaluating A−1 directly. To elucidate the

comparison, suppose temporarily that we are given a matrix A of fixed size N ×N , and can choose

how many blocks p we wish to partition it into. Then n ≈ N/p, and the total cost satisfies

TBS ∼ p−2N3 + p3 k3. (2.25)

If the rank of interaction k is independent of the block size, we can set p ∼ N3/5, whence

TBS ∼ k3 N9/5. (2.26)

In practice, the numerical rank of the off-diagonal blocks typically increases slightly as the block

size n is increased, but the increase tends to be moderate. For instance, for the matrices under

consideration in this chapter, one typically sees k ∼ log(n) ∼ log(N/p). In such an environment,

setting p ∼ N3/5 (logN)−3/5 transforms (2.25) to, at worst,

TBS ∼ (logN)6/5 N9/5.

The calculations in this remark do not include the cost of actually constructing the factors U, V, D.

For a general matrix, this cost is O(kN2), but for the matrices under consideration in this chapter,

techniques with better asymptotic complexity are described in Section 2.5.

We close by showing that when the matrix A is symmetric positive definite, the assumption

in Lemma 1 that certain intermediate matrices are invertible can be omitted:

Corollary 1. Let A be a symmetric positive definite (spd) matrix that admits a factorization

A = U Ã U∗ + D,

N ×N N ×K K ×K K ×N N ×N

(2.27)
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where ker(U) = {0} and D is a block diagonal submatrix of A. Then the matrices D,
(
U∗D−1U

)
,

and Ã+ (U∗ D−1U)−1 are spd (and hence invertible).

Proof of Corollary 1: That D is spd follows immediately from the fact that it is a block diagonal

submatrix of a spd matrix.

To show that U∗D−1U is spd, we pick any x 6= 0, set y = D−1Ux, observe that y 6= 0 since

ker(U) = {0}, and then we find that 〈U∗ D−1Ux,x〉 = 〈D−1 U,Ux〉 = 〈y,Dy〉 > 0 since D is spd.

It remains only to prove that Ã+ (U∗D−1U)−1 is spd. To this end, define D̂ and E via

D̂ = (U∗D−1U)−1

E = D−1UD̂.

Then

Ã+ D̂ = D̂

(

D̂−1 Ã D̂−1 + D̂−1
)

D̂ = D̂

(

U∗D−1 U ÃU∗D−1U+ D̂−1
)

D̂

= D̂
(
U∗D−1 (A− D)D−1U+ U∗D−1U

)
D̂ = D̂ U∗D−1 AD−1UD̂ = E∗AE.

That Ã+ (U∗D−1U)−1 is spd now follows since ker(E) = {0} and A is spd.

Remark 7. The proof of Corollary 1 demonstrates that the stability of the method can readily be

assessed by tracking the conditioning of the matrices E. If these matrices are close to orthogonal

(i.e. all their singular values are similar in magnitude) then the compressed matrix Ã+ D̂ has about

the same distribution of singular values as A since Ã+ D̂ = E∗ AE.

2.3 Hierarchically block separable matrices

In this section, we define what it means for an N × N matrix A to be HBS. Section 2.3.1

informally describes the basic ideas. Section 4.5 describes a simple binary tree of subsets of the

index vector [1, 2, . . . , N ]. Section 2.3.3 provides a formal definition of the HBS property. Section

2.3.4 describes how an HBS matrix may be expressed a telescoping factorization. Section 2.3.5

describes an O(N) procedure for applying an HBS matrix to a vector.
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2.3.1 Heuristic description

The HBS property first of all requires A to be BS. Supposing that A consists of 8× 8 blocks,

this means that A admits a factorization, cf. (2.9):

A = U(3) Ã(3) (V(3))∗ + D(3)

(2.28)

The superscripts on the right-hand side of (2.28) indicate that the factorization is at “level 3.” We

next require the smaller matrix Ã(3) to be BS, and to admit the analogous factorization:

Ã(3) = U(2) Ã(2) (V(2))∗ + B(2)

(2.29)

In forming (2.29), we reblocked the matrix Ã(3) by merging blocks in groups of four. The purpose

is to “reintroduce” rank deficiencies in the off-diagonal blocks. In the final step in the hierarchy,

we require that upon reblocking, Ã(2) is BS and admits a factorization:

Ã(2) = U(1) Ã(1) (V(1))∗ + B(1)

(2.30)

Combining (2.28), (2.29), and (2.30), we find that A can be expressed as

A = U(3)
(
U(2)

(
U(1) B(0) (V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ + D(3). (2.31)

The block structure of the right hand side of (2.31) is:

U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3).
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In other words, the HBS property lets us completely represent a matrix in terms of certain block

diagonal factors. The total cost of storing these factors is O(N k), and the format is an example of

a so-called “data-sparse” representation of the matrix.

Remark 8. In describing the HBS property, we assumed that all off-diagonal blocks at all levels

have the same rank k. We do this for notational clarity only. In practice, the minimal rank tends to

vary slightly from block to block, and to moderately increase on the coarser levels. In the numerical

examples in Section 5.5, all codes determine the rank adaptively for each block.

2.3.2 Tree structure

The HBS representation of an N × N matrix A is based on a partition of the index vector

I = [1, 2, . . . , N ] into a binary tree structure. For simplicity, we limit attention to binary tree

structures in which every level is fully populated. We let I form the root of the tree, and give

it the index 1, I1 = I. We next split the root into two roughly equi-sized vectors I2 and I3 so

that I1 = I2 ∪ I3. The full tree is then formed by continuing to subdivide any interval that holds

more than some preset fixed number n of indices. We use the integers ℓ = 0, 1, . . . , L to label

the different levels, with 0 denoting the coarsest level. A leaf is a node corresponding to a vector

that never got split. For a non-leaf node τ , its children are the two boxes σ1 and σ2 such that

Iτ = Iσ1 ∪ Iσ2 , and τ is then the parent of σ1 and σ2. Two boxes with the same parent are called

siblings. These definitions are illustrated in Figure 6.6

Remark 9. The HBS format works with a broad range of different tree structures. It is permissible

to split a node into more than two children if desirable, to distribute the points in an index set un-

evenly among its children, to split only some nodes on a given level, etc. This flexibility is essential

when A approximates a non-uniformly discretized integral operator; in this case, the partition tree

it constructed based on a geometric subdivision of the domain of integration. The spatial geometry

of a box then dictates whether and how it is to be split. The algorithms presented in this chapter

can easily be modified to accommodate general trees.
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Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 2.2: Numbering of nodes in a fully populated binary tree with L = 3 levels. The root is the
original index vector I = I1 = [1, 2, . . . , 400].

2.3.3 Definition of the HBS property

We are now prepared to rigorously define what it means for an N × N matrix A to be

hierarchically block separable with respect to a given binary tree T that partitions the index vector

J = [1, 2, . . . , N ]. For simplicity, we suppose that the tree has L fully populated levels, and that

for every leaf node τ , the index vector Iτ holds precisely n points, so that N = n 2L. Then A is

HBS with block rank k if the following two conditions hold:

(1) Assumption on ranks of off-diagonal blocks at the finest level: For any two distinct leaf nodes

τ and τ ′, define the n× n matrix

Aτ,τ ′ = A(Iτ , Iτ ′). (2.32)

Then there must exist matrices Uτ , Vτ ′ , and Ãτ,τ ′ such that

Aτ,τ ′ = Uτ Ãτ,τ ′ V∗τ ′ .

n× n n× k k × k k × n

(2.33)

(2) Assumption on ranks of off-diagonal blocks on level ℓ = L−1, L−2, . . . , 1: The rank assumption

at level ℓ is defined in terms of the blocks constructed on the next finer level ℓ+1: For any distinct

nodes τ and τ ′ on level ℓ with children σ1, σ2 and σ′1, σ
′
2, respectively, define

Aτ,τ ′ =






Ãσ1,σ′

1
Ãσ1,σ′

2

Ãσ2,σ′

1
Ãσ2,σ′

2




 . (2.34)
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Name: Size: Function:

For each leaf Dτ n× n The diagonal block A(Iτ , Iτ ).
node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .

For each parent Bτ 2k × 2k Interactions between the children of τ .
node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

Figure 2.3: An HBS matrix A associated with a tree T is fully specified if the factors listed above
are provided.

Then there must exist matrices Uτ , Vτ ′ , and Ãτ,τ ′ such that

Aτ,τ ′ = Uτ Ãτ,τ ′ V∗τ ′ .

2k × 2k 2k × k k × k k × 2k

(2.35)

The two points above complete the definition. An HBS matrix is now fully described if the

basis matrices Uτ and Vτ are provided for each node τ , and in addition, we are for each leaf τ given

the n× n matrix

Dτ = A(Iτ , Iτ ), (2.36)

and for each parent node τ with children σ1 and σ2 we are given the 2k × 2k matrix

Bτ =






0 Ãσ1,σ2

Ãσ2,σ1 0




 . (2.37)

Observe in particular that the matrices Ãσ1,σ2 are only required when {σ1, σ2} forms a sibling pair.

Figure 2.3 summarizes the required matrices.

Remark 10. The definition of the HBS property given in this section is flexible in the sense that

we do not enforce any conditions on the factors Uτ , Vτ , and Ãτ,τ ′ other than that (2.33) and (2.35)

must hold. For purposes of numerical stability, further conditions are sometimes imposed. The

perhaps strongest such condition is to require the matrices Uτ and Vτ ′ in (2.33) and (2.35) be

orthonormal, see e.g. [71, 16] (one may in this case require that the matrices Ãτ,τ ′ be diagonal, so

that (2.33) and (2.35) become singular value decompositions.) If a “general” HBS matrix is given,

it can easily be converted to this more restrictive format via, e.g., Algorithm 1. A choice that we
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have found highly convenient is to require (2.33) and (2.35) to be interpolatory decompositions (see

Section 2.1.2). Then every Uτ and Vτ ′ contains a k × k identity matrix (which greatly accelerates

computations), and each Ãτ,τ ′ is a submatrix of the original matrix A.

Remark 11. The definition (2.33) transparently describes the functions of the basis matrices Uτ

and Vτ whenever τ is a leaf node. The definition (2.35) of basis matrices for non-leaf nodes is

perhaps less intuitive. Their meaning can be made clearer by defining what we call “extended” basis

matrices Uextend
τ and Vextend

τ . For a leaf node τ we simply set

Uextend
τ = Uτ , and Vextend

τ = Vτ .

For a parent node τ with children σ1 and σ2, we set

Uextend
τ =






Uextend
σ1

0

0 Uextend
σ2




 Uτ , and Vextend

τ =






Vextend
σ1

0

0 Vextend
σ2




 Vτ .

Then for any distinct nodes τ and τ ′ on level ℓ, we have

A(Iτ , Iτ ′) = Uextend
τ Ãτ,τ ′ (Vextend

τ )∗.

n 2L−ℓ × n 2L−ℓ n 2L−ℓ × k k × k k × n 2L−ℓ

2.3.4 Telescoping factorizations

In the heuristic description of the HBS property in Section 2.3.1, we claimed that any HBS

matrix can be expressed as a telescoping factorization with block diagonal factors. We will now

formalize this claim. Given the matrices defined in Section 2.3.3 (and summarized in Figure 2.3),

we define the following block diagonal factors:

D(ℓ) = diag(Dτ : τ is a box on level ℓ), ℓ = 0, 1, . . . , L, (2.38)

U(ℓ) = diag(Uτ : τ is a box on level ℓ), ℓ = 1, 2, . . . , L, (2.39)

V(ℓ) = diag(Vτ : τ is a box on level ℓ), ℓ = 1, 2, . . . , L, (2.40)

B(ℓ) = diag(Bτ : τ is a box on level ℓ), ℓ = 0, 1, . . . , L− 1, . (2.41)
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Algorithm 1 (reformatting an HBS matrix)

Given the factors Uτ , Vτ , Ãσ1,σ2 , Dτ of an HBS matrix in general format, this algorithm
computes new factors (that overwrite the old) such that all Uτ and Vτ are orthonormal,
and all Ãσ1,σ2 are diagonal.

loop over levels, finer to coarser, ℓ = L− 1, L− 2, . . . , 0
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .
[U1, R1] = qr(Uσ1). [U2, R2] = qr(Uσ2).
[V1, S1] = qr(Vσ1). [V2, S2] = qr(Vσ2).

[X1, Σ12, Y2] = svd(R1 Ãσ1,σ2 S
∗
2). [X2, Σ21, Y1] = svd(R2 Ãσ2,σ1 S

∗
1).

Uσ1 ← U1 X1. Uσ2 ← U2 X2.
Vσ1 ← V1 Y1. Vσ2 ← V2 Y2.
Bσ1σ2 ← Σ12. Bσ2σ1 ← Σ21.
if l > 0

Uτ ←
[
X∗1 R1 0
0 X∗2 R2

]

Uτ . Vτ ←
[
Y∗1 S1 0
0 Y∗2 S2

]

Vτ .

end if
end loop

end loop
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Furthermore, we let Ã(ℓ) denote the block matrix whose diagonal blocks are zero, and whose off-

diagonal blocks are the blocks Ãτ,τ ′ for all distinct τ, τ
′ on level ℓ. With these definitions,

A = U(L) Ã(L) (V(L))∗ + D(L);

n 2L × n 2L n 2L × k 2L k 2L × k 2L k 2L × n 2L n 2L × n 2L
(2.42)

for ℓ = L− 1, L− 2, . . . , 1 we have

Ã(ℓ+1) = U(ℓ) Ã(ℓ) (V(ℓ))∗ + B(ℓ);

k 2ℓ+1 × k 2ℓ+1 k 2ℓ+1 × k 2ℓ k 2ℓ × k 2ℓ k 2ℓ × k 2ℓ+1 k 2ℓ+1 × k 2ℓ+1

(2.43)

and finally

Ã(1) = B(0). (2.44)

2.3.5 Matrix-vector multiplication

The telescoping factorizations in Section 2.3.4 easily translate into a formula for evaluating

the matrix-vector product u = Aq once all factors in an HBS representation have been provided.

The resulting algorithm has computational complexity O(N k) (assuming that n = O(k)), and is

given as Algorithm 2.

2.4 Inversion of hierarchically block separable matrices

In this section, we describe an algorithm for inverting an HBS matrix A. The algorithm is

exact (in the absence of round-off errors) and has asymptotic complexity O(N k2). It is summarized

as Algorithm 3, and as the description indicates, it is very simple to implement. The output of

Algorithm 3 is a set of factors in a data-sparse representation of A−1 which can be applied to a

given vector via Algorithm 4. Technically, the scheme consists of recursive application of Lemma

1, and its derivation is given in the proof of the following theorem:

Theorem 1. Let A be an invertible N × N HBS matrix with block-rank k. Suppose that at the

finest level of the tree structure, there are 2L leaves that each holds n points (so that N = n 2L),

and that n ≤ 2 k. Then a data-sparse representation of A−1 that is exact up to rounding errors can
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Algorithm 2 (HBS matrix-vector multiply)

Given a vector q and a matrix A in HBS format, compute u = Aq.

loop over all leaf boxes τ
q̂τ = V∗τ q(Iτ ).

end loop

loop over levels, finer to coarser, ℓ = L− 1, L− 2, . . . , 1
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .

q̂τ = V∗τ

[
q̂σ1

q̂σ2

]

.

end loop
end loop

û1 = 0
loop over all levels, coarser to finer, ℓ = 1, 2, . . . , L− 1

loop over all parent boxes τ on level ℓ
Let σ1 and σ2 denote the children of τ .
[
ûσ1

ûσ2

]

= Uτ ûτ +

[
0 Bσ1,σ2

Bσ2,σ1 0

] [
q̂σ1

q̂σ2

]

.

end loop
end loop

loop over all leaf boxes τ
u(Iτ ) = Uτ ûτ + Dτ q(Iτ ).

end loop
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be computed in O(N k2) operations via a process given as Algorithm 3, provided that none of the

matrices that need to be inverted is singular. The computed inverse can be applied to a vector in

O(N k) operations via Algorithm 4.

Proof: We can according to equation (2.42) express an HBS matrix as

A = U(L) Ã(L) (V(L))∗ + D(L).

Lemma 1 immediately applies, and we find that

A−1 = E(L)
(
Ã(L) + D̂

(L))−1
(F(L))∗ + G(L), (2.45)

where E(L), F(L), D̂
(L)

and G(L) are defined via (2.12), (2.13), (2.14), and (2.15).

To move to the next coarser level, we set ℓ = L− 1 in formula (2.43) whence

Ã(L) + D̂
(L)

= U(L−1) Ã(L−1) (V(L−1))∗ + B(L−1) + D̂
(L)

. (2.46)

We define

D̃
(L−1)

= B(L−1) + D̂
(L)

=

























D̂τ1 Bτ1τ2 0 0 0 0 · · ·

Bτ1τ2 D̂τ2 0 0 0 0 · · ·

0 0 D̂τ3 Bτ3τ4 0 0 · · ·

0 0 Bτ3τ4 D̂τ4 0 0 · · ·

0 0 0 0 D̂τ5 Bτ5τ6 · · ·

0 0 0 0 Bτ5τ6 D̂τ6 · · ·
...

...
...

...
...

...

























,

where {τ1, τ2, . . . , τ2L} is a list of the boxes on level L. Equation (2.46) then takes the form

Ã(L) + D̂
(L)

= U(L−1) Ã(L−1) (V(L−1))∗ + D̃
(L−1)

. (2.47)

(We note that in (2.47), the terms on the left hand side are block matrices with 2L × 2L blocks,

each of size k × k, whereas the terms on the right hand side are block matrices with 2L−1 × 2L−1

blocks, each of size 2 k × 2 k.) Now Lemma 1 applies to (2.47) and we find that

(
Ã(L) + D̂

(L))−1
= E(L−1)

(
Ã(L−1) + D̂

(L−1))−1
(F(L−1))∗ + G(L−1),
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where E(L−1), F(L−1), D̂
(L−1)

and G(L−1) are defined via (2.12), (2.13), (2.14), and (2.15).

The process by which we went from step L to step L − 1 is then repeated to move up to

coarser and coarser levels. With each step, the size of the matrix to be inverted is cut in half. Once

we get to the top level, we are left with the task of inverting the matrix

Ã(1) + D̂
(1)

=






D̂2 B2,3

B3,2 D̂3




 (2.48)

The matrix in (2.48) is of size 2 k × 2 k, and we use brute force to evaluate

G(0) = G1 =






D̂2 B2,3

B3,2 D̂3






−1

.

To calculate the cost of the inversion scheme described, we note that in order to compute

the matrices E(ℓ), F(ℓ), G(ℓ), and D̂
(ℓ)

on level ℓ, we need to perform dense matrix operations on 2ℓ

blocks, each of size at most 2 k × 2 k. Since the leaf boxes each hold at most 2 k points, so that

2L+1 k ≤ N , the total cost is

COST ∼
L∑

ℓ=1

2ℓ 8 k3 ∼ 2L+4 k3 ∼ N k2.

This completes the proof.

Remark 12. Algorithm 3 produces a representation of A−1 that is not exactly in HBS form since

the matrices Gτ do not have zero diagonal blocks like the matrices Bτ , cf. (2.37). However, a simple

technique given as Algorithm 5 converts the factorization provided by Algorithm 3 into a standard

HBS factorization. If a factorization in which the expansion matrices are all orthonormal is sought,

then further post-processing via Algorithm 1 will do the job.

Remark 13. Algorithm 3 provides four formulas for the matrices {Eτ , Fτ , Gτ , D̂τ}τ . The task

of actually computing the matrices can be accelerated in two ways: (1) Several of the matrix-

matrix products in the formulas are recurring, and the computation should be organized so that

each matrix-matrix product is evaluated only once. (2) When interpolatory decompositions are

used, multiplications involving the matrices Uτ and Vτ can be accelerated by exploiting that they

each contain a k × k identity matrix.
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Algorithm 3 (inversion of an HBS matrix)

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node

D̃τ = Dτ

else
Let σ1 and σ2 denote the children of τ .

D̃τ =

[
D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2

]

end if

D̂τ =
(
V∗τ D̃

−1
τ Uτ

)−1
.

Eτ = D̃−1τ Uτ D̂τ .

F∗τ = D̂τ V
∗
τ D̃
−1
τ .

Gτ = D̂τ − D̃−1τ Uτ D̂τ V
∗
τ D̃
−1
τ .

end loop
end loop

G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1

.
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Algorithm 4 (application of inverse)

Given a vector u, compute q = A−1 u using the compressed representation of A−1 resulting
from Algorithm 3.

loop over all leaf boxes τ
ûτ = F∗τ u(Iτ ).

end loop

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .

ûτ = F∗τ

[
ûσ1

ûσ2

]

.

end loop
end loop

[
q̂2

q̂3

]

= Ĝ1

[
û2

û3

]

.

loop over all levels, coarser to finer, ℓ = 1, 2, . . . , L− 1
loop over all parent boxes τ on level ℓ

Let σ1 and σ2 denote the children of τ .
[
q̂σ1

q̂σ2

]

= Eτ ûτ + Gτ

[
ûσ1

ûσ2

]

.

end loop
end loop

loop over all leaf boxes τ
q(Iτ ) = Eτ q̂τ + Gτ u(Iτ ).

end loop
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Remark 14. The assumption in Theorem 1 that none of the matrices to be inverted is singular is

undesirable. When A is spd, this assumption can be done away with (cf. Corollary 1), and it can

further be proved that the inversion process is numerically stable. When A is non-symmetric, the

intermediate matrices often become ill-conditioned. We have empirically observed that if we enforce

that Uτ = Vτ for every node (the procedure for doing this for non-symmetric matrices is described

in Remark 16), then the method is remarkably stable, but we do not have any supporting theory.

Remark 15. The assumption in Theorem 1 that the block-rank k remains constant across all levels

is slightly unnatural. In applications to integral equations on 1D domain, one often finds that the

rank of interaction depends logarithmically on the number of points in a block. It is shown in [61]

that inclusion of such logarithmic growth of the interaction ranks does not change the O(N) total

complexity.

2.5 Computing the HBS representation of a boundary integral operator

Section 2.3 describes a particular way of representing a class of “compressible” matrices in

a hierarchical structure of block-diagonal matrices. For any matrix whose HBS rank is k, these

factors can via straight-forward means be computed in O(N2 k) operations. In this section, we

describe an O(N k2) technique for computing an HBS representation of the matrix resulting upon

Nyström discretization of a BIE.

2.5.1 A basic compression scheme for leaf nodes

In this section, we describe how to construct for every leaf node τ , interpolatory matrices Uτ

and Vτ of rank k, and index vectors Ĩ
(row)
τ and Ĩ

(col)
τ such that, cf. (2.33),

A(Iτ , Iτ ′) = Uτ A(Ĩ
(row)
τ , Ĩ

(col)
τ ′ )V∗τ ′ , τ 6= τ ′. (2.49)

The first step in the process is to construct for every leaf τ a row of blocks Rτ and a column of

blocks Cτ via

Rτ = A(Iτ , Lτ ), and Cτ = A(Lτ , Iτ ),
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Algorithm 5 (reformatting inverse)

Postprocessing the terms computed Algorithm 3 to obtain an inverse in the standard HBS
format.

loop over all levels, coarser to finer, ℓ = 0, 1, 2, . . . , L− 1
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .
Define the matrices H1,1, Bσ1,σ2 , Bσ2,σ1 , H2,2 so that

Gτ =

[
H1,1 Bσ1,σ2

Bσ2,σ1 H2,2

]

.

Gσ1 ← Gσ1 + Eσ1 H1,1 F
∗
σ1
.

Gσ2 ← Gσ2 + Eσ2 H2,2 F
∗
σ2
.

end loop
end loop

loop over all leaf boxes τ
Dτ = Gτ .

end loop
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where Lτ the complement of the index vector Iτ within the full index set,

Lτ = {1, 2, 3, . . . , N}\Iτ .

The condition (2.33) implies that Rτ and Cτ each have rank at most k. We can therefore construct

interpolatory decompositions

Rτ = Uτ R(J
(row)
τ , : ), (2.50)

Cτ = C( : , J
(col)
τ )V∗τ . (2.51)

Now (2.49) holds if we set

Ĩ(row)
τ = Iτ (J

(row)
τ ) and Ĩ(col)τ = Iτ (J

(col)
τ ).

Remark 16. It is often useful to use the same basis matrices to span the ranges of both Rτ and

C∗τ . In particular, this can make a substantial difference in the stability of the inversion scheme

described in Section 2.3. To accomplish this, form the matrix Xτ =
[
Rτ | C∗τ

]
and then compute an

interpolatory factorization

Xτ = Uτ Xτ (Jτ , : ). (2.52)

Then clearly Rτ = Uτ R(Jτ , : ) and Cτ = C( : , Jτ )U
∗
τ . Enforcing symmetry may slightly increase

the HSS-ranks, but typically in a very modest way.

Remark 17. In applications, the matrices Rτ and Cτ are typically only approximately of rank k and

the factorizations (2.50) and (2.51) are then required to hold only to within some preset tolerance

ε. Techniques for computing rank-revealing partial factorizations of this type are described in detail

in [46, 21].

2.5.2 An accelerated compression scheme for leaf nodes

We will in this section demonstrate how to rapidly construct matrices Uτ , Vτ and index

vectors J
(row)
τ , J

(col)
τ such that (2.50) and (2.51) hold. We focus on the construction of Uτ and

J
(row)
τ since the construction of Vτ and J

(col)
τ is analogous. While Uτ and J

(row)
τ can in principle
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be constructed by directly computing an interpolatory decomposition of Rτ , this is in practice

prohibitively expensive since Rτ is very large. The way to get around this is to exploit analytic

properties of the kernel to construct a much smaller matrix R
(small)
τ whose columns span the column

space of Rτ . Then we can cheaply form Uτ and J
(row)
τ by factoring this smaller matrix. The process

typically over-estimates the rank slightly (since the columns of R
(small)
τ will span a slightly larger

space than the columns of Rτ ) but this is more than compensated by the dramatic acceleration of

the compression step.

To formalize matters, our goal is to construct a small matrix R
(small)
τ such that

Ran
(
Rτ

)
⊆ Ran

(
R(small)
τ

)
. (2.53)

Then all we would need to do to compress τ is to construct the interpolatory decomposition

R(small)
τ = Uτ R

(small)
τ (J (row)

τ , : ) (2.54)

since (2.53) and (2.54) together imply (2.50).

When constructing the matrix R
(small)
τ , we distinguish between near field interaction and

far field interactions. The near field interactions cannot readily be compressed, but this is not a

problem since they contribute a very small part of Rτ . To define what we mean by “near” and

“far,” we need to introduce some notation. Let Γτ denote the segment of Γ associated with the

node τ , see Fig. 6.1. We enclose Γτ in a circle and then let Γ
(proxy)
τ denote a circle with the same

center but with a 50% larger radius. We now define Γ
(far)
τ as the part of Γ outside of Γ

(proxy)
τ and

define Γ
(near)
τ as the part of Γ inside Γ

(proxy)
τ but disjoint from Γτ . In other words

Γ = Γτ ∪ Γ(near)
τ ∪ Γ(far)

τ

forms a disjoint partitioning of Γ. We define L
(near)
τ and L

(far)
τ so that

{1, 2, 3, . . . , N} = Iτ ∪ L(near)
τ ∪ L(far)

τ

forms an analogous disjoint partitioning of the index set {1, 2, . . . , N}. We now find that

Rτ =
[

A(Iτ , L
(near)
τ ) | A(Iτ , L(far)

τ )
]

Π (2.55)
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Γτ

(a)

Γτ

Γ
(proxy)
τ

Γ
(far)
τΓ

(near)
τ

(b)

Figure 2.4: A contour Γ. (a) Γτ is drawn with a bold line. (b) The contour Γ
(near)
τ is drawn with a

thin solid line and Γ
(far)
τ with a dashed line.

where Π is a permutation matrix. We will construct a matrix R
(proxy)
τ such that

Ran
(
A(Iτ , L

(far)
τ )

)
⊆ Ran

(
R(proxy)
τ

)
, (2.56)

and then we set

R(small)
τ =

[

A(Iτ , L
(near)
τ ) | R(proxy)

τ

]

. (2.57)

That (2.53) holds is now a consequence of (2.55), (2.56) and (2.57).

All that remains is to construct a small matrix R
(proxy)
τ such that (2.56) holds. We describe

the process for the single layer potential associated with Laplace’s equation (for generalizations,

see Remarks 19, 20, 21, and 22). Since we use Nyström discretization, the matrix A(Iτ , L
(far)
τ ) in

this case represents evaluation on Γτ of the harmonic potential generated by a set of point charges

on Γ
(far)
τ . We know from potential theory that any harmonic field generated by charges outside

Γ
(proxy)
τ can be generated by placing an equivalent charge distribution on Γ

(proxy)
τ . Since we only

need to capture the field to within some preset precision ε, it is sufficient to place charges on a

finite collection {zj}Jj=1 of points on Γ
(proxy)
τ . In other words, we set

R(proxy)
τ (i, j) = log |xi − zj |, i ∈ Iτ , j ∈ {1, 2, 3, . . . , J}.

The number of charges J that are needed on the external circle depends on the precision ε required.

In fact J = O(log(1/ε)) as ε → 0. We have found that using J = 50 points is sufficient to attain

ten digits of accuracy or better.
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The construction of a small matrix C
(small)
τ that can be used to construct Vτ and J

(col)
τ such

that (2.51) holds is entirely analogous since the matrix C∗τ is also a map of a charge distribution

on Γ
(far)
τ to a potential field on Γτ . The only caveat is that the rows of C∗τ must be scaled by the

quadrature weights used in the Nyström method.

Remark 18. As an alternative to placing charges on the exterior circle, one could represent the har-

monic field generated on Γτ by an expansion in the cylindrical harmonic functions {rj cos(jθ), rj sin(jθ)}Jj=0

where (r, θ) are the polar coordinates of a point in the circle enclosing Γτ . The number of functions

needed is about the same, but we found it easier to correctly weigh the two terms A(Iτ , L
(far)
τ ) and

R
(proxy)
τ when using proxy charges on the outer circle.

Remark 19 (Extension to the double layer kernel). The procedure described directly generalizes

to the double layer kernel associated with Laplace’s equation. The compression of Rτ is exactly the

same. The compression of C∗τ is very similar, but now the target field is the normal derivative of

the set of harmonic potentials that can be generated by sources outside Γ
(proxy)
τ .

Remark 20 (Extension to Laplace’s equation in R
3). The scheme described generalizes immediately

to BIEs defined on surfaces in R
3. The circles must be replaced by spheres, and the complexity is

no longer linear, but the method remains competitive at low and intermediate accuracies [43].

Remark 21 (Extension to Helmholtz and other equations). The scheme described has been gen-

eralized to the single and double layer potentials associated with Helmholtz equation, see [61]. The

only complication happens when the frequency is close to a resonant frequency of the proxy circle.

This potential problem is avoided by placing both monopoles and dipoles on the proxy circle.

Remark 22 (Extension to integral equations on the line). The acceleration gets particularly simple

for integral equations on a line with smooth non-oscillatory kernels. In this case, the range of

A(Iτ , L
(far)
τ ) can typically be represented by a short expansion in a generic set of basis functions

such as, e.g., Legendre polynomials.
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2.5.3 Compression of higher levels

The method described in Section 2.5.2 rapidly constructs the matrices Uτ , Vτ and the index

vector J
(row)
τ , J

(col)
τ for any leaf node τ . Using the notation introduced in Section 2.3.4, it computes

the matrices U(L), V(L), and Ã(L). It is important to note that when the interpolatory decomposition

is used, Ã(L) is in fact a submatrix of A, and is represented implicitly by specifying the relevant

index vectors. To be precise, if τ and τ ′ are two nodes on level L − 1, with children σ1, σ2 and

σ′1, σ
′
2, respectively, then

Aτ,τ ′ =






A(Ĩ
(row)
σ1 , Ĩ

(col)
σ′

1
) A(Ĩ

(row)
σ1 , Ĩ

(col)
σ′

2
)

A(Ĩ
(row)
σ2 , Ĩ

(col)
σ′

1
) A(Ĩ

(row)
σ2 , Ĩ

(col)
σ′

2
)




 .

The observation that Ã(L) is a submatrix of A is critical. It implies that the matrices U(L−1),

V(L−1), and Ã(L−1) can be computed using the strategy of Section 2.5.2 without any modifications.

2.5.4 Approximation errors

As mentioned in Remark 17, factorizations such as (2.50), (2.51), (2.52), (2.54) are in practice

only required to hold to within some preset tolerance. In a single-level scheme, it is straight-forward

to choose a local tolerance in such a way that ||A−Aapprox|| ≤ ε holds to within some given global

tolerance ε. In a multi-level scheme, it is rather difficult to predict how errors aggregate across levels,

in particular when the basis matrices Uτ and Vτ are not orthonormal. As an empirical observation,

we have found that such error propagation is typically very mild and the error ||A − Aapprox|| is

very well predicted by the local tolerance in the interpolatory decomposition.

While there are as of yet no à priori error guarantees, it is often possible to produce highly

accurate à posteriori error estimates. To this end, let q = A−1 f and qapprox = A−1approx f denote the

exact and the approximate solution, respectively. Then

||qapprox − q|| = ||A−1approx Aq− A−1approx Aapprox q|| ≤ ||A−1approx|| ||A − Aapprox|| ||q||.

We can very rapidly and accurately estimate ||A−1approx|| via a power iteration since we have access

to a fast matrix-vector multiply for A−1approx. The factor ||A − Aapprox|| can similarly be estimated
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whenever we have access to an independent fast matrix-vector multiplication for A. For all BIEs

discussed in this chapter, the Fast Multipole Method can serve this function. If it is found that the

factor ||A−1approx|| ||A − Aapprox|| is larger than desired, the compression can be rerun with a smaller

local tolerance. (The argument in this section assumes that the inversion is truly exact; a careful

error analysis must also account for propagation of round-off errors.)

2.6 Numerical examples

In this section, we illustrate the performance of the direct solver on different boundary integral

equations. We consider three classes of problems: single bodied domains, space filling boundary,

and two-dimensional surface BIE-like equation.

For each example, a compressed representation of the coefficient matrix was computed via

Matlab implementations of the compression scheme described in Section 2.5. Then Fortran 77

implementations of Algorithms 3 (inversion of an HBS matrix), 5 (conversion to standard HBS

format), and 2 (matrix-vector multiply) were used to directly solve the respective linear systems.

All codes were executed on a desktop computer with 2.8GHz Intel i7 processor and 2GB of RAM.

The speed of the compression step will be improved significantly by moving to a Fortran imple-

mentation, but since this step is somewhat idiosyncratic to each specific problem, we believe that

it is representative to report the times of an unoptimized Matlab code.

2.6.1 Single bodied domains

The performance of the direct solver was tested on linear systems arising upon the Nystöm

discretization of two BIEs.

The first BIE we consider is

1

2
q(x) +

∫

Γ

n(x′) ·
(
x− x′)

2π|x− x′|2 q(x′) dl(x′) = f(x), x ∈ Γ, (2.58)

where n(y) is a unit normal to the contour Γ. This integral equation is a standard representation of

the Laplace equation on a domain bordered by Γ when Dirichlet boundary data is specified. Three
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geometries were considered:

• Smooth star: The star domain illustrated in Figure 2.5(a) is discretized via Gaussian

quadrature as described in Section 2.1.3. In the experiment, we fix the size of the compu-

tational domain and increase the number of discretization points. This problem is artificial

in the sense that the largest experiments use far more quadrature points than what is

required for any reasonable level of accuracy. It was included simply to demonstrate the

asymptotic scaling of the method.

• Star with corners: The contour Γ consists of ten segments of circles with different radii

as illustrated in Figure 2.5(b). We started with a discretization with 6 panels per segment

and 17 Gaussian quadrature nodes per panel. Then grid refinement as described in [51, 12]

(with a so-called “simply graded mesh”) was used to increase the number of discretization

points, cf. Remark 5.

• Snake: The contour Γ consists of two sine waves with amplitude 1 that are vertically

separated by a distance of 0.2, see Figure 2.5(c). At the end points, two vertical straight

lines connect the waves. Composite Gaussian quadrature was used with 25 nodes per

panel, four panels on each vertical straight line (refined at the corners to achieve 10 digits

of accuracy), and then we used 10 panels per wavelength. The width of the contour was

increase from 2 full periods of the wave to 200, and the number of discretization points N

was increased accordingly.

Next we consider a BIE associated with the single layer kernel for Helmholtz equation on the

star domain (illustrated in Figure 2.5(a)), bordered by Γ. The BIE is:

q(x) +

∫

Γ
H0(k|x− x′|) q(x′) dl(x′) = f(x), x ∈ Γ, (2.59)

where H0 is the Hankel function of the first kind of order zero and k is the wave number. We

discretize the boundary Γ with a weighted trapezoidal rule [52]. The wave number k is chosen such
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(a) (b) (c)

Figure 2.5: The contours Γ used in the numerical experiments for the BIE (2.58) in Section 5.5.
(a) Smooth star. (b) Star with corners. (c) Snake.

that the the length of the domain increases from 1.8 wavelengths to 238.7 wavelengths long. Then

number of discretization points N is increased to maintain 50 points per wavelength.

For these experiments, the local tolerance in the compression step was set to ǫ = 10−10. (In

other words, the interpolatory factorization in (2.54) was required to produce a residual in the

Frobenius norm no larger than ε.)

The times corresponding to each step in the direct solver for the BIEs (2.58) and (2.59) are

reported in Figure 2.6. Notice that for the Helmholtz problem there is only slight deterioration in

the performance as the wave number moves into the high frequency regime.

To assess the accuracy of the direct solver, the errors ‖A− Aapprox‖ and ‖I− A−1approxA‖ were

estimated via a power iteration after each compression (the matrix A and its transpose were applied

via the classical FMM [44] run at very high accuracy). The quantity ‖A−1approx‖ was also estimated.

The results are reported in Figure 2.7. The quantities reported bound the overall error in the direct

solver, see Section 2.5.4.

2.6.2 Space filling domain

Next, the performance of the direct solver was tested on the linear system arising upon the

Nyström discretization of the BIE:
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1

2
q(x) +

∫

Γ

(

n(x′) ·
(
x− x′)

2π|x− x′|2 − 1

2π
log(|x− x′|)

)

q(x′) dl(x′) = f(x), x ∈ Γ, (2.60)

where n(x) is a unit normal to the contour Γ at x.

Equation (2.60) is a standard BIE representation of the Laplace equation when Dirichlet

boundary data is specified on a multi-body domain where Γ is the union of the borders of all the

bodies. The domain consider consists of a lattice of star domains that are placed such that the

minimum horizontal distance between each star is approximately 0.25, as shown in Figure 2.8. The

boundary of each star is discretized via the weighted trapezoidal rule [52] with a constant 50 points

per star while the number of domains is increased.

For this experiment, the local tolerance in the compression step was set to ǫ = 10−6. The times

corresponding to each step in the direct solver are reported in Figure 2.9. While the compression

and inversion steps scale as O(N3/2), the matrix-vector multiply scales linearly with the number of

discretization points. To assess the accuracy of the direct solver, Table 2.1 reports the quantities

‖A− Aapprox‖, ‖A−1approx‖, and ‖I− A−1approxA‖.

N ‖A−1approx‖ ‖I− A−1approxA‖ ‖A− Aapprox‖
800 3409.7 1.1647e − 5 6.721e − 4

3200 5139.9 2.0279e − 4 2.896e − 4

6400 9216.1 4.1646e − 4 7.398e − 4

Table 2.1: Error information for the space filling example.

2.6.3 Two dimensional surface problem

Finally, the performance of the method is tested on the linear system

N∑

i 6=j

1

‖xi − xj‖
qj = fj, (2.61)

where {xj}Nj=1 are points in R
3 resulting from the triangulation of torus domain depicted in

Figure 2.10. While this is not an integral equation, the system (2.61) has similar rank properties as
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the Nyström discretized two dimensional single layer kernel. Let N = 6272. Figure 2.11 illustrates

the skeleton points in six levels of the HSS factorization of the matrix corresponding to (2.61).

Notice that the skeleton points cluster around the boundary of the boxes.

For this experiment, the local tolerance in the compression step was set to ǫ = 10−6. The

times corresponding to each step in the direct solver are reported in Figure 2.12(a). Again, the

compression and inversion steps scale as O(N3/2), while the matrix-vector scales linearly with the

number of discretization points. To assess the accuracy of the direct solver, Figure 2.12(b) reports

the quantities ‖A−Aapprox‖, and ‖I−A−1approxA‖. The quantity ‖A−1approx‖ remains a constant 1.4142

for all experiments.

2.7 Extensions and future work

Additional numerical examples illustrating the performance of the direct solver and similar

direct solvers are reported in [61, 64, 43].

Currently, the error analysis is very rudimentary. Numerical experiments indicate that in

most environments the method is stable and accurate, but this has not yet been demonstrated in

any case other than that of symmetric positive definite matrices.

We believe that the method described here in combination with other methods presented in

this manuscript provide the basis for a linear complexity inversion technique for surface integral

equations. This is work currently in progress.
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Figure 2.8: The contours which comprise Γ used in the numerical experiment for the BIE (2.60) in
Section 5.5.
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Figure 2.10: The surface which is discretized in the numerical experiments for (2.61).
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l = 1 nskel = 584l = 2 nskel = 1142

l = 3 nskel = 2789l = 4 nskel = 3524

l = 5 nskel = 4549l = 6 nskel = 5839

Figure 2.11: Illustration of skeleton points for torus domain. Let l denote the level and nskel denote
the number skeleton points.
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Chapter 3

A direct solver with O(N) complexity for finite difference matrices

In this chapter, we describe a fast direct solution technique for the linear system

Ax = b (3.1)

that arises from a finite element or finite difference discretization of linear boundary value problems.

For illustrative purposes, we consider the discrete Laplace operator on a
√
N ×

√
N grid domain

Ω, ie. the row of A corresponding the point m is given by

[Au](m) =
∑

n∈Bm

αm,n(u(m)− u(n)), (3.2)

where αm,n is a constant dependent on the discretization, and Bm is the set of lattice points

neighboring m in Ω.

Example 1: The classic five point stencil is associated with αm,n = −1, and has the following

sparsity pattern for a 5× 5 block matrix,

A =

















B −I 0 0 0

−I C −I 0 0

0 −I C −I 0

0 0 −I C −I

0 0 0 −I B

















where I is the identity matrix,
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B =

















2 −1 0 0 0

−1 3 −1 0 0

0 −1 3 −1 0

0 0 −1 3 −1

0 0 0 −1 2

















and C =

















3 −1 0 0 0

−1 4 −1 0 0

0 −1 4 −1 0

0 0 −1 4 −1

0 0 0 −1 3

















.

Our approach is to accelerate the divide and conquer algorithm known as nested dissection

[35]. The idea is to reorder the points in the domain in order to avoid operating on the zero

elements in the matrix. The reordering of points allows for a hierarchical way of reducing the

number of knowns in the domain. This results in the bulk of the computations being restricted to

dense matrices that are much smaller than the original system. The overall complexity of nested

dissection is O(N3/2). We propose an accelerated version of the method that scales linearly. Other

groups have been working on similar solution techniques, such as the Superfast multifrontal method

[18, 70] and the H-LU preconditioner [53].

This chapter begins with a basic description of a variation of the nested dissection algorithm.

First the domain is partitioned into a sequence of nested boxes, see Section 3.1. Starting with the

smallest boxes, the number of unknowns for each box is reduced by condensing the local problem to

a problem defined only on the boundary of the box using the technique described in Section 3.2. The

operator defined on the boundary of the box is known as the boundary-to-boundary operator.

Hierarchically merging these operators (see Section 3.3), the boundary-to-boundary operator is

found for the box Ω. Figure 3.2 gives a basic illustration of the algorithm. It turns out that the

boundary-to-boundary operators are HSS matrices. In Section 3.4, we describe how we exploit this

fact to improve the scaling of the nested dissection method. Finally, in Section 3.5, we illustrate

the variety of problems where this method will have linear complexity.
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3.1 Tree structure

First the domain is partitioned into what is typically called a quad-tree. In this section, we

describe a simple technique for constructing such a tree decomposition.

Given an integer Nleaf , we partition the box domain Ω into 4M boxes of equal size which

contain no more than Nleaf points, where M = ⌊
√

N

Nleaf
⌋. These 4M small boxes form the leaves

of the tree. By merging the leaves by sets of fours into boxes with twice the side length, we form

the 4M−1 boxes that make up the next level in the tree. This process is repeated until the box Ω

is recovered. We call Ω the root of the tree.

3.2 The Schur complement problem

A technique for constructing the boundary-to-boundary operator for boxes on the leaf level

is presented in this section.

Let Ω̂ denote a leaf box of Ω with boundary Γ and interior Ω̂i (so that Ω̂ is the disjoint union

of Γ and Ω̂i). Suppose that Γ has Nb nodes, and Ω̂i has Ni nodes. Consider the linear problem

that arises from restricting (3.1) to Ω̂. By partitioning this restricted problem according to the two

parts Ω̂ = Γ ∪ Ω̂i, and assuming that the box is loaded only on the boundary (i.e. f(j) = 0 for

j ∈ Ω̂i), we obtain the equation






Ab,b Ab,i

Ai,b Ai,i











xb

xi




 =






fb

0




 . (3.3)

If we are interested only in x restricted to the boundary (xb), it is given by the equation

xb = S−1 fb,

where S is the Nb ×Nb matrix

S = Ab,b − Ab,i A
−1
i,i Ai,b, (3.4)

which we define as the Schur complement or boundary-to-boundary operator of Ω̂.
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Γ1 Γ3 Γ4 Γ2

Ωw Ωe

Figure 3.1: Labeling of nodes when merging two boxes.

3.3 Merging two Schur complements

In this section, we present a technique to further reduce the number of unknowns by merging

the Schur complements for two touching boxes.

Suppose that Ω̂ = Ωw ∪Ωe (“west” and “east”), as shown in Figure 3.1. Further suppose the

corresponding Schur complements Sw and Se were previously found via the technique in Section

3.2. We seek the Schur complement S of Ω̂. This means we need to eliminate the “interior” points

which consists solely of the points along the middle lines (marked in blue in the figure).

To eliminate these points, we first partition the boundary Γw into the subsets Γ1 and Γ3, and

partition Γe into Γ2 and Γ4 as shown in Figure 3.1. Next, we partition the Schur complements Sw

and Se accordingly,

Sw =






S11 S13

S31 S33




 , and Se =






S22 S24

S42 S44




 .

Supposing that the interior edges are unloaded, equation (3.1) restricted to Ω̂ now reads













S11 A12 S13 0

A21 S22 0 S24

S31 0 S33 A34

0 S24 A43 S44

























u1

u2

u3

u4













=













f1

f2

0

0













, (3.5)

where Aij are the relevant sub-matrices of the original discrete Laplacian A.
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From (3.5), one finds that the Schur complement of the large box is

S =






S11 A12

A21 S22




−






S13 0

0 S24











S33 A34

A43 S44






−1 




S31 0

0 S42




 . (3.6)

Roughly speaking, the computational cost of the nested dissection method is dictated by the

cost at the highest level. Thus it is the inversion of the 2
√
N × 2

√
N matrix

Smid =






S33 A34

A43 S44




 (3.7)

that results in the scheme having complexity O(N3/2).

3.4 Accelerated nested dissection

To improve the scaling, we develop a fast way of applying the inverse of Smid. To illustrate

the technique, consider the linear equation

Smid






X1

X2




 =






S33 A34

A43 S44




 =






R1

R2




 . (3.8)

The solutions to this equation are

X2 = (S44 − A43S
−1
33 A34)

−1(R2 − A43S
−1
33 R1)

and

X1 = S−133 R1 − S−133 A34X2.

It turns out that the Schur complement matrices are HSS (See Chapter 2 for a detailed

definition). This fact along with several other properties of the block matrices that comprise Smid

allow the matrices X1 and X2 to be computed rapidly.

These properties include:

• S33 and S44 are HSS matrices and thus can be inverted with linear computational complexity

via Algorithm 3. The inverse can then be applied to vectors rapidly by Algorithm 4.
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• A34 and A43 are anti-diagonal matrices. Thus the product A43S
−1
33 A34 is HSS and can be

computed rapidly via Algorithm 6.

• S44 − A43S
−1
33 A34 is the sum of two HSS matrices that happens to also be HSS. Hence, not

only can the matrix sum be computed in linear time (by Algorithm 7) but the inverse can

as well.

Additionally, the block matrices S31 and S42 are low-rank matrices. Therefore, we need only apply

the inverse of Smid to a small number of vectors. The result is a scheme whose computational

complexity scales linearly with the number of points in the domain.

Remark 23. Multiplying a matrix by two anti-diagonals effectively reverses the numbering of the

matrix. Hence, we define the twin box of τ to be a box that is on the same level as τ and is the same

distance from the midpoint but on the opposite side of the midpoint. For simplicity of presentation,

Algorithm 6 assumes every box not on the root level has a twin box that is the same size.

Remark 24. Algorithm 7 assumes that the HSS matrices A1 and A2 are factorized according to

the same tree structure.

The efficiency of the method is further improved by using fast matrix algebra to compute the

diagonal blocks of (3.6). Recall that the matrices S11 and S22 are HSS. In addition, the matrices

S13 and S24 are low-rank. It turns out that S13 X1 and S24 X2 are low-rank HSS matrices. These

matrices can be HSS factorized to have the same tree structure as S11 and S22, respectively, via

Algorithm 8. Then Algorithm 7 is used to compute the matrix addition.

Remark 25. Appendix B details techniques for efficient storage and processing of the Schur com-

plements between merge steps.
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3.5 Numerical Results

In this section, we explore the potential of the proposed scheme to solve elliptic boundary

value problems in linear time. We consider problems of the form







−∆u(x) + b(x)ux(x) + c(x)uy(x) = f(x), x ∈ Ω = [0, 1]2,

u(x) = g(x), x ∈ Γ,

(3.9)

where b(x), c(x), f(x), and g(x) are functions defined in Ω. We discretize equation (3.9) with the

finite difference method associated with the five point stencil results in having to solve an N ×N

linear system, where N denotes the number of discretization points in Ω.

We consider four different choices of b(x) and c(x). They are

• Laplacian: Let b(x) = c(x) = 0. This corresponds to the system illustrated in

Example 1.

• Constant convection: Let c(x) = 0 and the convection in the x direction be constant.

We consider b(x) = 100 and b(x) = 1000.

• Divergence free diffusion-convection: Let b(x) = 125 cos(4πy) and c(x) = 125 sin(4πx).

• Diffusion-Convection with sources and sinks: Let b(x) = 125 cos(4πx) and c(x) =

125 sin(4πy).

In addition, we also consider two numerical examples for the case of the random graph

Laplacian. In the context of (3.9), this corresponds to b(x) = c(x) = 0 and letting the connectivity

between vary between 1 and α where α = 2, and 1000.

All experiments are run on a Dell desktop computer with 2.8GHz Intel i7 processor and 3GB

of RAM. The method was implemented in Matlab. While this implementation is unoptimized, we

believe it is sufficient for illustrating the the potential of the proposed technique. Additionally, for

all experiments the tolerance of the HSS representation of the Schur complement matrix is set to

10−7.
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First we consider the matrix corresponding to the Laplacian operator. Ω is discretized with

n × n points. Let N = n2. Table 3.1 reports the time in seconds (Tsolve) for constructing the

global boundary-to-boundary operator, the time in seconds (Tapply) for applying the boundary-to-

boundary operator to a vector, the amount of memory (M) in MB required to store the boundary-

to-boundary operator and two error measures, e1 and e2. The value e1 denotes the l2-error in the

vector S−1 r where r is a unit vector of random direction. The value e2 denotes the l2-error in the

first column of S−1.

Notice that while the time to construct the global Schur complement is linear with respect

to N , the cost of apply the operator to a vector scales as O(
√
N).

For each problem, we fix the discretization to a 1024 × 1024 grid with leaf boxes containing

64 points. This means that the hierarchical tree has five levels. The accelerated nested dissection

will scale linearly when the HSS ranks of the Schur complement operators S for each level does

not grow with the size of S. Tables 3.2-3.8 report the ranks of the HSS blocks of size NB for the

different levels in the accelerated nested dissection method for the various problems. The results

indicate that the method will not scale as desired when the physics of the underlying problem is

ill-conditioned such as in the convection-diffusion problem with sources and sinks.

N Tsolve Tapply M e1 e2
(sec) (sec) (MB)

5122 7.98 0.007 8.4 5.56e − 7 6.04e − 7

10242 26.49 0.014 18.6 4.72e − 7 4.98e − 7

20482 98.46 0.020 33.1 2.89e − 7 2.90e − 7

40962 435.8 0.039 65.6 - -

Table 3.1: Times, errors and amount of memory required to build the global Schur complement for
the discretized Poisson problem via the accelerated nested dissection method.

3.6 Concluding remarks

In this chapter, we presented a fast direct technique for solving the linear systems that

arise from the finite element or finite difference discretization of elliptic boundary value problems.
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NB = 50 NB = 100 NB = 200 NB = 400 NB = 800

Level 5 23.75 - - - -

Level 4 23.89 27.50 - - -

Level 3 23.26 27.44 30.75 - -

Level 2 22.82 26.63 30.44 33.50 -

Level 1 22.06 25.87 29.58 33.22 36.25

Table 3.2: HSS ranks for Laplacian.

Numerical results indicate that the method will scale linearly with N , the number of discretization

points for a variety of problems. The cost of building the solver dominates the computational

cost. However, once the solver is built, constructing the solution for multiple right-hand sides is

essentially free. For problem involving approximately 16 million unknowns it takes about 7 minutes

to build the solver, and 0.04 seconds to apply it to a right hand side.

In the worst case scenario, the method scales as O(N1.5). This appears to happen when the

physics of the underlying PDE is ill-conditioned. For these problems, it is advantageous to use the

proposed method as preconditioner to accelerate the convergence of iterative solution techniques.

The superfast multifrontal method [18, 70] and the H-LU factorization [53] techniques are already

being implemented in this capacity.
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NB = 50 NB = 100 NB = 200 NB = 400 NB = 800

Level 5 23.32 - - - -

Level 4 23.76 27 - - -

Level 3 23.26 27.16 30.38 - -

Level 2 22.13 26.32 30.22 33.38 -

Level 1 22.03 25.64 29.26 32.78 35.75

Table 3.3: HSS ranks for Laplacian with random connectivity between 1 and 2.

NB = 50 NB = 100 NB = 200 NB = 400 NB = 800

Level 5 22.32 - - - -

Level 4 22.78 26.21 - - -

Level 3 22.36 26.33 29.63 - -

Level 2 21.54 25.71 29.53 32.63 -

Level 1 21.29 24.97 29.11 32.33 35.50

Table 3.4: HSS ranks for Laplacian with random connectivity between 1 and 2.

NB = 50 NB = 100 NB = 200 NB = 400 NB = 800

Level 5 23.50 - - - -

Level 4 23.58 26.75 - - -

Level 3 22.94 26.36 29.31 - -

Level 2 22.02 25.86 28.77 31.12 -

Level 1 21.83 24.89 27.78 30.33 33.75

Table 3.5: HSS ranks for b(x) = 100.

NB = 50 NB = 100 NB = 200 NB = 400 NB = 800

Level 5 33.25 - - -

Level 4 27.77 45.75 - - -

Level 3 22.05 28.88 45.50 - -

Level 2 19.58 25.57 34.66 57.75 -

Level 1 17.97 22.15 29.89 43.00 74.75

Table 3.6: HSS ranks for b(x) = 1000.

NB = 50 NB = 100 NB = 200 NB = 400 NB = 800

Level 5 23.27 - - - -

Level 4 23.49 26.57 - - -

Level 3 22.89 26.47 28.87 - -

Level 2 21.98 25.84 29.05 31.12 -

Level 1 21.66 24.84 28.10 30.77 34.75

Table 3.7: HSS ranks for divergence free convection diffusion.
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Step 1: Partition the box into small boxes. For each box, identify the internal
nodes (marked in blue) and eliminate them using formula (3.4).

⇒
Step 1

Step 2: Merge 2×2 groups of small boxes to form larger boxes, and eliminate
the interior nodes of the larger boxes (marked in blue) using either the process
identified in Section 3.3.

⇒
Step 2

Step 3, 4, 5, . . . : Repeat Step 2 on the coarser levels until all interior nodes
have been eliminated.

⇒
Step 3

Figure 3.2: Hierarchical merging of boxes in a quad tree.
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Algorithm 3 (inversion of an HBS matrix)

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node

D̃τ = Dτ

else
Let σ1 and σ2 denote the children of τ .

D̃τ =

[
D̂σ1 Bσ1,σ2

Bσ2,σ1 D̂σ2

]

end if

D̂τ =
(
V∗τ D̃

−1
τ Uτ

)−1
.

Eτ = D̃−1τ Uτ D̂τ .

F∗τ = D̂τ V
∗
τ D̃
−1
τ .

Gτ = D̂τ − D̃−1τ Uτ D̂τ V
∗
τ D̃
−1
τ .

end loop
end loop

G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1

.

NB = 50 NB = 100 NB = 200 NB = 400 NB = 800

Level 5 23.25 - - - -

Level 4 23.41 26.49 - - -

Level 3 22.68 26.00 28.15 - -

Level 2 21.57 24.55 26.44 27.75 -

Level 1 20.97 23.35 24.73 25.44 24.25

Table 3.8: HSS ranks for convection-diffusion with sources and sinks.
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Algorithm 4 (application of inverse)

Given a vector u, compute q = A−1 u using the compressed representation of A−1 resulting
from Algorithm 3.

loop over all leaf boxes τ
ûτ = F∗τ u(Iτ ).

end loop

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all parent boxes τ on level ℓ,

Let σ1 and σ2 denote the children of τ .

ûτ = F∗τ

[
ûσ1

ûσ2

]

.

end loop
end loop

[
q̂2

q̂3

]

= Ĝ1

[
û2

û3

]

.

loop over all levels, coarser to finer, ℓ = 1, 2, . . . , L− 1
loop over all parent boxes τ on level ℓ

Let σ1 and σ2 denote the children of τ .
[
q̂σ1

q̂σ2

]

= Eτ ûτ + Gτ

[
ûσ1

ûσ2

]

.

end loop
end loop

loop over all leaf boxes τ
q(Iτ ) = Eτ q̂τ + Gτ u(Iτ ).

end loop
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Algorithm 6 (Multiplication by two anti-diagonal matrices)

Given two vectors l1 and l2 and an HSS factorized matrix Â, this algorithm computes
A = antidiag(l1) Â antidiag(l2).

Create the list of twin boxes (see Remark 23).
loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1

loop over all boxes τ on level ℓ,
Let τ̂ denote the twin box of τ .
if τ is a leaf node

Let ind denote the indices associated with τ .

Ũτ = Uτ̂ antidiag(l2(ind))

Ṽτ = antidiag(l1(ind))Vτ̂

D̃τ = antidiag(l1(ind))Dτ̂ antidiag(l2(ind))

B̃τ = Bτ̂

else

Ũτ = Uτ̂

Ṽτ = Vτ̂

B̃τ = Bτ̂

end if
end loop

end loop
Recompress the matrix via Algorithm 9.



65

Algorithm 7 (Addition of two HSS matrices)

Given two HSS factorized matrices A1 and A2, this algorithm computes A = A1 + A2.

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node

D̃τ = D1
τ + D2

τ

Ũτ =
[
U1
τ U

2
τ

]

Ṽτ =
[
V1
τ V

2
τ

]

else
Let σ1 and σ2 denote the children τ .

Ũτ =








U
1,σ1
τ 0 0 0

0 U
2,σ1
τ 0 0

0 0 U
1,σ2
τ 0

0 0 0 U
2,σ2
τ








Ṽτ =







V
1,σ1
τ 0 0 0
0 V2σ1

τ 0 0

0 0 V
1,σ2
τ 0

0 0 0 V
2,σ2
τ







end if

B̃τ =

[
B1
τ 0
0 B2

τ

]

end loop
end loop

Recompress the matrix via Algorithm 9.
Note: U

1,σ1
τ denotes the restriction of U1

τ acting on σ1.
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Algorithm 8 (HSS factorize a matrix given in QR-factorized form)

Given an HSS factorized matrix A and the QR-factorization of a second matrix QR, this
algorithm computes the HSS factorization of Ã = QR using the tree structure of Ã.

copy tree information from A

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node
Let ind denote the indices associated with τ
A12 = Q (ind, : )

A21 = R ( : , ind)T

D̃τ = A12 A
T
21

else
Let σ1 and σ2 denote the children τ .

A12 =

[
Wσ1

Wσ2

]

A21 =

[
Pσ1

Pσ2

]

B̃σ1 = Wσ1 P
T
σ2

B̃σ2 = Wσ2 P
T
σ1

end if
[Uτ ,Wτ ] = qr(A12)
[Vτ ,Pτ ] = qr(A21)

end loop
end loop

B̃2 = W2 P
T
3

B̃3 = W3 P
T
2
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Algorithm 9 (Recompress an HSS matrix that has undergone some fast matrix
algebra)

Given an HSS factorized matrix A that has undergone some fast matrix algebra and a
desired accuracy ǫ, this algorithm recompresses the matrix so that its factors are in a
standard HSS form.

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 0
loop over all boxes τ on level ℓ,

if τ is a leaf node

D̃τ = Dτ

else
Let σ1 and σ2 denote the children τ .
[

Ũσ1 , J
U
σ1

]

= ID(Uσ1 , ǫ)
[

Ũσ2 , J
U
σ2

]

= ID(Uσ2 , ǫ)
[

Ṽσ1 , J
V
σ1

]

= ID(Vσ1 , ǫ)
[

Ṽσ2 , J
V
σ2

]

= ID(Vσ2 , ǫ)

B̃σ1 = Uσ1(J
U
σ1
, : )Bσ1

(
Vσ2(J

V
σ2
, : )
)T

B̃σ2 = Uσ2(J
U
σ2
, : )Bσ2

(
Vσ1(J

V
σ1
, : )
)T

if ℓ > 0

Uτ =

[
Uσ1(J

U
σ1
, : ) 0

0 Uσ2(J
U
σ2
, : )

]

Uτ

Vτ =

[
Vσ1(J

V
σ1
, : ) 0

0 Vσ2(J
V
σ2
, : )

]

Vτ

end if
end if

end loop
end loop



Chapter 4

A fast solver for Poisson problems on infinite regular lattices

This chapter describes an efficient technique for solving Poisson problems defined on the

integer lattice Z
2. For simplicity of presentation, we limit our attention to the equation

[Au](m) = f(m), m ∈ Z
2, (4.1)

where f = f(m) and u = u(m) are scalar valued functions on Z
2, and where A is the so-called

discrete Laplace operator

[Au](m) = 4u(m)− u(m+ e1)− u(m− e1)− u(m+ e2)− u(m− e2), m ∈ Z
2. (4.2)

In (5.1), e1 = [1, 0] and e2 = [0, 1] are the canonical basis vectors in Z
2. If f ∈ L1(Z2) and

∑

m∈Z2 |f(m)| = 0, equation (4.1) is well-posed when coupled with a suitable decay condition for

u, see [56] for details.

We are primarily interested in the situation where the given function f (the source) is sup-

ported at a finite number of points which we refer to as source locations, and where the function

u (the potential) is sought at a finite number of points called target locations. While the solution

technique is described for the equation (4.1) involving the specific operator (5.1), it may readily

be extended to a broad range of lattice equations involving constant coefficient elliptic difference

operators.

Variations of the equation (4.1) are perhaps best known as a set of equations associated with

the discretization of elliptic partial differential equations. However, such equations also emerge in

their own right as natural models in a broad range of applications: random walks [32], analyzing the
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Ising model (in determining vibration modes of crystals), and many others in engineering mechanics

including micro-structural models, macroscopic models, simulating fractures [69, 47] and as models

of periodic truss and frame structures [24, 75, 56, 74].

Of particular interest in many of these applications is the situation where the lattice involves

local deviations from perfect periodicity due to either broken links, or lattice inclusions. The fast

technique described in this chapter can readily be modified to handle such situations, see Chapter

5. It may also be modified to handle equations defined on finite subsets of Z2, with appropriate

conditions (Dirichlet / Neumann / periodic) prescribed on the boundary, see Chapter 5 or [36].

The technique described is a descendant of the Fast Multipole Method (FMM) [44, 42, 45],

and, more specifically, of “kernel independent” FMMs [40, 63, 78]. The FMM was originally

developed for solving the Poisson equation

−∆u(x) = f(x), x ∈ R
2, (4.3)

which is the continuum analog of (4.1). The FMM exploits the fact that the analytic solution to

(??) takes the form of a convolution

u(x) =

∫

R2

φcont(x− y) f(y) dy, (4.4)

where φcont is the fundamental solution of the Laplace operator,

φcont(x) = −
1

2π
log |x|. (4.5)

If the source function f corresponds to a number of point charges {qj}Nj=1 placed at locations

{xj}Nj=1, and if the potential u is sought at same set of locations, then the convolution (4.4)

simplifies to the sum

ui =
N∑

j=1

j 6=i

φcont(xi − xj) qj, i = 1, 2, . . . , N. (4.6)

While direct evaluation of (4.6) requires O(N2) operations since the kernel is dense, the FMM

constructs an approximation to the potentials {ui}Ni=1 in O(N) operations. Any requested ap-

proximation error ε can be attained, with the constant of proportionality in the O(N) estimate

depending only logarithmically on ε.
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In the same way that the FMM can be said to rely on the fact that the Poisson equation

(4.3) has the explicit analytic solution (4.4), the techniques described in this chapter can be said to

rely on the fact that the lattice Poisson equation (4.1) has an explicit analytic solution in the form

u(m) = [φ ∗ f ](m) =
∑

n∈Z2

φ(m− n) f(n). (4.7)

where φ is a fundamental solution for the discrete Laplace operator (5.1). This fundamental solution

is known analytically [27, 56, 60, 36] via the normalized Fourier integral

φ(m) =
1

(2π)2

∫ π

−π

∫ π

−π

cos(t1m1 + t2m2)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dt1 dt2, m = [m1, m2] ∈ Z

2. (4.8)

The derivation of (4.8) is presented in Section 5.1.3.2.

This chapter presents an adaptation of the original Fast Multipole Method that enables

it to handle discrete kernels such as (4.8) and to exploit accelerations that are possible due the

geometric restrictions present in the lattice case. The method extends directly to any problem that

can be solved via convolution with a discrete fundamental solution. The technique for numerically

evaluating (4.8) extends directly to other kernels, see Section 4.2.

While we are not aware of any previously published techniques for rapidly solving the free

space problem (4.1) (or, equivalently, for evaluating (4.7)), there exist very fast solvers for the

closely related case of lattice Poisson equations defined on rectangular subsets of Z2 with periodic

boundary conditions. Such equations become diagonal when transformed to Fourier space, and

may consequently be solved very rapidly via the FFT. The computational time Tfft required by

such a method satisfies

Tfft ∼ Ndomain logNdomain as Ndomain →∞, (4.9)

where Ndomain denotes the number of lattice nodes in the smallest rectangular domain holding

all source locations, and where the constant of proportionality is very small. Similar complexity,

sometimes without the logarithmic factor, and with fewer restrictions on the boundary conditions,

may also be achieved via multigrid methods [73].
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The principal contribution of the present work is that the computational time TFMM required

by the method described here has asymptotic complexity

TFMM ∼ Nsources, as Nsources →∞, (4.10)

where Nsources denote the number of lattice nodes that are loaded (assuming that the solution is

sought only at the source points). In a situation where the source points are relatively densely

distributed in a rectangle, we would have Ndomain ≈ Nsources and there would be no point in using

the new method (in fact, an FFT based method is in this case significantly faster since the constant

of proportionality in (4.9) is smaller than that in (4.10)). However, if the source and target points

are relatively sparsely distributed in the lattice, then the estimate (4.10) of the new method is

clearly superior to that of (4.9) for an FFT based method. As demonstrated in Section 4.8, very

significant gains in speed can be achieved. Perhaps even more importantly, much larger problems

can be handled since an FFT based method requires that the potential on all Ndomain nodes be

held in memory.

Example: The distinction between Ndomain in (4.9) and Nsources in (4.10) can be illustrated with

the toy example shown in Figure 4.1. Figure 4.1(a) illustrates a part of an infinite lattice in

which Nsource = 11 nodes have been loaded. A rectangular domain covering these loads is marked

with a blue dashed line and holds Ndomain = 80 nodes. Clearly Nsources = 11 ≪ 80 = Ndomain.

A solution strategy for (4.1) based on the FFT or multigrid would involve all Ndomain nodes

inside the rectangle. In contrast, the lattice fundamental solution allows the solution task to

be reduced to evaluating the sum (4.7) which involves an Nsources × Nsources dense coefficient

matrix. Figure 4.1(b) illustrates an infinite lattice in which 7 bars linking Nsources = 11 nodes

have been removed and we consider the task of finding the potential u = u(m) which satisfies

(4.1), and also the boundary condition lim|m|→∞ |u(m) −m1| = 0. As described in Chapter 5,

this problem can be reduced to a linear system of equations involving a dense coefficient matrix

of size Nsources × Nsources. This system can be solved via an iterative technique accelerated by

the fast summation technique of this paper.
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(a) (b)

Figure 4.1: (a) A subset of the infinite lattice Z
2. The Nsources = 11 red nodes are loaded. The

smallest rectangle holding all sources is marked with a dashed blue line. It has Ndomain = 80 nodes.
(b) An analogous situation in which 7 bars have been excised from the infinite lattice.

4.1 Review of fast summation techniques

In this section, we briefly outline the basic ideas behind the Fast Multipole Method, and

then describe the modifications required to evaluate a lattice sum such as (4.7). Our presentation

assumes some familiarity with Fast Multipole Methods; for an introduction, see, e.g., [6, 42]. As a

model problem, we consider the task of evaluating the sum

ui =

N∑

j=1

φ(xi − xj) qj, (4.11)

where {xi}Ni=1 is a set of N points in the plane, where {qi}Ni=1 is a set of N given real numbers called

charges, where {qi}Ni=1 is a set ofN sought real numbers called potentials, and where φ : R
2×R2 → R

is a kernel function.

For simplicity, we consider in this review only the case where the sources are more or less

uniformly distributed in a computational box Ω in the sense that Ω can be split into equi-sized

small boxes, called leaves, in such a way that each small box holds about the same number of

sources. We let Nleaf denote an upper bound for the number of sources held in any leaf. Then the
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Ω

Figure 4.2: Geometry of the N -body problem in Section 4.1. Source i is blue, the sources in Jnear
i

as defined by (4.13) are red.
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sum (5.33) can be split into two parts

ui = uneari + ufari ,

where the near-field is defined by

uneari =
∑

j∈Jnear
i \{i}

φ(xi − xj) qj , i = 1, 2, . . . , N, (4.12)

where Jnear
i is an index list marking all sources that lie either in the same box as charge i, or in a

box that is directly adjacent to the box holding source i,

Jnear
i = {j : xi and xj are located in the same leaf box or leaf boxes directly adjacent}. (4.13)

The definition of Jnear
i is illustrated in Figure 4.2. The far-field is then defined by

ufari =
∑

j /∈Jnear
i

φ(xi − xj) qj , i = 1, 2, . . . , N, (4.14)

The near-field (4.12) can now be directly evaluated at low cost since at most 9Nleaf sources

are near any given source. In the lattice case, this step could potentially be rendered expensive by

the fact that the kernel is known only via the Fourier integral (4.8) which is quite costly to evaluate

via quadrature. We describe in Section 4.2 how this step may be accelerated by pre-computing

and storing the values of φ(m) for all small values of m and then using an asymptotic expansion

for large m. We observe that the local evaluation gets particularly effective whenever the number

of lattice cells along the side of any leaf box is bounded by some fixed number L of moderate size

(say L ≤ 1000). In this case, there is in the lattice situation only 16L2 possible relative positions

of two charges that are near each other which means that evaluation of the kernel for the near-field

calculations amounts to simply a table lookup. (In fact, due to symmetries, only 2L2 values need

to be stored.)

The far-field (4.14) is as in the classical FMM evaluated via the computation of so called

multipole expansions and incoming expansions. These in turn are constructed via a hierarchical

procedure on a quad-tree such as the one shown in Figure 4.5. With the development of so called
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kernel independent FMMs, the multipole expansions of the original FMM were superseded by

more general representations valid for a broad range of kernels. The bulk of this chapter consists

of a description of such a kernel independent FMM, adapted to exploit geometrical restrictions

imposed in the lattice case. Section 4.3 reviews a technique for compactly representing charges

and potentials, and Section 4.4 describes how it can be adapted to the particular case of lattice

equations. Section 4.5 introduces notation for handling quad-trees, Section 4.6 describes the so

called translation operators, then the full lattice FMM is described in Section 4.7.

4.2 Evaluation of the lattice fundamental solution

The numerical evaluation of the function φ in (4.8) requires some care since the integrand

has a singularity at the origin and gets highly oscillatory when |m| is large. The latter issue can be

handled quite easily since a highly accurate asymptotic expansion of φ(m) as |m| → ∞ is known,

see Section 4.2.1. When |m| is small, quadrature and Richardson extrapolation may be used to

compute φ(m) to very high accuracy, see Section 4.2.2. We note that in this regime where |m|

is small, computational speed is of secondary importance since there are only a small number of

possible values of |m|, the corresponding values of φ(m) can be pre-computed and tabulated.

4.2.1 Evaluation of fundamental solution for |m| large

It has been established (see e.g. [27, 28, 55, 56, 60]) that as |m| → ∞, the fundamental

solution φ defined by (4.8) has the asymptotic expansion

φ(m) = − 1

2π

(

log |m|+ γ +
log 8

2

)

+
1

24π

m4
1 − 6m2

1m
2
2 +m4

2

|m|6

+
1

480π

43m8
1 − 772m6

1m
2
2 + 1570m4

1m
4
2 − 772m2

1m
6
2 + 43m8

2

|m|12 +O(1/|m|6). (4.15)

The number γ is the Euler constant (γ = 0.577206 · · · ).

For |m| large, we approximate φ by dropping the O(1/|m|6) term off the asymptotic expan-

sion. We found that for |m| > 30 the expansion (4.15) is accurate to at least 10−12.
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The asymptotic expansion (4.15) is valid for the simple square lattice only. However, there is

a simple process for constructing analogous expansions for fundamental solutions associated with

a very broad class of constant coefficient elliptic difference operators [60]. The process can be

automated and executed using symbolic software such as Maple [56].

4.2.2 Evaluation of fundamental solution for |m| small

When |m| is small enough that the asymptotic expansion provides insufficient accuracy, we

approximate the integral (4.8) using a two-step quadrature procedure: First, the domain [−π, π]2

is split into n× n equisized boxes where n is an odd number chosen so that each box holds about

one oscillation of the integrand (in other words, n ≈ |m|). For each box not containing the origin,

the integral is approximated using a Cartesian Gaussian quadrature with 20×20 nodes. This leaves

us with the task of evaluating the integral

g(a) =
1

(2π)2

∫ a

−a

∫ a

−a

cos(t1m1 + t2m2)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dt1 dt2,

where a = π/n denotes the size of the center box. Now observe that

g(a) =
∞∑

n=0

(

g
( a

2n

)

− g
( a

2n+1

))

=
∞∑

n=0

1

(2π)2

∫

Ωn

cos(t1m1 + t2m2)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dA, (4.16)

where

Ωn = [2−n a, 2−n a]2\[2−n−1 a, 2−n−1 a]2, n = 1, 2, 3, . . .

is a sequence of annular domains whose union is the square [−a, a]2. All integrals in (4.16) involve

non-singular integrands, and can easily be evaluated via Gaussian quadratures. (We split each

Ωn into eight rectangular regions and use a 20 × 20 point Gaussian quadrature on each.) Using

Richardson extrapolation to accelerate the convergence, it turns out that only about 14 terms are

needed to evaluate the sum (4.16) to a precision of 10−14.

Remark 26. The particular integral (4.8) can be evaluated via a short-cut since it is possible

to evaluate the integral over t1 analytically, and then use quadrature only for the resulting (non-

singular) integral over t2, see [56]. Similar tricks are likely possible in many situations involving
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mono-atomic lattices. However, we prefer to not rely on this approach since it does not readily

generalize to vector valued problems (such as those associated with mechanical lattice problems) or

multi-atomic lattices.

4.3 Outgoing and incoming expansions

In this section, we present techniques for efficiently approximating the far-field ufari to some

desired finite precision ε. The parameter ε can be tuned to balance the computational cost verses

the accuracy. In the numerical examples reported in Section 4.8, ε = 10−10.

4.3.1 Interaction ranks

An essential component of the classical FMM is an efficient technique for representing poten-

tials and source distributions via “expansions” of different kinds. To illustrate the concept, let us

consider a simplified problem in which a number of sources are placed in a “source box” Ωτ , and

the potential induced by these sources is to be evaluated at a number of locations in a “target box”

Ωσ. The orientation of the boxes is shown in Figure 4.3. To be precise, we suppose that sources

{qτj }Nj=1 are placed at locations {xτ
j }Nj=1 ⊂ Ωτ , and that we seek the potentials {uσi }Mi=1 induced at

some locations {xσ
i }Mi=1 ⊂ Ωσ,

uσi =
N∑

j=1

Φ(xσ
i , x

τ
j ) q

τ
j , i = 1, 2, . . . , M. (4.17)

In this review of the classical FMM, the kernel Φ is defined by

Φ(x,y) = φcont(x− y) = − 1

2π
log |x− y|,

where φcont is the fundamental solution of the Laplace equation. For convenience, we write (4.17)

as a matrix-vector product

uσ = Aσ,τ qτ , (4.18)

where uσ = [uσi ]
M
i=1 and qτ = [qτj ]

N
j=1, and where Aσ,τ is the M ×N matrix with entries

A
σ,τ
ij = Φ(xσ

i , x
τ
j ).
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Ωτ

Ωσ

Figure 4.3: Illustration of source box Ωτ and target box Ωσ.

A key observation underlying the FMM is that to any finite precision ε, the rank of a matrix

such as Aσ,τ is bounded independently of the numbers M and N of targets and sources in the two

boxes. In fact, the ε-rank P of Aσ,τ satisfies

P . log(1/ε), as ε→ 0.

The constant of proportionality depends on the geometry of the boxes, but is typically very modest.

As a consequence of this rank deficiency, it is possible to factor the matrix Aσ,τ , say

Aσ,τ ≈ B C,

M ×N M × P P ×N

(4.19)

and then to evaluate the potential uτ in two steps:

v = Cqτ , u ≈ Bv. (4.20)

The cost of evaluating u via (4.20) is O((M + N)P ), which should be compared to the O(M N)

cost of evaluating u via (4.18).

4.3.2 Formal definitions of outgoing and incoming expansions

In the classical FMM, a “multipole expansion” for a box is a short vector from which the

potential caused by all charges in the box can be evaluated; it can be viewed as a compressed rep-

resentation of all the charges inside the box. In this section, we introduce the “outgoing expansion”
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6a 2a yc

y1

y2

y3

x1

x2

x3

x4

Ω

Figure 4.4: Illustration of well-separated points. Any point on or outside of the dashed square is
well-separated from Ω. Consequently, the points x2, x3, and x4 are well-separated from Ω, but x1

is not.

as a generalization of this idea that allows representations other than classical multipole expansions

to be incorporated. The “incoming expansion” is analogously introduced to generalize the concept

of a “local expansion.”

Well-separated boxes: Let Ω be a box with side length 2a and center c as shown in Figure 4.4. We

say that a point x is well-separated from Ω if it lies outside the square of side length 6a centered

at c. We say that two boxes Ω and Ω′ are well-separated if every point in Ω′ is well-separated from

Ω, and vice versa.

Outgoing expansion: Let Ω be a box containing a set of sources. We say that a vector q̂ is an

outgoing expansion for Ω if the potential caused by the sources in Ω can be reconstructed from q̂

to within precision ε at any point that is well-separated from Ω.

Incoming expansion: Let Ω be a box in which a potential has been induced by a set of sources

located at points that are well-separated from Ω. We say that a vector û is an incoming expansion

for Ω if u can be reconstructed from û to within precision ε.

4.3.3 Charge basis

The cost of computing a factorization such as (4.19) using a generic linear algebraic technique

such as QR is O(M N P ), which would negate any savings obtained when evaluating the matrix-
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vector product (unless a very large number of matrix-vector products involving the same source

and target locations is required). Fortunately, it is possible in many environments to construct

such factorizations much faster. The classical FMM uses multipole expansions. As an alternative,

an approach based on so-called “proxy charges” has recently been developed [78]. It has been

demonstrated [63, 65] that for any given box Ω, it is possible to find a set of locations Ŷ =

{ŷp}Pp=1 ⊂ Ω with the property that sources placed at these points can to high accuracy replicate

any potential caused by a source distribution in Ω. The number of points P required is given in

Table 4.1. To be precise, given any set of points Y = {yj}Nj=1 ⊂ Ω and any sources q = {qj}Nj=1,

we can find “equivalent charges” q̂ = {q̂p}Pp=1 such that

N∑

j=1

φcont(x − yj) qj ≈
P∑

p=1

φcont(x − ŷp) q̂p, (4.21)

whenever x is well-separated from Ω. The approximation (4.21) holds to some preset (relative)

precision ε. Moreover, the map from q to q̂ is linear, and there exists a matrix Tofs = Tofs(Ŷ, Y)

such that

q̂ = Tofs q, (4.22)

where “ofs” is an abbreviation of “outgoing [expansion] from sources.”

ǫ

l 10−6 10−8 10−10 10−13

1/32 19 27 37 49

1/16 19 27 36 49

1/4 19 28 37 49

1/2 21 29 37 51

Table 4.1: The number of points P required to replicate the field to accuracy ǫ for a box Ω with
side length l.

We say that the points {ŷp}Pp=1 form an outgoing skeleton for Ω, and that the vector q̂ is an

outgoing expansion of Ω.

In addition, we can find an incoming skeleton X̂ = {x̂p}Pp=1 ⊂ Ω with the property that any

incoming potential in Ω can be interpolated from its values on the incoming skeleton. To be precise,
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suppose that U = U(x) is a potential caused by sources that are well-separated from Ω, and that

X = {xi}Mi=1 is an arbitrary set of points in Ω. Then there exists a matrix Ttfi = Ttfi(X, X̂) (‘tfi”

stands for “targets from incoming [expansion]”) such that

u = Ttfi û,

where

u = [U(xi)]
M
i=1, and û = [U(x̂p)]

P
p=1.

When the kernel Φ is symmetric in the sense that Φ(x − y) = Φ(y − x) for all x and y, any

outgoing skeleton is also an incoming skeleton,

X̂ = Ŷ.

Moreover, if the target points equal the source points so that X = Y, then

Ttfi = (Tofs)
∗ .

Applied to the situation described in Section 4.3.1, where a set of sources were placed in

a source box Ωτ , and we sought to evaluate the potential induced at a set of target points in a

box Ωσ, the claims of this section can be summarized by saying that Aσ,τ admits an approximate

factorization

Aσ,τ ≈ Tσ
tfi T

σ,τ
ifo Tτ

ofs

M ×N M × P P × P P ×N

where the middle factor is simply a subsampling of the original kernel function

T
σ,τ

ifo,pq
= Φ(x̂σ

p , x̂
τ
q ).

Remark 27. For solving multiple problems involving different source and load distributions that

involve the same kernel, one set of skeleton points may be used for all problems by choosing the

skeleton points to lie on the boundary of Ωσ and Ωτ . The interpolation matrices Ttfi and Tofs need

be constructed for each unique set of source and load distributions using the techniques from [21].

In Section 4.4, we describe this generalization of the skeletonization process in more detail for the

lattice fundamental solution.
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4.4 Constructing charge bases for the lattice fundamental solution

In this section, we describe how to construct the charge bases for the lattice fundamental

solution defined by (5.31).

From potential theory, we know that to capture the interaction between a set of source points

{mτ
j }Nj=1 in box Ωτ and all points far from Ωτ , it is enough to capture the interaction between the

source points and a set of “proxy” points F that lie densely on the boundary of a box that is

concentric to Ωτ and has a boundary that is well-separated from Ωτ .

We choose the skeleton points to be a subset of the set of all points Y that lie on the

boundary of box τ . Either rank revealing QR factorization [46] or factorization techniques from

[21] are applied to the matrix AF,Y (whose entries are given by A
F,Y
i,j = Φ(mF

i − mY
j )) to determine

the rank P and which P points make up the set of skeleton points Ŷ of Ωτ .

Using the skeleton points and the techniques from [21], we find the P ×N matrix Tofs such

that

‖AF,τ − AF,ŶTofs‖ < ǫ. (4.23)

We use a similar technique to find the incoming skeleton points and the translation operator

Ttfi.

Remark 28. Because of the smoothness of the kernel, it is not required to use all the points on the

boundary of the well-separated box as “proxy” points. We found it is enough to take 40 points per

edge to approximate the far field with accuracy 10−10.

4.5 Tree structure

The separation of variables in the kernel that was described in Section 4.3 is all that is needed

to effectively evaluate a potential field whenever the set of target locations is well-separated from

the set of source locations. When the two sets coincide, we need to tessellate the box containing

them into smaller boxes, and use the expansion only for interactions between boxes that are well-

separated. In this section, we describe the simplest such tessellation.
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Suppose that we are given a set of points {xi}Ni=1 in a box Ω. Given an integer Nleaf , we pick

the smallest integer L such that when the box Ω is split into 4L equisized smaller boxes, no box

holds more than Nleaf points. These 4
L equisized small boxes form the leaves of the tree. We merge

the leaves by sets of four to form 4L−1 boxes of twice the side-length, and then continue merging

by pairs until we recover the original box Ω, which we call the root.

The set consisting of all boxes of the same size forms what we call a level. We label the levels

using the integer ℓ = 0, 1, 2, . . . , L, with ℓ = 0 denoting the root, and ℓ = L denoting the leaves.

See Figure 4.5.

Definition 1. Let τ be a box in a hierarchical tree.

• The parent of τ is the box on the next coarser level that contains τ .

• The children of τ is the set Lchildτ of boxes whose parent is τ .

• The neighbors of τ is the set Lneiτ of boxes that are on the same level as τ and are directly

adjacent to it.

• The interaction list of τ is the set Lintτ of all boxes σ such that:

(1) σ and τ are on the same level.

(2) σ and τ are not directly adjacent.

(3) The parents of σ and τ are directly adjacent.

Example: For the tree shown in Figure 4.5, we have, e.g.,

Lchild14 = {54, 55, 56, 57},

Lnei23 = {22, 24, 25, 26, 28},

Lnei59 = {36, 37, 48, 58, 60, 61, 70, 72},

Lint7 = {11, 13, 14: 21},

Lint37 = {22: 29, 30: 33, 38: 41, 47, 49, 54: 57, 60, 61, 71, 72, 73}.
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Figure 4.5: A binary tree with 4 levels of uniform refinement.
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For the moment, we are assuming that the given point distribution is sufficiently uniform

that all the leaves hold roughly the same number of points. In this case,

L ∼ log
N

Nleaf
.

For non-uniform distributions of points, a uniform subdivision of Ω into 4L boxes of equal length

would be inefficient since many of the leaves would hold few or no points. In such cases, adaptive

subdivisions should be used [14].

4.6 Translation operators

In the FMM, five different so called translation operators that construct or translate outgoing

or incoming expansions are required. We will, in this section, describe how to construct them, but

we first list which operators we need:

Tτ
ofs The outgoing from sources translation operator: Let τ denote a box holding a set of sources

whose values are listed in the vector qτ . The outgoing expansion q̂τ of τ is then constructed

via

q̂τ = Tτ
ofs q

τ .

T
τ,σ
ofo The outgoing from outgoing translation operator: Suppose that a child σ of a box τ holds

a source distribution represented by the outgoing expansion q̂σ. The far-field caused by

these sources can equivalently be represented by an outgoing representation q̂τ of the

parent, constructed via

q̂τ = T
τ,σ
ofo q̂

σ .

T
τ,σ
ifo The incoming from outgoing translation operator: Suppose that τ and σ are two well-separated

boxes, and that σ holds a source distribution represented by an outgoing expansion q̂σ.

Then the field in τ caused by these sources can be represented by an incoming expansion
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ûτ that is constructed via

ûτ = T
τ,σ
ifo q̂σ.

T
τ,σ
ifi The incoming from incoming translation operator: Suppose that τ is the parent of a box

σ. Suppose further that the incoming expansion ûτ represents a potential in τ caused by

sources that are all well-separated from τ . Then these sources are also well-separated from

σ, and the potential in σ can be represented via an incoming expansion ûσ given by

ûσ = T
τ,σ
ifi ûσ.

Tτ
tfi The targets from incoming translation operator: Suppose that τ is a box whose incoming

potential is represented via the incoming representation ûτ . Then the potential at the

actual target points are constructed via

uτ = Tτ
tfi û

τ .

Techniques for constructing the matrix T τ
ofs were described in Section 4.4. Since in our case,

the kernel is symmetric (i.e. φ(x − y) = φ(y − x) for all x and y), these techniques immediately

give us the targets-from-incoming translation operator as well, since

Tτ
tfi = (Tτ

ofs)
∗ .

We next observe that when charge bases are used, the outgoing-to-incoming translation op-

erator is simply a sampling of the kernel function,

T
τ,σ

ifo,pq
= φ(x̂τ

p − x̂σ
q ), p, q = 1, 2, 3, . . . , P,

where {x̂τ
i }Pi=1 and {x̂σ

j }Pj=1 are the locations of the skeleton points of τ and σ, respectively.

All that remains is to construct Tτ,σ
ofo and T

σ,τ
ifi . In fact, since the kernel is symmetric,

T
σ,τ
ifi =

(
T
σ,τ
ofo

)∗
,
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and all that actually remains is to construct the matrices T
τ,σ
ofo . To this end, let {σi}li=1 denote

children of box τ . The construction of Tτ,σi

ofo closely resembles the construction of the Tofs operator

described in Section 4.4. Instead of choosing the skeleton points from the set of all points on the

boundary of τ as was done in the construction of Tofs, we choose the skeleton points for τ to be

a subset of the skeleton points of its children, Y = [Ŷ σ1 , . . . , Ŷ σl ]. As in Section 4.4, we define a

set of “proxy” points F that are well-separated from τ and use a factorization technique such as

rank revealing QR to determine which points in Y make up the set of skeleton points Ŷ . Using the

techniques from [21], we find the interpolation matrix S such that

‖AP,Y − AP,Ŷ S‖ < ǫ.

The translation operator T
τ,σ1

ofo is then defined via T
τ,σ1

ofo = S(:, 1 : k1) where k1 is the number of

skeleton points of σ1, T
τ,σ2

ofo = S(:, (k1 + 1) : (k1 + k2)) where k2 is the number of skeleton points of

σ2, etc.

4.7 A lattice Fast Multipole Method

While the classical FMM derives so-called “translation operators” based on asymptotic expan-

sions of the kernel function, the method of we propose determines these operators computationally.

In this regard, it is similar to “kernel independent FMMs” such as [1, 54, 78]. Since the kernel

is translation invariant, the computations need be carried out only for a single box on each level.

Thus the construction of the translation operators is very inexpensive (less than linear complexity).

4.7.1 Precomputing skeletons and translation operators

For each level l, we define a “model” box which is centered at the origin and has the same size

as the boxes on level l. The skeleton points and the translation operators are found with respect

to the model box.

To illustrate the concept, suppose that we are given a source f that is non-zero set of points

{mi}Ni=1 in a box Ω. We seek the potential at the source points.
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The pre-computation consist of the following steps:

(1) Divide Ω into the tree structure as described in Section 4.5.

(2) Construct the lists described in Section 4.5.

(3) Construct the skeleton points, Tofo, and Tifi translation operators. At the lowest level L,

we construct the skeleton points for the level L model box using the procedure described

in Section 4.4. For each level i < L, we take four copies of the skeleton points for level

i+ 1 shifting them so that each copy makes up one quadrant of the model box for level i.

The skeleton points and the translation operators Tofo and Tifi are constructed using the

technique described in Section 4.6.

(4) Construct the Tifo translation operators. For each level i > 1, we construct the Tifo transla-

tion operators for the model box. We assume that the model box is completely surrounded

with boxes such that the interaction list has the maximum number of boxes possible which

is 42. Let Ŷ be the outgoing skeleton points and X̂ be the incoming skeleton points for

the model box on level i. For each j ≤ 42, we shift X̂ to be centered at the jth possible

location for a box on the interaction list and define

T̃
j
ifo = AX̂,Ŷ (4.24)

Remark 29. In computing the sum, described in Section 4.7.2, it is easy to use the pre-computed

translation operators. For example, given a box τ that has a box σ on the interaction list, we identify

which j location σ is in relative to τ and define Tσ,τ = T̃
j
ifo.

Remark 30. For leaf boxes of size less than 8 × 8 on level l, we utilize the fact that there are a

finite number of points inside the box that are also in Z
2 and construct the translation operator Tl

ofs

for the model box assuming the source points are dense. For each box τ on level l with N τ sources,

we construct an index vector Jτ that notes the locations of the sources {mτ
j }N

τ

j=1 in the dense lattice.

We define Tτ
ofs = Tl

ofs(:, J
τ ). The translation operator Tτ

tfi is constructed in a similar manner.
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4.7.2 Application

We have now assembled the tools for computing the sum (4.7) through two passes through

the hierarchical tree; one upwards, and one downwards.

(1) Sweep over all leaf boxes τ . For each box, construct its outgoing representation from the

values of the sources inside it:

q̂τ = Tτ
ofs q(J

τ ).

(2) Sweep over all non-leaf boxes τ , going from finer to coarser levels. Merge the outgoing

expansions of the children to construct the outgoing expansion for τ ,

q̂τ =
∑

σ∈Lτ
children

T
τ,σ
ofo q̂

σ.

(3) Loop over all boxes τ . For each box, collect the contributions to its incoming expansion

from boxes in its interaction list:

ûτ =
∑

σ∈Lτ
int

T
τ,σ
ifo q̂σ.

(4) Loop over all parent boxes τ , going from coarser levels to finer. For each box τ , loop over all

children σ of τ , and broadcast the the incoming expansion of τ to the incoming expansions

of σ:

ûσ = ûσ + T
σ,τ
ifi ûτ .

(5) Sweep over all leaf nodes τ . For each node, form the potential uτ by evaluating the incoming

representation and directly adding the contributions from the sources inside τ and in all

boxes that are not well-separated from τ :

uτ = u(Jτ ) = Tτ
tfi û

τ + A(Jτ , Jτ )q(Jτ ) +
∑

σ∈Lτ
nei

A(Jτ , Jσ)q(Jσ).
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4.7.3 Asymptotic complexity of the proposed scheme

Since the kernel (4.8) is separable, the cost of computing the skeleton points and the trans-

lation operators on any level of the quad-tree is O(P M |F |) where P is the number of skeleton

points, M is the number of points on the boundary the box, and |F | is the number of well-separated

proxy nodes used [21]. The cost of solving the least squares problem (4.23) to find the matrix Tofs

for a leaf box is O(P 2 |F | + N P |F |) where N is the number of loaded points in the box. Hence,

the total complexity of the lattice FMM is O(Nsource).

Also notice that the memory needed to store the precomputed information is O(Nsource).

4.8 Numerical examples

In this section, we show that the lattice FMM speed compares favorably to FFT based tech-

niques except for situations where the source points populate the majority of some computational

box. We also show that the memory required to use the lattice FMM is linear with respect to the

number of source terms.

All experiments are run on a Dell desktop computer with 2GB of RAM and an Intel Pentium

4 3.4GHz dual processor. The method was run at a requested relative precision of 10−10. The

techniques were implemented rather crudely in Matlab, which means that significant further gains

in speed should be achievable.

We consider the lattice Poisson problem

[Au](m) = f(m), (4.25)

where the points where f(m) is non-zero are confined to an n× n square subdomain Ω of Z2. The

FFT produces a slightly different solution than the lattice FMM since it enforces periodic boundary

conditions, but this is not important for our purposes. We suppose throughout that n is a power

of two to make the comparison as favorable to the FFT as possible. We let Tfft denote the time

required by the FFT, and TFMM the time for the FMM.
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In the first experiment, we suppose that every node in the lattice is loaded, see Figure 4.6(a),

so that Nsource = Ndomain = n2. In this case, we expect

Tfft ∼ n2 log(n), and TFMM ∼ n2,

and the purpose of the numerical experiment is simply to see how the constants of proportionality

compare. Figure 4.7(a) provides the answer. We see that the FMM is slower by roughly one order

of magnitude.

(a) Dense (b) Random (c) Embedded Circle

Figure 4.6: Illustration of load distributions for the three experiments. Red dots are the source
points.

In the next three experiments, we suppose that f is only sparsely supported in the domain

Ω, so that Nsource ≪ Ndomain. In this case, we expect

Tfft ∼ n2 log(n), and TFMM ∼ Nsource.

In the second experiment, we suppose that n loads distributed according to a uniform random

distribution throughout the domain, see Figure 4.6(b). Figure 4.8(a) provides the measured times.

It confirms our expectation that TFMM does not depend on Ndomain, and indeed, that the FMM can

handle a situation with n = 106 loaded nodes in a domain involving Ndomain = 1012 lattice nodes.

Figure 4.8(b) illustrates the memory (in KB) per source point (M/Nsource) required for storing the

pre-computation information. It confirms our expectation that the memory (in KB) required for

storing the pre-computation information depends linearly with respect to Nsource.
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In the third experiment, we distribute the load on a circle inscribed in the square Ω, see

Figure 4.6(c), in such a way that Nsource = αn nodes are loaded, for α = 1, 1/4, 1/16, 1/64.

Figure 4.9(a) provides the time measurements and again confirms our expectation that the TFMM

is not dependent on Ndomain.

In the final experiment, we fix the domain to be sized 2048 × 2048 and increase the number

of body loads distributed according to a uniform distribution. Figure 4.10(a) provides the time

measurements in comparison with the FFT. It illustrates that for sources occupying less than 0.39%

of the domain (corresponding to 16, 384 sources) the lattice FMM is the faster method.
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4.9 Concluding remarks

The chapter presents a kernel independent FMM for solving Poisson problems defined on the

integer lattice Z
2. For simplicity of presentation, we focused on equations involving the discrete

Laplace operator. Techniques for evaluating the corresponding lattice fundamental solutions are

presented. The complexity of the proposed method is O(Nsource) where Nsource is the number of

locations in Z
2 subjected to body loads.

Numerical experiments demonstrate that for problems where the body loads are sparsely

distributed in a computational box the proposed method is faster and more robust than the FFT.

For instance, it was demonstrated that using a standard desktop PC, a lattice Poisson equation on

a lattice with Ndomain = 1012 nodes, of which Nsource = 106 were loaded, was solved to ten digits of

accuracy in three minutes. It should be noted that this problem is about six orders of magnitude

larger than the largest Poisson problem that can be handled via the FFT. Also, it was demonstrated

for a lattice Poisson problem in a domain with Ndomain = 4, 194, 304 nodes, the lattice FMM is

faster than the FFT when the number of loaded points is less than Nsource = 16, 384.

Additionally, the lattice FMM is a key tool for other solution techniques on lattice domains.

In particular, the fast direct solution technique for lattice boundary value problems with inclusions

presented in the next chapter exist in large part due the existence of the lattice FMM.



Chapter 5

Fast direct solution techniques for solving elliptic difference equations defined

on lattices

This chapter describes efficient techniques for solving elliptic difference equations defined

either on the integer lattices Z
2 or Z

3, or on finite sub-domains of those lattices. The techniques

are applicable to a wide range of difference equations, but to keep the presentation simple, we

focus on problems in two dimensions involving the well known discrete Laplace operator A which

for m ∈ Z
2 takes the form

[Au](m) = 4u(m) − u(m+ e1)− u(m− e1)− u(m+ e2)− u(m− e2). (5.1)

In (5.1), e1 = [1, 0] and e2 = [0, 1] are the canonical basis vectors in Z
2, and u = u(m) is a real

valued function on Z
2. We will briefly review techniques for the free space equation

[Au](m) = f(m), m ∈ Z
2 (5.2)

and then describe techniques for boundary value problems of the form






[Au](m) = 0, m ∈ Ω,

u(m) = g(m), m ∈ Γ.

(5.3)

In (5.3), Ω is a subset of Z2 with boundary Γ. A precise definition of what we mean by the boundary

of a lattice domain is given in Section 5.3. We typically refer to the data function f as a source,

and the unknown function u as a potential.

Equations of the forms (5.2) and (5.3) are perhaps best known as equations arising upon

finite difference discretizations of Poisson’s and Laplace’s equations, but they arise naturally in a
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wide range of applications. To name just a few examples, equations (5.2) or (5.3) or variations of

them appear directly in models of random walks [32], in analyzing the Ising model, in determining

vibration modes of crystals, and in modeling QCD [23, 67]. Additional examples arise in engineering

mechanics as micro-structural models, macroscopic models, simulating fractures [69, 47] and as

models of periodic truss and frame structures [24, 75, 56, 74].

The techniques described in this chapter can be viewed as an adaptation to the discrete case

of a set of analytical and numerical methods for efficiently solving the corresponding continuum

equations. For instance, equation (5.2) has a continuum analog in the free space Laplace equation

[−∆u](x) = f(x), x ∈ R
2, (5.4)

coupled with suitable decay conditions at infinity. The analytic solution of (5.4) is

u(x) = [Φ ∗ f ](x) =
∫

R2

Φ(x− y) f(y) dA(y), (5.5)

were Φ is the fundamental solution of the Laplace operator,

Φ(x) = − 1

2π
log |x|.

When f is compactly supported, the integral in (5.5) can be discretized using appropriate quadra-

tures, and the resulting finite sum can be evaluated rapidly via, e.g., the Fast Multipole Method

(FMM). In the discrete case, it turns out to be possible to define a lattice fundamental function φ

such that the exact solution of (5.2) is

u(m) = [φ ∗ f ](m) =
∑

n∈Z2

φ(m− n) f(n). (5.6)

The function φ cannot be expressed directly in terms of elementary functions, but can easily be

evaluated numerically from its Fourier representation

φ(m) =
1

(2π)2

∫

[−π, π]2

cos(m · t)− 1

4 sin2(t1/2) + 4 sin2(t2/2)
dA(t), m ∈ Z

2,

as presented in Section 4.2. In Section 5.1, we recall that when f is supported on a finite number

Nsource of source points, the sum (5.6) can be evaluated rapidly via a lattice version of the FMM.
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Supposing that the potential is required only at the source points, the computational cost Tfreespace

of the scheme satisfies

Tfreespace ∼ Nsource. (5.7)

The techniques for the free space problem on a perfectly periodic infinite lattice can easily

be modified to handle local deviations from periodicity. Specifically, we describe in Section 5.2

techniques for solving the equation

[(A+ B)u](m) = f(m), m ∈ Z
2, (5.8)

where B is a local operator acting on some finite subset Ωinc ⊂ Z
2. An equation such as (5.8) can

be used to model a lattice in which a finite number of bars have been added or removed, or have

had their conductivities changed, see Figure 5.1. By convolving the equation (5.8) by the lattice

fundamental solution φ, an equation defined on the finite subset Ωinc is obtained. Moreover, this

equation can using fast methods be solved in time Tinc, where Tinc scales linearly with the number

of points Ninc in the inclusion,

Tinc ∼ Ninc +Nsource. (5.9)

For boundary value problems such as (5.3), the techniques proposed in this manuscript are

lattice analogs of Boundary Integral Equation (BIE) methods for solving elliptic partial differential

equations. To illustrate, let us consider a Laplace boundary value problem with Dirichlet boundary

conditions that is a continuum analog of (5.3):






[−∆u](x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

(5.10)

It is possible to reduce (5.10) to an equation on Γ by first representing the solution u as a double

layer potential

u(x) =

∫

Γ
D(x,y)σ(y) dℓ(y), (5.11)

where D is the so called double layer kernel,

D(x,y) =
∂

∂n(y)
Φ(x− y) = n(y) · ∇yΦ(x− y) =

n(y) · (x− y)

2π |x− y|2 ,
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where n(y) is the unit normal vector of Γ at y. The boundary density function σ in (5.10) is

determined by calculating the limit of u(x) as x approaches the boundary Γ and equating the

result with the Dirichlet condition in (5.10). This results in the second kind Fredholm equation

1

2
σ(x) +

∫

Γ
D(x,y)σ(y) dℓ(y) = g(x), x ∈ Γ. (5.12)

We find that a solution to (5.10) can now be obtained by solving the equation (5.12). The refor-

mulation offers several advantages, including a reduction in dimensionality, and a well conditioned

equation [3]. An apparent disadvantage of using (5.12) instead of (5.10) as a foundation for nu-

merical work is that (5.12) leads to dense systems upon discretization. This potential drawback

can again be overcome by the FMM. The principal contribution of this chapter is to demonstrate

that existing fast numerical methods developed for continuum problems can be modified to work

for lattice equations and lead to highly efficient solvers. It has been demonstrated [59, 56] that the

solution of (5.3) can be written

u(m) =
∑

n∈Γ

d(m,n)σ(n), (5.13)

where d is a discrete analog of the continuum double layer potential (5.12). (Equation (5.56)

provides the precise definition.) An equation for σ is obtained by inserting (5.13) into the boundary

condition in (5.3) which results in the boundary equation

∑

n∈Γ

d(m,n)σ(n) = g(m), m ∈ Γ. (5.14)

It was shown in [59] that (5.14) is very well conditioned (as the continuum analog would indicate)

and we demonstrate in Section 5.3 that it can be solved in time

Tbvp ∼ Nboundary, (5.15)

where Nboundary denotes the number of points in Γ.

The techniques for handling (i) body loads, (ii) deviations from periodicity, and (iii) boundary

conditions, can all be combined. We demonstrate in Section 5.4 that an equation of the form






[(A+ B)u](m) = f(m), m ∈ Ω,

u(m) = g(m), m ∈ Γ,

(5.16)
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can be solved in time Tcombined that satisfies

Tcombined ∼ Nsource +Ninc +Nboundary. (5.17)

The core point of this chapter is that the time requirements (5.7), (5.9), (5.15), and (5.17)

are in a strong sense optimal: The computational time depends linearly on the amount of actual

input data. In contrast, the conventional approach to solve, e.g., the boundary value problem (5.3)

would be to form and solve a linear system of size Ndomain × Ndomain, where Ndomain denotes the

number of points in Ω. This system is sparse, and can often be solved in time proportional to the

number of degrees of freedom (using, e.g., multigrid). However, the time Tconventional required even

for such a linear complexity solver would satisfy

Tconventional ∼ Ndomain, (5.18)

which is far worse that (5.15) since one would typically have

Ndomain ∼ N2
boundary when Ω ⊂ Z

2,

Ndomain ∼ N
3/2
boundary when Ω ⊂ Z

3.

In fairness, it must be noted that the constant of proportionality in the estimate (5.18) for

conventional methods is typically lower than that in (5.15) for the methods proposed here. In

particular, there exist very fast methods based on the FFT which exploit the fact that a constant

coefficient difference equation on a regular grid is diagonal in Fourier space. The time Tfft required

by such a method satisfies

Tfft ∼ Ndomain logNdomain,

but with a very small constant. A limitation of FFT based methods is that they intrinsically re-

quire the computational domain to be a rectangle with periodic boundary conditions. However,

they are so fast that even for problems involving other boundary conditions, it often makes sense to

either modify the mathematical model to conform to the available numerical tool, or to implement

various “correction” techniques. In contrast, the methods proposed in this chapter have the ad-

vantage of being able to naturally handle domains of different shapes and with different boundary
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conditions (Dirichlet, Neumann, decay at infinity, periodic or quasi-periodic, etc), in addition to

their advantage of having complexity O(Nboundary) rather than O(Ndomain).

Some indication of the problem size at which it becomes advantageous to switch to the

methods proposed in this chapter is given by the numerical examples reported in Section 5.5. The

switching point depends on the computational environment, but typically occurs for lattices with

between 104 and 106 nodes.

5.1 Techniques for the free space problem

This section describes a fast numerical method for solving a lattice analog of a free space

Poisson equation.

5.1.1 Problem definition

With A defined by (5.1), the free space lattice Poisson equation for a given source function f

takes the form

[Au](m) = f(m), m ∈ Z
2. (5.19)

We assume for simplicity that f has compact support. In this case, the equation (5.19) has a unique

solution that tends to zero at infinity whenever

∑

m∈Z2

f(m) = 0. (5.20)

If (5.20) does not hold, then we require u to grow at most logarithmically at infinity,

sup
m∈Z2

|u(m)|
log(2 + |m|) <∞, (5.21)

which ensures that (5.19) has a unique solution (up to a shift by a constant), see [56].

5.1.2 Continuum analog

A continuum analog of (5.19) is the Poisson equation

[−∆u](x) = f(x), x ∈ R
2,
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whose analytic solution (under suitable decay conditions on f and u) is

u(x) = [Φ ∗ f ](x) =
∫

R2

Φ(x− y) f(y) dA(y),

where Φ is the fundamental solution of the Laplace operator,

Φ(x) = − 1

2π
log |x|.

5.1.3 The lattice fundamental solution

As mentioned in the introduction, it is possible to construct a fundamental solution φ to the

discrete Laplacian such that a solution to (5.19) and (5.21) is provided by the convolution

u(m) = [φ ∗ f ](m) =
∑

n∈Z2

φ(m− n) f(n). (5.22)

In this section, we define φ, sketch how to construct it, and describe its asymptotic expansion at

infinity.

5.1.3.1 Definition

The lattice fundamental solution is defined as the unique function φ that satisfies the three

conditions

sup
m∈Z2

|φ(m)|
log(2 + |m|) < ∞, (5.23)

φ(0) = 0, (5.24)

Aφ = δ, (5.25)

where the function δ is defined by

δ(m) =







1, m = 0,

0, m 6= 0.

(5.26)

For future reference, we define the solution operator of (5.19) and (5.21) as the operator G defined

via

[G f ](m) = [φ ∗ f ](m) =
∑

n∈Z2

φ(m− n) f(n). (5.27)

Then the solution to (5.19) and (5.21) is simply u = G f .
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5.1.3.2 Analytic formula

In order to construct an analytic formula for φ, we introduce the discrete Fourier transform

F via

û(t) = [F u](t) =
∑

m∈Z2

eim·t u(m), t ∈ [−π, π]2. (5.28)

The inverse transform is given by

u(m) = [F ∗ û](m) =
1

(2π)2

∫

[−π, π]2
e−im·t û(t) dA(t), m ∈ Z

2. (5.29)

With (5.28) and (5.29), the discrete Laplace operator has the Fourier representation

[F AF ∗ û](t) = 4 û(t)− ei t1 û(t)− e−i t1 û(t)− ei t2 û(t)− e−i t2 û(t) = σ(t) û(t),

where the symbol σ of A is given by

σ(t) = 4− ei t1 − e−i t1 − ei t2 − e−i t2 = 4 sin2
t1
2
+ 4 sin2

t2
2
.

Applying F to both sides of (5.25), we get the equation

σ(t) φ̂(t) = 1.

It seems that φ should now be obtained by simply solving for φ̂ and applying the inverse Fourier

transform. This would lead to the formula

φ(m) =
1

(2π)2

∫

[−π, π]2
e−im·t

1

σ(t)
dA(t). (5.30)

However, the integrand in (5.30) is strongly singular, and must be renormalized. The result is the

formula

φ(m) =
1

(2π)2

∫

[−π, π]2

e−im·t − 1

σ(t)
dA(t). (5.31)

See [56, 60] for details.
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5.1.3.3 Asymptotic expansion

It has been established (see e.g. [56, 60, 27, 28, 55]) that as |m| → ∞, the fundamental

solution φ defined by (5.31) has the asymptotic expansion

φ(m) = − 1

2π

(

log |m|+ γ +
log 8

2

)

+
1

24π

m4
1 − 6m2

1m
2
2 +m4

2

|m|6

+
1

480π

43m8
1 − 772m6

1m
2
2 + 1570m4

1m
4
2 − 772m2

1m
6
2 + 43m8

2

|m|12 +O(1/|m|6). (5.32)

The number γ is the Euler constant (γ = 0.577206 · · · ).

5.1.4 Fast evaluation of convolutions via the Fast Multipole Method

In this section we describe certain modifications to the classical Fast Multipole Method

(FMM) [44, 45] that allow the rapid evaluation of the lattice potential due to a set of sources

{fi}Nsource
i=1 , placed at points {ni}Nsource

i=1 ⊂ Z
2. Assuming that we seek the potential at the locations

of the sources, we need to evaluated the sums

ui =

Nsource∑

j=1

fj φ(ni − nj), i = 1, 2, . . . , Nsource. (5.33)

Our first step is to split the sum into a near-field and a far-field term. We say that two sources

i and j are near if |ni − nj|∞ ≤ L, where | · |∞ denotes the ℓ∞ norm on Z
2, and where L is an

adjustable parameter. The sum (5.33) then splits into two parts

ui = uneari + ufari ,

where the near-field is defined by

uneari =
∑

j : |ni−nj |∞≤L

fj φ(ni − nj), i = 1, 2, . . . , Nsource, (5.34)

and the far-field is defined by

ufari =
∑

j : |ni−nj |∞>L

fj φ(ni − nj), i = 1, 2, . . . , Nsource. (5.35)
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We first observe that for each lattice node there are only 4L2 + 4L other nodes in its near-

field. The values of the lattice fundamental solution for these possible interactions can be pre-

computed by directly evaluating the integral (5.31) and storing the results (due to symmetries,

only (L + 1)(L + 2)/2 values are actually needed). The near-field contribution can therefore be

evaluated to floating-point precision using, at worst, O(N L2) operations.

For the far-field contribution, we approximate the sum (5.35) by replacing the kernel φ by

an approximation φfar obtained by omitting the O(|m|−6) term in (5.32). The introduced error is

controlled by the parameter L; we found that by choosing L = 30, the relative error incurred was

less than 10−12. The resulting sum

ufari ≈
∑

j : |ni−nj |∞>L

fj φfar(ni − nj), i = 1, 2, . . . , Nsource, (5.36)

is then amenable to the either the classical FMM [44, 45], or more recent kernel-independent

variations [40, 63, 78]. We chose to implement a two-dimensional version of the method of [63]

since it was readily available. For a problem on Z
3, we would expect the FFT-accelerated method

of [78] to perform better.

5.2 Techniques for lattices with inclusions

This section describes techniques for solving a Poisson equation similar to (5.19) but with the

twist that parts of the lattice may be perturbed from perfect periodicity. The mathematical model

we consider can handle both the removal of links from the lattice, and the inclusion of additional

ones; the only essential assumptions are that the perturbation be linear, and that only finitely

many lattice nodes are affected.

5.2.1 Problem definition

We consider a perturbed lattice equation

[(A+ B)u](m) = f(m), m ∈ Z
2 (5.37)
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Figure 5.1: A piece of an infinite lattice with some deviations from perfect periodicity. One bar
has been added, three bars have been removed, and two bars have been strengthened. The set Ωinc

of effected nodes has 11 elements, which are marked with white circles.

along with the decay condition (5.21) where B is a perturbation to the discrete Laplace operator

arising from local deviations from perfect periodicity. Specifically, we assume that B is such that

A+ B remains coercive (when coupled with the decay condition (5.21)), and also that B is “local”

in the sense that there exists a finite set Ωinc ⊂ Z
2 such that:

• Bu = 0 when u is such that u(m) = 0 for all m ∈ Ωinc.

• For any u, [Bu](m) = 0 when m /∈ Ωinc.

The two conditions amount to an assumption that B is a block diagonal operator supported on the

block corresponding to Ωinc.

Example: Let us consider a lattice that is perturbed by adding J bars to the lattice. Letting rj

denote the conductivity of the j’th added bar, and letting m+
j and m−j denote the nodes that the

bar connects, the perturbation B takes the form

[Bu](m) =
∑

j : m=m
+
j

rj
(
u(m+

j )− u(m−j )
)
+

∑

j : m=m
−

j

rj
(
u(m−j )− u(m+

j )
)
. (5.38)

In this case,

Ωinc =

J⋃

j=1

{m+
j , m

−
j }. (5.39)

If all the numbers rj are non-negative, then the operator B defined by (5.38) is non-negative as well,

and (5.37) coupled with (5.21) has a unique solution for any f . The operator A+B may be coercive
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even when some of the numbers rj are negative. For instance, if the pairs of nodes {m+
j , m

−
j }Jj=1

are connected in the original lattice, then by setting rj = −1 for all j, the equations (5.37), (5.38),

(5.21) model the lattice obtained by cutting the connections between the pairs {m+
j , m

−
j }. Whether

A+ B remains coercive now depends on the topology of the lattice after the cuts — essentially on

whether all nodes remain connected.

5.2.2 Continuum analog

Equation (5.37) can be viewed as a discrete version of the perturbed free space Poisson

equation

−∆u(x)−∇ ·
(
b(x)∇u(x)

)
= f(x), x ∈ R

2, (5.40)

where b(x) is a function that is non-zero only in some bounded domain Ωinc. Now convolving (5.40)

by Φ, we obtain the new equation

u(x)−
∫

R2

Φ(x− y)∇ ·
(
b(y)∇u(y)

)
dA(y) = [Φ ∗ f ](x), x ∈ R

2. (5.41)

Since b(y) = 0 whenever y /∈ Ωinc, we can restrict the domain of integration in (5.41) to Ωinc, and

obtain an integral equation for u of the form

u(x)−
∫

Ωinc

Φ(x− y)∇ ·
(
b(y)∇u(y)

)
dA(y) = [Φ ∗ f ](x), x ∈ Ωinc. (5.42)

Our gain is to have converted the equation (5.40), which involved an unbounded operator on an

infinite domain, to (5.42), which involves a bounded operator on a finite domain. The integral

operator in equation (5.42) is in general not compact, but well-posedness can often be assured via

a simple positivity or perturbation argument.

5.2.3 A local lattice equation

To convert the equation (5.37) to an equation on the finite domain Ωinc, we follow the template

established by the continuum case in Section 5.2.2 and convolve (5.37) by the lattice fundamental

solution φ. This yields the equation

[
(I+ GB)u

]
(m) = [G f ](m), m ∈ Ωinc. (5.43)
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It is in many environments convenient to post-multiply (5.43) by B again, which results in the

equation

(
I+ BG

)
µ = BG f, (5.44)

where the new unknown variable is µ = Bu. Once (5.44) has been solved for µ, the full solution u

is given by the formula

u = G
(
f − µ

)
. (5.45)

5.2.4 Numerical methods

We have found that the equation (5.44) can easily be solved using an iterative solver such

as GMRES. For large scale problems, application of the operator G can be accelerated using the

lattice FMM described in Section 5.1.4. The lattice FMM can also be used to rapidly evaluate the

potential via (5.45) once µ has been determined from (5.44).

5.3 Techniques for lattice boundary value problems

In this section we describe techniques for solving the lattice equilibrium equations on a finite

lattice with prescribed boundary conditions. The techniques can be modified to a wide range of

different boundary conditions (see [59]) but for concreteness, we restrict attention to the basic

Dirichlet and Neumann boundary conditions.

5.3.1 Problem definition

5.3.1.1 Definition of a lattice domain and boundary

Let Ω̄ denote a finite subset of Z2. We define the interior of Ω̄ as the set Ω of nodes whose

four neighbors are all contained in Ω̄, and the boundary Γ as the remaining nodes, Γ = Ω̄\Ω. Figure

5.2(a) illustrates these definitions. For simplicity, we assume that Ω forms a connected lattice.

In addition to defining the boundary of the domain, we also need to define exterior and

interior boundary flux operators, analogous to normal derivatives in the continuum case. To this
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(c)(a)

(b)

Figure 5.2: (a) An example of a lattice domain, Ω̄ = Γ ∪ Ω. The black circles form the interior Ω
and the white circles form the boundary Γ. (b) Illustration of the set Dm (the grey square) for a
boundary node m (grey circle) along a straight edge. (c) Illustration of Dm for a corner node.
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end, we let for a given boundary node n ∈ Γ the set Dn denote the set of all points in Z
2 that

connect to n, but are not contained in Ω̄. We let En denote the remaining nodes connecting to n

so that Dn ∪ En forms a disjoint union of the four nodes connecting to n, see Figure 5.2(b,c). We

can now define an exterior difference operator ∂ via

[∂ u](n) =
∑

k∈Dn

(
u(k)− u(n)

)
, (5.46)

and an interior difference operator ∂̄ via

[∂̄ u](n) =
∑

k∈En

(
u(n)− u(k)

)
. (5.47)

5.3.1.2 The Dirichlet problem

A Boundary Value Problem (BVP) with Dirichlet boundary conditions takes the form







[Au](m) = 0, m ∈ Ω,

u(m) = g(m), m ∈ Γ.

(5.48)

It can be demonstrated that (5.48) has a unique solution for any boundary load g, see e.g. [56].

5.3.1.3 The Neumann problem

This problem corresponds physically to prescribing the boundary fluxes, rather than the

temperatures. Mathematically, we specify the values of the interior difference operator, which

results in the equation 





[Au](m) = 0, m ∈ Ω,

[∂̄ u](m) = g(m), m ∈ Γ.

(5.49)

When

∑

m∈Γ

g(m) = 0, (5.50)

equation (5.49) has a solution that is unique up to a constant.
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5.3.2 The continuum analog

The continuum analogs of (5.48) and (5.49) are of course







[−∆u](x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ,

(5.51)

and 





[−∆u](x) = 0, x ∈ Ω,

∂u(x)
∂n = g(x), x ∈ Γ.

(5.52)

It is well known from classical potential theory that the solution to (5.51) admits the repre-

sentation

u(x) =

∫

Γ
D(x,y)σ(y) dℓ(y),

where D is the so called double layer kernel

D(x,y) =
∂

∂n(y)
Φ(x− y) = n(y) · ∇yΦ(x− y) =

n(y) · (x− y)

2π |x− y|2 , (5.53)

and σ is a boundary potential that can be determined by solving the second kind Fredholm equation

1

2
σ(x) +

∫

Γ
D(x,y)σ(y) dℓ(y) = g(x), x ∈ Γ.

Likewise, any solution to (5.52) admits a representation (up to addition of a constant)

u(x) =

∫

Γ
S(x,y)σ(y) dℓ(y),

where S is the so called single layer kernel

S(x,y) = Φ(x− y)

and σ is a boundary potential that can be determined by solving the second kind Fredholm equation

−1

2
σ(x) +

∫

Γ
D∗(x,y)σ(y) dℓ(y) = g(x), x ∈ Γ (5.54)

where D∗(x,y) is the dual kernel of (5.53),

D∗(x,y) =
∂

∂n(x)
Φ(x− y) = n(x) · ∇xΦ(x− y) = −n(x) · (x− y)

2π |x− y|2 . (5.55)



112

We observe that the operator on the left hand side of (5.54) has a one-dimensional null-space, and

that its range has co-dimension one (corresponding to the fact that g must integrate to zero). This

causes very little difficulty in the construction of numerical methods based on (5.54) since the range

is known analytically.

5.3.3 Lattice boundary equations

Inspired by the continuum case, a lattice analog of the double layer potential was proposed

in [56, 59] (and was briefly mentioned in the introduction to the chapter in equation (5.13)). It

is obtained by differentiating the fundamental solution φ using the external difference operator ∂

defined in (5.46),

d(m,n) = ∂nφ(m− n) =
∑

k∈Dn

[
φ(m− k)− φ(m− n)

]
. (5.56)

(The subscript n in ∂n simply indicates that the difference operator is acting on the variable n.)

We define the corresponding operator D via

[D q](m) =
∑

n∈Γ

d(m,n) q(n). (5.57)

It can be shown that any solution u of (5.48) admits the representation

u = D q (5.58)

for some boundary charge distribution q. An equation for q is obtained by simply restricting (5.58)

to Γ:

∑

n∈Γ

d(m,n) q(n) = g(m), m ∈ Γ. (5.59)

Both theoretical and numerical results in [59] indicate that the equation (5.59) is typically a well

conditioned equation, with the spectrum of D resembling that of a second kind Fredholm operator.

(Remark 31 presents a calculation that perhaps makes this claim more intuitively plausible.)

Turning next to the Neumann equation (5.49), it can be shown that up to addition of a

constant, any solution u admits a representation via a single layer potential

u(m) =
∑

n∈Γ

s(m,n) q(n), (5.60)
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where the single layer potential s is defined simply via

s(m,n) = φ(m− n).

Inserting (5.60) into (5.49), we find that q must satisfy the equation

∑

n∈Γ

d∗(m,n) q(n) = g(m), m ∈ Γ, (5.61)

where d∗ is the kernel

d∗(m,n) = ∂̄ms(m,n).

Again, both theoretical and experimental results indicate that the spectral properties of the system

matrix in (5.61) resemble those of its continuum analog (5.54): precisely one singular value is zero,

and the remaining ones are clustered relatively closely.

Remark 31. The operators in equations (5.59) and (5.61) are in a certain sense complementary.

To explicate this relationship, let us note that for a boundary node n we have, for any lattice function

u,

[Au](n) =
∑

k∈Dn∪En

(
u(n)− u(k)

)
= [∂̄ u](n)− [∂ u](n).

Consequently, the kernel of (5.59) satisfies

[∂nφ](m− n) = [(∂̄n − An)φ](m− n) = [∂̄n φ](m− n)− δ(m − n). (5.62)

Inserting (5.62) into (5.59) we obtain the equation

g(m) = −q(m) +
∑

n∈Γ

(
∂̄n φ(m− n)

)
q(n), m ∈ Γ. (5.63)

Analogously, equation (5.61) is equivalent to the equation

g(m) = q(m) +
∑

n∈Γ

(
∂m φ(m− n)

)
q(n), m ∈ Γ. (5.64)

A benefit of the formulations (5.63) and (5.64) is that they perhaps make it easier to intuit that

(5.59) and (5.61) behave qualitatively like second kind Fredholm equations.
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5.3.4 Numerical methods

The procedure for solving the Dirichlet problem (5.48) that was outlined in Section 5.3.3

consists of two steps: First (5.59) is solved for the boundary load q, and then the actual potential u

is evaluated from q via the sum (5.58). The second step is executed numerically by simply applying

the fast summation technique of Section 5.1.4. The linear solve in the first step can be solved using

an iterative solver accelerated with the fast summation technique of Section 5.1.4. In numerical

experiments, we found that the iterative solver (in our case GMRES) converged rapidly, as one

would expect given that the coefficient matrix in (5.59) is extremely well conditioned [59]. However,

one can do even better. It turns out that the system matrix in (5.59) is in fact a Hierarchically

Semi-Separable matrix [18, 19, 20, 61], which means that not only can the matrix be applied to

vectors in O(Nboundary) time, but it is possible to directly compute an approximation to its inverse

in linear time, see Chapter 2. We implemented the scheme of [61] and found that a matrix of size

102, 400 × 102, 400 (corresponding to a lattice with about 6.5 × 108 nodes) could be inverted in 1

minute, and applied to a vector in 1 second. The computational time of course depends on the

requested accuracy, and the numbers reported refer to a computation whose relative accuracy was

10−10. See Section 5.5 for details.

The Neumann problem (5.49) can be solved numerically using procedures entirely analogous

to those described for the Dirichlet problem. The Neumann problem involves the additional com-

plication that the system matrix in (5.61) is singular. However, its range is known analytically (it is

the set of functions that sum to zero), so the system can easily be modified to obtain a non-singular

well-conditioned equation.

5.4 Combined techniques

5.4.1 Problem statement

In this section, we consider an equation on a bounded domain Ω for a problem that involves

both a body load, and deviations from perfect periodicity. Letting B denote a non-negative operator
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supported on some subset Ωinc of Ω, such an equation takes the form







[(A+ B)u](m)= f(m), m ∈ Ω,

u(m)= g(m), m ∈ Γ,

(5.65)

where f is a given body load, and g is a given Dirichlet boundary condition. We will convert

equation (5.65) to an equation defined on the smaller set Γ ∪ Ωinc. The technique is exact and

works for any non-negative operator B. However, it is particularly well suited to the case where

Ωinc is in some sense a “small” subset of Ω, and f is either zero, or also supported on a “small”

subset.

5.4.2 Reformulation of the difference equation

We look for a solution of the form

u = G f − Gµ+ D q, (5.66)

where D is the double layer operator defined in (5.57), where q is a function on Γ that is to be

determined, and µ is the (as yet unknown) function

µ = Bu. (5.67)

It is immediately clear that if (5.66) and (5.67) are satisfied, then for m ∈ Ω,

[Au](m) = [AG f ](m)− [AGµ](m) + [AD q](m) = f(m)− µ(m) + 0 = f(m)− [Bu](m),

so the difference equation in (5.65) is satisfied. To enforce the boundary condition, we require µ

and q to satisfy

g(m) = [G f ](m)− [Gµ](m) + [D q](m), m ∈ Γ. (5.68)

It remains to convert (5.66) to an equation that does not involve u. This is easily done by applying

B to (5.66) and restricting the resulting equation to Ωinc,

µ(m) = [BG f ](m)− [BGµ](m) + [BD q](m), m ∈ Ωinc. (5.69)
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Combining (5.68) and (5.69), we obtain the system






DΓ −G(Γ←Ωinc)

−BΩinc
D(Ωinc←Γ) (I+ BΩinc

GΩinc
)











q

µ




 =






g − G(Γ←Ω) f

BΩinc
G(Ωinc←Ω) f




 . (5.70)

In (5.70) we added subscripts to the operators to indicate their range and domain. For instance, DΓ

is an operator mapping a function on Γ to a function on Γ while D(Ωinc←Γ) is an operator mapping

a function on Γ to one defined on Ωinc.

5.4.3 Numerical methods

All matrices in the linear system (5.70) are amenable to fast schemes for applying a matrix

to a vector, and in the examples we have investigated, GMRES converges to a solution reasonably

fast. Empirically, we found that the efficiency of the method can be improved if we exploit the

fact that an approximation to D−1Γ can be computed (see Section 5.3.4) and directly eliminate the

vector q from the system. This results in the equation

Ãµ = h (5.71)

where

Ã =
[
−BΩinc

D(Ωinc←Γ)D
−1
Γ G(Γ←Ωinc) + (I+ BΩinc

GΩinc
)
]

and

h = BΩinc
G(Ωinc←Ω)f + BΩinc

D(Ωinc←Γ)D
−1
Γ (g − G(Γ←Ω)f).

Once (5.71) has been solved, the vector q is retrieved via the formula

q = D−1Γ (g − G(Γ←Ω)f + G(Γ←Ωinc)µ),

and then u can be obtained from (5.66).

5.5 Numerical results

In this section, we illustrate the robustness of the proposed methodology.
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All experiments are run on a Dell desktop computer with 2GB of RAM and an Intel Pentium

4 3.4GHz dual processor. The methods were run at a requested relative precision of 10−10. The

techniques were implemented rather crudely in Matlab, which means that significant further gains

in speed should be achievable.

Numerical results for the lattice Fast Multiple method are reported in Chapter 4.

5.5.1 Numerical results for finite lattices

In this section, we investigate the techniques described in Section 5.3.4, as applied to solving

the lattice Dirichlet problem (5.48) on the four domains illustrated in Figure 5.3. The ellipses have

an aspect ratio of 0.75, and the U-shapes are scaled so that their thickness is one quarter the length

of the long side.

(a) Square (b) L-shape (c) Ellipse (d) U-shape

Figure 5.3: Finite lattice geometries

For each domain, we recast the BVP (5.48) as a boundary equation of the form (5.59), and

then solved (5.59) using the direct solvers described in Section 5.3.4. A direct solver of this kind

involves three steps: (1) Create a compressed representation of the operator in a “data-sparse”

format. (2) Compute an approximation to the inverse of the compressed operator. (3) Apply the

inverse to the source vector. The times required for each of these three steps are shown in Figure

5.4. We make three observations:

• All steps in the computation scale linearly with the number of points Nboundary on the

boundary of the domain.

• The constant of proportionality is small. Specifically, a lattice with Ndomain ≈ 6.5 × 108
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nodes can be processed in one minute. Once the inverse of the boundary operator has been

computed, additional solves take only one second.

• Among the three steps of the direct solver, the compression takes by far the longest, and

we expect that much could be gained by improving on the crude method we implemented.
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Figure 5.4: Times for inversion of the double layer operator. Labels: -o- Compression, -+- Inversion,
-*- Application

5.5.2 Numerical results for finite lattices with inclusions

The experiments reported in this section are included to illustrate the conditioning of the

linear systems (5.70) and (5.71) that model a finite lattice with local deviations from perfect peri-

odicity. As an examples of such lattices, we consider a sequence of square 79× 79 lattices in which

p percent of the internal nodes (chosen at random) had been cut, see Figure 5.5(a). As p→ 0, the

condition numbers of (5.70) and (5.71) approach the condition number for the unperturbed bound-

ary equation (5.59), which is excellent (typically less than 10, see [59]). The interesting question is

what happens as the lattice gets pushed further away from perfect periodicity.
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(a) (b)

Figure 5.5: Lattice domains with inclusions

Figure 5.6(a) shows the condition numbers of (5.70) and (5.71) as functions of p. Figure 5.6(b)

shows the closely related graphs illustrating of the number of iterations in GMRES required to attain

a residual of less than 10−10, again as functions of p. We first observe that the conditioning remains

entirely acceptable for all values of p that we tested. However, between the two formulations, the

Schur complement provides significantly better performance.

As a final example, we considered a square with 79× 79 nodes, in which two smaller squares

were partially separated from the main body of the lattice, as shown in Figure 5.5(b). The sepa-

ration was accomplished by cutting p percent of the links (chosen at random) on each side of the

small squares. We ran experiments all the way up to p = 100, at which point the interior of each

square is connected to the rest of the lattice by only one link at each corner. The potential was

grounded at the boundary (i.e. a homogeneous Dirichlet boundary condition was enforced), and

two point sources were placed at the center of each small square. The solution technique described

in Section 5.4.3 handled every value of p with ease. The potential fields associated with some values

of p are shown in Figure 5.7. We remark that for large values of p, the physics of the underlying

problems is quite ill-conditioned, and that the problems considered would be hard for previously

existing methods.



120

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

 

 
                                                     

           

10 20 30 40 50 60 70 80
10

15

20

25

30

35

p p

(a) (b)

C
o
n
d
it
io
n
N
u
m
b
er

N
u
m
b
er

o
f
G
M
R
E
S
It
er
a
ti
o
n
s

Full problem
Schur complement

Figure 5.6: Finite lattice with random inclusions increasing from 20% to 80% of the domain. Square
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5.6 Generalization to other lattice operators

While this manuscript has focused exclusively on lattice equations involving the discrete

Laplace operator (5.1) acting on the square lattice Z2 (or subsets thereof), the methods can straight-

forwardly be generalized in several ways.

The extension to other lattice operators on Z
2 is particularly simple. The methods for the free-

space problem, and for lattices with inclusions, apply directly once a fundamental solution for the

operator under consideration has been constructed. Techniques for constructing such fundamental

solutions are described in [60]. The techniques for handling boundary conditions in Section 5.3

also generalize, with the only caveat that for difference operators that involve more than the eight

nearest neighbors of any lattice node, the boundary of a lattice domain must be extended to a

boundary layer of nodes, sufficiently wide that the nodes inside the layer do not communicate

directly with the nodes on the outside.

The extension to operators on more general mono-atomic or multi-atomic periodic lattices in

two dimensions (such as triangular and hexagonal) is also relatively straightforward [56].

The extension to lattices in three dimensions is in principle not hard either, although in this

case iterative methods must be used to solve the boundary equations that generalize (5.59), since

we do not currently have methods for computing the inverse of such a boundary operator in linear
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time. Moreover, the FMM that we used would probably not perform well in three dimensions, and

we would recommend the use of the method of [78].

5.7 Conclusions

The chapter describes efficient techniques for solving elliptic difference equations on lattice

domains. For simplicity of presentation, the paper focuses on lattice equations involving the discrete

Laplace operator (5.1) acting on the square lattice Z
2, or subsets thereof. Discrete analogs to

boundary integral equations are proposed. These equations are amenable to fast solvers such as

the Fast Multipole Method. Techniques are introduced for problems involving inclusions or local

deviations from perfect periodicity. The complexity of the proposed method is O(Nboundary +

Nsource +Ninc) where Nboundary is the number of nodes on the boundary of the domain, Nsource is

the number of nodes subjected to body loads, and Ninc is the number of nodes that deviate from

perfect periodicity.

Numerical experiments that demonstrate the robustness, versatility, and speed of the methods

were presented. For instance, it was demonstrated that using lattice equivalents of boundary

integral equations along with fast methods for dense matrices, it is possible to solve a boundary

value problem on a lattice with 6.5 · 109 nodes (for which Nboundary = 25, 600) in 1 minute for the

first solve; again using a standard desktop PC. The solution was accurate to ten digits. Once the

first problem has been solved, additional right hand sides (that is, problems specifying other values

on the boundary) can be handled in 1 second.
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Chapter 6

A high-order discretization scheme for elliptic partial differential equations

This chapter considers problems of the form







−∆φ(x) + b(x)φ(x)= 0, x ∈ Ω,

∂φ(x)
∂ν = g(x), x ∈ Γ,

(6.1)

where Ω ⊂ R
2 and Γ = ∂Ω, b(x) ∈ C∞(R2), and g(x) is some given boundary data. A classic

solution approach is to discretize the PDE with a finite element or spectral element method. These

methods lead to large sparse systems that are typically solved via iterative techniques such as

GMRES or multigrid aided by a problem specific preconditioner for rapid convergence.

The method we propose builds the solution operator known as the Neumann-to-Dirichlet

operator in a hierarchical fashion. While we believe the discretization is valid for arbitrary domains,

we take Ω to be a square domain in this preliminary work. The main idea is to compute the

Neumann-to-Dirichlet operator via a least squares solve for a large number of small square domains

whose union is Ω. Having computed these to high accuracy, the global solution operator can be

found by a sequence of merge procedures which involve the inversion of small dense matrices.

The overall cost is O(N1.5) where N is the total number of points on the boundary of the small

boxes. For many problems, the Neumann-to-Dirichlet is an HSS matrix. Matrices of this form are

well suited for fast matrix algebra including fast inversion. Utilizing these techniques reduces the

computational cost to linear.

Section 6.1 begins the chapter by describing how the domain is partitioned. We choose the

discretization points to be the one dimensional Gaussian quadrature points along the boundary of
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each subdomain. Next, we formally define the Neumann-to-Dirichlet operator and, in Section 6.2.2,

explain how to construct the operator cheaply in each of the small squares. By using the fluxes

through the boundaries as unknowns, in Section 6.2.3, we combine local equations to form a global

system. By using a nested dissection approach, we hierarchically eliminate the interior unknowns,

in Section 6.3. In Section 6.4, we illustrate the potential of the method on several preliminary

examples.

6.1 Discretization

First, Ω is tessellated into a large collection of small boxes called leaf boxes. Let Ileaf denote

the set of all leaf boxes and let {Γi}i∈Ileaf denote the collection of the the edges of all the leaf boxes,

see Figure 6.3. For each box i, we define ui as the restriction of φ to Γi, ie.

ui(x) = φ(x) for x ∈ Γi.

Further, we define v(i) as the restriction of the normal derivative across Γ(i):

v(i)(x) =







[∂2φ](x) for x ∈ Γ(i) when Γ(i) is horizontal,

[∂1φ](x) for x ∈ Γ(i) when Γ(i) is vertical,

where ∂i = ∂/∂xi.

On each line Γ(i), we place Ngauss Gaussian quadrature nodes. These points are collected

in vectors γ(i) ∈ R
4Ngauss×2. By collocating the boundary functions u(i) and v(i) at the Gaussian

nodes, we form the vectors u(i),v(i) ∈ R
Ngauss :

u(i) = u(i)(γ(i)),

v(i) = v(i)(γ(i)).

Since the functions u(i)(x) and v(i)(x) are smooth, the values of the functions between the

Gaussian nodes can be approximated to very high accuracy by interpolation.
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6.2 The equilibrium equations

Since the solution to (6.1) is unique, there exist an operator that maps the boundary informa-

tion to the solution. This is called the Neumann-to-Dirichlet operator. In this section, we formally

define this operator and its discrete analog. Techniques for constructing the discrete operator are

presented in Section 6.2.2. By taking note of the relationship of the solution and fluxes between

neighboring boxes, the Neumann-to-Dirichlet operators can be “merged” to form a global linear

system (see Section 6.2.3).

6.2.1 Definition of the Neumann-to-Dirichlet operator

Let Ω(i) be a subdomain of Ω with edges Γ(i1), Γ(i2), Γ(i3), Γ(i4), as shown in Figure 6.4. We

define the boundary potentials and boundary fluxes for Ω(i) via

u(i) =













u(i1)

u(i2)

u(i3)

u(i4)













and v(i) =













v(i1)

v(i2)

v(i3)

v(i4)













.

Since equation (6.1) has a unique solution, there exist a unique operator T (i) such that

u(i) = T (i) v(i), (6.2)

where u(i) and v(i) are derived from any solution φ of (6.1). The operator T (i) is mathematically

an integral operator called the Neumann-to-Dirichlet operator.

The discrete analog of the equation (6.2) is

u(i) = T(i) v(i). (6.3)

For the proposed method, it is sufficient for the matrix T(i) to correctly construct u(i) for

any v(i) that is the restriction of a function in the solution set under consideration.
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Written out in components, T(i) is a 4× 4 block matrix that satisfies













u(i1)

u(i2)

u(i3)

u(i4)













=













T(i,11) T(i,12) T(i,13) T(i,14)

T(i,21) T(i,22) T(i,23) T(i,24)

T(i,31) T(i,32) T(i,33) T(i,34)

T(i,41) T(i,42) T(i,43) T(i,44)

























v(i1)

v(i2)

v(i3)

v(i4)













. (6.4)

6.2.2 Construction of the Neumann-to-Dirichlet operator on a small box

In this section, we present techniques for constructing the Neumann-to-Dirichlet operator on

a small box.

Let Ω(i) be a small box with edges Γ(i1), Γ(i2), Γ(i3), Γ(i4), as shown in Figure 6.4, and consider

the task of constructing a matrix T(i) such that (6.3) holds for all permissible potentials.

Suppose there exist a collection of solutions {φj}Nsamp

j=1 that locally span the solution space to

the desired precision. For each φj , we construct the corresponding vectors of boundary values

uj =













φj(γ
(i1))

φj(γ
(i2))

φj(γ
(i3))

φj(γ
(i4))













, and vj =













∂2φj(γ
(i1))

∂1φj(γ
(i2))

∂2φj(γ
(i3))

∂1φj(γ
(i4))













.

Via a least squares procedure, a matrix T(i) is constructed such that the equation

[u1 u2 · · · uNsamp ] = T(i) [v1 v2 · · · vNsamp ] (6.5)

holds to within the specified tolerance ε.

The sample functions φj chosen such that each one is a solution to a local problem on a patch

Ψ that covers the domain Ω(i), as shown in Figure 6.7. The local problem reads







−∆φj(x) + b̃(x)φj(x) = 0, x ∈ Ψ,

∂nφ(x) = vj(x), x ∈ ∂Ψ,

(6.6)

where b̃ is a function chosen so that:
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(1) For x ∈ Ω(i), we have b̃(x) = b(x).

(2) The equation (6.6) is easy to solve.

We found it is enough to use 80 sample functions for a given square.

We propose two techniques for constructing the sample functions φj . The first technique is

valid for constant coefficient problems (ie. b(x) = c ∈ C). The second technique is valid for all

smooth functions b(x).

6.2.2.1 Constant coefficient case

For constant coefficient problems, the fundamental solution Φ(x) is known. Thus we propose

the use of the Method of Fundamental Solutions [33]. Here we give a very brief overview of the

method.

Let Ω(i) have side length a. We place a collection of proxy points {xj}Nsam
j=1 along a circle of

radius 2 a concentric with Ω(i), see Figure 6.1. Let φj(x) = Φ(x− xj).

Ω(i)

Figure 6.1: Illustration of proxy points (in red).

Since the fundamental solution is translation invariant, the matrix T need only be found for

one box of size Ω(i).
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6.2.2.2 Variable coefficient case

Without á priori knowledge of the fundamental solution, a numerical approach to constructing

the sample functions is necessary. We propose building φj via planar wave interpolation. That is

φj(x) =

Nj∑

l=1

cle
ikl·x

where {kl}Nj

l=1 are chosen at random from a normal distribution and Nj = N2
gauss. We choose {cl}Nj

l=1

such that φj(x) satisfies (6.6) at the two dimensional Gaussian quadrature nodes inside of Ω(i) (see

Figure 6.2). Additionally, we require

Nj∑

l=1

cl = 1.

Figure 6.2: Illustration of Gaussian interpolation points.

6.2.3 Assembling a global equilibrium equation

In this section, we formulate a linear equation that relates the following variables:

Given data: {v(i) : i is an edge that is exterior to Ω},

Sought data: {v(i) : i is an edge that is interior to Ω}.

Let Nedge denote the number of interior edges. Then the coefficient matrix of the linear system

will consist of Nedge ×Nedge blocks, each of size Ngauss ×Ngauss. Each block row in the system will

have at most 7 non-zero blocks. To form this matrix, let i denote an interior edge. Suppose i is a

vertical edge. Let m and n denote the two boxes that share the edge i, let {m1, m2, m3, m4} denote
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the edges of τ1, and let {n1, n2, n3, n4} denote the edges of τ2, see Figure 6.5. The Neumann-to-

Dirichlet operator for m provides an equation for the boundary fluxes of the left box:

u(m2) = T(m1,21) v(m1) + T(m1,22) v(m2) + T(m1,23) v(m3) + T(m1,24) v(m4). (6.7)

Analogously, the Neumann-to-Dirichlet operator for n provides the equation

u(n4) = T(n,41) v(n1) + T(n,42) v(n2) + T(n,43) v(n3) + T(n,44) v(n4). (6.8)

Observing that m2 = n2 = i, we see that u(m2) = u(n4), and consequently (6.7) and (6.8) can be

combined to form the equation

T(m1,21) v(m1) + T(m,22) v(i) + T(m,23) v(m3) + T(m,24) v(m4)

= T(n,41) v(n1) + T(n,42) v(n2) + T(n,43) v(n3) + T(n,44) v(i). (6.9)

The collection of all equations of the form (6.9) for interior vertical edges, along with the analogous

set of equations for all interior horizontal edges forms the global equilibrium equation.

6.3 Efficient direct solvers

This section describes a direct solution technique for the global equilibrium equation con-

structed in Section 6.2. The idea is to partition the box Ω into a quad-tree of boxes. On each leaf

box, the Neumann-to-Dirichlet operator T(τ) is constructed via a technique described in Section

6.2.2. We then sweep up through the tree constructing the Neumann-to-Dirichlet operator for a

box by merging the operators of its four children boxes.

Let N denote the size of the coefficient matrix. Then Section 6.3.2 describes a procedure

with O(N1.5) complexity, and Section 6.3.3 outlines how the procedure can be accelerated to O(N)

complexity. Before describing the fast solvers, we describe a hierarchical decomposition of the

domain in Section 6.3.1.
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6.3.1 A quad-tree on the domain

A standard quad-tree is formed on the computational domain Ω as follows: Let Ω(1) = Ω

be the root of the tree, as shown in Figure 6.6(a). Then split Ω(1) into four boxes that share no

interior points

Ω(1) = Ω(2) ∪Ω(3) ∪Ω(4) ∪Ω(5),

as shown in Figure 6.6(b). Continue by splitting each of the four boxes into four smaller equisized

boxes:

Ω(5) = Ω(6) ∪Ω(7) ∪Ω(8) ∪Ω(9),

Ω(6) = Ω(10) ∪ Ω(11) ∪ Ω(12) ∪ Ω(13),

Ω(7) = Ω(14) ∪ Ω(15) ∪ Ω(16) ∪ Ω(17),

Ω(8) = Ω(18) ∪ Ω(19) ∪ Ω(20) ∪ Ω(21),

as shown in Figure 6.6(c). The process continues until each box is small enough that the Neumann-

to-Dirichlet operator for each leaf can easily be constructed via the procedure described in Section

6.2.2. The levels of the tree are ordered so that ℓ = 0 is the coarsest level (consisting only of the

root), ℓ = 1 is the level with four boxes, etc. We let L denote the total number of levels in the tree.

6.3.2 Simple construction of the Neumann-to-Dirichlet operator for a parent

Suppose that σ is a box with children ν1 and ν3 as shown in Figure 6.8, and that we know

the matrices T(ν1) and T(ν3) associated with the children. We seek the matrix T(σ). Recall the

equilibrium equations for the two children read

u(mi) =
∑4

j=1 T
(ν1,ij) v(mj ), i = 1, 2, 3, 4, (6.10)

u(ni) =
∑4

j=1T
(ν3,ij) v(nj), i = 1, 2, 3, 4. (6.11)
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Observing that u(m2) = u(nn), we combine (6.10) for i = 2 with (6.11) for i = 4 to obtain the joint

equation

T(ν1,21) v(m1) + T(ν1,22) v(m2) + T(ν1,23) v(m3) + T(ν1,24) v(m4)

= T(ν3,41) v(n1) + T(ν3,42) v(n2) + T(ν3,43) v(n3) + T(ν3,44) v(n4). (6.12)

Further utilizing that v(m2) = v(n4), we write (6.12) along with (6.10) and (6.11) as

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.

Eliminating v(m2) from the system via a Schur complement yields the operator T(σ).

This procedure merged two boxes. We call it a “merge-two” operation. A “merge-four”

operation is obtained by simply combining three merge-two operations. To be precise, suppose

that τ is a node with the four children ν1, ν2, ν3, ν4. We introduce the two “intermediate” boxes

σ1 and σ2 as shown in the following figure:

ν1

ν2

ν3

ν4 ⇒
σ1

σ2 ⇒ τ

Letting the first procedure described earlier in the section be denoted by “merge two horizontal”

and defining an analogous function “merge two vertical,” we then find that the “merge-four”

procedure is

T(σ1) = merge two horizontal(T(ν1), T(ν3)),

T(σ2) = merge two horizontal(T(ν2), T(ν4)),

T(τ) = merge two vertical(T(σ1), T(σ2)).
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Γ(i)

Ω

Figure 6.3: The computational box Ω (gray) is split into 16 small boxes. There are a total of 40
edges in the discretization, 24 interior ones (solid lines) and 16 exterior ones (dashed lines). One
interior edge Γ(i) is marked with a bold line. (Each edge continues all the way to the corner, but
has been drawn slightly shortened for clarity.)

6.3.3 Fast construction of the Neumann-to-Dirichlet operator for a parent

The merge operation described in Section 6.3.2 has asymptotic cost O(N1.5), where N is the

total number of points on the edges of the leaves. To provide a simplified explanation, each merge

operation requires a matrix inversion and matrix-matrix-multiplication for dense matrices whose

size grows to O(
√
N)×O(

√
N). Fortunately, these dense matrices have an internal structure such

that the off-diagonal blocks in (6.4) have low rank and the diagonal blocks are Hierarchically Semi-

Separable (HSS) matrices. Thus HSS algebra techniques described in Chapter 3 can be utilized

resulting in a method that scales linearly.

6.4 Numerical examples

The proposed method was tested on four problems of the form (6.1). The problems considered

are:

• Modified Helmholtz: Let b(x) = k2 and g(x) = ∂
∂ν (K1(|kx|)) where K1 is the first order

modified Bessel function of the second kind and k is a constant known as the wave number.

• Helmholtz: Let b(x) = −k2 and g(x) = ∂
∂ν (H1(|kx|)) where H1 is the first order Bessel

function of the second kind.
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Ω(i)

Γ(i1)

Γ(i2)

Γ(i3)

Γ(i4)

Ω

Figure 6.4: The box Ω(i) is marked in gray. Its edges are Γ(i1), Γ(i2), Γ(i3), Γ(i4).

Ω(n)Ω(m)

Γ(m1)

Γ(m3)

Γ(m4)

Γ(n1)

Γ(n2)

Γ(n3)

Ω

Figure 6.5: Construction of the equilibrium equation for the edge Γ(i) in Figure A.1. It is the
common edge of the boxes Ω(m) and Ω(n), which have edges {Γ(m1), Γ(m2), Γ(m3), Γ(m4)}, and
{Γ(n1), Γ(n2), Γ(n3), Γ(n4)}, respectively. Observe that Γ(i) = Γ(m2) = Γ(n4) (the bold line).
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Level 0 Level 1

Level 2 Level 3

τ = 1

τ = 2

τ = 3

τ = 4

τ = 5

τ = 6

τ = 7

τ = 8

τ = 9

(a) (b)

(c) (d)

Figure 6.6: Tree structure for a tree with L = 3 levels. There are 10 Gaussian nodes on each side
of the leaf boxes. The black dots mark the points at which the solution φ and its derivative (in the
direction normal to the indicated patch boundary) are tabulated.

(a) (b)

Ω(i)

b̃ = b

b̃ can be chosen freely

Ψ

Ω(i)

b̃ = b

b̃ chosen freely

Ψ

Figure 6.7: Two choices of geometry for the local patch computation. The choice (a) is natural
since it conforms to the overall geometry. The advantage of choice (b) is that the FFT can be used
in the angular direction.
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Ω(ν1) Ω(ν3)

Γ(m4) Γ(m2) Γ(n2)Γ(n4)

Γ(m1)

Γ(m3)

Γ(n1)

Γ(n3)

Figure 6.8: Geometry of the merge operation.
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• Oscillatory: Let b(x) = cos(x1/2) and g(x) = ∂
∂ν (e

ikx·d) where k is a constant, and d the

direction of an incident wave.

• Decay: Let b(x) = 1
x1

and g(x) = ∂
∂ν (e

ikx·d) where k is a constant, and d the direction of

an incident wave.

All codes were executed on a desktop computer with 2.8GHz Intel i7 processor and 12GB

of RAM. The method was implemented in Matlab. While this implementation is unoptimized, we

believe it is sufficient for illustrating the the potential of the proposed technique.

For the Helmholtz and modified Helmholtz problems, we fix the leaf boxes to have length one

and use 10 Gaussian nodes per edge. The Neumann-to-Dirichlet operator need only be computed

once per level for these problem. On the leaf level, the approximate operator is computed via the

Method of Fundamental Solutions. Figure 6.9 reports the time for the computing the solution on

Γ using dense matrix algebra while the side length l of Ω increases from 1 to 64. The error remains

approximately 10−7.

For the oscillatory and decay problems, we fix Ω = [1, 5]2. The leaf boxes start with a side

length of 4. At each iteration, we refine the discretization by halving the length of a leaf box. The

domain is refined until each leaf box has length 1/8. Figure 6.10 reports the l∞-norm of difference

between the approximate solution on the boundary for two consecutive iterations. Figures 6.11 and

6.12 illustrate the global convergence of the solution.

6.5 Concluding remarks

This chapter presented a new discretization technique for elliptic boundary value problems.

Preliminary numerical results were presented. They indicate that the method is capable of solving

variable coefficient problems where b(x) is smooth and has bounded variance in magnitude. Addi-

tionally, the results indicate that the method is capable of solving constant coefficient problems to

high accuracy.
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Figure 6.11: Plots of the computed solution to the Oscillatory boundary value problem.
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Figure 6.12: Plots of the computed solution to the Decay boundary value problem.



Chapter 7

Conclusion

7.1 Summary of key results

A collection of fast direct solvers for elliptic boundary value problems are presented in this

dissertation. It is the belief of the author that these solution techniques increase what physical

phenomena can be modeled computationally. At the very least, the techniques increase the types

of problems that can be solved on standard desktop computer.

The Hierarchically Semi-Separable (HSS) solver, presented in Chapter 2, has the ability to

solve most one dimensional integral equations in linear time with the added benefit that the cost of

each additional solve is minimal. In fact, if the approximate inverse is pre-computed, the solution

time can often be one or two orders of magnitude shorter than that of existing state-of-the-art

solvers. For example, a linear system corresponding to an elongated domain with corners involving

approximately 105 discretization points can be solved in about 50 seconds to six digits of accuracy

on a standard desktop computer. Each additional solve simply involves a matrix-vector multiply

that can be compute in less than one-tenth of a second. Additional numerical results indicate that

there is wide range of problems (including high-frequency Helmholtz, boundaries that are “space

filling”, and integral equations of two dimensional surfaces) for which the method can construct an

approximate inverse with O(N1.5) computational cost and apply the inverse with a cost that grows

linearly with N , where N is the number of discretization points.

For the linear system that arises from the finite element or finite difference discretization of

an elliptic PDE, an O(N1.5) solution technique, known as the nested dissection method, has existed
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since the 1970’s. Recently, it was discovered that the intermediate matrices in this method have

enough internal structure that a matrix of size m ×m can be stored, multiplied, and inverted in

O(m) time. (Several different data sparse formats have been proposed; in this dissertation we use

the so-called Hierarchically Semi-Separable format.) In Chapter 3, we presented our variation of

an accelerated nested dissection method. For many problems, this new technique scales linearly

with the number of discretization points and is very fast for solving a pure boundary value problem

with multiple right-hand sides. The numerical examples report that the first for a system involving

16 million unknowns takes about 7 minutes on a desktop computer. Each additional solve takes

about 0.04 seconds. For moderately ill-conditioned linear systems, the direct solver can be used

as preconditioner. Unlike many existing preconditioners, the construction of one using nested

dissection techniques is not problem specific. Several groups [70, 18, 53] are currently working on

implementing similar solution techniques in this capacity.

In the special case of finite element or finite difference discretization of constant coefficient

elliptic problems, we have developed fast techniques that utilize the existence of a discrete fun-

damental solution. For the free-space problem, the solution is given by a convolution of the fun-

damental solution with the source charges. The lattice FMM presented in Chapter 4 computes

the convolution efficiently. For example, a Poisson equation on a 106 × 106 lattice, of which 106

points were loaded, was solved to ten digits of accuracy in three minutes on a desktop computer.

In Chapter 5, we propose the use of boundary algebraic equations to solve discrete boundary value

problems. Similar to the linear system that arises from the discretization of many boundary inte-

gral equation, the boundary algebraic equation has internal structure. This structure is such that

the solution techniques of Chapter 2 can be applied. Thus the linear system can be solved with

computational cost O(Nboundary), where Nboundary is the number of points on the boundary.

In addition to the fast solvers, preliminary results for a new discretization scheme were

presented in Chapter 6. The method constructs a global solution operator from operators defined

on subdomains in a hierarchical fashion. This new scheme is high-order accurate and well-suited

for fast direct solvers.
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7.2 Extensions and future work

The direct solvers described in this dissertation are immediately applicable to several impor-

tant applications (see Section 7.1). Moreover, we expect the new techniques to be useful in many

additional environments. Directions that are currently under investigation include:

Homogenization methods using fast direct solvers: Appendix A and [38] illustrate how homogeniza-

tion techniques in conjunction with fast dense matrix algebra for structured matrices can rapidly

build approximate solution operators.

Fast direct solvers for volume integral equations in the plane: Consider the linear system that arises

from the Nyström discretization of the Lippmann-Schwinger equation. This system has internal

structure, however it is different from the structure exploited in building the fast method in Chapter

2. A linear inversion method for this linear system is currently under development. The key to its

construction is recursing on dimension.

Fast direct solvers for surface integral equations in R
3: This solver will be an extension of the fast

direct solver for volume integral equations in the plane.

Fast direct solvers for finite element and finite difference equations on meshes in R
3: This solver

will be a three-dimensional version of the accelerated nested dissection method. With the increase

in dimensionality, the Schur complements will lie on the boundary of three-dimensional boxes with

a internal structure similar to that of the discretized volume integral equation in the plane. Thus

the acceleration will come from the linear solver developed for discretized integral equations in the

plane.
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Appendix A

Numerical homogenization via approximation of the solution operator

A.1 Introduction

A.1.1 Background

The purpose of this report is to draw attention to a number of recent developments in

computational harmonic analysis that may prove helpful to the construction of simplified models

for heterogeneous media. We consider problems modeled by elliptic PDEs such as electrostatics

and linear elasticity in composite materials, and Stokes’ flow in porous media.

Many different solution approaches have been proposed for the type of problems under con-

sideration. A classical technique that works relatively well in situations where there is a clear

separation of length-scales is to derive so-called homogenized equations which accurately model

the macro-scale behavior of the constitutive equations without fully resolving the micro-structure.

The homogenized equations can sometimes be derived analytically, but they are typically obtained

from numerically solving a set of equations defined on a Representative Volume Element (RVE).

An unfortunate aspect of this approach is that its accuracy is held hostage to many factors that

are outside of the control of the modeler. Phenomena that tend to lead to less accurate solutions

include:

(1) Concentrated loads.

(2) Boundaries, in particular non-smooth boundaries.

(3) Irregular micro-structures.
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The accuracy cannot readily be improved using generic techniques, but a number of strategies

for developing coarse-grained models for specific situations have been developed. A popular class

of such methods consists of variations of finite element methods in which a discretization on the

macro-scale is constructed by solving a set of local problems defined on a representative collection

of patches of fully resolved micro-structure [29, 34, 77].

We contend that it is in many situations advantageous to approximate the solution operator,

rather than the differential operator. For the elliptic problems under consideration in this paper, the

solution operator takes the form of an integral operator with the Green’s function of the problem

as its kernel. That such operators should in principle allow compressed representations has been

known for some time (at least since [7]), but efficient techniques for actually computing them have

become available only recently.

To illustrate the viability of the proposed techniques, we demonstrate how they apply to a

couple of archetypical model problems. We first consider situations in which the micro-structure

needs to be fully resolved and a coarse-grained model be constructed computationally. We show that

this computation can be executed efficiently, and that once it has been, the reduced model allows

for very fast solves, and is highly accurate even in situations that are challenging to existing coarse-

graining methods. We then show that the proposed methods can fully exploit the simplifications

possible when an accurate model of the material can be derived from computations on an RVE.

A.1.2 Mathematical problem formulation

While the ideas described are applicable in a broad range of environments, we will for ex-

positional clarity focus on scalar elliptic boundary value problems defined on some regular domain

Ω ⊂ R
2 with boundary Γ. Specifically, we consider Neumann problems of the form







−∇ ·
(
a(x) · ∇u(x)

)
= 0, x ∈ Ω,

un(x) = f(x), x ∈ Γ,

(A.1)

where a : Ω → R
2×2 is a matrix-valued function that varies “rapidly” (on the length-scale of the

micro-structure), and where un(x) denotes the normal derivative of u at x ∈ Γ. Our objective is to
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rapidly construct u|Γ, from a given boundary function f . We are interested both in the situation

where we are allowed a pre-computation involving some given function a, and in the situation in

which a is specified probabilistically.

Some of our numerical work will focus on the special case where (A.1) represents a two-

phase material. To be precise, we suppose that Ω can be partitioned into two disjoint “phases,”

Ω̄ = Ω̄1 ∪ Ω̄2, and that there exist constants a1 and a2 such that

a(x) =







a1 I, x ∈ Ω1,

a2 I, x ∈ Ω2,

where I is the identity matrix. We further suppose that Ω̄2 is wholly contained inside Ω, and let

Γint denote the boundary between Ω1 and Ω2, see Figure A.1. Then (A.1) can more clearly be

written 





−a1∆u(x) = 0, x ∈ Ω1,

−a2∆u(x) = 0, x ∈ Ω2,

[u](x) = 0, x ∈ Γint,

[a un](x) = 0, x ∈ Γint,

un(x) = f(x), x ∈ Γ,

(A.2)

where for x ∈ Γ, [u](x) and [a un](x) denote the jumps in the potential and in the flow −a(x)∇u(x)

in the normal direction, respectively.

Γ

Γint

Ω2

Ω2

Ω2

Ω1

Figure A.1: A two phase domain.

While the current paper concerns only situations modeled by equations of the types (A.1)
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and (A.2), the methodology extends to more general elliptic differential equations, see Section A.5.

A.1.3 Coarse-graining of the differential operator (homogenization)

A classical technique [4, 22] for handling a problem such as (A.1) with a rapidly varying

coefficient function a is to construct a function ahom that varies on the macroscale only (or may

even be constant) such that the solution u is in some sense approximated by the solution uhom to






−∇ ·
(
ahom(x) · ∇uhom(x)

)
= 0, x ∈ Ω,

∂n uhom(x) = f(x), x ∈ Γ.

(A.3)

The derivation of an equation such as (A.3) typically relies on fairly strong assumptions on

separation of length-scales, rendering this technique problematic in situations involving boundary

effects, concentrated loads, multiple or undifferentiated length-scales, etc. A common technique for

ameliorating these difficulties is to preserve a piece of the fully resolved micro-structure near the

boundary, or the concentrated load, and then to “glue” the two models together.

Another common approach is to forego the construction of a coarse-grained continuum model

and construct an equation involving a discretized differential operator whose solution in some sense

captures the macro-scale behavior of the solution of (A.3), see e.g. [29]. The elements of the

discretized matrix are typically constructed via local computations on patches of micro-structure.

A.1.4 Coarse-graining of the solution operator

The premise of our work is that it is possible, and often advantageous, to approximate the

solution operator of (A.1), rather than the differential operator itself. We will demonstrate that

with this approach, many of the difficulties encountered in common coarse-graining strategies can

be side-stepped entirely. To be precise, we note that mathematically, the solution to (A.1) takes

the form

u(x) = [K f ](x) =

∫

Γ
G(x, y) f(y) ds(y), x ∈ Γ, (A.4)

where G is a kernel function that depends both on the function a, and on the domain Ω. It is

known analytically only in the most trivial cases (such as a being constant, and Ω being a square or
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a circle). However, it turns out that the solution operator can be constructed numerically relatively

cheaply, and that it admits very data-sparse representations.

Roughly speaking, our proposal is that instead of seeking an approximation of the form (A.3)

of (A.1), it is often advantageous to seek an approximation of the form

uhom(x) = [Khom f ](x) =

∫

Γ
Ghom(x, y) f(y) ds(y), x ∈ Γ.

of (A.4). The purpose of the manuscript is to demonstrate the basic viability and desirability of

this approach. Specifically, we seek to:

(1) Demonstrate via numerical examples that the solution operators can to high precision be

approximated by “data-sparse” representations.

(2) Illustrate a framework in which highly accurate reduced models can be constructed even

for situations involving boundary effects, and concentrated loads.

(3) Demonstrate that the reduced models can in many instances be computed inexpensively

from statistical experiments on RVEs.

(4) Demonstrate that in situations where the full micro-structure needs to be resolved, there

exist highly efficient techniques for doing so, and that the resulting reduced models form

natural building blocks in computational models.

Remark 32. In this paper, we focus on problems with no body load, such as (A.1). However, the

ideas set out can equally well be applied to problems such as






−∇ ·
(
a(x) · ∇u(x)

)
= h(x), x ∈ Ω,

un(x) = f(x), x ∈ Γ.

(A.5)

The mathematical solution operator then contains two terms, one corresponding to each of the two

data functions f and h,

u(x) =

∫

Γ
G(x, y) f(y) ds(y) +

∫

Ω
K(x, y)h(y) dA(y), x ∈ Ω. (A.6)

The second term in (A.6) is compressible in a manner very similar to that of the first.
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Remark 33. A reason why approximation of the solution operator may prove advantageous com-

pared to approximating the differential operator is hinted at by the spectral properties of the problem.

For a bounded domain, an elliptic operator A such as the one defined by equation (A.1) or (A.2)

typically has a discrete spectrum (λn)
∞
n=1, where λn →∞, and where eigenfunctions get more oscil-

latory the larger λn is. In up-scaling A, we seek to construct an operator Ahom whose low eigenvalues

and eigenfunctions approximate those of A. Measuring success is tricky, however, since the opera-

tor A − Ahom is in many ways dominated by the high eigenvalues. One way of handling this is to

consider multi-scale representations of the operators, see, e.g., [2, 13, 26, 30, 31]. Another way is

to try to approximate the inverse of the operator. We observe that A−1 is typically compact, and

its dominant eigenmodes are precisely those that we seek to capture. Roughly speaking, we advocate

the numerical construction of a finite dimensional operator T such that ||A−1 − T || is small.

Remark 34. Our goal with this paper is not to set up a mathematical analysis of the properties

of kernels such as the function G in (A.4). However, to give a sense of the type of questions that

arise, let us consider a situation where the function a in (A.1) represents a micro-structure with a

characteristic length-scale λ. We then let d denote a cut-off parameter that separates the near-field

from the far-field, say d = 5λ, and set

Gnear(x, y) =







G(x, y), |x− y| ≤ d,

0, |x− y| > d,

Gfar(x, y) =







0, |x− y| ≤ d,

G(x, y), |x− y| > d,

and

unear(x) =

∫

Γ
Gnear(x, y) f(y) ds(y), ufar(x) =

∫

Γ
Gfar(x, y) f(y) ds(y).

The function y 7→ Gnear(x, y) depends strongly on the local micro-structure near x, and cannot

easily be compressed. This part of the operator must be resolved sufficiently finely to fully represent

the micro-structure. However, this is a local interaction, and unear can be evaluated cheaply once

Gnear has been determined. In contrast, Gfar is compressible. If Γ1 and Γ2 are two non-touching

pieces of the boundary, then the integral operator

[TΓ1←Γ2σ](x) =

∫

Γ2

Gfar(x, y)σ(y) ds(y), x ∈ Γ1,
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is not only compact, but its singular values typically decay exponentially fast, with the rate of decay

depending on the sizes of Γ1 and Γ2, and on the distance between them. More careful analysis of

these issues in an appropriate multi-scale framework can be found in [53].

A.2 Data-sparse matrices

A ubiquitous task in computational science is to rapidly perform linear algebraic operations

involving very large matrices. Such operations typically exploit special structure in the matrix

since the costs for methods capable of handling general matrices tend to scale prohibitively fast

with matrix size: For a general N×N matrix, it costs O(N2) operations to perform a matrix-vector

multiplication, O(N3) operations to perform Gaussian elimination or to invert the matrix, etc. A

well-known form of structure in a matrix is sparsity. When at most a few entries in each row of the

matrix are non-zero (as is the case, e.g., for matrices arising upon the discretization of differential

equations, or representing the link structure of the World Wide Web) matrix-vector multiplications

can be performed in O(N) operations instead of O(N2). The description data-sparse applies to a

matrix that may be dense, but that shares the key characteristic of a sparse matrix that some linear

algebraic operations, typically the matrix-vector multiplication, can to high precision be executed

in fewer than O(N2) operations (often in close to linear time).

There are many different types of data-sparse representations of a matrix. In this paper,

we will utilize techniques for so-called Hierarchically Semi-Separable (HSS) matrices [17, 20, 71],

which arise upon the discretization of many of the integral operators of mathematical physics, in

signal processing, in algorithms for inverting certain finite element matrices, and in many other

applications, see e.g. [18, 58, 71]. An HSS matrix is a dense matrix whose off-diagonal blocks are

rank-deficient in a certain sense. Without going into details, we for now simply note that an HSS

matrix A can be expressed via a recursive formula in L levels,

A(ℓ) = U(ℓ) A(ℓ−1) V(ℓ) + B(ℓ), ℓ = 2, 3, . . . , L, (A.7)

where A = A(L), and the sequence A(L), A(L−1), . . . , A(1) consists of matrices that are successively
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smaller (typically, A(ℓ−1) is roughly half the size of A(ℓ)). In (A.7), the matrices U(ℓ), V(ℓ) and B(ℓ)

are all block-diagonal, so the formula directly leads to a fast technique for evaluating a matrix-

vector product. The HSS property is similar to many other data-sparse representations in that

it exploits rank-deficiencies in off-diagonal blocks to allow matrix-vector products to be evaluated

rapidly; the Fast Multipole Method [44, 45], Barnes-Hut [5], and panel clustering [48] are all similar

in this regard. The HSS property is different from these other formats in that it also allows the

rapid computation of a matrix inverse, of an LU factorization, etc, [15, 17, 25, 62, 72]. The ability

to perform algebraic operations other than the matrix-vector multiplication is also characteristic

of the H-matrix format of Hackbusch [49].

Remark 35. There currently is little consistency in terminology when it comes to “data-sparse”

matrices. The property that we refer to as the “HSS” property has appeared under different names

in, e.g., [62, 63, 66, 72]. It is closely related to the “H2-matrix” format [8, 9, 10, 50] which is more

restrictive than the H-matrix format, and often admits O(N) algorithms.

Remark 36. This remark describes in which sense the off-diagonal blocks of a matrix that is

compressible in the HSS-sense have low rank; it can safely be by-passed as the material here is

referenced only briefly in Section A.3.3. Let A denote an N ×N HSS matrix A. Let I denote an

index vector

I = [n+ 1, n+ 2, . . . , n+m],

where n and m are positive integers such that n +m ≤ N . Then we define the HSS row block RI

as the m×N matrix

RI =













an+1,1 an+1,2 · · · an+1,n 0 0 · · · 0 an+1,n+m+1 an+1,n+m+2 · · · an+1,N

an+2,1 an+2,2 · · · an+2,n 0 0 · · · 0 an+2,n+m+1 an+2,n+m+2 · · · an+2,N

...
...

...
...

...
...

...
...

...

an+m,1 an+m,2 · · · an+m,n 0 0 · · · 0 an+m,n+m+1 an+m,n+m+2 · · · an+m,N













In other words, RI is an m × N sub-matrix of A corresponding to the rows marked by the index

vector I, but with the diagonal block corresponding to I replaced by a zero matrix. The HSS column
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block CI is analogously defined as the N ×m matrix consisting of m columns of A with the diagonal

block excised. The principal criterion for a matrix A to be compressible in the HSS sense is that its

HSS blocks should have numerically low rank.

A.3 Case study: A discrete Laplace equation on a square

In this section, we illustrate how the coarse-graining techniques outlined in Section A.1.4 can

be applied to a discrete equation closely related to (A.1). This discrete equation can be viewed

either as the result of discretizing (A.1) via a finite difference method, or as an equation that in its

own right models, for instance, electro-statics on a discrete grid.

A.3.1 Problem formulation

Given a positive integer Nside, we let Ω denote the Nside×Nside square subset of Z
2 given by

Ω = {m = (m1, m2) ∈ Z
2 : 1 ≤ m1 ≤ Nside and 1 ≤ m2 ≤ Nside}. (A.8)

Figure A.2(a) illustrates the definition. For a node m ∈ Ω, we let Bm denote a list of of all nodes in

Ω that directly connect to m. For instance, an interior node such as the node m shown in Figure

A.2(b) would have the neighbor list

Bm = {ms, me, mn, mw},

(a) (b)

mmw me

mn

ms

(c)

n ne

nn

ns

Figure A.2: Geometry of the lattice problem in Section A.3.1. (a) The full lattice for Nside = 5.
The boundary nodes in Ωb are white and the interior nodes in Ωi are black. (b) The four neighbors
of an interior node m. (c) The three neighbors of a boundary node n.
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while a node on a “western” boundary like n in Figure A.2(c) would have the neighbor list

Bn = {ns, ne, nn}.

For each pair {m, n} of connected nodes, we let αm,n denote a parameter indicating the conductivity

of the link. For a function u = u(m) where m ∈ Ω, the discrete Laplace operator is then defined

via

[Au](m) =
∑

n∈Bm

αm,n

[
u(m)− u(n)

]
. (A.9)

Example: For the case where αm,n = 1 for all connected nodes, we retrieve the standard five-

point stencil associated with discretization of the Laplace operator. For instance, with column-wise

ordering of the nodes in the lattice shown in Figure A.2(a), we obtain the 25× 25 matrix

A =





























C −I 0 0 0

−I D −I 0 0

0 −I D −I 0

0 0 −I D −I

0 0 0 −I C





























, where C =





























2 −1 0 0 0

−1 3 −1 0 0

0 −1 3 −1 0

0 0 −1 3 −1

0 0 0 −1 2





























, where D =





























3 −1 0 0 0

−1 4 −1 0 0

0 −1 4 −1 0

0 0 −1 4 −1

0 0 0 −1 3





























,

(A.10)

and where I is the 5× 5 identity matrix.

We let Ωb denote the boundary nodes and we let Ωi denote the interior nodes (cf. Figure

A.2(a)). Partitioning the matrix A accordingly, the discrete analog of (A.1) becomes






Ab,b Ab,i

Ai,b Ai,i











ub

ui




 =






fb

0




 . (A.11)

Solving for the boundary values of the potential, ub, we find that1

ub =
(
Ab,b − Ab,i A

−1
i,i Ai,b

)−1
fb.

In consequence, the discrete analog of the solution operator (in this case a discrete analog of the

1 Strictly speaking, the matrix Ab,b − Ab,i A
−1
i,i Ai,b has a one-dimensional null-space formed by the constant

functions and is not invertible. This is easily dealt with by a regularization that restricts attention to functions
summing to zero. In what follows, such regularization will be employed where appropriate without further mention.
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Neumann-to-Dirichlet operator) is

T =
(
Ab,b − Ab,i A

−1
i,i Ai,b

)−1
. (A.12)

The operator T defined by (A.12) is dense, but turns out to be data-sparse in the sense described

in Section A.2. We will in this section substantiate this claim via numerical examples, and also

outline strategies for rapidly constructing such an operator in different environments.

A.3.2 Model problems

The compressibility of the solution operator T defined by (A.12) was investigated in the

following five model environments:

Case A: Constant conductivities. In this model, all conductivities are identically one,

αm,n = 1 for each connected pair {m, n}. (A.13)

For Nside = 5, the resulting matrix A is the one given as an example in (A.10). Since in this

case the matrix A can be viewed as a discretization of the Laplace operator −∆ on a square,

the solution operator T can be viewed as a discrete analog of the standard Neumann-to-Dirichlet

operator associated with Laplace’s equation.

Case B: Smooth periodic conductivities. This case is a discrete analog of the equation

−∇ ·
(
b(x)∇u(x)

)
= f(x), x ∈ [0, 1]2, (A.14)

where b is a periodic function defined by

b(x) = 1− 0.9
(
cos(π Ncells x1)

)2 (
cos(π Ncells x2)

)2
, x = (x1, x2) ∈ [0, 1]2. (A.15)

In other words, (A.14) models a medium whose conductivity repeats periodically acrossNcells×Ncells

cells in the square [0, 1]2. Figure A.3(a) illustrates the function b for Ncells = 4. A discrete analog

of (A.14) is now obtained by setting

αm,n = b

(
m+ n− 2

2 (Nside − 1)

)

for each connected pair {m, n}.
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Figure A.3: The periodic problem described as Case B in Section A.3.2 with Ncells = 4 and
Nside = 61. (a) The function b = b(x) defined by (A.15). (b) A solution to the Neumann problem
(A.11) with a constant inflow at x1 = 1 and a constant outflow at x1 = 0.

In our experiments, we chose Ncell so that 25 nodes were used to resolve each period, Ncell =

(Nside−1)/25 (for clarity, Figure A.3 shows a solution with only 15 nodes per period). In this case,

the solutions are typically oscillatory on the boundary, cf. Figure A.3(b). This is a basic two-scale

problem that should be amenable to traditional homogenization techniques provided there is a

sufficient separation of length-scales.

Case C: Random conductivities. The conductivities αm,n are for each connected pair of nodes

{m, n} drawn independently from a uniform probability distribution on [1, 2]. In this case, there

is no local regularity, but we would expect traditional homogenization to give accurate results

whenever the length-scales are sufficiently separated.

Case D: Sparsely distributed missing bars. In this model, all bars are assigned conductivity

1 (as in Case A), but then a small percentage p of bars are completely removed (in the examples

reported, p = 4%). In other words,

αm,n =







1, with probability 1− p if {m, n} is a connected pair,

0, with probability p if {m, n} is a connected pair,

0, if {m, n} is not a connected pair.

As in Case C, there is no local regularity, but we would expect traditional homogenization to give
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accurate results whenever the length-scales are sufficiently separated.

Case E: A lattice with two long cracks. This model is similar to Case D in that a small

number of links have been cut, and all the remaining ones have unit conductivity. However, we

organized the cut links into two long cracks running through the lattice. Figure A.4(a) illustrates

for a case where Nside = 50. In larger lattices, the cracks have the same proportions, but the gap

between the two cracks is kept constant at four links. In this case, solutions may exhibit major

discontinuities. Figure A.4(b) illustrate the electric field resulting from placing oppositely signed

unit sources at the locations marked source and sink in Figure A.4(a). We would expect analytic

derivation of a simplified model to be very hard work in a situation such as this.

A.3.3 Compressibility of the solution operator

While the operator T defined by (A.12) is dense, it is in many situations of interest data-

sparse in the sense described in Section A.2. To illustrate this point, we computed the matrix

T by brute force for several different lattices, compressed it into the HSS format to ten digits of

accuracy (we enforced that local truncation errors be less than 10−10), and looked at how much

memory was required to store the result. Tables A.1 and A.2 show our findings for each of the

five different models described in Section A.3.2, and for differently sized lattices. To provide more

detail, Table A.3 reports the average ranks of the so-called “HSS blocks” (as defined in Remark

36) of a 6 396 × 6 396 matrix T associated with a 1 600 × 1 600 square domain for each of the five

examples.

An interesting aspect of the reported data is that the matrix T associated with the classical

five-point stencil (represented by Case A) is highly compressible. To store it to ten digits of

accuracy, less than 100 floating point numbers are required for each degree of freedom (see Table

A.2). This fact has been exploited in a series of recent papers, including [18, 53, 58]. What is

perhaps more remarkable is that the compressibility property is extremely robust to small changes

in the micro-structure. As the tables A.1, A.2, and A.3 show, there is almost no discernible
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Figure A.4: (a) The lattice with cracks described as Case E in Section A.3.2 for Nside = 40. (b) A
solution to the Neumann problem (A.11) with a unit inflow at the location marked source in (a),
and a unit outflow at the location marked sink.

Memory requirements in KB

Nblock

100 200 400 800 1600

General matrix 1.23e3 4.95e3 1.99e4 7.98e4 3.20e5

Case A (constant conductivities) 3.02e2 6.13e2 1.22e3 2.42e3 4.78e3

Case B (periodic conductivities) 2.97e2 6.06e2 1.21e3 2.38e3 4.69e3

Case C (random conductivities) 3.03e2 6.20e2 1.23e3 2.43e3 4.80e3

Case D (random cuts) 2.96e2 6.06e2 1.20e3 2.38e3 4.70e3

Case E (cracks) 2.96e2 6.10e2 1.22e3 2.42e3 4.77e3

Table A.1: The table shows the amount of memory (in KB) required for storing the matrix T

defined by (A.12) for different problem sizes Nsize. The first line gives the memory required for
storing a general dense matrix of size 4(Nside−1)×4(Nside−1). The following lines give the amount
of memory required to store T in the “HSS” data-sparse format described in Section A.2 for each
each of the five cases described in Section A.3.2, to within precision 10−10.
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Memory requirements in words per degree of freedom

Nblock

100 200 400 800 1600

General matrix 396 796 1596 3196 6396

Case A (constant conductivities) 97.7 98.6 98.1 96.8 95.7

Case B (periodic conductivities) 95.9 97.4 96.7 95.4 93.9

Case C (random conductivities) 97.8 99.7 98.8 97.5 96.0

Case D (random cuts) 95.5 97.5 96.6 95.4 94.1

Case E (cracks) 95.7 98.1 97.7 96.8 95.5

Table A.2: The table shows the same data given in Table A.1, but now scaled to demonstrate that
the memory requirement scales linearly with problem size. To be precise, the entries given are
the number of “words” (the memory required to store a floating point number to double precision
accuracy) required per node on the boundary.

HSS ranks of the Schur complements for a matrix of size 6396 × 6396

Nblock

50 100 200 400 800 1600

General matrix 50 100 200 400 800 1600

Case A (constant conductivities) 19.3 22.7 26.0 31.0 39.0 53.0

Case B (periodic conductivities) 18.8 21.6 24.8 29.3 37.0 50.0

Case C (random conductivities) 19.3 22.8 26.8 31.6 39.8 54.0

Case D (random cuts) 18.7 21.9 25.5 30.8 38.8 52.5

Case E (cracks) 19.2 22.7 25.9 30.9 38.8 52.5

Table A.3: The table shows the HSS-ranks (as described in Remark 36) of blocks in the solution
operator for the different models. The reported rank was the average numerical rank (at precision
10−10) over all HSS blocks of size Nblock that arise in the compressed representation.
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difference in compressibility between the five models considered.

Once the compressed solution operator has been computed, it can be applied to a vector

more or less instantaneously. For our simple implementation, we found the following for the time

tsolve (in seconds) required for a single solve:

Nside 200 400 800 1600 3200

tsolve (sec) 4.4e-3 8.7e-3 1.8e-2 3.4e-2 7.1e-2

These numbers refer to a reduced model that is precise to within ten digits, and we would like to

emphasize that the largest example reported, which requires 0.07 seconds for one solve, involves a

problem whose micro-structure was originally resolved using 3 200 × 3 200 ≈ 107 nodes.

The results reported in tables A.1, A.2, and A.3 indicate that reduced models that are precise

to within ten digits of accuracy in principle exist, even in the presence of the following complications:

• Solutions that are oscillatory on the boundary, even when the period of the oscillation is

not very much smaller than the size of the domain (as in Case B).

• Solutions that are highly irregular on the boundary (as in Cases C, D, and E).

• Boundary loads that exhibit no smoothness. (We observe that the solution operator is

constructed under no assumption on smoothness of the boundary data.)

• Solutions that involve significant discontinuities (as shown in Figure A.4(b)).

In Sections A.3.4, A.3.5, and A.3.6, we will describe practical techniques for inexpensively comput-

ing such reduced models.

A.3.4 Techniques for computing the solution operator that fully resolve the micro-

structure

Given a realization of a lattice model, the operator T defined by (A.12) can of course be

computed with brute force. While Gaussian elimination has an O(N6
side) asymptotic cost that

quickly becomes prohibitive, substantially more efficient techniques exist. Appendix A describes
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a variation of the classical nested dissection method which in the present environment requires

O(N3
side) floating point operations (flops) and O(N2

side) memory. This technique is exact up to

rounding errors, and is very easy to implement. It was used to calculate the numbers reported in

Section A.3.3 and is sufficiently fast that the solution operator associated with an 800× 800 lattice

can be determined in 40 seconds via a Matlab implementation running on a standard desktop PC.

More recently, techniques have been developed that compute an operator such as T inO(N2
side)

time (or possiblyO(N2
side(logNside)

κ) for a small integer κ), which is optimal since there areO(N2
side)

links in the lattice [18, 53, 58]. These techniques are highly efficient, and enable the brute force

calculation of a reduced model in many important environments in both two and three dimensions.

For a brief introduction, see Section A.6.3.

A.3.5 Techniques accelerated by collecting statistics from a representative volume

element

In situations where there is a good separation of length-scales, variations of classical ho-

mogenization techniques can be used to dramatically accelerate the computation of a compressed

boundary operator. To illustrate, let us investigate Case C in Section A.3.2 (the case of random

conductivities, drawn uniformly from the interval [1, 2]). The most basic “homogenized equation”

is in this case a lattice in which all links have the same conductivity. Through experiments on an

RVE, we determined that this conductivity should be

c3 = 1.4718 · · ·

We let Thom denote the solution operator (i.e. the lattice Neumann-to-Dirichlet operator) for the

homogenized lattice. We measured the discrepancy between the homogenized operator Thom, and

the operator associated with the original lattice T, using the measures:

EN2D =
||Thom − T||
||T|| , and ED2N =

||T−1hom − T−1||
||T−1|| . (A.16)
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Figure A.5: Solutions for non-homogenized equation. (a) Solution resulting from the smooth
boundary data fsmooth. (b) Solution resulting from the rough boundary data frough.

The first column of Table A.4 gives the results for a particular realization of a 50 × 50 lattice. In

addition to the discrepancies measured in operator norm, the table also provides the errors

Esmooth =
||
(
Thom − T

)
fsmooth||

||T fsmooth||
, and Erough =

||
(
Thom − T

)
frough||

||T frough||
, (A.17)

associated with two particular Neumann data vectors fsmooth and frough. The solutions associated

with these data vectors are shown in Figure A.5. These examples show that as one would expect, the

homogenized equation provides quite high accuracy for a smooth solution, and very poor accuracy

for a rough one. (Table A.4 also reports errors associated with improved “buffered” homogenization

schemes, which will be introduced in Section A.3.6.)

We next repeated all experiments for Case D (as defined in Section A.3.2). In this case,

numerical experiments indicated that the homogenized conductivity is

c4 = 1− 1

2
p+O(p2).

The first column of Table A.5 shows the errors associated with a realization of “Case D” on a

50× 50 grid, with p = 0.04, and c4 = 0.98.

Remark 37 (Computational cost). The solution operator Thom associated with a constant coeffi-

cient lattice can be computed in time proportional to O(Nside) (in other words, in time proportional
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Errors in homogenized operator for “Case C”

Homogenization Homogenization with buffer of width b
with no buffer b = 1 b = 2 b = 3 b = 4 b = 5 b = 10

ED2N 1.9e-01 5.4e-03 1.2e-03 3.9e-04 3.3e-04 1.3e-04 6.6e-05
EN2D 1.1e-02 7.5e-03 5.6e-03 5.7e-03 4.3e-03 4.9e-03 2.4e-03
Esmooth 7.3e-03 4.1e-03 4.1e-03 4.1e-03 2.8e-03 2.6e-03 1.4e-03
Erough 1.5e-01 2.1e-02 1.1e-02 2.2e-03 8.8e-04 3.5e-03 9.2e-04

Table A.4: Discrepancy between the solution operator of an given lattice, and the homogenized
solution operator. These numbers refer to the model described as “Case C” in Section A.3.2
(random conductivities). The errors ED2N, EN2D, Esmooth, and Erough are defined in equations
(A.16) and (A.17).

Errors in homogenized operator for “Case D”

Homogenization Homogenization with buffer of width b
with no buffer b = 1 b = 2 b = 3 b = 4 b = 5 b = 10

ED2N 4.4e-01 1.5e-02 4.5e-03 1.7e-03 1.2e-03 7.6e-04 3.3e-04
EN2D 8.7e-02 6.1e-02 5.6e-02 5.2e-02 4.5e-02 4.4e-02 2.8e-02
Esmooth 7.4e-02 5.9e-02 5.4e-02 4.8e-02 4.2e-02 4.1e-02 2.7e-02
Erough 1.0e-01 7.0e-02 6.8e-02 6.2e-02 5.1e-02 5.0e-02 3.4e-02

Table A.5: Discrepancy between the solution operator of an given lattice, and the homogenized
solution operator. These numbers refer to the model described as “Case D” in Section A.3.2
(randomly cut bars). The errors ED2N, EN2D, Esmooth, and Erough are defined in equations (A.16)
and (A.17).
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to the number of nodes on the boundary). This means that very large lattices can be handled rapidly.

It was demonstrated in [36] that the solution operator associated with a lattice with 1010 nodes can

be computed in less than two minutes on a standard desktop PC. (Observe that only the 4 ·105 nodes

on the boundary actually need to enter the calculation.)

A.3.6 Fusing a homogenized model to a locally fully resolved region

In the environments under consideration here, domains are loaded only on the border. This

of course raises the possibility of improving the accuracy in the homogenized model by preserving

the actual micro-structure in a thin strip along the boundary, and use the homogenized equations

only in the interior. In the frame-work proposed here, where the simplified model consists of a

solution operator rather than a differential operator (or in the present case, difference operator), it

is extra ordinarily simple to do so.

b

(a) (b) (c)

Figure A.6: Construction of a highly accurate reduced model by fusing a homogenized region with
a region in which the micro-structure is fully resolved. (a) The blue links are within distance
b of the boundary, and maintain their original conductivity. The red links are all assigned the
“homogenized” conductivity. (b) All red links are eliminated from the model. This requires the
construction of the solution operator for a constant coefficient lattice at cost O(Nside) (see Remark
37). (c) The few remaining links are eliminated to construct a highly approximate approximation
to the solution operator.

To illustrate, suppose that we are given a realization of an Nside × Nside lattice with het-

erogeneous conductivities. We fix a parameter b that indicates how broad of a band of cells we

preserve, and then replace all bars that are more than b cells away from the boundary by bars
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with the homogenized conductivity, as illustrated in Figure A.6(a). Then use the techniques of

Section A.3.5 to compute the Neumann-to-Dirichlet operator for the constant coefficient lattice of

size (Nside − 2b)× (Nside − 2b) in the center. As observed in Remark 37, the cost is only O(Nside),

and the new reduced model involves only O(Nside) degrees of freedom. As Tables A.4 and A.5

demonstrate, for our model problems (“Case C” and “Case D”) keeping only five layers of the

original lattice leads to a reduced model that is accurate to three or four digits.

Remark 38 (Accuracy of Neumann vs. Dirichlet problems). Tables A.4 and A.5 show that when

“unbuffered” homogenization is used, the resulting error ED2N associated with Dirichlet problems

is significantly larger than the error EN2D associated with Neumann problems. The tables also

show that the accuracy of Dirichlet problems improve dramatically upon the introduction of even a

very thin boundary layer. This is as one would expect since the Dirichlet-to-Neumann operator is

dominated by short range interactions.

A.4 Case study: Two-phase media

In this section, we briefly investigate the compressibility of the Neumann-to-Dirichlet operator

for a two-phase material modeled by equation (A.2). The two geometries we consider are shown

in Figure A.7, with the conductivity of the inclusions set to zero. In this case, the operator under

consideration is a boundary integral operator T supported on the square outer boundary. Using

techniques described in Remark 39, we constructed an 1144 × 1144 matrix T that approximated

T . With this number of nodes, any Neumann data generated by point sources up to a distance of

0.5% of the side length of the square can be resolved to eight digits of accuracy. We compressed

the matrix T into the HSS format described in Section A.2 to a relative precision of 10−10. The

resulting data required 1.19KB of memory to store for the geometry shown in Figure A.7(a), and

1.22KB of memory for the geometry shown in Figure A.7(b). This corresponds to about 135 words

of storage per row in the matrix. The HSS-ranks (as defined in Remark 36) are reported in Table

A.6. We make three observations:
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(a) (b)

Figure A.7: Geometry for computations in Section A.4. (a) A perforated material. (b) A perforated
material with a chain of holes that almost line up.

• A compressed version of the boundary operator can in this case be stored using about the

same amount of memory (100 words per degree of freedom) as the operators associated

with the discrete problems described in Section A.3.

• The two geometries shown in Figure A.7 require about the same amount of memory. This is

note-worthy since the one labeled (b) corresponds to an almost singular geometry in which

the domain is very close to being split in two halves. The effect is illustrated the solution

shown in Figure A.8(b) where steep gradients are seen in middle of the piece. Standard

assumptions used when homogenizing an elliptic differential operator are violated in this

case.

• In Table A.6, the ranks of HSS-blocks of size 143 are larger than those of HSS-blocks of

size 286. We speculate that this unusual situation can be traced to the fact that the larger

blocks are larger than the inclusions, and largely do not “see” the heterogeneities.

Remark 39 (Details of computation). To derive our approximation to the Neumann-to-Dirichlet

operator, we recast the Neumann Laplace equation (A.2) as a BIE defined on the joint boundary
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(a) (b)

Figure A.8: Solutions to the Laplace’s equation with Neumann boundary conditions on the geome-
tries (a) and (b) shown in Figure A.7. The boundary flux is set to be identically zero, except for
two point sources of strengths ±1.

Average ranks of HSS blocks for composite material example in Section A.4

Nblock = 36 Nblock = 71 Nblock = 143 Nblock = 286

Geometry shown in Figure A.7(a) 18.2 27.0 39.5 25.8

Geometry shown in Figure A.7(b) 18.3 27.3 41.1 28.0

Table A.6: The average HSS-ranks (as defined in Remark 36) for the blocks in a data-sparse
representation of the Neumann-to-Dirichlet operator for the geometries shown in Figure A.7.
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Γ∪Γint. In the present case with non-conducting inclusions, the boundary condition on all interior

boundaries simplifies to a homogeneous Neumann condition. We represented the solution as a

single layer representation supported on both the outer boundary Γ and the interior boundary Γint.

In other words, we sought a solution of the form

u(x) =

∫

Γ
log |x− y|σ(y) ds(y) +

∫

Γint

log |x− y| τ(y) ds(y). (A.18)

The resulting BIE was discretized using a Nyström method combined with trapezoidal quadrature on

the interior holes, and a Gaussian quadrature on the exterior boundary supported on 44 panels with

26 nodes each. The quadrature rule was locally modified as described in [12] to maintain eight digit

accuracy in the presence of corners. This resulted in a large linear system from which all degrees

of freedom associated with internal nodes (those associated with the density τ in (A.18)) were

eliminated. The resulting Schur complement was multiplied by a matrix representing evaluation of

a single layer potential on the boundary to produce the final discrete approximation T to the “true”

analytic Neumann-to-Dirichlet operator T .

A.5 Generalizations

This report focused on problems modeled by simple Laplace-type problems in two dimen-

sions involving no body loads. However, the techniques can be extended to much more general

environments:

Other boundary conditions: While we focused on problems with Neumann boundary conditions,

the extension to Dirichlet or mixed boundary conditions is trivial.

Other elliptic equations: The methods described extend readily to other elliptic equations whose

kernels are non-oscillatory such as Stokes, elasticity, Yukawa, etc. The extension to wave problems

modeled by Helmholtz equation, or the time-harmonic version of Maxwell, is more complicated for

two reasons: (1) The presence of resonances (both true ones corresponding to the actual physics,

and artificial ones present in the mathematical model only) must be dealt with. This can be done,
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but requires careful attention. (2) As the wave-number increases, the compressibility of the solution

operator deteriorates, and eventually renders the proposed approach wholly unaffordable.

Body loads: The extension to problems involving body loads is in principle straight-forward (see

Remark 32). However, the compressed solution operator becomes more expensive to store.

Problems in three dimensions: In principle, the methodology proposed extends straight-

forwardly to problems in three dimensions. However, the construction of the solution operator

does become more expensive, and the method might be best suited for environments where a pre-

computation is possible, or where the construction of the solution operator can be accelerated via

the use of homogenized models in parts of the domain (as illustrated in Section A.3.6). More-

over, for problems in three dimensions involving body loads, memory requirements may become

prohibitive.

A.6 Conclusions

The purpose of this report is to attempt to draw attention to recent developments in numeri-

cal analysis that could be very useful in modeling heterogeneous media. Specifically, it has become

possible to inexpensively compute an approximation to the solution operator associated with many

elliptic PDEs, and to perform various operations involving such solution operators: addition, multi-

plication, inversion, merging operators for different sub-domains, etc. We argue that such solution

operators form excellent “reduced models” for many problems that have proven difficult to handle

using traditional homogenization techniques.

Constructing reduced models by approximating the solution operator is particularly advan-

tageous in the following environments:

Domains that are loaded on the boundary only: For problems that involve no body load,

the solution operator is defined on the boundary only. This reduction in dimensionality means that

once the operator is computed, it can be stored very efficiently, and applied to vectors sufficiently

fast that real time simulations become possible. For some problems in this category, the actual



173

construction of the solution operator requires a large-scale (but very efficient) computation involving

the entire micro-structure, but as shown in Section A.3.6, the solution operator can sometime be

dramatically accelerated by using a homogenized model in the interior of the domain.

Situations where a pre-computation is possible: When the entire micro-structure needs to be

resolved (as happens when the problem involves a body load, or a micro-structure not suitable for

homogenization methods), the initial construction of the solution operator can become somewhat

expensive, in particular for problems in three dimensions. However, once it has been constructed, it

can usually be applied to a vector very rapidly. This raises the possibility of pre-computing a library

of compressed models which can then be used as building blocks in computational simulations.

Problems in two dimensions (whether involving volume loads or not): Given current

trends in algorithmic and hardware development, we predict that for a great many problems in

two dimensions, it will soon become entirely affordable to resolve the entire micro-structure, and

computationally derive a reduced model of the solution operator. The automatic nature of such a

procedure would save much human effort, and would be very robust in the sense that the computed

model would be guaranteed to be accurate to whichever tolerance was requested.

Appendix A: Efficient computation of the Neumann-to-Dirichlet operator

In this appendix, we describe an efficient technique for computing the Neumann-to-Dirichlet op-

erator T defined by (A.12). It is a variation of the classical nested dissection techniques [35].

Throughout the appendix, Ω is a rectangular lattice, as defined by (A.8), and A is an associated

discrete Laplace operator, as defined by (A.9).

To be precise, the technique we will describe does not compute the Neumann-to-Dirichlet

operator T, but rather the Schur complement S, defined via

S = Ab,b − Ab,i A
−1
i,i Ai,b. (A.19)

Comparing (A.12) and (A.19), we see that T = S−1.
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A.6.1 Outline

The technique is a divide-and-conquer scheme in which the computational domain Ω is first

split into 2L × 2L roughly equisized small boxes. The parameter L is chosen so that each of

the small boxes is sufficiently small that its Schur complement can be computed by evaluating

(A.19) via brute force. (In practice, we found that letting the smallest boxes be of size roughly

50 × 50, or L ≈ log2(Nside/50), works well.) Then it turns out to be possible to merge the Schur

complements of two small adjacent boxes to form the Schur complement of the larger box; the

process is described in Section A.6.2. The scheme proceeds by continuing the merge process to

form the Schur complements of larger and larger boxes until eventually the entire box Ω has been

processed. To illustrate, we describe the process graphically for a 24× 24 domain that is originally

split into 4× 4 boxes, each containing 6× 6 nodes.

Step 1: Partition the box Ω into 16 small boxes. For each box, identify the internal nodes (marked

in blue) and eliminate them using formula (A.19).

⇒
Step 1

Step 2: Join the small boxes by pairs to form the Schur complements of boxes holding twice the

number of nodes via the process to be described in Section A.6.2. The effect is to eliminate the

interior nodes (marked in blue) of the newly formed larger boxes.



175

⇒
Step 2

Step 3: Merge the boxes created in Step 2 in pairs, again via the process described in Section

A.6.2.

⇒
Step 3

Step 4: Repeat the merge process once more.

⇒
Step 4

Step 5: Repeat the merge process one final time to obtain the Schur complement associated with

the top level box Ω.
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⇒
Step 2

A.6.2 Merging of two Schur complements

Suppose that Ω is a box consisting of the two smaller boxes Ωw and Ωe (as in west and east):

Γ1 Γ3 Γ4 Γ2

Ωw Ωe

Suppose further that we know the corresponding Schur complements Sw and Se and seek the Schur

complement S of Ω. In effect, we need to remove the “interior” points along the middle lines

(marked in blue in the figure).

First partition the nodes in Γw into the subsets Γ1 and Γ3, and partition Γe into Γ2 and Γ4

as shown in the figure. The Schur complements Sw and Se are partitioned accordingly,

Sw =






S11 S13

S31 S33




 , and Se =






S22 S24

S42 S44




 .

Since the interior edges are unloaded, the joint equilibrium equation for the two boxes now reads













S11 A12 S13 0

A21 S22 0 S24

S31 0 S33 A34

0 S24 A43 S44

























u1

u2

u3

u4













=













f1

f2

0

0













, (A.20)

where Aij are the relevant submatrices of the original discrete Laplacian A. To be precise, with A

denoting the global discrete Laplace operator, and with Ji denoting an index vector marking the
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nodes in Γi, we have Aij = A(Ji, Jj). We observe that all matrices Aij are very sparse (indeed, A12

and A21 have only two non-zero elements each). From (A.20), it is clear that the Schur complement

of the large box is

S =






S11 A12

A21 S22




−






S13 0

0 S24











S33 A34

A43 S44






−1 




S31 0

0 S42




 . (A.21)

A.6.3 Accelerations

The scheme described in Section A.6.1 and A.6.2 requires O(N3
side) floating point operations,

and O(N2
side) storage, just like the original nested dissection scheme. This cost is incurred by

the repeated evaluation of the formula (A.21) which involve matrices Sij that are dense. How-

ever, as discussed at length in Section A.3.3, these matrices have internal structure that allows

operations such as matrix inversion, and matrix-matrix multiplication, to be evaluated in linear

time. Incorporating such accelerated procedures reduces the overall cost (both floating point op-

erations and memory) of the scheme to O(Nside(logNside)
κ). For recent work in this direction, see,

e.g. [18, 53, 58].

Remark 40. The process described in Section A.6.1 requires all Schur complements associated

with one level to be kept in memory at one time. It is straight-forward to change the order in

which the boxes are processed so that at most four Schur complements on each level must be kept

in memory. When dense linear algebra is used, either approach requires O(N2
side) memory, but

when data-sparse matrix formats are used, such an ordering reduces the memory requirement from

O(N2
side) to O(Nside(logNside)

κ).

Remark 41. Even without accelerations, the scheme described in Section A.6.1 can handle mod-

erate size problems quite efficiently. For a rudimentary implementation in Matlab executed on a

standard desktop (with an Intel i7 CPU running at 2.67GHz), the time t required to compute T

was:

Nside 100 200 400 800 1600 3200

t (sec) 2.6e-1 1.2e0 6.4e0 4.5e1 5.0e2 6.7e3
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Note that less than a minute is required to process a lattice involving 8002 = 640 000 nodes.



Appendix B

Efficient storage of Schur complement matrices

The accelerated nested dissection method presented in Chapter 3 utilizes the HSS properties

of the Schur complement or boundary-to-boundary operators to achieve linear complexity. In this

appendix, we describe a technique for storing the Schur complement matrices in such a way that the

acceleration techniques presented in Section 3.4 are easily executed. We also present additional HSS

algebra techniques that allow for efficient processing of the Schur complement matrices between

merge steps in the fast direct solver.

B.1 Storage of the Schur complements

Recall that at each step in direct solver, block matrices are first excised from the Schur

complements of small boxes in order to build the Schur complement for a larger box. The process

of excising submatrices from an HSS factorized matrix is computationally expensive. Instead we

choose to store each Schur complement in the following block format:

S =

















Sss Sse Ssn Ssw Ssc

Ses See Sen Sew Sec

Sns Sne Snn Snw Snc

Sws Swe Swn Sww Swc

Scs Sce Scn Scw Scc

















, (B.1)

where Sss denotes the block matrix that describes the Schur complement interaction of the south

edge with itself, etc. Figure B.1 illustrated the labeling of the local box. The corners are ordered
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counter clockwise starting from the southwest corner, ie c = {csw, cse, cne, cnw}.

Γw

Γs

Γe

Γn

Ω

csw cse

cnw cne

Figure B.1: Labeling of nodes for one box.

The diagonal blocks Sss, See, Snn, and Sww are stored in HSS factorized form and the off-

diagonal blocks in (B.1) are stored in low-rank factorized form. While the blocks describing Schur

complement interactions involving the corners are stored in dense form.

B.2 Review of the merge-two process

The process of returning the Schur complement built during a merge step to the form (B.1)

requires additional HSS algebra. For illustrative purpose, suppose that the Schur complements S1

and S2 are given on Ω1 and Ω2 respectively, illustrated in Figure B.2. We seek to compute the

Schur complement on the boundary of Ω = Ω1 ∪ Ω2.

Γ1
w

Γ1
s

Γ1
e

Γ1
n

Γ2
w

Γ2
s

Γ2
n

Γ2
e

Ω1 Ω2

Figure B.2: Labeling of nodes when merging two boxes.

From Chapter 3, we know the Schur complement S is given by the formula:
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S =






Sext1 Aext1,ext2

Aext2,ext1 Sext2




−






Sext1,e2 0

0 Sext2,w2











Se1e1 Ae1,w2

Aw2,e1 Sw2w2






−1 




Se1,ext1 0

0 Sw2,ext2




 ,

(B.2)

where the exterior of Ω1 (denoted ext1) is the set of points on Γ1
s ∪ Γ1

n ∪ Γ1
w ∪ c1, and the exterior

of Ω2 (denoted ext2) is the set of points on Γ2
s ∪ Γ2

w ∪ Γ2
n ∪ c2.

Thus, using the block notation in (B.1), the matrices in (B.2) can be expanded. For example,

Sext1 =













S1ss S1sn S1sw S1sc

S1ns S1nn S1nw S1nc

S1ws S1wn S1ww S1wc

S1cs S1cn S1cw S1cc













, Sext2 =













S2ss S2se S2sn S2sc

S2es S2ee S2en S2ec

S2ns S2ne S2nn S2nc

S2cs S2ce S2cn S2cc













, Ae1w2 =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Ac1,c2













,

Aw2e1 =













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Ac2,c1













, Sext1e =













S1se

S1ne

S1we

S1ce













, etc.

The techniques described in Section 3.4 in Chapter 3 compute the diagonal blocks of S

corresponding the self-interactions of south, north and west edges of Ω1 and the south, east, and

north edges of Ω2. All other blocks are either low-rank or small dense matrices and can be computed

using standard techniques.

B.3 Post processing the Schur complement

In this section, we describe techniques for transforming S into the block form (B.1). Since

the west edge of Ω1 is also the west edge of Ω and no additional computations are required to build

Sww. Likewise, no additional computations are required to build See. The off-diagonal blocks are

easily constructed via classic techniques for low-rank matrices.

It remains to build Sss and Snn in HSS factorized form. Since the technique is the same for

both edges, we chose to only present the construction of Sss.
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The south edge of Ω is Γs = Γ1
s ∪ {c1se, c2sw} ∪ Γ2

s. Thus Sss in block form is

Sss =













Ss1s1 Ss1c1se Ss1c2sw Ss1s2

Sc1ses1 Sc1sec1se Sc1sec2sw Sc1ses2

Sc2sws1 Sc2swc1se
Sc2swc2sw

Sc2sws2

Ss2s1 Ss2c1se Ss2c2sw Ss2s2













. (B.3)

The process of taking this matrix made up of a combination of HSS, dense and low-rank

factorized matrices and returning one large HSS factorized matrix is a three step process. First,

the HSS factorized matrix Ss1s1 is expanded in each direction by one via Algorithm 10 returning






Ss1s1 Ss1c1se

Sc1ses1 Sc1sec1se






in HSS factorized form. Using a similar technique, the HSS factorized matrix Ss2s2 is expanded

such that 




Sc2swc2sw
Sc2sws2

Ss2c2sw Ss2s2






is in HSS factorized form. Then these two HSS factorized matrices along with low-rank factorized

of the off-diagonal blocks of (B.3) are merged into one HSS factorized matrix Sss via Algorithm 11.



183

Algorithm 10 (Expand an HSS matrix by one column and row)

Given an HSS factorized N ×N matrix A, the coefficient vectors r and column c as well

as the constant d, this algorithm expands A such that Ã =

[
A c
r d

]

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

Let ind denote the indices associated with τ
if τ is a leaf node

if the last entry in ind is N

D̃τ =

[
Dτ c(ind)

r(ind) d

]

Ũτ =

[
Uτ 0
0 1

]

Ṽτ =

[
Vτ 0
0 1

]

else

D̃τ = Dτ

Ũτ =
[
Uτ , r(ind)

T
]

Ṽτ = [Vτ , c(ind)]
end if

else
Let σ1 and σ2 denote the children τ .
if the last entry in ind is N

Ũτ =







Uσ1
τ 0
0 0
Uσ2
τ 0
0 1







Ṽτ =







Vσ1
τ 0
0 0
Vσ2
τ 0
0 1







B̃σ1 =

[
Bσ1 0
0 1

]

B̃σ2 =

[
Bσ2 0
0 1

]

else

Ũτ =







Uσ1
τ 0
0 1
Uσ2
τ 0
0 1







Ṽτ =







Vσ1
τ 0
0 1
Vσ2
τ 0
0 1







B̃σ1 =

[
Bσ1 0
0 0

]

B̃σ2 =

[
Bσ2 0
0 0

]

end if
end if

end loop
end loop

B̃2 =

[
B2 0
0 1

]

B̃3 =

[
B3 0
0 1

]

Recompress the matrix via Algorithm 9.
Note: Uσ1

τ denotes the restriction of Uτ acting on σ1.
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Algorithm 11 (Merge two HSS matrices into one large matrix)

Given two HSS factorized matrices A and B, and QR-factorizations of the interaction
matrices QAB RAB and QBA RBA, this algorithm merges the matrices together such that

Ã =

[
A QAB RAB

QBA RBA B

]

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 2
loop over all boxes τ on level ℓ,

if τ is a leaf node
Let indo denote the indices from the original matrix A or B

D̃τ = Do
τ

if τ was originally in A

Utmp = [Uo
τ ,QAB(ind

o, : )] Vtmp =
[
Vo
τ ,RBA( : , ind

o)T
]

else
Utmp = [Uτ ,QBA(ind

o, : )] Vtmp =
[
Vτ ,RAB( : , ind

o)T
]

end if
else

Let σ1 and σ2 denote the children τ .
Let kσ1 = size(Uσ1 , 2) and kσ2 = size(Uσ2 , 2).

B̃σ1 = Pσ1( : , 1: kσ1)B
o
σ1
Wσ2( : , 1: kσ2)

T

B̃σ2 = Pσ2( : , 1: kσ2)B
o
σ2
Wσ1( : , 1: kσ1)

T

Utmp1 =

[
Pσ1( : , 1: kσ1) 0

0 Pσ2( : , 1: kσ2)

]

Uτ

Vtmp1 =

[
Wσ1( : , 1: kσ1) 0

0 Wσ2( : , 1: kσ2)

]

Vτ

Utmp2 =

[
Pσ1( : , kσ1 + 1: end)
Pσ2( : , kσ2 + 1: end)

]

Vtmp2 =

[
Wσ1( : , kσ1 + 1: end)
Wσ2( : , kσ2 + 1: end)

]

Ũtmp = [Utmp1,Utmp2] Ṽtmp = [Vtmp1,Vtmp2]
end if
[Uτ ,Pτ ] = rrqr(Utmp) [Vτ ,Wτ ] = rrqr(Vtmp)

end loop
end loop
loop over boxes τ on level ℓ = 1

Let σ1 and σ2 denote the children τ .
Let kσ1 = size(Uσ1 , 2) and kσ2 = size(Uσ2 , 2).

B̃σ1 = Pσ1( : , 1: kσ1)B
o
σ1
Wσ2( : , 1: kσ2)

T

B̃σ2 = Pσ2( : , 1: kσ2)B
o
σ2
Wσ1( : , 1: kσ1)

T

end loop

Utmp =

[
P4

P5

] [
W6

W7

]T

Vtmp =

[
P6

P7

] [
W4

W5

]T

[

Ũ2,P2

]

= rrqr(Utmp)
[

Ṽ2,W2

]

= rrqr(Vtmp)
[

Ũ3,P3

]

= rrqr(WT
2 )

[

Ṽ3,W3

]

= rrqr(P2)

B̃2 = WT
3 B̃3 = P3

Note: Bo
σ denotes the B matrix corresponding to box σ in the HSS factorization of

the matrix which has σ as a subset. For example, Bo
4 corresponds to B2 in the HSS

factorization of A.
The acronym rrqr corresponds to the rank revealing QR factorization algorithm.


