
A fast randomized algorithm for computing a Hierarchically
Semi-Separable representation of a matrix

P.G. Martinsson, Department of Applied Mathematics, University of Colorado at Boulder

Abstract: Randomized sampling has recently been proven a highly effi-
cient technique for computing approximate factorizations of matrices that
have low numerical rank. This paper describes an extension of such tech-
niques to a wider class of matrices that are not themselves rank-deficient,
but have off-diagonal blocks that are; specifically, the class of so called Hier-
archically Semi-Separable (HSS) matrices. HSS matrices arise frequently in
numerical analysis and signal processing, in particular in the construction of
fast methods for solving differential and integral equations numerically. The
HSS structure admits algebraic operations (matrix-vector multiplications,
matrix factorizations, matrix inversion, etc.) to be performed very rapidly;
but only once the HSS representation of the matrix has been constructed.
How to rapidly compute this representation in the first place is much less
well understood. The present paper demonstrates that if an N ×N matrix
can be applied to a vector in O(N) time, and if individual entries of the
matrix can be computed rapidly, then provided that an HSS representation
of the matrix exists, it can be constructed in O(N k2) operations, where k is
an upper bound for the numerical rank of the off-diagonal blocks. The point
is that when legacy codes (based on, e.g., the Fast Multipole Method) can be
used for the fast matrix-vector multiply, the proposed algorithm can be used
to obtain the HSS representation of the matrix, and then well-established
techniques for HSS matrices can be used to invert or factor the matrix.

1. Introduction

A ubiquitous task in computational science is to rapidly perform linear algebraic oper-
ations involving very large matrices. Such operations typically exploit special “structure”
in the matrix since the costs of standard techniques tend to scale prohibitively fast with
matrix size; for a general N × N matrix, it costs O(N2) operations to perform a matrix-
vector multiplication, O(N3) operations to perform Gaussian elimination or to invert the
matrix, etc. A well-known form of “structure” in a matrix is sparsity. When at most a
few entries in each row of the matrix are non-zero (as is the case, e.g., for matrices arising
upon the discretization of differential equations, or representing the link structure of the
World Wide Web) matrix-vector multiplications can be performed in O(N) operations in-
stead of O(N2). The description “data-sparse” applies to a matrix that may be dense, but
that shares the key characteristic of a sparse matrix that some linear algebraic operations,
typically the matrix-vector multiplication, can to high precision be executed in fewer than
O(N2) operations (often in close to linear time).

There are many different types of data-sparse representations of a matrix. This paper is
concerned with the class of so called Hierarchically Semi-Separable (HSS) matrices [9, 11,
36], which arise upon the discretization of many of the integral operators of mathematical
physics, in signal processing, in algorithms for inverting certain finite element matrices,
and in many other applications, see, e.g., [10, 30, 32, 36]. An HSS matrix is a dense
matrix whose off-diagonal blocks are rank-deficient in a certain sense. Postponing a precise
definition until Section 3, we for now simply note that an HSS matrix A can be expressed
via a recursive formula in L levels,

(1.1) A(j) = U (j)A(j−1) V (j) +B(j), j = 2, 3, . . . , L,
1

2

where A = A(L), and the sequence A(L), A(L−1), . . . , A(1) consists of matrices that are
successively smaller. (In principle, one could say that A satisfies the HSS property as

long as there is any decay in size, but in typical applications, A(j−1) would be roughly
half the size of A(j).) In (1.1), the matrices U (j), V (j) and B(j) are all block-diagonal,
so the formula directly leads to a fast technique for evaluating a matrix-vector product.
The HSS property is similar to many other data-sparse representations in that it exploits
rank-deficiencies in off-diagonal blocks to allow matrix-vector products to be evaluated
rapidly; the Fast Multipole Method [17, 18], Barnes-Hut [1], and panel clustering [20] are
all similar in this regard. The HSS property is different from these other formats in that
it also allows the rapid computation of a matrix inverse, of an LU factorization, etc., see
[8, 9, 13, 31, 37]. The ability to perform algebraic operations other than the matrix-vector
multiplication is also characteristic of the H-matrix format of Hackbusch [21]. Comparing
the two formats, the H-matrix representation is more general (every HSS matrix is an H-
matrix, but not every H-matrix is an HSS matrix), but pays for the generality by requiring
more complicated, and typically slower, algorithms for computing matrix inverses, matrix
factorizations, etc.

The most straight-forward technique for computing the HSS representation of a dense
N × N matrix A is to explicitly form all matrix elements, and then to compress the off-
diagonal blocks using, e.g., the SVD. This approach can be executed stably [9, 22], but it
is often prohibitively expensive, with an O(kN2) asymptotic cost, where k is the rank of
the off-diagonal blocks (in the HSS-sense). Fortunately, there exist for specific applications
much faster methods for constructing HSS representations. When the matrix A approxi-
mates a boundary integral operator in the plane, the technique of [31] computes a represen-
tation in O(k2N) time by exploiting representation results from potential theory. In other
environments, it is possible to use known regularity properties of the off-diagonal blocks in
conjunction with interpolation techniques to obtain rough initial factorizations, and then
recompress these to obtain factorizations with close to optimal ranks [5, 32]. A particularly
popular version of the “regularity + recompression” method is the so called Adaptive Cross
Approximation technique which was initially proposed for H-matrices [2, 6, 25] but has
recently been modified to obtain a representation of a matrix in a format similar to the
HSS [15].

The purpose of the present paper is to describe a fast and simple randomized technique
for computing an HSS representation of a matrix which can rapidly be applied to a vector.
The existence of such a technique means that the advantages of the HSS format — very fast
inversion and factorization algorithms in particular — become available for any matrix that
can currently be applied via the FMM, via anH-matrix calculation, or by any other existing
data-sparse format (provided of course that the matrix is in principle compressible in the
HSS-sense). In order to describe the cost of the algorithm precisely, we introduce some
notation: We let A be an N ×N matrix whose off-diagonal blocks have maximal rank k (in
the HSS-sense, see Section 3), we let Tmult denote the time required to perform a matrix-
vector multiplication x 7→ Ax or x 7→ A∗ x, we let Trand denote the cost of constructing a
pseudo random number from a normalized Gaussian distribution, we let Tentry denote the
computational cost of evaluating an individual entry of A, and Tflop denote the cost of a
floating point operation. The computational cost Ttotal of the algorithm then satisfies

(1.2) Ttotal ∼ Tmult × 2 (k + p) + Trand ×N (k + p) + Tentry × 2N k + Tflop × cN k2,

where c is a small constant, and where p is a tuning parameter that balances computational
cost against the probability of not meeting the requested accuracy. Setting p = 10 is often
a good choice which leads to a “failure probability” of less that 10−9, see Remark 1.1. In
particular, if Tmult is O(N), then the method presented here is O(N) as well.

3

Remark 1.1. The technique described in this paper utilizes a method for computing
approximate low-rank factorizations of matrices that is based on randomized sampling
[24, 27, 33]. As a consequence, there is in principle a non-zero risk that the method may
fail to produce full accuracy in any given realization of the algorithm. This risk can be
controlled by the user via the choice of the tuning parameter p in (1.2), for details see
Section 2.3. Moreover, unlike some better known randomized algorithms such as Monte
Carlo, the accuracy of the output of the algorithms under discussion here is typically very
high; in the environment described in the present paper, approximation errors of less than
10−10 are entirely typical.

Remark 1.2. There currently is little consistency in terminology in describing different
formats for representing “data-sparse” matrices. The property that we here refer to as the
“HSS” property is referred to by a range of different names, see, e.g., [32, 31, 34, 37]. It
is closely related to the “H2-matrix” format [3, 5, 4, 23] which is more restrictive than
the H-matrix format, and often admits O(N) algorithms. The methods described in the
present paper are directly applicable to the structures described in [32, 31, 34], and, we
believe, with minor modifications to the structures in [3, 5, 4, 23].

Remark 1.3. Since the first version of the present paper [29] appeared, an alternative
similar algorithm has been suggested [28]. The approach of [28] is more general than the
one presented here in that it accesses the matrix to be compressed only via matrix-vector
multiplications (no access to matrix entries is required). However, the price to be paid
is that the number of matrix-vector multiplies required is very large; in the numerical
examples reported in [28], several thousands of applications of the matrix are needed. In
contrast, we report in Section 5 successful compression via as few as 50 or 100 matrix-
vector multiplies. Moreover, in our approach, these matrix-vector multiplications can all
be executed in parallel (as opposed to consecutively).

2. Preliminaries

This section introduces established material that will be needed to derive the new results
in Section 4. Specifically, we introduce our notation (Section 2.1), describe a set of standard
matrix factorizations (Section 2.2), and describe recently developed randomized techniques
for computing a low-rank approximation to a matrix (Section 2.3).

2.1. Notation. Throughout the paper, we measure vectors in Rn using their Euclidean
norm, and matrices using the corresponding operator norm.

For an m×n matrix B, and an integer k = 1, 2, . . . , min(m,n), we let σk(B), or simply
σk when it is obvious which matrix is being referred to, denote the k’th singular value of
B. We assume that these are ordered so that σ1(B) ≥ σ2(B) ≥ · · · ≥ σmin(m,n)(B) ≥ 0.
We say that a matrix B has “ε-rank” k if σk+1(B) ≤ ε.

We use the notation of Golub and Van Loan [16] to specify submatrices. In other words,
if B is an m×n matrix with entries bij , and I = [i1, i2, . . . , ik] and J = [j1, j2, . . . , jℓ] are
two index vectors, then we let B(I, J) denote the k × ℓ matrix

B(I, J) =

bi1j1 bi1j2 · · · bi1jℓ
bi2j1 bi2j2 · · · bi2jℓ
...

...
...

bikj1 bikj2 · · · bikjℓ

 .

We let B(I, :) denote the matrix B(I, [1, 2, . . . , n]), and define B(:, J) analogously.

4

Given a set of matrices {Xj}ℓj=1 we define a block diagonal matrix via

diag(X1, X2, . . . , Xℓ) =

X1 0 0 · · · 0
0 X2 0 · · · 0
0 0 X3 · · · 0
...

...
...

...
0 0 0 · · · Xℓ

 .

The transpose of B is denoted B∗, and we say that a matrix U is orthonormal if its
columns form an orthonormal set, so that U∗U = I.

2.2. Low rank factorizations. We say that an m× n matrix B has exact rank at most
k if there exist an m× k matrix E and a k × n matrix F such that

B = E F.

In this paper, we will utilize three standard matrix factorizations. In describing them, we
let B denote an m× n matrix of rank k. The first is the so called QR factorization

B = QR

where Q is an m × k orthonormal matrix, and R is a k × n matrix with the property
that a permutation of its columns is upper triangular. The second is the singular value
decomposition (SVD)

B = U DV ∗,

where U and V are orthonormal matrices of sizes m× k and n× k, and the k× k matrix D
is a diagonal matrix whose diagonal entries are the singular values {σ1, σ2, . . . , σk}. The
third factorization is the so called interpolative decomposition

B = B(:, J)X,

where J is a vector of indices marking k of the columns of B, and the k×n matrix X has the
k × k identity matrix as a submatrix and has the property that all its entries are bounded
by 1 in magnitude. In other words, the interpolative decomposition picks k columns of B
as a basis for the column space of B and expresses the remaining columns in terms of the
chosen ones.

The existence for all matrices of the QR factorization and the SVD are well-known, as
are techniques for computing them accurately and stably, see e.g. [16]. The interpolatory
decomposition is slightly less well known but it too always exists. It can be viewed as a
modification to so the called Rank-Revealing QR factorization [7]. It can be computed in
a stable and accurate manner using the techniques of [19], as described in [12]. (Practical
algorithms for computing the interpolative decomposition produce a matrix X whose ele-
ments slightly exceed 1 in magnitude.) In the pseudo code we use to describe the methods
of this paper, we refer to such algorithms as follows:

[Q,R] = qr(B), [U,D, V] = svd(B), [X,J] = interpolate(B).

In the applications under consideration in this paper, matrices that arise are typically
only approximately of low rank. Moreover, their approximate ranks are generally not known
à priori. As a consequence, the algorithms will typically invoke versions of the factorization
algorithms that take the computational accuracy ε as an input parameter. For instance,

(2.1) [U,D, V] = svd(B, ε)

results in matrices U , D, and V of sizes m× k, n× k, and k × k, such that

||U DV ∗ −B|| ≤ ε.

5

In this case, the number k is of course an output of the algorithm. The corresponding
functions for computing an approximate QR factorization or an interpolative decomposition
are denoted

(2.2) [Q,R] = qr(B, ε), [X, J] = interpolate(B, ε).

In our applications, it is not necessary for the factorizations to be of absolutely minimal
rank (i.e. the computed rank k is allowed to slightly exceed the theoretical ε-rank of B).

2.3. Construction of low-rank approximations via randomized sampling. Let B
be a given m × n matrix that can accurately be approximated by a matrix of rank k,
and suppose that we seek to determine a matrix Q with orthonormal columns (as few as
possible) such that

||B −QQ∗B||
is small. In other words, we seek a matrix Q whose columns form an approximate or-
thornomal basis (ON-basis) for the column space of B. (For now, we assume that the rank
k is known in advance, techniques for relaxing the assumption will be described in Re-
mark 2.3.) When we have access to a fast technique for computing matrix vector products
x 7→ B x, this task can efficiently be solved via the following randomized procedure:

(1) Pick a small integer p representing how much “over-sampling” we do. (The choice
p = 10 is often good.)

(2) Form an n × (k + p) matrix Ω whose entries are drawn independently from a nor-
malized Gaussian distribution.

(3) Form the product S = BΩ.
(4) Construct a matrix Q whose columns form an ON-basis for the columns of S.

Note that each column of the “sample” matrix S is a random linear combination of the
columns of B. We would therefore expect the algorithm described to have a high probability
of producing an accurate result when p is a large number. It is perhaps less obvious that
this probability depends only on p (not on m or n, or any other properties of B), and that
it approaches 1 extremely rapidly as p increases. In fact, one can show that the basis Q
determined by the scheme above satisfies

(2.3) ||B −QQ∗B|| ≤
[
1 + 11

√
k + p ·

√
min{m,n}

]
σk+1,

with probability at least 1− 6 · p−p, see [24, Sec. 1.5].

Remark 2.1. The error bound (2.3) indicates that the error produced by the randomized
sampling procedure can be larger than the theoretically minimal error σk+1 by a factor of

1 + 11
√
k + p ·

√
min{m,n}. This crude bound is typically very pessimistic; for specific

situations sharper bounds have been proved, see [24]. However, a loss of accuracy of one
or two digits is often observed, and it is therefore recommended that the matrix-vector
multiplication be evaluated as accurately as possible. We demonstrate in Section 5 that
HSS matrices of practical interest can be approximated to ten digits of accuracy.

Remark 2.2. The task of computing a “thin” orthonormal matrix Q such that ||B −
QQ∗B|| is small in an environment where B can rapidly be applied to a vector is well
studied. Krylov methods are often recommended, and these can significantly outperform
the randomized methods described in this section. In particular, for a fixed number of
matrix-vector products, the output of a Krylov method would typically produce a smaller
residual error ||B − QQ∗B|| than the randomized methods. A Krylov method achieves
high accuracy by picking the next vector to which B is to be applied using information
provided by previous matrix-vector products. A randomized method is less accurate, but

6

provides much more flexibility in that the vectors to which B is applied can be picked in
advance. This has at least two advantages:

(1) The matrix-vector products can be computed in any order or all at once. Significant
speed-ups can result since applying B to k vectors one after another is often much
slower than applying B to a matrix with k columns, even though the two tasks are
algebraically equivalent. (See Table 1 for an illustration.)

(2) The vectors to which B is applied do not depend on B itself. This means that a
fixed set of k vectors can be used to analyze a whole collection of low-rank matrices.

The flexibility described in the two points above is crucial in the present context since
we are interested not in approximating a single low-rank matrix B, but a collection of
sub-matrices {Bi}i of a matrix A which can rapidly be applied to vectors.

Remark 2.3. The approximate rank k is rarely known in advance. In a situation where a
single matrix B of numerically low rank is to be analyzed, it is a straight-forward matter
to modify the algorithm described here to an algorithm that adaptively determines the
numerical rank by generating a sequence of samples from the column space of B and simply
stops when no more information is added [24]. In the application we have in mind in this
paper, however, the randomized scheme will be used in such a way that a single random
matrix will be used to create samples from a large set of different matrices. In this case,
we make an estimate k of the largest rank that we could possibly encounter, and pick a
random matrix with k+ 10 columns. Then as each off-diagonal block is processed, its true
ε-rank will be revealed by executing a rank-revealing QR factorization in “Step (4)” of the
algorithm listed above.

2.4. Computing interpolative decompositions via randomized sampling. The ran-
domized sampling technique described in Section 2.3 is particularly effective when used in
conjunction with the interpolative decomposition. To illustrate, let us suppose that B is an
n×n matrix of rank k for which we can rapidly evaluate the maps x 7→ B x and x 7→ B∗ x.
Using the randomized sampling technique, we then draw a random matrix Ω, and con-
struct matrices Scol = BΩ and Srow = B∗Ω whose columns span the column and the row
spaces of B, respectively. If we seek to construct a factorization of B without using the
interpolative decomposition, we would then orthonormalize the columns of Scol and Srow,

[Qcol, Y col] = qr(Scol), and [Qrow, Y row] = qr(Srow),

whence

(2.4) B = Qcol
(
(Qcol)∗BQrow

)
(Qrow)∗.

The evaluation of (2.4) requires k matrix-vector multiplies involving the large matrix B in
order to compute the k × k matrix (Qcol)∗BQrow. Using the interpolative decomposition
instead, we determine the k rows of Scol and Srow that span their respective row spaces,

[Xcol, Jcol] = interpolate((Scol)∗), and [Xrow, J row] = interpolate((Srow)∗).

Then by simply extracting the k × k submatrix B(Jcol, J row) from B, we directly obtain
the factorization

(2.5) B = XcolB(Jcol, J row) (Xrow)∗.

More details (including an error analysis for the case when B has only approximate rank
k) can be found in Section 5.2 of [24].

7

3. Hierarchically Semi-Separable matrices

In this section we rigorously define the concept of an HSS matrix and review some
basic results that are slight variations of techniques found in, e.g., [10, 9, 31, 36, 37].
Unfortunately, the notation required can come across as quite daunting at first. (The
same is true for essentially all “data-sparse” formats we know of.) We therefore start
with an attempt to describe the general ideas in Section 3.1 before introducing the rigorous
notational framework in Sections 3.2 and 3.3. In Section 3.4, we describe a simple condition
for checking whether a matrix satisfies the HSS property. Finally we describe in Section
3.5 how the HSS representation of a matrix can be viewed as a telescoping factorization.

3.1. Intuition. The HSS property is essentially a condition that the off-diagonal blocks of a
matrix should have low rank, combined with a condition that the factors used to represent
the off-diagonal blocks satisfy certain recursive relations that make them inexpensive to
store and to apply.

A =

A2,3

A3,2

A4,5

A5,4

A6,7

A7,6

D8 A8,9

A9,8 D9

D10 A10,11

A11,10 D11

D12 A12,13

A13,12 D13

D14 A14,15

A15,14 D15

Figure 3.1. A matrix A tesselated in accordance with the tree in Figure 3.2.

To illustrate, suppose that a matrix A has been tesselated as shown in Figure 3.1. Then
the first condition is that there exists a fixed (small) integer k such that every off-diagonal
block in the tessellation should have rank at most k. When this condition holds, every
off-diagonal block Ai,j admits a factorization

Ai,j = Ubig
i A′

i,j ,

where Ubig
i is a matrix with k columns that form a basis for the range of Ai,j . The second

condition is now that all the “basis matrices” Ubig
i can be expressed hierarchically. Consider

for instance the matrix A2,3. The row indices that form A2,3 is the union of the row indices
that form A4,5 and A5,4. We therefore require that there exist a 2k×k matrix U2 such that

(3.1) Ubig
2 =

[
Ubig
4 0

0 Ubig
5

]
U2.

8

The point is that if Ubig
4 and Ubig

5 have been computed, then we can express Ubig
2 by storing

only the small matrix U2. This process will be continued recursively. Requiring analogously

that Ubig
4 and Ubig

5 satisfy

(3.2) Ubig
4 =

[
Ubig
8 0

0 Ubig
9

]
U4, and Ubig

5 =

[
Ubig
10 0

0 Ubig
11

]
U5,

we find by combining (3.1) with (3.2) that

Ubig
2 =

[
Ubig
4 0

0 Ubig
5

]
U2 =

Ubig
8 0 0 0

0 Ubig
9 0 0

0 0 Ubig
10 0

0 0 0 Ubig
11

[
U4 0
0 U5

]
U2.

The end result is that the only “big” basis matrices that actually need to be computed
and stored are the ones for the smallest off-diagonal blocks; all other basis matrices are
represented by storing only a small 2k × k matrix.

To turn this informal discussion into a rigorous definition of the HSS property for
an N × N matrix A, we introduce in Section 3.2 a tree structure on the index vector
[1, 2, . . . , N], and define in Section 3.3 a tessellation of A based on the tree structure. We
can then formally introduce the basis matrices for each off-diagonal block, and formulate a
hierarchical condition that these basis matrices must satisfy.

Remark 3.1. In our discussion of HSS matrices, we assume that the off-diagonal blocks
have exact rank k. In the matrices encountered in practice, it is typically the case that the
rank of the off-diagonal blocks is k up to some finite computational tolerance ε. Truncating
the actual matrix to its rank-k HSS approximation does not in our experience lead to any
loss of accuracy beyond the specified tolerance ε.

3.2. Tree structure. The HSS representation of an N ×N matrix A is given with respect
to a specific hierarchical partitioning of the index vector [1, 2, . . . , N]. To keep the presen-
tation simple, we restrict attention to binary trees in which all levels are fully populated,
and in which all nodes on a given level contain roughly the same number of indices. We
number the nodes as illustrated for a tree with L = 3 levels in Figure 3.2. We define the
terms children, parent, and sibling in the natural way; for instance, the children of node 3
are the nodes 6 and 7, and the nodes 6 and 7 form a sibling pair. The child-less nodes are
called leaves.

Level 3

Level 2

Level 1

Level 0 1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 3.2. Numbering of nodes in a fully populated binary tree with L = 3 levels.

With each node τ , we associate an index vector Iτ that forms a subset of I. We set
I1 = I, and form I2 and I3 by splitting I1 in halves. We form I4 and I5 by splitting I2 in

9

halves, etc. The cutting in half continues until we obtain index vectors with no more than
a fixed number, say 50, of entries. For instance, if N = 400, we get the index vectors:

Level 0: I1 = I = [1, 2, . . . , 400],
Level 1: I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]
Level 2: I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], · · · , I7 = [301, 302, . . . , 400]
Level 3: I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], · · · , I15 = [351, 352, . . . , 400]

The tree T is now the set of all index vectors, T = {I1, I2, . . . , I2L+1−1}. Finally we note
that if we allow at most, say, 50 nodes in the index vectors for the leaves, then L satisfies

L ≈ 2 log2(N/50).

Remark 3.2. The HSS format can handle more general tree structures than the simplistic
one used here. It is permissible to split a node into more than two children if desirable,
to distribute the points in an index set unevenly among its children, to split only some
nodes on a given level, etc. This flexibility is useful when A approximates a boundary
integral operator since in this case, the optimal way of organizing the index vector into a
tree structure is determined by the spatial geometry of the boundary points.

3.3. Basis matrices. The index vectors in a tree T define submatrices of A. For any node
τ , we define the corresponding diagonal block via

Dτ = A(Iτ , Iτ).

For any sibling pair ν1 and ν2, we define the corresponding off-diagonal blocks via

Aν1,ν2 = A(Iν1 , Iν2), and Aν2,ν1 = A(Iν2 , Iν1).

A tessellation of A is formed by the collection of all off-diagonal blocks Aν1,ν2 along with
the basis blocks Dτ for all leaf nodes τ , as illustrated in Figure 3.1.

The matrix A is now an HSS matrix with respect to the tree T if there exists a fixed
integer k (called the “HSS-rank”) such that:

Condition 1: For each sibling pair {ν1, ν2}, the off-diagonal block Aν1,ν2 has rank at
most k. We factor the blocks

(3.3) Aν1,ν2 = Ubig
ν1 Bν1,ν2 (V

big
ν2)∗, and Aν2,ν1 = Ubig

ν2 Bν2,ν1 (V
big
ν1)∗.

where Ubig
νj and V big

νj are matrices with k columns each, and Bν1,ν2 and Bν2,ν1 are
k × k matrices.

Condition 2: The basis matrices Ubig
τ and V big

τ can be represented hierarchically.
Specifically, for any non-leaf node τ with children ν1 and ν2, there must exist 2k×k
matrices Uτ and Vτ such that

(3.4) Ubig
τ =

[
Ubig
ν1 0

0 Ubig
ν2

]
Uτ and V big

τ =

[
V big
ν1 0

0 V big
ν2

]
Vτ .

To illustrate the notation, we note that if τ is a non-leaf node with children ν1 and ν2,

Dτ =

[
Dν1 Aν1,ν2

Aν2,ν1 Dν2

]
=

[
Dν1 Ubig

ν1 Bν1,ν2 (V
big
ν2)∗

Ubig
ν2 Bν2,ν1 (V

big
ν1)∗ Dν2

]
.

Observing that for a leaf node τ the basis matrices Ubig
τ and V big

τ are in fact not big, we
define

For any leaf node τ : Uτ = Ubig
τ Vτ = V big

τ .

Then an HSS matrix A is completely described if:

• For every leaf node τ , we are given the diagonal matrices Dτ .
• For every node τ , we are given the small basis matrices Uτ and Vτ .

10

• For every sibling pair {ν1, ν2}, we are given the k × k matrices Bν1,ν2 and Bν2,ν1 .

A scheme for evaluating the matrix-vector product x 7→ Ax from these factors in O(N k)
flops is given as Algorithm 1.

Algorithm 1

Given all factors Uτ , Vτ , Bν1,ν2 and Dτ of an HSS matrix A, and a
vector x, this scheme computes the product b = Ax.

(1) For every leaf node τ , calculate x̃τ = V ∗
τ x(Iτ).

(2) Looping over all non-leaf nodes τ , from finer to coarser, calculate

x̃τ = V ∗
τ

[
x̃ν1
x̃ν2

]
,

where ν1 and ν2 are the children of τ .

(3) Set b̃τ = 0 for the root node τ .

(4) Looping over all non-leaf nodes τ , from coarser to finer, calculate[
b̃ν1
b̃ν2

]
=

[
0 Bν1,ν2

Bν2,ν1 0

] [
x̃ν1
x̃ν2

]
+ Uτ b̃τ

where ν1 and ν2 are the children of τ .

(5) For every leaf node τ , calculate b(Iτ) = Uτ b̃τ +Dτ x(Iτ).

Remark 3.3. For notational simplicity, we have described only the case where all HSS
blocks are approximated by factorizations of the same rank k. In practice, it is a simple
matter to implement algorithms that use variable ranks.

Remark 3.4. It is common to require the matrices Uτ and Vτ that arise in an HSS fac-
torization of a given matrix to have orthonormal columns. We have found it convenient
to relax this assumption and allow the use of other well-conditioned bases. In particular,
the use of interpolative decompositions (as described in Section 2.2) is essential to the per-
formance of the compression technique described in Section 4.1. A simple algorithm for
converting a factorization based on interpolative bases to one based on orthonormal bases
is described in Section 4.2.

3.4. Construction of the basis matrices. The definition of the HSS property given
in Section 3.3 involves the existence of a set of basis matrices satisfying certain recursive
relations. It does not directly provide a means of testing whether such matrices exist.
In this section we provide a directly verifiable criterion that also leads to a simple (but
expensive) technique for computing the basis matrices.

We first define what are called HSS row blocks and HSS column blocks. To this end, let
ℓ denote a level of the tree, and let {τ1, τ2, . . . , τq} denote all nodes on level ℓ. Then let

D(ℓ) denote the N ×N matrix with the matrices {Dτj}
q
j=1 as its diagonal blocks,

(3.5) D(ℓ) = diag(Dτ1 , Dτ2 , . . . , Dτq}.
For a node τ on level ℓ, we now define the corresponding HSS row block Arow

τ and HSS
column block Acol

τ by

Arow
τ = A(Iτ , :)−D(ℓ)(Iτ , :), and Acol

τ = A(:, Iτ)−D(ℓ)(:, Iτ).

11

These definitions are illustrated in Figure 3.3.

(a) (b) (c)

Figure 3.3. (a) The matrix A−D(3) with non-zero parts shaded. The HSS

row block Arow
13 is marked with a thick border. (b) The matrix A−D(2) with

Arow
6 marked. (c) The matrix A−D(1) with Arow

3 marked.

The following theorem provides a simple test to see if a matrix A is HSS, and also
furnishes a straight-forward (but expensive) technique for computing all the basis matrices.

Theorem 3.1. Let T be a tree on the indices 1, 2, . . . , N and let A be an N ×N matrix.
If every HSS row block Arow

τ and every HSS column block Acol
τ of A has rank at most k,

then A is an HSS matrix with respect to T with HSS-rank at most k.

The basis matrices Ubig
τ and V big

τ can be computed via

(3.6) [Ubig
τ , ·] = qr(Arow

τ) and [V big
τ , ·] = qr((Acol

τ)∗).

Once the “big” basis matrices have been computed for all blocks, the small ones can easily
be constructed. This approach requires O(N2 log(N) k) operations to compute a represen-
tation of A as an HSS matrix. A more efficient scheme computes the “big” basis matrices
via (3.6) for the leaf nodes only. Then information from the leaf computation is recycled to
directly compute the small basis matrices Uτ and Vτ , at a total cost of O(N2 k) operations.

3.5. Telescoping factorization. An HSS matrix A can be expressed in terms of the
matricesDτ , Uτ , Vτ , and Bν1,ν2 as a telescoping factorization. To demonstrate, we introduce
for each level ℓ = 1, 2, . . . , L the block-diagonal matrices

U (ℓ) = diag(Uτ1 , Uτ2 , . . . , Uτq), and V (ℓ) = diag(Vτ1 , Vτ2 , . . . , Vτq),

where τ1, τ2, . . . , τq is a list of all nodes on level ℓ. Moreover, we define for each non-leaf
node τ the 2k × 2k matrices

Bτ =

[
0 Bν1,ν2

Bν2,ν1 0

]
where ν1 and ν2 are the children of τ , and set for ℓ = 0, 1, . . . , L− 1

B(ℓ) = diag(Bτ1 , Bτ2 , . . . , Bτq).

Then A can be expressed hierarchically via the relations

A(0) = B(0),(3.7)

A(ℓ) = U (ℓ)A(ℓ−1) (V (ℓ))∗ +B(ℓ) for ℓ = 1, 2, . . . , L− 1,(3.8)

A = U (L)A(L−1) (V (L))∗ +D(L),(3.9)

12

U (3) (U (2) (U (1) B(0) V (1)∗)+B(1)) V (2)∗ + B(2)) V (3)∗ + D(3)

Figure 3.4. Block structure of formula (3.10).

where D(L) is defined via (3.5). (The matrices A(ℓ) defined by (3.7) and (3.8) satisfy A(ℓ) =

A−D(ℓ).) Rolling out the recursion, we get for, say L = 3, the telescoping factorization

(3.10) A = U (3)
(
U (2)

(
U (1)B(0) V (1)∗ +B(1)

)
V (2)∗ +B(2)

)
V (3)∗ +D(3).

The block structure of the formula (3.10) is shown in Figure 3.4. In practice, the sparsity
pattern of the blocks is typically slightly better than that shown in the figure. When
interpolative decompositions are used, each of the diagonal blocks in the matrices U (ℓ) and
V (ℓ) contain an identity matrix. When orthonormal bases are used, these can be chosen in
such a way that the blocks in the B(ℓ) matrices are all diagonal.

4. Fast computation of HSS approximations

The straight-forward technique for computing the HSS factorization of a matrix based on
Theorem 3.1 requires that all HSS blocks associated with leaf nodes be formed, and then
subjected to dense linear algebraic operations. This approach requires at least O(N2 k)
algebraic operations to factorize an N × N matrix of HSS rank k. In this section, we
describe how the randomized sampling techniques described in Section 2.3 can be used to
reduce this cost to O(N k2).

The fast technique relies crucially on the use of the interpolative decompositions described
in Section 2.2 in the HSS factorization. The advantage is that the matrices Bν1,ν2 are then
submatrices of the original matrix A and can therefore be constructed directly without a
need for projecting the larger blocks onto the bases chosen, cf. Section 2.4.

Section 4.1 describes a scheme for rapidly computing the HSS factorization of a symmetric
matrix. The scheme described in Section 4.1 results in a factorization based on interpolative
bases and the blocks Bν1,ν2 are submatrices of the original matrix; Section 4.2 describes
how such a factorization can be converted to one in which the bases for the HSS blocks are
orthonormal, and the blocks Bν1,ν2 are diagonal. Section 4.3 describes how to extend the
methods to non-symmetric matrices.

4.1. A scheme for computing an HSS factorization of a symmetric matrix. Let
A be an N ×N symmetric HSS-matrix that has HSS rank k. Suppose further that:

(a) Matrix vector products x 7→ Ax can be evaluated at a cost Tmult.
(b) Individual entries of A can be evaluated at a cost Tentry.

In this section, we describe a scheme for computing an HSS factorization of A in time

Ttotal ∼ Tmult × (k + 10) + Trand ×N (k + 10) + Tentry × 2N k + Tflop × cN k2,

where Trand is the time required to generate a random number, Tflop is the time required
for a floating point operation and c is a small number that does not depend on N or k.

13

The core idea of the method is to construct an N × (k+10) random matrix Ω, and then
construct for each level ℓ, the sample matrices

S(ℓ) =
(
A−D(ℓ)

)
Ω,

via a procedure to be described. Then for any cell τ on level ℓ,

S(ℓ)(Iτ , :) = Arow
τ Ω,

and since Arow
τ has rank k, the columns of S(ℓ)(Iτ , :) span the column space of Arow

τ with
high probability. We can then construct a basis for the column space of the large matrix
Arow

τ by analyzing the small matrix S(ℓ)(Iτ , :).

What makes the procedure fast is that the sample matrices S(ℓ) can be constructed by
means of an O(N) process from the result of applying the entire matrix A to Ω,

S = AΩ.

At the finest level, ℓ = L, we directly obtain S(L) from S by simply subtracting the contri-
bution from the diagonal blocks of A,

(4.1) S(L) = S −D(L)Ω.

Since D(L) is block diagonal with small blocks, equation (4.1) can be evaluated cheaply. To
proceed to the next coarser level, ℓ = L− 1, we observe that

(4.2) S(L−1) = (A−D(L−1))Ω = (A−D(L))Ω− (D(L−1) −D(L))Ω

= S(L) − (D(L−1) −D(L))Ω.

We observe that (D(L−1) −D(L)) has only 2L non-zero blocks. The pattern of these blocks
is illustrated for L = 3 below:

Each of these blocks were compressed in the computation at level L so (4.2) can also be
evaluated rapidly. The algorithm then proceeds up towards coarser levels via the formula

S(ℓ−1) = S(ℓ) − (D(ℓ−1) −D(ℓ)) Ω,

which can be evaluated rapidly since the blocks of (D(ℓ−1) −D(ℓ)) have at this point been
compressed.

The condition that the bases be “nested” in the sense of formula (3.4) can conveniently
be enforced by using the interpolative decompositions described in Section 2.2: At the finest
level, we pick k rows of each HSS row block that span its row space. At the next coarser
level, we pick in each HSS row block k rows that span its row space out of the 2k rows that
span its two children. By proceeding analogously throughout the upwards pass, (3.4) will

be satisfied. The k rows that span the row space of Arow
τ are kept in the index vector Ĩτ .

The use of interpolative decompositions has the additional benefit that we do not need
to form the entire matrices S(ℓ) when ℓ < L. Instead, we work with the submatrices formed
by keeping only the rows of S(ℓ) corresponding to the spanning rows at that step.

A complete description of the methods is given as Algorithm 2.

14

Remark 4.1. For simplicity, Algorithm 2 is described for the case where the off-diagonal
blocks of A has exact rank at most k, and the number k is known in advance. In actual
applications, one typically is given a matrix A whose off-diagonal blocks are not necessarily
rank-deficient in an exact sense, but can to high accuracy be approximated by low-rank
matrices. In this case, Algorithm 2 needs to be modified slightly to take as an input the
computational accuracy ε instead of the rank k, and the line

[Uτ , Jτ] = interpolate(S∗
loc)

needs to be replaced by the line

[Uτ , Jτ] = interpolate(S∗
loc, ε).

This directly leads to a variable rank algorithm that is typically far more efficient than the
fixed rank algorithm described.

Algorithm 2: Computing the HSS factorization of a symmetric matrix.

Input: A fast means of computing matrix-vector products x 7→ Ax.
A method for computing individual entries of A.
An upper bound for the HSS-rank k of A.
A tree T on the index vector [1, 2, . . . , N].

Output: Matrices Uτ , Bν1,ν2 , Dτ that form an HSS factorization of A.
(Note that Vτ = Uτ for a symmetric matrix.)

Generate an N × (k + 10) Gaussian random matrix Ω.
Evaluate S = AΩ using the fast matrix-vector multiplier.
loop over levels, finer to coarser, ℓ = L, L− 1, . . . , 2, 1

loop over all nodes τ on level ℓ
if τ is a leaf node then

Iloc = Iτ
Ωloc = Ω(Iτ , :)
Sloc = S(Iτ , :)−A(Iτ , Iτ) Ωloc

else
Let ν1 and ν2 be the two children of τ .

Iloc = [Ĩν1 , Ĩν2]

Ωloc =

[
Ων1

Ων2

]
Sloc =

[
Sν1 −A(Ĩν1 , Ĩν2)Ων2

Sν2 −A(Ĩν2 , Ĩν1)Ων1

]
end if
[Uτ , Jτ] = interpolate(S∗

loc)
Ωτ = U∗

τ Ωloc

Sτ = Sloc(Jτ , :)

Ĩτ = Iloc(Jτ)
end loop

end loop
For all leaf nodes τ , set Dτ = A(Iτ , Iτ).

For all sibling pairs {ν1, ν2} set Bν1,ν2 = A(Ĩν1 , Ĩν2).

15

4.2. Recompression into orthonormal basis functions. The output of Algorithm 2 is
an HSS representation of a matrix in which interpolative bases are used. It is sometimes
desirable to convert this representation to one using orthonormal bases (cf. Remark 3.4). In
this section, we describe a technique for doing so that is similar to a technique for Sequen-
tially Semi-Separable matrices reported in [14] and a technique for HSS matrices reported
in [9]. To be precise, suppose that matrices Uτ , Dτ , and Bν1,ν2 in an HSS factorization of a
symmetric matrices have already been generated. (These may have been generated by Al-
gorithm 2, or by some other means. All that matters is that A can be factored as specified
by (3.7), (3.8), (3.9).) The method described in this section produces new matrices Unew

τ

and Bnew
ν1,ν2 with the property that each Unew

τ has orthonormal columns, and each Bnew
ν1,ν2 is

diagonal.
The orthonormalization procedure works hierarchically, starting at the finest level and

working upwards. At the finest level, it loops over all sibling pairs {ν1, ν2}. It orthonor-
malizes the basis matrices Uν1 and Uν2 by computing their QR factorizations,

[W1, R1] = qr(Uν1) and [W2, R2] = qr(Uν2),

so that

Uν1 = W1R1 and Uν2 = W2R2,

and W1 and W2 have orthonormal columns. The matrices R1 and R2 are then used to
update the diagonal block Bν1,ν2 to reflect the change in basis vectors,

B̃12 = R1Bν1,ν2 R
∗
2.

Then B̃12 is diagonalized via a singular value decomposition,

B̃12 = W̃1B
new
ν1,ν2 W̃

∗
2 .

The new bases for ν1 and ν2 are constructed by updating W1 and W2 to reflect the diago-
nalization of B̃12,

Unew
ν1 = W1 W̃1, and Unew

ν2 = W2 W̃2.

Finally, the basis vectors for the parent τ of ν1 and ν2 must be updated to reflect the change
in bases at the finer level,

Uτ ←
[
W̃ ∗

1 R1 0

0 W̃ ∗
2 R2

]
Uτ .

Once the finest level has been processed, move up to the next coarser one and proceed
analogously. A complete description of the recompression scheme is as Algorithm 3.

4.3. Non-symmetric matrices. The extension of Algorithms 2 and 3 to the case of non-
symmetric matrices is conceptually straight-forward but requires the introduction of more
notation. In Algorithm 2, we construct a set of sample matrices {Sτ} with the property
that the columns of each Sτ span the column space of the corresponding HSS row block
Arow

τ . Since A is in that case symmetric, the columns of Sτ automatically span the row
space of Acol

τ as well. For non-symmetric matrices, we need to construct different sample
matrices Srow

τ and Scol
τ whose columns span the column space of Arow

τ and the row space
of Acol

τ , respectively. Note that in practice, we work only with the subsets of all these
matrices formed by the respective spanning rows and columns; in the non-symmetric case,
these may be different. The algorithm is given in full as Algorithm 4. The generalization
of the orthonormalization technique in Algorithm 3 is entirely analogous.

16

5. Numerical examples

In this section, we demonstrate the performance of the techniques described in Section
4 by applying them to matrices arising from the discretization of two boundary integral
operators associated with Laplace’s equation in two dimensions. The purpose of the ex-
periments is (1) to investigate how the computational time of Algorithms 2 and 4 depend
on problem size, (2) to see to what extent local errors aggregate, and (3) to compare the
speeds of Algorithms 2 and 4 to the speed of the classical Fast Multipole Method (FMM).
All methods were implemented in Matlab, and run on a desktop PC with a 3.2GHz Pentium
IV processor and 2GB of RAM.

5.1. Model problems. The matrices investigated are discrete approximations of the bound-
ary integral operator

(5.1) [Tu](x) = αu(x) +

∫
Γ
K(x, y)u(y) ds(y), x ∈ Γ,

where Γ is the contour shown in Figure 5.1, and α and K are chosen as either one of the
following two options:

α = 0 and K(x, y) = log |x− y| (the “single layer” kernel)(5.2)

α = 1/2 and K(x, y) =
(
n(y) · (x− y)

)
/|x− y|2 (the “double layer” kernel)(5.3)

For y ∈ Γ, n(y) denotes the unit normal of Γ at y. The single layer operator was discretized
via the trapezoidal rule with a Kapur-Rokhlin [26] end-point modification of the 6th order
for handling the singularity in the kernel k(x, y) as y approaches x, resulting in a symmetric
coefficient matrix. The double layer operator was discretized using the plain trapezoidal
rule which in the present case has superalgebraic convergence since the integrand is smooth.

Algorithm 3: Orthonormalizing an HSS factorization

Input: The matrices Uτ , Bν1,ν2 , Dτ in an HSS factorization of a symmetric matrix A.
Output: Matrices Unew

τ , Bnew
ν1,ν2 , and Dτ that form an HSS factorization of A such that

all Unew
τ have orthonormal columns and all Bnew

ν1,ν2 are diagonal.
(The matrices Dτ remain unchanged.)

Set U tmp
τ = Uτ for all leaf nodes τ .

loop over levels, finer to coarser, ℓ = L− 1, L− 2, . . . , 0
loop over all nodes τ on level ℓ

Let ν1 and ν2 denote the two children of τ .

[W1, R1] = qr(U tmp
ν1)

[W2, R2] = qr(U tmp
ν2)

[W̃1, B
new
ν1,ν2 , W̃2] = svd(R1Bν1,ν2 R

∗
2)

Unew
ν1 = W1 W̃1

Unew
ν2 = W2 W̃2

U tmp
τ =

[
W̃ ∗

1 R1 0

0 W̃ ∗
2 R2

]
Uτ

end loop
end loop

Remark: In practice, we let the matrices U tmp
τ and Unew

τ simply overwrite Uτ .

17

5.2. The Fast Multipole Method. In the numerical experiments reported here, discrete
approximations to the operator (5.1) were applied via the classical Fast Multipole Method
(FMM) of Greengard and Rokhlin [17] with multipole expansions of order 40 to ensure close
to double precision accuracy. The cost required for applying an approximation of a matrix

Algorithm 4: Computing the HSS factorization of a non-symmetric matrix.

Input: A fast means of computing matrix-vector products x 7→ Ax and x 7→ A∗ x.
A method for computing individual entries of A.
An upper bound for the HSS-rank k of A.
A tree T on the index vector [1, 2, . . . , N].

Output: Matrices Uτ , Vτ , Bν1,ν2 , Dτ that form an HSS factorization of A.

Generate two N × (k + 10) Gaussian random matrices Rrow and Rcol.
Evaluate Srow = A∗Rrow and Scol = ARcol using the fast matrix-vector multiplier.
loop over levels, finer to coarser, ℓ = L, L− 1, . . . , 1

loop over all nodes τ on level ℓ
if τ is a leaf node then

Irowloc = Iτ Icolloc = Iτ
Rrow

loc = R(Iτ , :) Rcol
loc = R(Iτ , :)

Srow
loc = Srow(Iτ , :)−A(Iτ , Iτ)R

row
loc Scol

loc = Scol(Iτ , :)−A(Iτ , Iτ)
∗Rcol

loc
else

Let ν1 and ν2 be the two children of τ .

Irowloc = [Ĩrowν1 , Ĩrowν2] Icolloc = [Ĩcolν1 , Ĩ
col
ν2]

Rrow
loc =

[
Rrow

ν1
Rrow

ν2

]
Rcol

loc =

[
Rcol

ν1
Rcol

ν2

]
Srow
loc =

[
Srow
ν1 −A(Ĩrowν1 , Ĩcolν2)R

row
ν2

Srow
ν2 −A(Ĩrowν2 , Ĩcolν1)R

row
ν1

]
Scol
loc =

[
Scol
ν1 −A(Ĩrowν1 , Ĩcolν2)R

col
ν2

Scol
ν2 −A(Ĩrowν2 , Ĩcolν1)R

col
ν1

]
end if
[U row

τ , J row
τ] = interpolate((Srow

loc)∗) [U col
τ , Jcol

τ] = interpolate((Scol
loc)

∗)
Rrow

τ = (U col
τ)∗Rrow

loc Rcol
τ = (U row

τ)∗Rcol
loc

Srow
τ = Srow

loc (J row
τ , :) Scol

τ = Scol
loc(J

col
τ , :)

Ĩrowτ = Irowloc (J row
τ) Ĩcolτ = Icolloc(J

col
τ)

end loop
end loop
For all leaf nodes τ , set Dτ = A(Iτ , Iτ).

For all sibling pairs {ν1, ν2} set Bν1,ν2 = A(Ĩrowν1 , Ĩcolν2).

Figure 5.1. The contour Γ used in (5.1).

18

N = 800 N = 1600 N = 3200 N = 6400 N = 12 800 N = 25 600
Nvec = 1 1.328 1.891 2.875 4.531 7.343 13.266
Nvec = 50 1.500 2.266 3.578 5.969 10.531 19.375
Nvec = 100 1.656 2.563 4.110 7.062 12.844 23.891

Table 1. Time in seconds required by our implementation of the FMM to
apply a matrix of size N × N to Nvec vectors simultaneously. The FMM
uses multipole expansions of length 40, leading to about 15 accurate digits.

A of size N×N to Nvec vectors simultaneously is reported in Table 1. We note that the cost
of applying A to Nvec = 50 vectors is only slightly higher than the cost of applying A to a
single vector. This illustrates a principal advantage of randomized sampling methods over
iterative methods (such as, e.g., Krylov), namely that the matrix-vector multiplications can
be executed in parallel rather than consecutively.

5.3. Fixed rank experiments. In our first experiment, we executed Algorithms 2 and 4
as stated, with a fixed preset number of sample vectors q of either 50 or 100. Algorithm 2
was applied to discretizations of the operator (5.1) with the single layer kernel (5.2). For a
sequence of problem sizes N we measured the time (wall time) tcomp required to compress
the matrix A via Algorithm 2, with the time for computing the sample matrix S = AΩ via
the FMM excluded (these times are reported separately in Table 1). Once the compressed
matrix Aapprox had been constructed, we computed the error measure

(5.4) e1 =
||A−Aapprox||

||A||
via 20 steps of a power iteration with a random starting vector. Table 2 lists tcomp and e1
for a variety of problem sizes N , and for the two levels of accuracy q = 50 and q = 100.
Table 2 also gives the values of tcomp and e1 for an analogous set of experiments in which
Algorithm 4 was applied to the operator (5.1) with the double layer kernel (5.3). Some
observations:

(1) The absolute times required for compression are small; e.g., a non-symmetric matrix
of size 25 600×25 600 is compressed to ten digits of accuracy in less that 14 seconds.

(2) The claim that Algorithms 2 and 4 have linear complexity is supported.
(3) The time required by Algorithms 2 and 4 is comparable to the cost of applying the

matrix A via the FMM to a single vector.
(4) For the double layer potential, the error e1 grows only very slowly with problem

size.
(5) For the single layer potential, the error e1 grows substantially with problem size.

A principal cause of this growth is that in this case, the singular kernel causes the
HSS-ranks required for any fixed accuracy to grow with problem size.

5.4. Adaptive rank determination. In view of the error growth described in observa-
tions (4) and (5) in Section 5.3, we also implemented the modified version of algorithms
2 and 4 described in Remark 4.1. The interpolatory decomposition is now executed to
produce factorizations that satisfy a preset tolerance ϵloc. For the double layer kernel, in
which all HSS-blocks have roughly the same rank, using a fixed tolerance ϵloc = ϵ for all
blocks worked very well. For the single layer potential, in which the rank of an HSS-block
depends on which level it belongs to, we found that a global tolerance of roughly ϵ was
obtained when we required blocks on level ℓ to be compressed to accuracy ϵℓ = ϵ · 10−0.5ℓ.
One set of experiments was executed with ϵ = 10−5 and q = 50 sample columns, and a

19

Single layer Double layer
q = 50 q = 100 q = 50 q = 100

N tcomp e1 tcomp e1 tcomp e1 tcomp e1
400 0.047 7.0e-13 0.094 2.2e-15 0.078 2.8e-13 0.172 3.6e-15
800 0.109 1.5e-11 0.219 8.3e-15 0.172 6.9e-13 0.390 1.0e-14
1600 0.235 3.3e-10 0.484 1.7e-14 0.343 5.7e-13 0.828 2.3e-14
3200 0.453 7.9e-10 1.000 5.2e-14 0.688 1.2e-12 1.719 4.2e-14
6400 0.906 7.0e-9 2.015 5.4e-14 1.422 4.0e-12 3.484 9.6e-14

12800 1.828 8.7e-9 4.031 1.0e-13 2.844 7.8e-12 7.046 4.7e-13
25600 3.765 5.8e-8 8.234 5.2e-13 5.719 1.1e-11 14.125 1.5e-12

Table 2. Results from experiments with algorithms 2 and 4 when applied
to the operator (5.1) with the kernels (5.2) and (5.3). N is problem size, q
is the number of columns in the random matrix Ω, tcomp is the compression
time in seconds, and e1 is the error, as defined by (5.4).

second set was executed with ϵ = 10−10 and q = 100 sample columns. The time required
for compression tcomp, and the resulting error e1, cf. (5.4), are reported in Tables 3 and 4.
(The tables provide additional performance metrics that will be explained in Section 5.5.)
Two observations:

(1) By allowing the local rank to vary, the approximation error can be kept constant
across a broad range of problem sizes.

(2) The algorithm with variable rank (reported in Tables 3 and 4) is faster than the
one using fixed rank (reported in Table 2) at any comparable error.

Remark 5.1. The randomized compression algorithms that were employed in Section 5.3,
as well as the experiments involving the double layer kernel in Section 5.4 were all executed
“blindly” in the sense that no problem specific knowledge was used beyond a rough upper
estimate of the numerical ranks of the off-diagonal blocks (q = 50 is enough for intermediate
accuracy, and q = 100 is enough for high accuracy). The experiment involving the single
layer kernel in Section 5.4 is slightly different in that it involved an informed choice of the
tolerance to be used in the rank-revealing QR factorizations. To obtain a “blind” method
for a situation such as this, one can first apply the fixed rank approach used in Section 5.3,
and then follow up with a round of rank reduction [38] in the computed HSS representation.

5.5. Inversion of the computed HSS representations. A motivation for computing
an HSS representation of a given matrix in a situation where a fast matrix-vector multiplier
such as the FMM is already available is that the HSS structure admits a broader range
of matrix operations to be performed. (As a general matter, it is not known whether the
FMM structure can be rapidly inverted, although some intriguing tentative results were
reported in [35].) For instance, linear complexity methods for inverting or computing an
LU factorization of an HSS matrix are known [8, 9, 13]. In this section, we illustrate how
the compression scheme of this paper can be combined with the inversion scheme of [31]
to produce a fast direct solver for an equation involving the integral operator (5.1). The
particular method of [31] is exact up to round-off errors and works best when the ranks
used in the HSS representation are close to the theoretically minimal ranks; we therefore
applied it to the output of the adaptive methods described in Section 5.4.

In reporting the error of the direct solver, we let G denote the output of applying the
inversion scheme of [31] to the HSS representation computed by the randomized compression

20

ϵ = 10−5, q = 50
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.047 0.031 0.000 1.23 6.4e3 5.1e-6 2.9e-3
800 0.078 0.063 0.000 0.77 1.4e4 5.2e-6 2.4e-3
1600 0.140 0.141 0.016 0.57 1.6e5 1.1e-5 2.0e-2
3200 0.297 0.297 0.031 0.57 2.3e5 5.8e-6 1.2e-2
6400 0.625 0.625 0.062 0.57 1.1e6 2.9e-6 1.4e-2

12800 1.281 1.328 0.141 0.57 4.2e6 3.5e-6 8.0e-2
25600 2.625 2.875 0.265 0.57 5.6e6 6.5e-6 1.2e-1

ϵ = 10−10, q = 100
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.047 0.047 0.000 1.24 6.4e3 3.3e-11 1.5e-8
800 0.109 0.094 0.000 0.75 1.4e4 4.3e-11 2.0e-8
1600 0.203 0.203 0.032 0.57 1.6e5 4.3e-11 1.2e-7
3200 0.422 0.406 0.031 0.57 2.3e5 4.3e-11 1.2e-5
6400 0.843 0.844 0.078 0.57 1.1e6 4.4e-11 4.6e-5

12800 1.687 1.703 0.141 0.57 4.2e6 3.3e-11 2.2e-4
25600 3.407 3.547 0.266 0.57 5.6e6 2.6e-11 2.0e-5

Table 3. Results from experiments with Algorithm 2 applied to the op-
erator (5.1) with the kernel (5.2). N is problem size. ϵ is the requested
accuracy and q is the number of columns in the sample matrices. tcomp, tinv,
and tapply are the computational times in seconds (as specified in Section
5.4). The errors reported are e1 = ||A−Aapprox||/||A|| and e2 = ||I −AG||,
where G is the computed approximation to A−1.

ϵ = 10−5, q = 50
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.047 0.031 0.000 1.04 3.6 2.6e-6 5.5e-6
800 0.094 0.031 0.016 1.04 3.6 3.1e-6 6.5e-6

1600 0.219 0.094 0.000 1.04 3.5 2.9e-6 6.3e-6
3200 0.406 0.140 0.016 1.04 3.5 2.6e-6 5.4e-6
6400 0.844 0.297 0.031 1.04 3.5 3.4e-6 7.6e-6
12800 1.688 0.578 0.062 1.04 3.6 3.6e-6 7.8e-6
25600 3.344 1.156 0.141 1.04 3.3 3.4e-6 7.3e-6

ϵ = 10−10, q = 100
N tcomp tinv tapply ||Aapprox|| ||G|| e1 e2

400 0.093 0.032 0.000 1.04 3.6 2.1e-11 4.5e-11
800 0.156 0.079 0.000 1.04 3.6 2.0e-11 4.4e-11

1600 0.297 0.109 0.016 1.04 3.6 1.5e-11 3.1e-11
3200 0.579 0.203 0.015 1.04 3.4 1.9e-11 4.0e-11
6400 1.094 0.344 0.047 1.04 3.6 2.5e-11 5.2e-11
12800 2.141 0.687 0.078 1.04 3.6 2.0e-11 4.2e-11
25600 4.093 1.266 0.141 1.04 3.6 3.4e-11 7.1e-11

Table 4. Results from experiments with Algorithm 4 applied to the oper-
ator (5.1) with the kernel (5.3). Notation as in Table 3.

21

algorithm. In other words, G is a data-sparse approximation of A−1,

G ≈ A−1.

Since A−1 is not available we cannot readily compute the error ||A−1 − G||. However, we
can bound the relative error in the inverse via

||A−1 −G||
||A−1||

=
||A−1

(
I −AG

)
||

||A−1||
≤ ||I −AG||.

We therefore define the error measure

(5.5) e2 = ||I −AG||
and observe that it can be computed via a power iteration. The error e2 also provides a
useful bound on the residuals incurred when solving Ax = b. To see this, let xexact denote
the exact solution

(5.6) xexact = A−1 b,

and let xapprox denote the approximate solution constructed by the direct solver

(5.7) xapprox = Gb.

Then

||Axexact −Axapprox|| = ||b−AGb|| ≤ ||I −AG|| ||b|| = e2 ||b||.
The errors e1 ande2 are reported in Tables 3 and 4. The tables also provide estimates

of the quantities ||Aapprox|| and ||G|| (which together give an indication of the condition
number of A), as well as the times tinv required by the inversion and tapply required for
applying the inverse to a vector. Some observations:

(1) The inversion takes about the same amount of time as the compression; both of
these steps are significantly faster than the application of the matrix to a single
vector via the FMM.

(2) Once the inverse has been computed, the cost tapply to solve (5.6) via (5.7) is far
smaller than the cost of applying A via the FMM.

(3) In the experiments involving the double layer kernel (reported in Table 4) the matrix
A is well-conditioned, and the inversion step leads to almost no loss of accuracy.

(4) In the experiments involving the single layer kernel (reported in Table 3) we see
significant loss of accuracy as the problem size increases. This loss of accuracy
appears to be due to the ill-conditioning of the coefficient matrix since e2/e1 grows
at about the same rate as the ratio ||G||/||Aapprox||.

Remark 5.2. The approach taken here of solving a linear system by explicitly computing
an approximation to the inverse of the coefficient matrix is slightly unorthodox, and since
the matrix inversion step is not unconditionally stable, the approach is not intended as a
general recommendation. To justify the use of explicit matrix inversion, we note simply
that for the specific context of solving boundary integral equations of mathematical physics
it has empirically been observed to perform well [31]. Moreover, any inverse computed can
be reliably verified since the error bound (5.5) is computable.

6. Concluding remarks

The paper presents a randomized algorithm for computing a compressed representation
of a given matrix A in the so called Hierarchically Semi-Separable (HSS) format. The
proposed algorithm requires that two functions be provided:

(1) A fast means of evaluating matrix-vector products x 7→ Ax and x 7→ A∗ x.

22

(2) A fast technique for computing individual entries of the matrix. Only the construc-
tion of O(N) entries is required.

The point of the proposed method is that while many well-established techniques are avail-
able for rapidly computing the matrix-vector product in Step 1 above (e.g. the Fast Multi-
pole Method [17], panel clustering [20], Barnes-Hut [1]), much less is known about how to
rapidly compute the HSS representation of a matrix. Such a representation allows a broad
range of matrix operations (matrix inversion, matrix-matrix multiply, LU factorization,
etc) to be performed efficiently.

Numerical examples were presented that indicate that the execution times of the pro-
posed algorithms scale linearly with problem size, with a small constant of proportionality.
Moreover, the numerical examples indicate that local errors do not significantly propa-
gate, and that for requested accuracies between 10−5 and 10−10, the computed compressed
representation is accurate to within the requested accuracy.

Acknowledgements: The initial version of this manuscript [29] was written while the
author was visiting the Institute for Pure and Applied Mathematics at UCLA during their
long programMathematics of Knowledge and Search Engines in the Fall of 2007. The author
gratefully acknowledges the many helpful suggestions made by the anonymous referees in
the reviewing process. The work reported was supported by the NSF under the contracts
0941476, 0748488, and 0610097.

References

[1] J. Barnes and P. Hut, A hierarchical o(n logn) force-calculation algorithm, Nature, 324 (1986).
[2] M. Bebendorf, Approximation of boundary element matrices, Numerische Mathematik, 86 (2000),

pp. 565–589.
[3] S. Börm, H2-matrix arithmetics in linear complexity, Computing, 77 (2006), pp. 1–28.
[4] , Construction of data-sparse H2-matrices by hierarchical compression, Tech. Report 92/2007,

Max Planck Institute, 2007.
[5] , Approximation of solution operators of elliptic partial differential equations by ⟨ and ⟨2-matrices,

Numerische Mathematik, 115 (2010), pp. 165–193. 10.1007/s00211-009-0278-7.
[6] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators, Numerische Mathe-

matik, 101 (2005), pp. 221–249.
[7] T. F. Chan, Rank revealing qr factorizations, Linear Algebra and its Applications, 88-89 (1987), pp. 67

– 82.
[8] S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semiseparable systems

of linear equations, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 373–384 (electronic).
[9] S. Chandrasekaran, M. Gu, X. Li, and J. Xia, Some fast algorithms for hierarchically semiseparable

matrices, Tech. Report 08-24, UCLA/CAM, 2008.
[10] , Superfast multifrontal method for structured linear systems of equations, SIAM J. Matrix

Anal. Appl., 31 (2009), pp. 1382 – 1411.
[11] S. Chandrasekaran, M. Gu, and W. Lyons, A fast adaptive solver for hierarchically semiseparable

representations, Calcolo, 42 (2005), pp. 171–185.
[12] H. Cheng, Z. Gimbutas, P. Martinsson, and V. Rokhlin, On the compression of low rank matrices,

SIAM Journal of Scientific Computing, 26 (2005), pp. 1389–1404.
[13] P. Dewilde and S. Chandrasekaran, A hierarchical semi-separable Moore-Penrose equation solver,

in Wavelets, multiscale systems and hypercomplex analysis, vol. 167 of Oper. Theory Adv. Appl.,
Birkhäuser, Basel, 2006, pp. 69–85.

[14] P. DeWilde and A. van der Veen, Time-varying systems and computations, Kluwer, Dordrecht,
1998.

[15] K. Frederix and M. V. Barel, Solving a large dense linear system by adaptive cross approximation,
Journal of Computational and Applied Mathematics, 234 (2010), pp. 3181 – 3195.

[16] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical
Sciences, Johns Hopkins University Press, Baltimore, MD, third ed., 1996.

[17] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73
(1987), pp. 325–348.

23

[18] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace equation
in three dimensions, in Acta numerica, 1997, vol. 6 of Acta Numer., Cambridge Univ. Press, Cambridge,
1997, pp. 229–269.

[19] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factor-
ization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[20] W. Hackbusch, The panel clustering technique for the boundary element method (invited contribution),
in Boundary elements IX, Vol. 1 (Stuttgart, 1987), Comput. Mech., Southampton, 1987, pp. 463–474.

[21] W. Hackbusch, A sparse matrix arithmetic based on H-matrices; Part I: Introduction to H-matrices,
Computing, 62 (1999), pp. 89–108.

[22] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Computing, 69
(2002), pp. 1–35.

[23] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures on Applied Mathe-
matics, Springer Berlin, 2002, pp. 9–29.

[24] N. Halko, P. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011), pp. 217–288.

[25] D. Huygens, Multiscale and hybrid methods for the solution of oscillatory integral equations, PhD
thesis, Katholieke Universiteit Leuven, 2006.

[26] S. Kapur and V. Rokhlin, High-order corrected trapezoidal quadrature rules for singular functions,
SIAM J. Numer. Anal., 34 (1997), pp. 1331–1356.

[27] E. Liberty, F. Woolfe, P. Martinsson, V. Rokhlin, and M. Tygert, Randomized algorithms
for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 20167–20172.

[28] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, 2010.

[29] P. Martinsson, A fast algorithm for compressing a matrix into a data-sparse format via randomized
sampling, tech. report, 2008. arXiv.org report 0806.2339.

[30] , A fast direct solver for a class of elliptic partial differential equations, 2009.
[31] P. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two dimen-

sions, J. Comp. Phys., 205 (2005), pp. 1–23.
[32] , An accelerated kernel independent fast multipole method in one dimension, SIAM Journal of

Scientific Computing, 29 (2007), pp. 1160–11178.
[33] P. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decomposition of

matrices, Appl. Comput. Harmon. Anal., 30 (2011), pp. 47–68.
[34] E. Michielssen, A. Boag, and W. C. Chew, Scattering from elongated objects: direct solution in

O(N log2 N) operations, IEE Proc. Microw. Antennas Propag., 143 (1996), pp. 277 – 283.
[35] T. Pals, Multipole for Scattering Computations: Spectral Discretization, Stabilization, Fast Solvers,

PhD thesis, Department of Electrical and Computer Engineering, University of California, Santa Bar-
bara, 2004.

[36] Z. Sheng, P. Dewilde, and S. Chandrasekaran, Algorithms to solve hierarchically semi-separable
systems, in System theory, the Schur algorithm and multidimensional analysis, vol. 176 of Oper. Theory
Adv. Appl., Birkhäuser, Basel, 2007, pp. 255–294.

[37] P. Starr and V. Rokhlin, On the numerical solution of two-point boundary value problems. II, Comm.
Pure Appl. Math., 47 (1994), pp. 1117–1159.

[38] J. Xia, On the complexity of some hierarchical structured matrix algorithms, 2010. In preparation.

