
ON THE COMPRESSION OF LOW RANK MATRICES∗

H. CHENG† , Z. GIMBUTAS† , P. G. MARTINSSON‡ , AND V. ROKHLIN‡

SIAM J. SCI. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1389–1404

Abstract. A procedure is reported for the compression of rank-deficient matrices. A matrix A
of rank k is represented in the form A = U ◦B ◦V , where B is a k× k submatrix of A, and U , V are
well-conditioned matrices that each contain a k × k identity submatrix. This property enables such
compression schemes to be used in certain situations where the singular value decomposition (SVD)
cannot be used efficiently. Numerical examples are presented.

Key words. matrix factorization, low rank approximation, matrix inversion

AMS subject classifications. 65F30, 15A23, 65R20

DOI. 10.1137/030602678

1. Introduction. In computational physics, and many other areas, one often
encounters matrices whose ranks are (to high precision) much lower than their di-
mensionalities; even more frequently, one is confronted with matrices possessing large
submatrices that are of low rank. An obvious source of such matrices is the potential
theory, where discretization of integral equations almost always results in matrices
of this type (see, for example, [7]). Such matrices are also encountered in fluid dy-
namics, numerical simulation of electromagnetic phenomena, structural mechanics,
multivariate statistics, etc. In such cases, one is tempted to “compress” the matrices
in question so that they could be efficiently applied to arbitrary vectors; compression
also facilitates the storage and any other manipulation of such matrices that might
be desirable.

At this time, several classes of algorithms exist that use this observation. The
so-called fast multipole methods (FMMs) are algorithms for the application of certain
classes of matrices to arbitrary vectors; FMMs tend to be extremely efficient but are
only applicable to very narrow classes of operators (see [2]). Another approach to the
compression of operators is based on wavelets and related structures (see, for example,
[3, 1]); these schemes exploit the smoothness of the elements of the matrix viewed as
a function of their indices and tend to fail for highly oscillatory operators.

Finally, there is a class of compression schemes that are based purely on linear
algebra and are completely insensitive to the analytical origin of the operator. This
class consists of the singular value decomposition (SVD), the so-called QR and QLP
factorizations [10], and several others. Given an m×n matrix A of rank k < min(m,n),
the SVD represents A in the form

A = U ◦D ◦ V ∗,(1.1)

where D is a k×k diagonal matrix whose elements are nonnegative, and U and V are

∗Received by the editors December 22, 2003; accepted for publication (in revised form) April
30, 2004; published electronically March 22, 2005. This research was supported in part by the
Defense Advanced Research Projects Agency under contract MDA972-00-1-0033, by the Office of
Naval Research under contract N00014-01-0364, and by the Air Force Office of Scientific Research
under contract F49620-03-C-0041.

http://www.siam.org/journals/sisc/26-4/60267.html
†MadMax Optics Inc., 3035 Whitney Ave., Hamden, CT 06518 (info@madmaxoptics.com,

zydrunas.gimbutas@madmaxoptics.com).
‡Department of Mathematics, Yale University, New Haven, CT 06511 (martins@cs.yale.edu,

rokhlin@cs.yale.edu).

1389

1390 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

matrices (of sizes m×k and n×k, respectively) whose columns are orthonormal. The
compression provided by the SVD is optimal in terms of accuracy (see, for example,
[6]) and has a simple geometric interpretation: it expresses each of the columns of A
as a linear combination of the k (orthonormal) columns of U ; it also represents the
rows of A as linear combinations of (orthonormal) rows of V ; and the matrices U, V
are chosen in such a manner that the rows of U are images (up to a scaling) under A
of the columns of V .

In this paper, we propose a different matrix decomposition. Specifically, we rep-
resent the matrix A described above in the form

A = U ◦B ◦ V∗,(1.2)

where B is a k × k submatrix of A, and the norms of the matrices U ,V (of dimen-
sionalities n × k and m × k, respectively) are reasonably close to 1 (see Theorem 3
in section 3 below). Furthermore, each of the matrices U ,V contains a unity k × k
submatrix.

Like (1.1), the representation (1.2) has a simple geometric interpretation: it ex-
presses each of the columns of A as a linear combination of k selected columns of
A and each of the rows of A as a linear combination of k selected rows of A. This
selection defines a k×k submatrix B of A, and in the resulting system of coordinates,
the action of A is represented by the action of its submatrix B.

The representation (1.2) has the advantage that the bases used for the representa-
tion of the mapping A consist of the columns and rows of A, while each element of the
bases in the representation (1.1) is itself a linear combination of all rows (or columns)
of the matrix A. In section 5, we illustrate the advantages of the representation (1.2)
by constructing an accelerated direct solver for integral equations of potential theory.

Other advantages of the representation (1.2) are that the numerical procedure
for constructing it is considerably less expensive than that for the construction of the
SVD (see section 4) and that the cost of applying (1.2) to an arbitrary vector is

(n + m− k) · k(1.3)

versus

(n + m) · k(1.4)

for the SVD.
The obvious disadvantage of (1.2) vis-a-vis (1.1) is the fact that the norms of the

matrices U ,V are somewhat greater than 1, leading to some (though minor) loss of
accuracy. Another disadvantage of the proposed factorization is its nonuniqueness; in
this respect it is similar to the pivoted QR factorization.

Remark 1. In (1.2), the submatrix B of the matrix A is defined as the inter-
section of k columns with k rows. Denoting the sequence numbers of the rows by
i1, i2, . . . , ik and the sequence numbers of the columns by j1, j2, . . . , jk, we will refer
to the submatrix B of A as the skeleton of A, to the k × n matrix consisting of the
rows of A numbered i1, i2, . . . , ik as the row skeleton of A, and to the m × k matrix
consisting of the columns of A numbered j1, j2, . . . , jk as the column skeleton of A.

The structure of this paper is as follows. Section 2 below summarizes several facts
from numerical linear algebra to be used in the remainder of the paper. In section 3,
we prove the existence of a stable factorization of the form (1.2). In section 4, we de-
scribe a reasonably efficient numerical algorithm for constructing such a factorization.

ON THE COMPRESSION OF LOW RANK MATRICES 1391

In section 5, we illustrate how the geometric properties of the factorization (1.2) can
be utilized in the construction of an accelerated direct solver for integral equations of
potential theory. The performance of the direct solver is investigated through numer-
ical examples. Finally, section 6 contains a discussion of other possible applications
of the techniques covered in this paper.

2. Preliminaries. In this section we introduce our notation and summarize
several facts from numerical linear algebra; these can all be found in [8].

Throughout the paper, we use uppercase letters for matrices and lowercase letters
for vectors and scalars. We reserve Q for matrices that have orthonormal columns
and P for permutation matrices. The canonical unit vectors in C

n are denoted by ej .
Given a matrix X, we let X∗ denote its adjoint (the complex conjugate transpose),
σk(X) its kth singular value, ||X||2 its l2-norm, and ||X||F its Frobenius norm. Finally,
given matrices A, B, C, and D, we let

[A |B],

[
A
C

]
, and

[
A B
C D

]
(2.1)

denote larger matrices obtained by combining the blocks A, B, C, and D.
The first result that we present asserts that, given any matrix A, it is possible to

reorder its columns to form a matrix AP , where P is a permutation matrix, with the
following property: When AP is factored into an orthonormal matrix Q and an upper
triangular matrix R, so that AP = QR, then the singular values of the leading k × k
submatrix of R are reasonably good approximations of the k largest singular values
of A. The theorem also says that the first k columns of AP form a well-conditioned
basis for the column space of A to within an accuracy of roughly σk+1(A).

Theorem 1 (Gu and Eisenstat). Suppose that A is an m × n matrix, l =
min(m,n), and k is an integer such that 1 ≤ k ≤ l. Then there exists a factorization

AP = QR,(2.2)

where P is an n × n permutation matrix, Q is an m × l matrix with orthonormal
columns, and R is an l×n upper triangular matrix. Furthermore, splitting Q and R,

Q =

[
Q11 Q12

Q21 Q22

]
, R =

[
R11 R12

0 R22

]
,(2.3)

in such a fashion that Q11 and R11 are of size k × k, Q21 is (m − k) × k, Q12 is
k× (l− k), Q22 is (m− k)× (l− k), R12 is k× (n− k), and R22 is (l− k)× (n− k),
results in the following inequalities:

σk(R11) ≥ σk(A)
1√

1 + k(n− k)
,(2.4)

σ1(R22) ≤ σk+1(A)
√

1 + k(n− k),(2.5)

‖R−1
11 R12‖F ≤

√
k(n− k).(2.6)

Remark 2. In this paper we do not use the full power of Theorem 1 since we are
concerned only with the case of very small ε = σk+1(A). In this case, the inequality

1392 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

(2.5) implies that A can be well approximated by a low rank matrix. In particular,
(2.5) implies that∥∥∥∥A−

[
Q11

Q21

] [
R11

∣∣R12

]
P ∗

∥∥∥∥
2

≤ ε
√

1 + k(n− k).(2.7)

Furthermore, the inequality (2.6) in this case implies that the first k columns of AP
form a well-conditioned basis for the entire column space of A (to within an accuracy
of ε).

While Theorem 1 asserts the existence of a factorization (2.2) with the properties
(2.4), (2.5), (2.6), it says nothing about the cost of constructing such a factorization
numerically. The following theorem asserts that a factorization that satisfies bounds
that are weaker than (2.4), (2.5), (2.6) by a factor of

√
n can be computed in O(mn2)

operations.
Theorem 2 (Gu and Eisenstat). Given an m × n matrix A, a factorization of

the form (2.2) that, instead of (2.4), (2.5), and (2.6), satisfies the inequalities

σk(R11) ≥
1√

1 + nk(n− k)
σk(A),(2.8)

σ1(R22) ≤
√

1 + nk(n− k)σk+1(A),(2.9)

‖R−1
11 R12‖F ≤

√
nk(n− k)(2.10)

can be computed in O(mn2) operations.
Remark 3. The complexity O(mn2) in Theorem 2 is a worst-case bound. Typ-

ically, the number of operations required is similar to the time required for a simple
pivoted Gram–Schmidt algorithm; O(mnk).

3. Analytical apparatus. In this section we prove that the factorization (1.2)
exists by applying Theorem 1 to both the columns and the rows of the matrix A.
Theorem 2 then guarantees that the factorization can be computed efficiently.

The following theorem is the principal analytical tool of this paper.
Theorem 3. Suppose that A is an m× n matrix and let k be such that 1 ≤ k ≤

min(m,n). Then there exists a factorization

A = PL

[
I
S

]
AS

[
I
∣∣T]P ∗

R + X,(3.1)

where I ∈ C
k×k is the identity matrix, PL and PR are permutation matrices, and AS

is the top left k × k submatrix of P ∗
LAPR. In (3.1), the matrices S ∈ C

(m−k)×k and
T ∈ C

k×(n−k) satisfy the inequalities

‖S‖F ≤
√
k(m− k) ‖T‖F ≤

√
k(n− k),(3.2)

and

‖X‖2 ≤ σk+1(A)
√

1 + k(min(m,n) − k);(3.3)

i.e., the matrix X is small if the (k + 1)th singular value of A is small.

ON THE COMPRESSION OF LOW RANK MATRICES 1393

Proof. The proof consists of two steps. First, Theorem 1 is invoked to assert the
existence of k columns of A that form a well-conditioned basis for the column space
to within an accuracy of σk+1(A); these are collected in the m× k matrix ACS. Then
Theorem 1 is invoked again to prove that k of the rows of ACS form a well-conditioned
basis for its row space. Without loss of generality, we assume that m ≥ n and that
σk(A) �= 0.

For the first step we factor A into matrices Q and R as specified by Theorem 1,
letting PR denote the permutation matrix. Splitting Q and R into submatrices Qij

and Rij as in (2.3), we reorganize the factorization (2.2) as follows:

APR =

[
Q11

Q21

] [
R11

∣∣R12

]
+

[
Q12

Q22

] [
0
∣∣R22

]
=

[
Q11R11

Q21R11

] [
I
∣∣R−1

11 R12

]
+

[
0 Q12R22

0 Q22R22

]
.(3.4)

We now define the matrix T ∈ C
k×(n−k) via the formula

T = R−1
11 R12;(3.5)

T satisfies the inequality (3.2) by virtue of (2.6). We define the matrix X ∈C
m×n via

the formula

X =

[
0 Q12R22

0 Q11R22

]
P ∗

R,(3.6)

which satisfies the inequality (3.3) by virtue of (2.5). Defining the matrix ACS ∈ C
m×k

by

ACS =

[
Q11R11

Q21R11

]
,(3.7)

we reduce (3.4) to the form

APR = ACS

[
I
∣∣T] + XPR.(3.8)

An obvious interpretation of (3.8) is that ACS consists of the first k columns of the
matrix APR (since the corresponding columns of XPR are identically zero).

The second step of the proof is to find k rows of ACS forming a well-conditioned
basis for its row-space. To this end, we factor the transpose of ACS as specified by
Theorem 1,

A∗
CSPL = Q̃

[
R̃11

∣∣ R̃12

]
.(3.9)

Transposing (3.9) and rearranging the terms, we have

P ∗
LACS =

[
R̃∗

11

R̃∗
12

]
Q̃∗ =

[
I

R̃∗
12(R̃

∗
11)

−1

]
R̃∗

11Q̃
∗.(3.10)

Multiplying (3.8) by P ∗
L and using (3.10) to substitute for P ∗

LACS, we obtain

P ∗
LAPR =

[
I

R̃∗
12(R̃

∗
11)

−1

]
R̃∗

11Q̃
∗ [I∣∣T] + P ∗

LXPR.(3.11)

1394 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

We now convert (3.11) into (3.1) by defining the matrices AS ∈C
k×k and S ∈ C

(n−k)×k

via the formulas

AS = R̃∗
11Q̃

∗ and S = R̃∗
12(R̃

∗
11)

−1,(3.12)

respectively.
Remark 4. While the definition (3.5) serves its purpose within the proof of

Theorem 3, it is somewhat misleading. Indeed, it is more reasonable to define T as a
solution of the equation

‖R11T −R12‖2 ≤ σk+1(A)
√

1 + k(n− k).(3.13)

When the solution is nonunique, we choose a solution that minimizes ‖T‖F. From the
numerical point of view, the definition (3.13) is much preferable to (3.5) since it is
almost invariably the case that R11 is highly ill-conditioned, if not outright singular.

Introducing the notation

ACS = PL

[
I
S

]
AS ∈ C

n×k and ARS = AS

[
I
∣∣T]PR ∈ C

k×m,(3.14)

we observe that under the conditions of Theorem 3, the factorization (3.1) can be
rewritten in the forms

A = ACS

[
I
∣∣T]P ∗

R + X,(3.15)

A = PL

[
I
S

]
ARS + X.(3.16)

The matrix ACS consists of k of the columns of A, while ARS consists of k of the
rows. We refer to AS as the skeleton of A and to ACS and ARS as the column and
row skeletons, respectively.

Remark 5. While Theorem 3 guarantees the existence of a well-conditioned fac-
torization of the form (3.1), it says nothing about the cost of obtaining such a factor-
ization. However, it follows from Theorem 2 and Remark 3 that a factorization (3.1)
with the matrices S, T , and X satisfying the weaker bounds

‖S‖2 ≤
√
mk(m− k) and ‖T‖2 ≤

√
nk(n− k),(3.17)

and, with l = min(m,n),

‖X‖2 ≤
√

1 + lk(l − k)σk+1(A),(3.18)

can be constructed using, typically, O(mnk) and at most O(mnl) floating point op-
erations.

Observation 1. The relations (3.1), (3.15), (3.16) have simple geometric in-
terpretations. Specifically, (3.15) asserts that for a matrix A of rank k, it is pos-
sible to select k columns that form a well-conditioned basis of the entire column
space. Let j1, . . . , jk ∈ {1, . . . , n} denote the indices of those columns and let Xk =
span(ej1 , . . . , ejk) ⊆ C

n (thus, Xk is the set of vectors whose only nonzero coordinates
are xj1 , . . . , xjk). According to Theorem 3, there exists an operator

Proj : C
n → Xk,(3.19)

ON THE COMPRESSION OF LOW RANK MATRICES 1395

defined by the formula

Proj = PR

[
I
∣∣∣ T
0

]
P ∗

R,(3.20)

such that the diagram

C
n A ��

Proj

��

C
m

Xk

A′
CS

��������������

(3.21)

is commutative. Here, A′
CS is the m×n matrix formed by setting all columns of A ex-

cept j1, . . . , jk to zero. Furthermore, σ1(Proj)/σk(Proj) ≤
√

1 + k(n− k). Similarly,
(3.16) asserts the existence of k rows, say with indices i1, . . . , ik ∈ {1, . . . ,m}, that
form a well-conditioned basis for the entire row-space. Setting Yk = span(ei1 , . . . , eik) ⊆
C

m, there exists an operator

Eval : Yk → C
m,(3.22)

defined by

Eval = PL

[
I
S

0

]
P ∗

L ,(3.23)

such that the diagram

C
n A ��

A′
RS

�������������� C
m

Yk

Eval

��(3.24)

is commutative. Here, A′
RS is the m×n matrix formed by setting all rows of A except

i1, . . . , ik to zero. Furthermore, σ1(Eval)/σk(Eval) ≤
√

1 + k(m− k). Finally, the
geometric interpretation of (3.1) is the combination of the diagrams (3.21) and (3.24),

C
n A ��

Proj

��

C
m

Xk
A′

S

�� Yk

Eval .

��(3.25)

Here, A′
S is the m × n matrix formed by setting all entries of A, except those at the

intersection of the rows i1, . . . , ik with the columns j1, . . . , jk, to zero.
As a comparison, we consider the diagram

C
n A ��

V ∗
k

��

C
m

C
k

Dk

��
C

k

Uk

��(3.26)

1396 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

obtained when the SVD is used to compress the matrix A ∈ C
m×n. Here, Dk is

the k × k diagonal matrix formed by the k largest singular values of A, and Vk and
Uk are column matrices containing the corresponding right and left singular vectors,
respectively. The factorization (3.26) has the disadvantage that the matrices Uk and
Vk are dense (while the matrices Proj and Eval have the structures defined in (3.20)
and (3.23), respectively). On the other hand, (3.26) has the advantage that the
columns of each of the matrices Uk and Vk are orthonormal.

4. Numerical apparatus. In this section, we present a simple and reasonably
efficient procedure for computing the factorization (3.1). It has been extensively tested
and consistently produces factorizations that satisfy the bounds (3.17). While there
exist matrices for which this simple approach will not work well, they appear to be
exceedingly rare.

Given an m × n matrix A, the first step (out of four) is to apply the pivoted
Gram–Schmidt process to its columns. The process is halted when the column space
has been exhausted to a preset accuracy ε, leaving a factorization

APR = Q
[
R11

∣∣R12

]
,(4.1)

where PR ∈C
n×n is a permutation matrix, Q ∈ C

m×k has orthonormal columns,
R11 ∈ C

k×k is upper triangular, and R12 ∈ C
k×(n−k).

The second step is to find a matrix T ∈ C
k×(n−k) that solves the equation

R11T = R12(4.2)

to within an accuracy of ε. When R11 is ill-conditioned, there is a large set of solutions;
we pick one for which ‖T‖F is minimized.

Letting ACS ∈ C
m×k denote the matrix formed by the first k columns of APR,

we now have a factorization

A = ACS

[
I
∣∣T]P ∗

R.(4.3)

The third and fourth steps are entirely analogous to the first and second but are
concerned with finding k rows of ACS that form a basis for its row-space. They result
in a factorization

ACS = PL

[
I
S

]
AS.(4.4)

The desired factorization (3.1) is now obtained by inserting (4.4) into (4.3).
For this technique to be successful, it is crucially important that the Gram–

Schmidt factorization be performed accurately. Neither modified Gram–Schmidt, nor
the method using Householder reflectors, is accurate enough. Instead, we use a tech-
nique that is based on modified Gram–Schmidt, but that at each step reorthogonalizes
the vector chosen to be added to the basis before adding it. In exact arithmetic, this
step would be superfluous, but in the presence of round-off error it greatly increases
the quality of the factorization generated. The process is described in detail in section
2.4.5 of [4].

The computational cost for the procedure described in this section is similar to
the cost for computing a standard QR-factorization. Under most circumstances, this
cost is significantly lower than the cost of computing the SVD; see [6].

ON THE COMPRESSION OF LOW RANK MATRICES 1397

5. Application: An accelerated direct solver for contour integral equa-
tions. In this section we use the matrix compression technique presented in section
4 to construct an accelerated direct solver for contour integral equations with non-
oscillatory kernels. Upon discretization, such equations lead to dense systems of lin-
ear equations, and iterative methods combined with fast matrix-vector multiplication
techniques are commonly used to obtain the solution. Many such fast multiplication
techniques take advantage of the fact that the off-diagonal blocks of the discrete sys-
tem typically have low rank. Employing the matrix compression techniques presented
in section 3, we use this low rank property to accelerate direct, rather than itera-
tive, solution techniques. The method uses no machinery beyond what is described
in section 3 and is applicable to most integral equations defined on one-dimensional
curves (regardless of the dimension of the surrounding space) involving nonoscillatory
kernels.

This section is organized into four subsections: subsection 5.1 describes a simple
algorithm for reducing the size of a dense system of algebraic equations; subsection 5.2
presents a technique that improves the computational efficiency of the compression
algorithm; subsection 5.3 gives a heuristic interpretation of the algorithm (similar
to Observation 1). Finally, in subsection 5.4 we present the results of a numerical
implementation of the compression algorithm.

Remark 6. For the purposes of the simple algorithm presented in subsection
5.1, it is possible to use either the SVD or the matrix factorization (3.1) to compress
the low rank matrices. However, the acceleration technique described in section 5.2
inherently depends on the geometric properties of the factorization (3.1), and the
SVD is not suitable in this context.

5.1. A simple compression algorithm for contour integral equations.
For concreteness, we consider the equation

u(x) +

∫
Γ

K(x, y)u(y) ds(y) = f(x) for x ∈ Γ,(5.1)

where Γ is some contour and K(x, y) is a nonoscillatory kernel. The function u
represents an unknown “charge” distribution on Γ that is to be determined from the
given function f . We present an algorithm that works for almost any contour but, for
simplicity, we will assume that the contour consists of p disjoint pieces, Γ = Γ1 + · · ·+
Γp, where all pieces have similar sizes (an example is given in Figure 4). We discretize
each piece Γi using n points and apply Nyström discretization to approximate (5.1)
by a system of linear algebraic equations. For p = 3, this system takes the form⎡

⎣ M (1,1) M (1,2) M (1,3)

M (2,1) M (2,2) M (2,3)

M (3,1) M (3,2) M (3,3)

⎤
⎦
⎡
⎣ u(1)

u(2)

u(3)

⎤
⎦ =

⎡
⎣ f (1)

f (2)

f (3)

⎤
⎦,(5.2)

where u(i) ∈ C
n and f (i) ∈ C

n are discrete representations of the unknown boundary
charge distribution and the right-hand side associated with Γi, and M (i,j) ∈ C

n×n is
a dense matrix representing the evaluation of a potential on Γi caused by a charge
distribution on Γj .

The interaction between Γ1 and the rest of the contour is governed by the matrices

H(1) = [M (1,2)|M (1,3)] ∈ C
n×2n and V (1) =

[
M (2,1)

M (3,1)

]
∈ C

2n×n.(5.3)

1398 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

(a) (b) (c)

Fig. 1. Zeros are introduced into the matrix in three steps: (a) interactions between Γ1 and
the other contours are compressed; (b) interactions with Γ2 are compressed; (c) interactions with Γ3

are compressed. The small black blocks are of size k × k and consist of entries that have not been
changed beyond permutations, grey blocks refer to updated parts, and white blocks consist of zero
entries.

For nonoscillatory kernels, these matrices are typically rank deficient; see [7]. We let k
denote an upper bound on their ranks (to within some preset level of accuracy ε). By
virtue of (3.16), we know that there exist k rows of H(1) which form a well-conditioned
basis for all the n rows. In other words, there exists a well-conditioned n× n matrix
L(1) (see Remark 6) such that

L(1)H(1) =

[
H

(1)
RS

Z

]
+ O(ε),(5.4)

where H
(1)
RS is a k×2n matrix formed by k of the rows of H(1) and Z is the (n−k)×2n

zero matrix. There similarly exists an n× n matrix R(1) such that

V (1)R(1) = [V
(1)
CS |Z∗] + O(ε),(5.5)

where V
(1)
CS is a 2n × k matrix formed by k of the columns of V (1). For simplicity,

we will henceforth assume that the off-diagonal blocks have exact rank at most k and
ignore the error terms.

The relations (5.4) and (5.5) imply that by restructuring (5.2) as

⎡
⎣ L(1)M (1,1)R(1) L(1)M (1,2) L(1)M (1,3)

M (2,1)R(1) M (2,2) M (2,3)

M (3,1)R(1) M (3,2) M (3,3)

⎤
⎦
⎡
⎣ (R(1))−1u(1)

u(2)

u(3)

⎤
⎦ =

⎡
⎣ L(1)f (1)

f (2)

f (3)

⎤
⎦ ,

(5.6)

we introduce blocks of zeros in the matrix, as shown in Figure 1(a).
Next, we compress the interaction between Γ2 and the rest of the contour to

obtain the matrix structure shown in Figure 1(b). Repeating the process with Γ3, we
obtain the final structure shown in Figure 1(c). At this point, we have constructed
matrices R(i) and L(i) and formed the new system⎡

⎣ L(1)M (1,1)R(1) L(1)M (1,2)R(2) L(1)M (1,3)R(3)

L(2)M (2,1)R(1) L(2)M (2,2)R(2) L(2)M (2,3)R(3)

L(3)M (3,1)R(1) L(3)M (3,2)R(2) L(3)M (3,3)R(3)

⎤
⎦
⎡
⎣ (R(1))−1u(1)

(R(2))−1u(2)

(R(3))−1u(3)

⎤
⎦(5.7)

=

⎡
⎣ L(1)f (1)

L(2)f (2)

L(3)f (3)

⎤
⎦ ,

ON THE COMPRESSION OF LOW RANK MATRICES 1399

whose matrix is shown in Figure 1(c). The parts of the matrix that are shown as
grey in the figure represent interactions that are internal to each contour. These
n− k degrees of freedom per contour can be eliminated by performing a local, O(n3),
operation for each contour (this local operation essentially consists of forming a Schur
complement). This leaves a dense system of 3× 3 blocks, each of size k× k. Thus, we
have reduced the problem size by a factor of n/k.

The cost of reducing the original system of pn algebraic equations to a compressed
system of pk equations is O(p2n2k). The cost of inverting the compressed system is
O(p3k3). The total computational cost for a single solve has thus been reduced from

t(uncomp) ∼ p3n3(5.8)

to

t(comp) ∼ p2n2k + p3k3.(5.9)

If (5.1) is to be solved for several right-hand sides, the additional cost for each right-
hand side is O(p2n2) if compression is not used and O(p2k2 + pn2) if it is.

Remark 7. The existence of the matrices L(1) and R(1) is a direct consequence
of (3.16) and (3.15), respectively. Specifically, substituting H(1) for A in (3.16), we
obtain the formula

P ∗
LH

(1) =

[
I
S

]
H

(1)
RS ,(5.10)

where H
(1)
RS is the k × 2n matrix consisting of the top k rows of P ∗

LH
(1). Now we

obtain (5.4) from (5.10) by defining

L(1) =

[
I 0
−S I

]
P ∗

L .(5.11)

We note that the largest and smallest singular values of L(1) satisfy the inequalities

σ1(L
(1)) ≤ (1 + ‖S‖2

l2)
1/2 and σn(L(1)) ≥ (1 + ‖S‖2

l2)
−1/2,(5.12)

respectively. Thus cond(L(1)) ≤ 1 + ‖S‖2
l2 , which is of moderate size according to

Theorem 3. The matrix R(1) is similarly constructed by forming the column skeleton
of V (1).

Remark 8. It is sometimes advantageous to choose the same k points when
constructing the skeletons of H(i) and V (i). This can be achieved by compressing the
two matrices jointly, for instance, by forming the row skeleton of

[
H(i)

∣∣ (V (i))∗
]
. In

this case L(i) = (R(i))∗. When this is done, the compression ratio deteriorates since
the singular values of

[
H(i)

∣∣ (V (i))∗
]

decay more slowly than those of either H(i) or

V (i). The difference is illustrated in Figures 5 and 6.
Remark 9. The assumption that the kernel in (5.1) is nonoscillatory can be

relaxed substantially. The algorithm works as long as the off-diagonal blocks of the
matrix discretizing the integral operator are at least moderately rank deficient; see [9].

5.2. An accelerated compression technique. For the algorithm presented
in subsection 5.1, the compression of the interaction between a fixed contour and its
p− 1 fellows is quite costly, since it requires the construction and compression of the
large matrices H(i) ∈ C

n×(p−1)n and V (i) ∈ C
(p−1)n×n. We will avoid this cost by

1400 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

(a) (b)

Fig. 2. In order to determine the R(i) and L(i) that compress the interaction between Γi (shown
in bold) and the remaining contours, it is sufficient to consider only the interactions between the
contours drawn with a solid line in (b).

constructing matrices L(i) and R(i) that satisfy (5.4) and (5.5) through an entirely
local procedure. In order to illustrate how this is done, we consider the contours
in Figure 2(a) and suppose that we want to find the transformation matrices that
compress the interaction of the contour Γi (drawn with a bold line) with the remaining
ones. We do this by compressing the interaction between Γi and an artificial contour
Γartif that surrounds Γi (as shown in Figure 2(b)) combined with the parts of the
other contours that penetrate it. This procedure works for any potential problem for
which the Green’s identities hold. For details, see [9].

When the acceleration technique described in the preceding paragraph is used,
the computational cost for the compression of a single piece of the contour is O(n2k),
rather than the O(pn2k) cost for the construction and compression of H(i) and V (i).
Thus, the cost for the entire compression step is now O(pn2k) rather than O(p2n2k).
This cost is typically smaller than the O(p3k3) cost for inverting the compressed
system and we obtain (cf. (5.9))

t(comp) ∼ p3k3.(5.13)

Combining (5.8) and (5.13), we find that

Speed-up =
t(uncomp)

t(comp)
∼

(
n

k

)3

.

Remark 10. The direct solver that we have presented has a computational com-
plexity that scales cubically with the problem size N and is thus not a “fast” algorithm.
However, by applying the scheme recursively, it is possible to reduce the asymptotic
complexity to O(N3/2), or O(N logN), depending on the geometry of the contour Γ
(see [9]).

5.3. Discussion. In this section, we describe a geometric interpretation of the
compression technique described in subsection 5.1. The discussion will center around
the commutative diagram in Figure 3, whose upper path represents the interaction
between Γ1 and Γ\Γ1 in the uncompressed equation: A charge distribution on Γ\Γ1

generates via H(1) a potential on Γ1; then through application of
[
K(11)

]−1
(some-

times called a “scattering matrix”) this potential induces a charge distribution on Γ1

that ensures that (5.1) is satisfied for x ∈ Γ1; finally, V (1) constructs the field on Γ\Γ1

generated by the induced charge distribution on Γ1.
Equation (5.4) says that it is possible to choose k points on the contour Γ1 in such

a way that when a field generated by a charge distribution on the rest of the contour

ON THE COMPRESSION OF LOW RANK MATRICES 1401

Charges on Γ\Γ1
H(1) ��

H
(1)
RS ������������������� Pot on Γ1

[
K(11)

]−1

�� Charges on Γ1
V (1) ��

Proj
V (1)

��

Pot on Γ\Γ1

Pot on Γin
1,skel

Eval
H(1)

��

[
K

(11)

artif

]−1

�� Charges on Γout
1,skel

V
(1)
CS

�������������������

Fig. 3. Compression of the interaction between Γ1 and Γ\Γ1.

(a) (b)

Fig. 4. The contours used for the numerical calculations with p = 128. Picture (a) shows the
full contour and a box (which is not part of the contour) that indicates the location of the close-up
shown in (b).

is known at these points, it is possible to interpolate the field at the remaining points
on Γ1 from these values. We call the set of these k points Γin

1,skel and the interpolation
operator EvalH(1) . In Figure 3, the statements of this paragraph correspond to the
commutativity of the left triangle; cf. (3.24).

Equation (5.5) says that it is possible to choose k points on Γ1 in such a way
that any field on the rest of the contour generated by charges on Γ1 can be replicated
by placing charges only on these k points. We call the set of these k points Γout

1,skel

and the restriction operator ProjV (1) . In Figure 3, the statements of this paragraph
correspond to the commutativity of the right triangle; cf. (3.21).

The compression algorithm exploits the commutativity of the outer triangles by
following the lower path in the diagram, jumping directly from the charge distribution
on Γin

1,skel to the potential on Γout
1,skel by inverting the artificial k× k scattering matrix

K
(11)
artif = [ProjV (1) [K(11)]−1 EvalH(1)]−1.(5.14)

Remark 11. The technique of Remark 8 can be used to enforce that Γin
1,skel =

Γout
1,skel and that ProjV (1) = [EvalH(1)]∗.

5.4. Numerical results. The accelerated algorithm described in subsection 5.2
has been computationally tested on the second kind integral equation obtained by
discretizing an exterior Dirichlet boundary value problem using the double layer ker-
nel. The contours used consisted of a number of jagged circles arranged in a skewed
square as shown in Figure 4. The number of contours p ranged from 8 to 128. For this
problem, n = 200 points per contour were required to obtain a relative accuracy of
ε = 10−6. We found that to this level of accuracy, no H(i) or V (i) had rank exceeding
k = 50. As an example, we show in Figure 5 the singular values of the matrices H(i)

1402 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

0 20 40 60 80 100 120 140 160 180 200
10

 18

10
16

10
14

10
12

10
10

10
 8

10
 6

10
 4

10
 2

10
0

10
2

_

_

_

_

_

_

_

_

_

(a)

0 20 40 60 80 100 120 140 160 180 200
10

 18

10
16

10
14

10
12

10
10

10
 8

10
 6

10
 4

10
 2

10
0

10
2

_

_

_

_

_

_

_

_

_

(b)

Fig. 5. Plots of the singular values of (a) V (i) and (b) H(i) for a discretization of the double
layer kernel associated with the Laplace operator on the nine contours depicted in Figure 2(a). In the
example shown, the contours were discretized using n = 200 points, giving a relative discretization
error of about 10−6. The plots show that to that level of accuracy, the matrices V (i) ∈ C1600×200

and H(i) ∈ C200×1600 have numerical rank less than k = 50 (to an accuracy of 10−6).

and V (i) representing interactions between the highlighted contour in Figure 2(a) and
the remaining ones.

The algorithm described in section 5 was implemented in FORTRAN and run on
a 2.8GHz Pentium IV desktop PC with 512Mb RAM. The CPU times for a range
of different problem sizes are presented in Table 1. The data presented supports the
following claims for the compressed solver:

• For large problems, the CPU time speed-up approaches the estimated factor
of (n/k)3 = 64.

• The reduced memory requirement makes relatively large problems amenable
to direct solution.

Remark 12. In the interest of simplicity, we forced the program to use the same
compression ratio k/n for each contour. In general, it detects the required interaction
rank of each contour as its interaction matrices are being compressed and uses different

ON THE COMPRESSION OF LOW RANK MATRICES 1403

Table 1

CPU times in seconds for solving (5.2). p is the number of contours. t(uncomp) is the CPU
time required to solve the uncompressed equations; the numbers in italics are estimated since these
problems did not fit in RAM. t(comp) is the CPU time to solve the equations using the compression

method; this time is split between t
(comp)
init , the time to compress the equations, and t

(comp)
solve

, the time
to solve the reduced system of equations. The error is the relative error incurred by the compression
measured in the maximum norm when the right-hand side is a vector of ones. Throughout the table,
the numbers in parentheses refer to numbers obtained when the technique of subsection 5.2 is not
used.

p t(uncomp) t(comp) t
(comp)
init t

(comp)
solve

Error

8 5.6 2.0 (4.6) 1.6 (4.1) 0.05 8.1 · 10−7(1.4 · 10−7)
16 50 4.1 (16.4) 3.1 (15.5) 0.4 2.9 · 10−6(2.8 · 10−7)
32 451 13.0 (72.1) 6.4 (65.3) 5.5 4.4 · 10−6(4.4 · 10−7)
64 3700 65 (270) 14 (220) 48 —
128 30000 480 (1400) 31 (960) 440 —

0 20 40 60 80 100 120 140 160 180 200
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Fig. 6. Plot of the singular values of X(i) =
[
H(i)

∣∣ (V (i))∗
]

where H(i) and V (i) are as in

Figure 5. The numerical rank of X(i) is approximately 80, which is larger than the individual ranks
of H(i) and V (i).

ranks for each contour.

6. Conclusions. We have described a compression scheme for low rank matrices.
For a matrix A of dimensionality m× n and rank k, the factorization can be applied
to an arbitrary vector for the cost of (n + m − k) · k operations after a significant
initial factorization cost; this is marginally faster than the cost (n + m) · k produced
by the SVD. The factorization cost is roughly the same as that for the rank-revealing
QR decomposition of A.

A more important advantage of the proposed decomposition is the fact that it
expresses all of the columns of A as linear combinations of k appropriately selected
columns of A, and all of the rows of A as linear combinations of k appropriately
selected rows of A. Since each basis vector (both row and column) produced by the
SVD or any other classical factorization is a linear combination of all the rows or
columns of A, the decomposition we propose is considerably easier to manipulate; we
illustrate this point by constructing an accelerated scheme for the direct solution of
integral equations of potential theory in the plane.

A related advantage of the proposed decomposition is the fact that one frequently

1404 CHENG, GIMBUTAS, MARTINSSON, ROKHLIN

encounters collections of matrices such that the same selection of rows and columns
can be used for each matrix to span its row and column space (in other words, there
exist fixed PL and PR such that each matrix in the collection has a decomposition
(3.1) with small matrices S and T). Once one matrix in such a collection has been
factored, the decomposition of the remaining ones is considerably simplified since the
skeleton of the first can be reused. If it should happen that the skeleton of the first
matrix that was decomposed is not a good choice for some other matrix, this is easily
detected (since then no small matrices S and T can be computed) and the global
skeleton can be extended as necessary.

We have constructed several other numerical procedures using the approach de-
scribed in this paper. In particular, a code has been designed for the (reasonably)
rapid solution of scattering problems in the plane based on the direct (as opposed to
iterative) solution of the Lippman–Schwinger equation; the scheme utilizes the same
idea as that used in [5] and has the same asymptotic CPU time estimate O(N3/2) for
a square region discretized into N nodes. However, the CPU times obtained by us
are a significant improvement on these reported in [5]; the paper reporting this work
is in preparation.

Another extension of this work is a fast direct solver for boundary integral equa-
tions in two dimensions (see [9]). While, technically, the algorithm of [9] is only “fast”
for nonoscillatory problems, it is our experience that it remains viable for oscillatory
ones (such as those associated with the Helmholtz equation), as long as the scatterers
are less than about 300 wavelengths in size.

It also appears to be possible to utilize the techniques of this paper to construct
an order O(N logN) scheme for the solution of elliptic PDEs in both two and three
dimensions, provided that the associated Green’s function is not oscillatory. This
work is in progress and, if successful, will be reported at a later date.

REFERENCES

[1] B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin, Wavelet-like bases for the fast solution
of second-kind integral equations, SIAM J. Sci. Comput., 14 (1993), pp. 159–184.

[2] G. Beylkin, On multiresolution methods in numerical analysis, Doc. Math., Extra Volume,
III (1998), pp. 481–490.

[3] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms
I, Comm. Pure Appl. Math., 14 (1991), pp. 141–183.

[4] Å. Björck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra Appl., 197/198
(1994), pp. 297–316.

[5] Y. Chen, Fast direct solver for the Lippmann-Schwinger equation, Adv. Comput. Math., 16
(2002), pp. 175–190.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[7] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the Laplace
equation in three dimensions, Acta Numer., 6 (1997), pp. 229–269.

[8] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[9] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., to appear.

[10] G. W. Stewart, Matrix Algorithms, Vol. I: Basic Decompositions, SIAM, Philadelphia, 1998.

