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Abstract. Boundary algebraic equations corresponding to Dirichlet boundary-value problems on
lattices are introduced. These equations are based on the lattice Green’s function, from which dis-
crete single- and double-layer potentials are derived. Structurally, the boundary algebraic equations
are similar to the boundary integral equations of classical potential theory. Numerical experiments
indicate that boundary algebraic equations possess excellent spectral properties.

1. Introduction

In this paper, we present a new method for solving conduction problems defined on periodic
lattices of finite extent. Conceptually, the new method is similar to the boundary integral equation
methods of classical potential theory (Mikhlin, 1957). In particular, in the new method, the discrete
boundary-value problems defined on lattices are re-formulated in terms of equivalent boundary
algebraic (as opposed to integral) equations that involve lattice Green’s functions as the kernels.
As a result one replaces sparse algebraic problems defined on the entire domain with dense algebraic
problems defined on the domain boundary only. This replacement is particularly useful for very
large problems because (i) the dense algebraic problems involve less unknowns, (ii) they can be
solved using O(N) summation methods, and (iii) they involve much smaller condition numbers
than the sparse algebraic problems defined on the entire domain.

Due to the space constraints, we restrict our attention to Dirichlet problems defined for two-
dimensional structures made of square lattices. For these problems, we develop boundary equations
involving the discrete single- and double-layer kernels and present several example problems which
support the notion that boundary algebraic equations posses superior spectral properties. For
further details, we refer to Martinsson (2002), who also provides a detailed treatment of lattice
Green’s functions and the corresponding O(N) summation methods.

The paper is organized as follows. In Section 2, we introduce the notation and define the discrete
Dirichlet boundary-value problem. In Section 3, we introduce the discrete single- and double-layer
kernels and construct the boundary algebraic equations for the homogeneous Dirichlet boundary-
value problem. In Section 4, we generalize the boundary algebraic equations to inhomogeneous
problems and irregular lattices. In Section 5, we present numerical examples that demonstrate the
superior spectral properties of the boundary algebraic equations.

2. Problem Statement

Consider the lattice obtained by connecting each node in Z2 to its four nearest neighbors by
links of conductivity one. Poisson’s equation for heat conduction on this lattice reads

(1) [Au](m) = f(m), ∀ m ∈ Z2,
1
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Figure 1. (a) An example of a lattice domain, Ω = Γ∪Ω−. The black circles form
the interior Ω− and the white circles form the boundary Γ. (b) Illustration of the
set Dn (the grey square) for a boundary node n (grey circle) along a straight edge.
(c) Illustration of Dn for a corner node.

where u(m) is the unknown temperature and f(m) is a prescribed heat source. The discrete Laplace
operator is defined by

[Au](m) = 4u(m)− u(m + e1)− u(m− e1)− u(m + e2)− u(m− e2),

where e1 = [1, 0] and e2 = [0, 1].
Next we consider heat conduction on the finite lattice obtained by connecting the nodes in a

finite subset Ω ⊂ Z2, see Fig. 1a. The boundary of Ω is denoted by Γ and is defined as the set
of points with less than four neighbors in Ω. With the introduction of the set of interior nodes
Ω− := Ω\Γ, the discrete homogeneous Dirichlet problem reads

(2)

{
[Au](m) = 0, m ∈ Ω−,

u(m) = g(m), m ∈ Γ,

where g(m) are prescribed nodal temperatures.

3. Single and Double Layer Kernels

Using Fourier analysis, it is possible to derive a fundamental solution of (1) in the form

G(m,n) =
1

(2π)2

∫

(−π,π)2

e−i(m−n)·ξ − 1

4 sin2 ξ1
2 + 4 sin2 ξ2

2

dξ.

This function satisfies the following equation

(3) [AG](m,n) =
{ 1 if m = n

0 if m 6= n
m,n ∈ Z2.

When |m−n| is large, the function G closely approximates the fundamental solution of the Laplace
operator, in fact G(m,n) = −(2π)−1 log |m−n|+O(|m−n|−2) as |m−n| → ∞, see Duffin (1953).
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However, the behavior is quite different when |m− n| is small, for instance, G(m, m) is finite. As
far as boundary algebraic equations are concerned, G(m,n) is the single-layer kernel.

In order to define a discrete analogue of the double layer potential, we envision Ω to be embedded
in the infinite lattice Z2. The double layer kernel Gν(m,n) is then defined as the flux through the
boundary Γ at the boundary node n that is induced by a point charge at node m. Letting Dn

denote the nodes in Z2\Ω that connect to the node n (see Fig. 1b,c), we can write

Gν(m,n) =
∑

k∈Dn

G(m, k)−G(m,n).

The double layer kernel could alternatively be defined by first introducing an exterior difference
operator ∂ν by setting ∂νu(n) =

∑
k∈Dn

(
u(k)− u(n)

)
and then defining Gν(m,n) = ∂νnG(m, n).

4. Boundary Algebraic Equations

4.1. Indirect Boundary Algebraic Equations. In order to construct an indirect boundary
algebraic equation corresponding to (2) we make the ansatz

u(m) =
∑

n∈Γ

G(m,n)φ(n).

Then automatically, [Au](m) = 0 for m ∈ Ω−. The boundary condition is satisfied if the sources
φ(n) are chosen so that

(4)
∑

n∈Γ

G(m,n)φ(n) = g(m) ∀m ∈ Γ .

This formulation is characterized by a positive definite matrix (Martinsson, 2002) and therefore
has a unique solution for any g. In contrast, the integral equation corresponding to (4) is of the
first kind, and uniqueness of its solution is not generally guaranteed.

Alternatively, we can use the double layer kernel in the ansatz,

u(m) =
∑

n∈Γ

Gν(m,n)φ(n),

which leads to the algebraic equation

(5)
∑

n∈Γ

Gν(m,n)φ(n) = g(m) ∀m ∈ Γ .

Here φ(n) represents a layer of dipoles formed by placing couples of heat sources of opposite signs
on the boundary of Ω and the boundary of Ωc (the white nodes in Fig. 1a). The spectral properties
of (5) are similar to those of the discretization of the corresponding second kind integral equation.

4.2. Direct Boundary Algebraic Equations. To formulate a direct boundary algebraic equa-
tion corresponding to (2), let us consider two thermal states of Ω. The first state involves the nodal
temperatures u and boundary fluxes uν corresponding to the solution of (2); of course at this stage
only the nodal temperatures on Γ are known. The second state involves the nodal temperatures
and fluxes generated by imbedding Ω within an infinite lattice and placing a unit heat source at a
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point m on Γ. These nodal temperatures and fluxes are G(n,m) and Gν(m,n), respectively. Then
by applying the reciprocity theorem to these two states we obtain:

u(m) +
∑

n∈Γ

Gν(m,n)u(n) =
∑

n∈Γ

G(n,m)uν(n) .

By imposing the boundary condition and replacing G(n,m) with G(m,n), we obtain a direct
boundary algebraic equation

(6)
∑

n∈Γ

G(m,n)uν(n) = g(m) +
∑

n∈Γ

Gν(m,n)g(n) ∀m ∈ Γ .

As expected, this equation is similar to the indirect equation based on the single-layer kernel.

Remark: We defined the boundary is such a way that it does not include a vertex node at a 270◦
angle, such as the re-entrant corner node in Fig. 1a. If it is desired to prescribe boundary conditions
at such a node, this can easily be done by including an additional unknown for each such node in
the system of boundary equation. We have found that such en enrichment of the system does not
significantly change the conditioning.

5. Inclusions

The methods presented in Section 4.1 can be extended to analysis of lattices with inclusions. To
this end, let us consider the perturbed Dirichlet problem

(7)

{
[(A− Ar)u](m) = 0, m ∈ Ω−,

u(m) = g(m), m ∈ Γ,

where Ar represents a (typically local) perturbation due to inclusions. The first step is to reformulate
(7) as an unperturbed problem

(8)

{
[Au](m) = fr, m ∈ Ω−,

u(m) = g(m), m ∈ Γ,

where fr = Aru are fictitious heat sources applied to the unperturbed lattice. For concreteness, let
us suppose that Ar represents J removed bars. The nodes of the j-th bar are denoted k

(j)
− and k

(j)
+ .

Now, there exists a ψ(j) (to be determined), such that the effect of removing the bar j is identical
to adding charges −ψ(j) and +ψ(j) at the nodes k

(j)
− and k

(j)
+ to the unperturbed lattice. Thus

fr(m) =
J∑

j=1

ψ(j)
[
δ(m, k

(j)
+ )− δ(m, k

(j)
− )

]
,

where δ is the Kronecker symbol. With a single layer potential on the boundary, the ansatz is now

(9) u(m) =
∑

n∈Γ

G(m, n)φ(n) +
J∑

j=1

[
G(m, k

(j)
+ )−G(m, k

(j)
− )

]
ψ(j).

To determine φ and ψ we first invoke the boundary condition,

(10) g(m) =
∑

n∈Γ

G(m,n)φ(n) +
J∑

j=1

[
G(m, k

(j)
+ )−G(m, k

(j)
− )

]
ψ(j), m ∈ Γ.
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Figure 2. The geometries we used to estimate the condition numbers. Reading
from left to right, first row first, we label them: “the square”, “the L-shape”, “the
slit” and “the shortcut”. The long side of the square has 2N + 1 nodes.

Then we get J additional conditions by requiring that the flux through the removed bar i equals
ψ(i), which is to say that ψ(i) = u(k(i)

+ )− u(k(i)
− ), or

(11) ψ(i) =
∑

n∈Γ

[
G(k(i)

+ , n)−G(k(i)
− , n)

]
φ(n)+

J∑

j=1

[
G(k(i)

+ , k
(j)
+ )−G(k(i)

+ , k
(j)
− )−G(k(i)

− , k
(j)
+ ) + G(k(i)

− , k
(j)
− )

]
ψ(j).

Combined, equations (10) and (11) uniquely determine the heat sources φ and ψ.
A double layer equation can be obtained by simply replacing G(m,n) in (9) by the double layer

kernel Gν(m,n). An alternative technique for deriving equations that govern lattices with inclusions
is to use the direct methods of Section 4.2. One will find that the sums in the reciprocity theorems
will include the nodes k

(j)
± and that the resulting equations are very similar to the ones derived

above.

6. Conditioning of the boundary equations

In this section we will present several examples that indicate that the conditioning of the bound-
ary algebraic equations is superior to that of the difference equation (1). Furthermore, as far as
conditioning is concerned, we show that the boundary algebraic equations are at least as good as
discretized integral equations. To this end we consider Dirichlet problems on the four domains
shown in Figure 2, namely:

• A square with (2N + 1)× (2N + 1) nodes.
• A square with one quadrant removed, i.e. an L-shaped domain.
• A square with a horizontal slit extending along the middle third of the middle row.
• A square with a horizontal shortcut extending along the middle third of the middle row.

We let K, KS and KD denote the matrices associated with the original difference equation,
the single formulation, and the double layer formulation, respectively. For each geometry, we
computed the condition numbers for these matrices for N in the range between 2 and 50. Results
of the computation are summarized in Table 1.

The numbers in the table lend support to our belief that the conditioning of boundary algebraic
equations is superior to that of the original difference equations. Further, the condition numbers for
the square are consistent with the condition numbers for discretized integral equations, see Atkinson
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Square L-shape Slit Shortcut
cond(K) 1.6N2 0.83N2 1.6N2 0.28N3

cond(KS) 40N 40N 4N2 4.2N2

cond(KD) 7.0 7.3 0.63N 0.68N

Table 1. Asymptotic estimates of the condition numbers for different boundary
equations and different geometries.

(1997). Remarkably, the condition numbers for the L-shaped domain are essentially the same as
for the square. The results for the last two problems indicate that the double-layer formulation
possess good spectral properties even for more challenging problems in which periodicity is locally
violated. However, at this stage our understanding of the spectral properties for such problems is
incomplete.

In passing, we note that although the condition numbers for the single layer potential perform
somewhat poorly, the estimates in the tables can be improved by a factor of 10 using Wieland’s
deflation technique.
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