CSE386M/EM386M FUNCTIONAL ANALYSIS IN THEORETICAL MECHANICS Fall 2023, Final Exam, 5:00-8:00 p.m., Fri, Dec 8, POB 6.304

1. A linear algebra "sanity check".

Consider \mathbb{R}^{3}. Let A be the mirror (symmetry) transformation with respect to plane $x_{1}-x_{3}=$ 0 (think about a mirror placed in this position and the transformation that maps a point P into its mirror image P^{\prime}).
(a) Is A a linear map ? Explain (2 points).
(b) Write down the matrix representation for map A in the canonical basis (3 points).
(c) Explain why all linear maps from \mathbb{R}^{3} into itself - $L\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$, form a vector space. What is the dimension of the space (2 points)?
(d) Do the mirror transformations (with respect an arbitrary plane passing through the origin) form a vector subspace of $L\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$? Explain your answer. If yes, what is the dimension of this subspace (3 points) ?
(e) Define adjoint for a linear operator in a general Hilbert setting (2 points).
(f) Compute the adjoint of map A with respect to the canonical inner product in \mathbb{R}^{3}. Is A self-adjoint? (3 points).
(g) Define an orthonormal matrix (2 points).
(h) Is the matrix representation of map A (any mirror transformation) in the canonical basis an orthonormal matrix ? Explain, why ? (3 points)

Answers:

(a) Yes, it is. Operations of taking a mirror image and multiplication by a number, commute. Similarly, vector addition and the mirror image map commute as well.
(b) This is really a 2 D problem. By inspection, the mirror map is:

$$
\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{3}, x_{2}, x_{1}\right)
$$

or,

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

(c) Functions defined on any set (in our case \mathbb{R}^{3}) with values in a vector space (in our case \mathbb{R}^{3}) equipped with pointwise addition and scalar multiplication, form a vector space. One has only to argue that the linear maps form a subset closed with respect to the vector space operations and, therefore, form a vector subspace of all functions defined on \mathbb{R}^{3}. This follows from the fact that a linear combination of linear maps is a linear map itself. Dimension of $L(X, Y)$ is always equal to the product of $\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$ (in our case $=9$). This follows from the isomorphism between $L(X, Y)$ and $m \times n$ matrices.
(d) Well, they do not. One possible way to see this, is to develop the matrix representation for a general mirror map corresponding to an arbitrary plane,

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0, \quad a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1 .
$$

Equation for a straight line passing through point $\left(x_{1}, x_{2}, x_{3}\right)$ and orthogonal to the plane, is:

$$
\begin{aligned}
& y_{1}=x_{1}+\lambda a_{1} \\
& y_{2}=x_{2}+\lambda a_{2} \\
& y_{3}=x_{3}+\lambda a_{3}
\end{aligned}
$$

The value of parameter λ corresponding to the intersection point with the plane is obtained by plugging the formulas for y_{i} into the equation of the plane, we get:

$$
\lambda=-\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right) .
$$

The mirror image of point x is obtained now by doubling the value of the parameter,

$$
\begin{aligned}
& y_{1}=x_{1}-2\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right) a_{1} \\
& y_{2}=x_{2}-2\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right) a_{2} \\
& y_{3}=x_{3}-2\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right) a_{3}
\end{aligned}
$$

The corresponding matrix representation is:

$$
\left(\begin{array}{ccc}
1-2 a_{1}^{2} & -2 a_{1} a_{2} & -2 a_{1} a_{3} \\
-2 a_{1} a_{2} & 1-2 a_{2}^{2} & -2 a_{2} a_{3} \\
-2 a_{1} a_{3} & -2 a_{2} a_{3} & 1-2 a_{3}^{2}
\end{array}\right)
$$

Due to the fact that coefficients a_{i} come from a unit sphere in \mathbb{R}^{3}, and the nonlinear dependence of the matrix wrt to the coefficients, it is easy to see that maps of this type do not form a vector space. More formally, we can argue that such matrices do not form a set closed with respect to multiplication by a scalar. Indeed, take the first column for our case, i.e. for $a_{1}=a_{2}=1 / \sqrt{2}, a_{3}=0$, and multiply it by a factor of two to obtain $(0,-2,0)^{T}$. Can we find a plane, i.e. coefficients a_{i} such that the general formula will yield these values, i.e.,

$$
1-2 a_{1}^{2}=0 \quad-2 a_{1} a_{2}=2 \quad-2 a_{1} a_{3}=0 ?
$$

We get $a_{1}= \pm 1 / \sqrt{2}, a_{3}=0$ and then $a_{2}=\overline{+} \sqrt{2}$. But a_{i} must represent components of a unit vector, so the value for a_{2} is not acceptable.
There are many other ways to convince yourself that the mirror images do not form a vector space.
(e) The notion of the adjoint involves two Hilbert spaces X and Y with inner products $(\cdot, \cdot)_{X}$ and $(\cdot, \cdot)_{Y}$. Given a linear map $A: X \rightarrow Y$, we define the adjoint map $A^{*}:$ $Y \rightarrow X$ by:

$$
A^{*}=R_{X}^{-1} A^{T} R_{Y}
$$

where $A: Y^{*} \rightarrow X^{*}$ is the transpose of A, and R_{X}, R_{Y} are Riesz maps for X and Y, resp. Equivalently,

$$
(A x, y)_{Y}=\left(x, A^{*} y\right)_{X} \quad x \in X, y \in Y .
$$

(f) Nothing to compute. The matrix is symmetric so the operator is self-adjoint, i.e. $A^{*}=$ A.
(g) Matrix A is orthonormal if $A^{-1}=A^{T}$.
(h) Yes, it is.
2. An integration exercise.
(a) State the Monotone Convergence Theorem for non-negative functions and the Lebesgue Dominated Convergence Theorem for non-negative functions (6 points).
(b) Let f be a real-valued, positive function, defined on interval $[a, \infty), a>0$. Recall the definition of the classical singular integral,

$$
\int_{a}^{\infty} f(x) d x:=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

Prove that if f is Lebesgue integrable then the singular integral exists, and it coincides with the Lebesgue integral (over $[a, \infty)$) (6 points).
(c) Is the converse true ? In other words, if f is Lebesgue integrable over any interval $[a, b)$, and the limit exists, can we conclude that f is Lebesgue integrable over the infinite integral $[a, \infty)$? Prove or disprove (6 points).
(d) Provide an example of a concrete function $f(x)$ that illustrates the discussion (2 points).

Answers:

(a) See the book.
(b) We can restrict ourselves to integer $b=n=1,2, \ldots$. Define,

$$
f_{n}(x):= \begin{cases}f(x) & x \leq n \\ 0 & x>n\end{cases}
$$

Then $f_{n} \rightarrow f$ pointwise, and the sequence is dominated by f. Consequently, by the Lebesgue Theorem,

$$
\int_{a}^{n} f=\int_{a}^{\infty} f_{n} \rightarrow \int_{a}^{\infty} f .
$$

(c) Yes. By the Monotone Convergence Lemma,

$$
\int_{a}^{\infty} f=\int_{a}^{\infty} \lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} \int_{a}^{\infty} f_{n}=\lim _{n \rightarrow \infty} \int_{a}^{n} f
$$

(d) $f(x)=1 / x^{2}, a=1$ would do.
3. A topology problem.
(a) Define a compact set, and a sequentially compact set, both in an arbitrary Hausdorff topological space. Under what assumptions on the topological space, the two notions are equivalent? (5 points)
(b) Formulate the four fundamental properties for both compact andf sequentially compact sets. Prove any two of the properties for sequentially compact sets. (5 points).
(c) Consider the following minimization problem,

$$
\min _{x \in K} f(x)
$$

where

$$
K:=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1\right\}
$$

and

$$
f(x)=\ln ^{2}\left(x_{1}^{2}+x_{2}^{2}\right) .
$$

Is this problem well posed, i.e., does a minimum exist ? (10 points)

Answers:

(a) See the book
(b) See the book
(c) Set K is closed and bounded, so it is compact. But you cannot use directly the Weierstrass Thm argument as the function f is not real-valued on the whole set, at 0 it is ∞. But we are interested in the infimum only. We can cut out of K a small ball $B(0, \epsilon)$. As $f(x)>\ln ^{2} \epsilon^{2}$ in the ball, and f does take smaller values in the rest of K, we can replace original K with the modified K and then shoot the Weierstrass argument.
Alternatively, you can simply notice that the minimum is attained at the two corner points and it is equal zero.

4. Metric spaces.

- Provide definition of a metric, and a metric space (3 points).
- Let (X, d) be an arbitrary metric space. Prove that a new function,

$$
\rho(x, y):=\frac{d(x, y)}{1+d(x, y)}
$$

is also a metric on X (10 points).

- Are the two metrics equivalent (for a general metric d) ? Are they topologically equivalent? Explain, why (7 points)?

Answers:

- See the book.
- See the book.
- The metrics cannot be equivalent in general. Metric ρ is always bounded whereas metric d need not be. But they are topologically equivalent as the corresponding bases of neighborhoods are equivalent.

5. Contraction Maps. Consider the following Initial-Value Problem (IVP):

$$
\left\{\begin{array}{l}
\frac{d q}{d t}=t \ln q(t), \quad t>0 \\
q(0)=1
\end{array}\right.
$$

- State Banach Contractive Map Theorem (3 points).

Answer:

Let (X, d) be a complete metric space. Let $D \subset X$ (then (D, d) is itself a metric space, too...), and $A: D \rightarrow D$ is a contraction, i.e.

$$
d(A(f), A(g)) \leq k d(f, g), \quad \forall f, g \in D, \quad k<1
$$

Then function A has a unique fixed point in set D.

- Use the theorem to prove local existence and uniqueness of solution to the IVP, i.e. that there exists an interval $(0, T)$ in which the equation is satisfied. Provide a concrete value of T (17 points).

Solution:

The problem is equivalent to the solution of the integral equation:

$$
q(t)=1+\int_{0}^{t} s \ln (q(s)) d s
$$

Consider the Chebyshev space $C[0, T]$ (with unknown T at this point...) and define the map A using the right-hand side of the equation above:

$$
(A q)(t)=1+\int_{0}^{t} s \ln (q(s)) d s
$$

First of all, we need to define a set $D \subset C[0, T]$ such that map A sets the set D into itself. Assume that $q(t)$ will vary in the box:

$$
\begin{equation*}
D=\left\{q \in C[0, T]: e^{-1} \leq q(t) \leq e, \quad 0 \leq t \leq T\right\} \tag{0.1}
\end{equation*}
$$

(notice that the box includes the initial value $q=1$). Then $-1 \leq \ln q(t) \leq 1$, i.e. $|\ln q(t)| \leq 1$. Consequently,

$$
\left|\int_{0}^{t} s \ln q(s) d s\right| \leq \int_{0}^{t} s d s=\frac{1}{2} t^{2}
$$

so,

$$
|(A q)(t)-1| \leq \frac{1}{2} T^{2}
$$

This gives two bounds for T. From the right:

$$
(A q)(t) \leq 1+\frac{1}{2} T^{2} \leq e \quad \Rightarrow \quad T \leq \sqrt{2(e-1)}
$$

and from the left:

$$
e^{-1} \leq 1-\frac{1}{2} T^{2} \leq(A q)(t) \quad \Rightarrow \quad T \leq \sqrt{2\left(1-e^{-1}\right)} .
$$

Now, map A must be a contraction. With flux $F(s, q)=s \ln q$,

$$
\left|\frac{\partial F}{\partial q}\right|=s\left|\frac{1}{q}\right| \leq e s
$$

so, with q coming form box (??), the flux satisfies the Lipschitz condition:

$$
\left|F\left(s, q_{1}\right)-F\left(s, q_{2}\right)\right| \leq e s\left|q_{s}-q_{2}\right|
$$

This leads to the estimate;

$$
\left|\left(A q_{1}\right)(t)-\left(A q_{2}\right)(t)\right| \leq \int_{0}^{t} \text { es } d s\left\|q_{1}-q_{2}\right\|_{C[0, T]} \leq \frac{e}{2} T^{2}\left\|q_{1}-q_{2}\right\|_{C[0, T]}
$$

Consequently, a sufficient condition for a contraction is

$$
T<\sqrt{\frac{2}{e}} .
$$

In conlusion, the IVP will have a unique solution for

$$
T<\min \left\{\sqrt{2(e-1)}, \sqrt{2\left(1-e^{-1}\right)}, \sqrt{\frac{2}{e}}\right\} .
$$

