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FUNCTIONAL ANALYSIS IN THEORETICAL MECHANICS
Fall 2018, Final Exam, 2:00-5:00 PM, Wed, Dec 19, ACES 6.304

1. A linear algebra “sanity check”. Consider IR2 with the inner product:

(x, y) = x1y1 + 2x2y2, x = (x1, x2), y = (y1, y2) . (0.1)

• Recall definition of an inner product and (quickly) check that function (0.1) indeed
satisfies the necessary properties.

• Is IR2 with the inner product a Hilbert space ? Explain, why?

• Consider vectors e1 = (1, 0), e2 = (1, 1) and prove that they provide a basis for IR2.

• Determine the corresponding dual basis e∗1, e
∗
2 ∈ (IR2)∗.

• Define the Riesz operator R corresponding to the inner product and find its matrix
representation in the bases ei, e∗j .

• Determine the transpose operator to R and its matrix representation with respect to the
same bases. Discuss the result.

(20 points).

Answers:

• The form is bilinear, symmetric and positive definite and, therefore, it can be identified
as an inner product.

• Yes, it is. Space IRn is complete with respect to the Euclidean metric and, due to the
equivalence of any two norms, it is also complete with respect to the norm implied by
our inner product.

• The two vectors are not collinear so they are linearly independent.

• Let x ∈ IR2, We have:

x = (x1, x2) = (x1 − x2)(1, 0) + x2(1, 1) = (x1 − x2)e1 + x2e2

The dual basis is thus:

e∗1(x) = x1 − x2, e∗2(x) = x2 .



• The Riesz operator R corresponding to a particular inner product (u, v) sets vector u
into the linear functional (u, ·). More precisely,

〈Ru, v〉 = (u, v)

Riesz operator is injective and, in the finite dimensional setting, automatically sur-
jective as the dual space is of the same dimension as the original space. In order to
determine the matrix representation of R, we consider vectors Rej ,

(Re1)(y) = (e1, y) = y1 = (y1 − y2) + y2 = e∗1(y) + e∗2(y)

(Re2)(y) = (e2, y) = y1 + 2y2 = (y1 − y2) + 3y2 = e∗1(y) + 3e∗2(y)

The matrix representation of operator R is thus:(
1 1
1 3

)
.

• The transpose RT goes from the bidual to the dual space. In the finite dimensional case
(in fact, for any Hilbert space), the bidual is identified (canonically isomorphic) with
the original space. Due the symmetry of the inner product, transposeRT coincides with
R. Indeed,

〈Ru, v〉V ′×V = (u, v)V = (v, u)V = 〈Rv, u〉V ′×V = 〈u,Rv〉V ′′×V ′ .

Consequently, matrix representation of transpose RT coincides with that of R.



2. An integration exercise.

(a) State the Lebesgue Dominated Convergence Theorem (5 points).

(b) Let γ > 0 be a positive constant. Prove that the integral∫ 3π/2

π/2

eγ+n cos θ√
(γ + n cos θ)2 + (n sin θ)2

ndθ

converges to zero as n→∞ (15 points).

Answers:

(a) See the book.

(b) Rewrite the integral in the form,∫ 3π/2

π/2

eγ+n cos θ√
(γ/n+ cos θ)2 + (sin θ)2

dθ

For θ ∈ (π/2, 3π/2), the denominator converges to one, whereas the numerator con-
verges to zero (exponential with a negative exponent), as n → ∞. Consequently the
integrand converges a.e. to zero. In order to apply the Lebesgue Dominated Conver-
gence Theorem, we need to show only that the integrand is dominated by an integrable
function, for all n. The numerator is bounded by eγ . For the denominator, we have(γ

n
+ cos θ

)2
+ sin2 θ =

γ2

n2
+

2γ

n
cos θ + 1

≥ γ2

n2
− 2γ

n
+ 1

=
(γ
n
− 1
)2

Thus, for sufficiently large n, the denominator is bounded below by a positive number
(independent of angle θ).



3. A topology problem. Let f : X → Y where X and Y are arbitrary topological spaces.
Prove that f is continuous iff f−1(B) ⊂ f−1(B) for every B ⊂ Y (20 points).

Recall that f is continuous iff the inverse image of every closed set is closed. Assume that f
is continuous and pick an arbitrary set B ⊂ Y . The closure B is closed, so the inverse image
f−1(B) must be closed. It also contains f−1(B). Since the closure of a set is the smallest
closed set including the set, we have

f−1(B) ⊂ f−1(B) (closed)

Conversely, assume that the condition is satisfied. Pick any closed set B = B ⊂ Y . Then

f−1(B) ⊂ f−1(B) = f−1(B)

which implies that set f−1(B), being equal to its closure, is closed.



4. A metric space problem. Let X be a set and ρ1(x, y), ρ2(x, y) two metrics on X . Define:

d(x, y) := max{ρ1(x, y), ρ2(x, y)} . (0.2)

• Is d also a metric on X ? Prove or disprove.

• If the answer to the first question is positive, you have three topologies inX correspond-
ing to the three metrics. Discuss the relative strength of the corresponding topologies
(which one is stronger or weaker than others ?). Hint: Recall the definition of bases of
neighborhoods in a metric space.

(20 points).

Answers:

• Yes, it is.

Positive definitness: If d(x, y) = 0 then both ρ1(x, y) = ρ2(x, y) = 0 which implies
that x = y.

Symmetry: We have:
ρi(x, y) = ρi(y, x), i = 1, 2 .

Apply maxi=1,2 to both sides.

Triangle inequality: Start with:

ρi(x, y) ≤ ρi(x, z) + ρi(z, y) ≤ max
j=1,2

ρj(x, z) + max
j=1,2

ρj(z, y), j = 1, 2 ,

and take maximum with respect to i on both sides.

• Let Bd(x, ε) and Bρi(x, ε) denote balls corresponding to metrics d and ρi, resp. In-
equality

ρi(x, y) ≤ d(x, y), i = 1, 2

implies that
Bd(x, ε) ⊂ Bρi(x, ε), i = 1, 2 .

Consequently, if Bd,Bρi denote the bases of neighborhoods in topologies generated by
d and ρi, resp., then

Bρi � Bd

which demonstrates that metric topogy corresponding to d is stronger than both topolo-
gies corresponding to metrics ρi. We cannot draw any general conclusion about the
relative strength of metric topologies corresponding to ρi, i = 1, 2.



5. Contraction Maps. Consider the following Initial-Value Problem (IVP):
dq

dt
= t ln(q(t)), t > 0

q(0) = 1

• State Banach Contractive Map Theorem (3 points).

Answer:
Let (X, d) be a complete metric space. Let D ⊂ X (then (D, d) is itself a metric space,
too...), and A : D → D is a contraction, i.e.

d(A(f), A(g)) ≤ k d(f, g), ∀f, g ∈ D, k < 1

Then function A has a unique fixed point in set D.

• Use the theorem to prove local existence and uniqueness of solution to the IVP, i.e.
that there exists an interval (0, T ) in which the equation is satisfied. Provide a concrete
value of T (17 points).

Solution:
The problem is equivalent to the solution of the integral equation:

q(t) = 1 +

∫ t

0

s ln(q(s)) ds

Consider the Chebyshev space C[0, T ] (with unknown T at this point...) and define the
map A using the right-hand side of the equation above:

(Aq)(t) = 1 +

∫ t

0

s ln(q(s)) ds

First of all, we need to define a set D ⊂ C[0, T ] such that map A sets the set D into
itself. Assume that q(t) will vary in the box:

D = {q ∈ C[0, T ] : e−1 ≤ q(t) ≤ e, 0 ≤ t ≤ T} (0.3)

(notice that the box includes the initial value q = 1). Then −1 ≤ ln q(t) ≤ 1, i.e.
| ln q(t)| ≤ 1. Consequently,

|
∫ t

0

s ln q(s) ds| ≤
∫ t

0

s ds =
1

2
t2

so,

|(Aq)(t)− 1| ≤ 1

2
T 2



This gives two bounds for T . From the right:

(Aq)(t) ≤ 1 +
1

2
T 2 ≤ e ⇒ T ≤

√
2(e− 1) ,

and from the left:

e−1 ≤ 1− 1

2
T 2 ≤ (Aq)(t) ⇒ T ≤

√
2(1− e−1) .

Now, map A must be a contraction. With flux F (s, q) = s ln q,

|∂F
∂q
| = s|1

q
| ≤ es

so, with q coming form box (0.3), the flux satisfies the Lipschitz condition:

|F (s, q1)− F (s, q2)| ≤ es|qs − q2| .

This leads to the estimate;

|(Aq1)(t)− (Aq2)(t)| ≤
∫ t

0

es ds ‖q1 − q2‖C[0,T ] ≤
e

2
T 2 ‖q1 − q2‖C[0,T ] .

Consequently, a sufficient condition for a contraction is

T <

√
2

e
.

In conlusion, the IVP will have a unique solution for

T < min{
√

2(e− 1),
√

2(1− e−1),

√
2

e
} .


