
CSE386M/EM386M
FUNCTIONAL ANALYSIS IN THEORETICAL MECHANICS

Fall 2018, Exam 2

1. Define the following notions and provide a non-trivial example (2+2 points each).

• Limit inferior of a real-valued sequence.

• Hamel basis.

• Dual basis.

• Riesz map.

• Abstract σ-algebra.

See the book.

2. State and prove three out of the following four theorems (10 points each).

• Characterization of limit inferior.

• Rank and nullity theorem.

• Relation between rank of a transformation and the rank of its transpose.

• Properties of an abstract measure.

See the book.

3. A linear algebra “sanity check”...

(a) Prove that vectors a1 = (1, 0, 0),a2 = (1, 0, 1),a3 = (1, 1, 1) form a basis for IR3.

(b) Determine the dual basis a∗
i .

(c) Consider the weighted inner product in IR3,

(x,y) = x1y1 + 2x2y2 + 3x3y3

and construct the cobasis ai.

(d) Determine matrix representation of the corresponding Riesz operator with respect basis
ai and its dual a∗

i .

(15 points).



Solution:

(a) It is sufficient to check linear independence.

3∑
i=1

αiai = (α1 + α2 + α3, α3, α2 + α3) = 0 = (0, 0, 0)

implies
α1 + α2 + α3 = 0, α3 = 0, α2 + α3 = 0

which, in turn, implies that
α1 = α2 = α3 = 0 .

(b) Expanding an arbitrary vector x in the basis ai,

3∑
i=1

αiai = (α2 + α3, α3, α1 + α2 + α3) = x = (x1, x2, x3)

gives:
α1 = x1 − x3, α2 = x3 − x2, α3 = x2

The components αi represent precisely the dual basis a∗
i . In terms of canonical dual

basis e∗
i ,

a∗
1 = e∗

1 − e∗
3, a∗

2 = −e∗
2 + e∗

3, a∗
3 = e∗

2 .

(c) This can be done in many ways. Here is one. First, we determine the action of Riesz
operator on canonical basis vectors ei,

〈Re1,x〉 = (e1,x) = x1 = 〈e∗
1,x〉 ⇒ Re1 = e∗

1 ,

〈Re2,x〉 = (e2,x) = 2x2 = 2〈e∗
2,x〉 ⇒ Re2 = 2e∗

2 ,

〈Re3,x〉 = (e3,x) = 3x3 = 3〈e∗
3,x〉 ⇒ Re3 = 3e∗

3 .

Remembering that Riesz operator sends cobasis vectors into dual basis vectors, we
have:

a1 = R−1a∗
1 = R−1(e∗

1 − e∗
3) = e1 − 1

3
e3 = (1, 0,−1

3
) ,

a2 = R−1a∗
2 = R−1(−e∗

2 + e∗
3) = −1

2
e2 +

1
3
e3 = (0,−1

2
, 1
3
) ,

a3 = R−1a∗
3 = R−1(e∗

2) =
1
2
e2 = (0, 1

2
, 0) .

(d) We use basis ai for the original space IR3 and basis a∗
i for its dual. The correspond-

ing matrix representation of the Riesz operator Rij is simply the Gram matrix for the
original basis. Indeed,

Rij = 〈a∗∗
i , Raj〉 = 〈Raj,ai〉 = (aj,ai)



which gives  1 1 1
1 4 4
1 4 6

 .

4. Another linear algebra sanity check...

(a) Demonstrate that
(x,y)w = x1y1 + 3x2y2 + 2x3y3 (0.1)

is an inner product on IR3.

(b) Consider the map A : IR3 → IR3,

Ax = (x1 + x2, x3 + x1, x1 + x2) (0.2)

Prove that the map is linear and write down its matrix representation with respect to the
canonical basis.

(c) Determine adjoints of map A with respect to the canonical inner product and inner
product (0.1).

(15 points).

Solution:

(a) Nothing to show really. The function is obviously linear in both x and y and it is
symmetric. For y = x, we get;

(x,x) = x21 + 3x22 + 2x23 ≥ 0

Since (x,x) is the sum of non-negative contributions (no cancellation can occur),
(x,x) = 0 implies that all three terms must be zero, i.e. x = 0, i..e. the form is
positive-definite.

(b) Linearity is obvious as all components of x enter the definition in the first power and
the summation is a linear operation. The matrix representation in the canonical basis is
as follows,  1 1 0

1 0 1
1 1 0


(c) To obtain the matrix representtaion of the adjoint of A with respect to the canonical

inner product, we only have to transpose the matrix above. Consequently, the adjoint
map is:

A∗y = (y1 + y2 + y3, y1 + y3, y2)



The map is self-adjoint with respect to the canonical inner product. The adjoint with
respect to inner product (0.1) can be computed directly:

(Ax,y) = (x1 + x2)y1 + 3(x3 + x1)y2 + 2(x1 + x2)y3

= x1(y1 + 3y2 + 2y3) + x2(y1 + 2y3) + x3(3y2)

= x1(y1 + 3y2 + 2y3) + 3x2[
1
3
(y1 + 2y3)] + 2x3(

3
2
y2)

which gives

A∗y = (y1 + 3y2 + 2y3,
1

3
(y1 + 2y3),

3

2
y2)

The map is not self-adjoint with respect to this inner product.

5. Let X, Y be two real finite dimensional vector spaces. Consider two different vector spaces:

• space L(X∗, Y ) of all linear transformations from dual X∗ into space Y ,

• space B(X∗, Y ∗) of all bilinear functionals defined on the Cartesian product X∗ × Y ∗

of the dual spaces.

(a) Argue why the linear transformations and bilinear functionals form vector spaces.

(b) Select bases ej and gi for X and Y respectively, and recall (derive) representations for
arbitrary linear transformations and bilinear maps relative to the bases and/or their dual
bases. Argue why the spaces L(X∗, Y ) and B(X∗, Y ∗) are isomorphic.

(c) Attempt to construct a canonical1 isomorphism between the two spaces.

(20 points).

(a) This follows from the fact that a linear combination of linear maps is a linear map,
and a linear combination of bilinear functionals is a bilinear map. In other words, both
families are closed with respect to the vector space operations for functions.

(b) For a linear map A ∈ L(X∗, Y ), the corresponding matrix representation Aij with
respect to bases e∗

j and gi is given by the relation:

Aij = 〈g∗
i , Ae

∗
j〉, i = 1, . . . ,m, j = 1, . . . , n

where n = dimX, m = dimY . The space of m × n matrices, Mat(m,n), is isomor-
phic (by construction dicussed in the book and class) to the space L(X∗, Y ) of linear
transformations from X∗ into Y .

1Constructed without using any bases



Similarly, from the representation formula for bilinear functionals

b(x∗,y∗) = b(
n∑

j=1

x∗je
∗
j ,

m∑
i=1

y∗i g
∗
i ) =

n∑
j=1

m∑
i=1

x∗jy
∗
i b(e

∗
j , g

∗
i )︸ ︷︷ ︸

=:bji

also implies that the space of bilinear functionals is isomorphic with the space of ma-
trices Mat(m,n).

Consequently, the two spaces, being isomorphic with the same space, must be isomor-
phic with each other. In perhaps simpler terms, both spaces are of the same dimension,
and all spaces of the same dimension are isomorphic with each other.

(c) This is deeper... The construction generalizes the concept of Riesz map. Given a bilin-
ear form b(x∗,y∗), if we fix x∗, we obtain a linear functional on Y ∗,

Y ∗ 3 y∗ → b(x∗,y∗) ∈ IR

The map,
B : X∗ 3 x∗ → b(x∗, ·) ∈ Y ∗∗

is a linear map from X into Y ∗∗. As, in the finite dimensional case, the bidual Y ∗∗ is
isomorphic with space Y , we can think of map B being an operator from X∗ into Y .

Finally, the map,

B(X∗, Y ∗) 3 b→ B := {X∗ 3 x∗ → b(x∗, ·) ∈ Y ∗∗ ∼ Y } ∈ L(X∗, Y )

establishes a (canonical) isomorphism between the two spaces. Linearity is straightfor-
ward. Injectivity follows from the definition of zero vectors in both spaces. Dimensions
are the same, so the map must be surjective. Done.


