CSE386M/EM386M FUNCTIONAL ANALYSIS IN THEORETICAL MECHANICS Fall 2023, Exam 1

1. Define the following notions and provide a non-trivial example ($2+2$ points each):

- union of an arbitrary (possibly infinite) family of sets,
- supremum of a subset of a partially ordered set,
- Cartesian product of two functions,
- interior of a set in \mathbb{R}^{n},
- closed set in \mathbb{R}^{n}.

See the book.
2. State and prove three out of the following four theorems (10 points each).

- Principle of mathematical induction.
- Bijection between the family of all equivalence classes and the family of all partitions for a set.
- Comparability of cardinal numbers.
- Relation between open and closed sets (duality principle).

See the book.
3. Let $\mathcal{P}(A)$ denote the power class of a set A. Show that $\mathcal{P}(A)$ is partially ordered by the inclusion relation. Does $\mathcal{P}(A)$ have the smallest and greatest elements? (10 points)

Solution:

- Reflexivity: $X \subset X$.
- Antisymmetry: $X \subset Y, Y \subset X \Rightarrow X=Y$.
- Transitivity: $X \subset Y, Y \subset Z \Rightarrow X \subset Z$.

The empty set \emptyset is the smallest element, and the whole set A is the biggest element in $\mathcal{P}(A)$.
4. A function $f: X \rightarrow Y$ is called right-invertible if there exists a function $g: Y \rightarrow X$ such that $f \circ g=i d_{Y}$. Prove that f is right-invertible if and only if f is a surjection. Is the right-inverse g unique ? (10 points).

Solution: See the book.
5. Let $f: X \rightarrow Y$ be a function. Prove that $f^{-1}(D \cap C)=f^{-1}(D) \cap f^{-1}(C)$ for $D, C \subset Y$. Use the result to conclude that

$$
f^{-1}(\mathcal{R}(f) \cap C)=f^{-1}(C)
$$

(10 points)
Solution: The first part was proved in class. Use $D=Y$ to conclude the second part.
6. Prove that if A is infinite, $A \times A \sim A$.

Hint: Use the following steps:
(i) Recall that $N \times N \sim N$.
(ii) Define a family \mathcal{F} of couples $\left(X, T_{X}\right)$ where X is an infinite subset of A and $T_{X}: X \rightarrow$ $X \times X$ is a bijection. Introduce a relation \leq in \mathcal{F} defined as

$$
\left(X_{1}, T_{X_{1}}\right) \leq\left(X_{2}, T_{X_{2}}\right)
$$

iff $X_{1} \subset X_{2}$ and $T_{X_{2}}$ is an extension of $T_{X_{1}}$.
(iii) Prove that \leq is a partial ordering of \mathcal{F}.
(iv) Show that family \mathcal{F} with its partial ordering \leq satisfies the assumptions of the KuratowskiZorn Lemma and conclude the existence of a maximal element.
(v) Use the existence of a maximal element to show that $X \sim X \times X$. You may use here results of the previous, related exercises in the text.

Question: Why do we need the first step?
Solution: Follow precisely the lines in Exercise 1.12 .3 to arrive at the existence of a maximal element $\left(X, T_{X}\right)$ in the family. Let $Y=A-X$. We will consider two cases.
Case: $\# Y \leq \# X$. By Exercise 1.12.5, $A \sim X$. i.e. $\# A=\# X$. We have then,

$$
\# A=\# X=\#(X \times X)=\#(A \times A)
$$

Case: $\# X<\# Y$. In this case, we can split Y into two disjoint subsets, $Y=Y_{1} \cup Y_{2}$ with $Y_{1} \sim X$. We claim that

$$
Y_{1} \sim\left(X \times Y_{1}\right) \cup\left(Y_{1} \times X\right) \cup\left(Y_{1} \times Y_{1}\right)
$$

Indeed, since $\# Y_{1}=\# X$, we have

$$
\#\left(\left(X \times Y_{1}\right) \cup\left(Y_{1} \times X\right) \cup\left(Y_{1} \times Y_{1}\right)\right)=\#((X \times X) \times\{1,2,3\})=\#(X \times X)=\# X
$$

But this contradicts that $\left(X, T_{X}\right)$ is the maximal element. Indeed, by the equivalence above, there exists a bijection from Y_{1} onto $\left(X \times Y_{1}\right) \cup\left(Y_{1} \times X\right) \cup\left(Y_{1} \times Y_{1}\right)$. We can use it then to extend $T_{X}: X \rightarrow X \times X$ to a bijection from $X \cup Y_{1}$ onto

$$
\left(X \cup Y_{1}\right) \times\left(X \cup Y_{1}\right)=(X \times X) \cup\left(X \times Y_{1}\right) \cup\left(Y_{1} \times X\right) \cup\left(Y_{1} \times Y_{1}\right)
$$

Step (i) was necessary to assure that family \mathcal{F} is nonempty.

