CSE386L. MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING
Spring 22, Final Exam

. Characteristics. Consider the equation:

ox dy 0z

Use the method of prime integrals to find the general solution of the equation. Complement
then the equation with the initial condition:

u(z,y,0) =z + 2y,

and find the solution to the initial-value problem. Use characteristics to verify the solution.
(20 points)

Solution: Equation for characteristics:

dx dy dz der dy
TR dt e e

Prime integrals:
dr = 3z = x-—-3z2=0C]

dy = 2z = y—22=0.

General solution:
u=F(C,Cy) = F(x —3z,y — 22).

Accounting for IC at z = 0:
Flz,y) =z +2y.

Final solution of the IVB:
u=u1z—32+42(y—22).

Alternatively, the parametric equation for a characteristics emanating from (o, yo, o) is:
r=3t+x9, y=22t4+1yy, z=t+ 2.
Intersection with plane z = 0 gives: t = —zp, and x = x9— 329, ¥y = Yo — 220. Consequently,
u(o, Yo, 20) = T + 2y = xo — 320, +2(yo — 220) ,

the same solution as above.



2. Calculus of variations. Given a point P and a line [ in plane R?, see Fig. 1, determine the
shortest curve connecting the point with the line. Write down precisely the minimization
problem, the corresponding variational formulation, and the E-L. BVP. Solve then the BVP.
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Figure 1: The shortest path between a point and a line.

(20 points)

Solution: See the lecture notes.



3. Jordan decomposition and systems of ODEs. Consider the matrix:

1
A=1 0
0

O N =
N = O

* Determine generalized eigenvectors of matrix A and the corresponding Jordan form.

* Use the Jordan form to determine general solution for the system of ODEs:
u=Au.

(20 points)

Solution:

* We have a single eigenvalue A = 1, and a double eigenvalue \ = 2.

Determining the eigenvector for A = 1.

01 0 T
(A-=XDz=1[ 0 1 1 T | =0 = x=(t0,0)7".
0 0 1 T3
Choose t = 1.
Determining an eigenvector for A = 2.
-1 1 0 T
(A— M)z = 0 0 1 z, | =0 = wx=(tt0)7".
0 0 0 T3

The corresponding generalized eigenvector:

-1 1 0 1 t
(A— X))z = 0 0 1 xo | =1t = x=(st+s5,0)7".
0 0 O T3

Choosing t = s = 1, we obtain vectors:
a1 = (1,0,0)", ax=(1,1,0", a3=(1,2,0)".

In the system of coordinates generated by the vectors, the matrix takes the form:

OO =
o NN O

0
1
2



Seeking the solution in the form: = = y;(t)a;, we obtain the system of equations:

U1 =1 =y = Cre
Y2 = 2y2 + Y3 = o — 2yp = Cse* = yo = (Cst + Cy)e*
Y3 = 2y3 = y3 = Cze*

The final solution is thus:

€T = Cletal + (Cgt + Cg)€2ta2 + Cg€2ta3 .



4. Separation of variables. Consider the BVP defined in Fig. 2. Use separation of variables to
derive the solution in a form of a series. Define the coefficients in the series but you do not

need to compute them.

y
u,= 10
u=0
-Au=0
o u=0
X
a u:O b

Ou

u
on*

Figure 2: Laplace equation in a conical domain. u,, stands for the normal derivative

(20 points)
Solution 1: Use separation of variables: u = R(r)O(0) to arrive at:

,r,(,’,,R/)/ @//
- == =),
o

1 1
—~(rRYY®0 — RO"=0 =
r () 72 R
BCs imply that we should consider the Sturm-Liouville problem in r,
LR :=—r(rR") = AR.

The operator L is self-adjoint in the weighted space L1 Jr and positive definite (easy to check)
so A > 0. Assume A\ = k2, k > (. We obtain the Cauchy-Euler equation:

—?R"—rR —k*=0.

Seeking R = r®, we obtain o = k. This gives
R = r®* = FFI7 — cog(kInr) £ isin(klnr).

Alternatively, we can represent the general solution as:

R = Ccos(klnr)+ Dsin(klnr).

The condition for the existence of non-trivial solutions with the homogeneous BCs is:
=

cos(klna) sin(klna)
=sin(kln—) =0

cos(klnb) sin(klInb) a



With known separation constant, the corresponding O is:
kn —knb
© = A, + B,e ,

or,

© = A, cosh(k,0) + B, sinh(k,0) .

Imposing the BC at § = 0, we get A,, = 0. The ultimate solution is:

- ki 1
U= Z (cos(kn Inr) — % sin(k, In r)) B, sinh(k,(0)) .
n=1 n v
—Ro(r)

Constants B,, are determined from the BC for 6 = o,
> " Ry (r)Byky cosh(k,()) = 10.
n=1

Multiplying both sides with *R,,(r), integrating over (a, ) interval, and using the L3 I
orthogonality of functions R, (r), we get
fab DR, (r)dr
[P LR2 (r) dr k, cosh(k,a)

Solution 2: As the Sturm-Liouville problem in r is more complicated than in 6, we may try
to reverse the role of r and ¢ by introducing a lift U of Neumann data u,, = 10 at § = « such
that U satisfies the Laplace equation. Upon inspection, we propose

U=1060.

Indeed, U = 0 atf = 0 and ‘g—g = %—IGJ = 10 everywhere, also at # = «. Function U is linear

in 6 and independent of r, so it satisfies the Laplace equation. We seek the ultimate solution
in the form
u=U+v

where
v=—-U = w=-Uatr=a,bandv=0atfd =0,«.

We have now a Sturm-Liouville problem in 6:
—0"=X0, ©(0)=0,0'(a)=0.

As the operator is self-adjoint and positive-definite (easy to check), we can look for the
separation constant A\ = k2. We obtain:

© = Acoskf + Bsink0.



©(0) = 0 implies A = 0, and ©'(«) implies
1
coska=0 k=k,= —(z+k7r) k=1,2,...
a2

The solution of the corresponding Cauchy-Euler equation is:
R, = A1k + Brhn

which gives:

v = Z(Anrk" + Br~*) sin(k,0) .

n=1

Enforcing BCs at » = a and r = b, we get:

Z(Anak" + Bpa ") sin(k,0) = —106 and Z(Anbk" + Bpb*n) sin(k,0) = —100.
n=1 n=1

Multiplying both equations with sin &,,,0, integrating over (0, o), utilizing the L?-orthogonality
of eigenfunctions sin k,,0, and noticing that

“ 1 — cos 2k,,0
/ sin?(k,,0) df = / Y ;
0 0 2 2

we get a system of two equations for constants A,,, B,,,

akn g Fn A, «o 1



5. Variational formulations. Consider the bar problem shown in Fig. 3. Formulate the energy
minimization problem and the corresponding variational formulation. Discuss the equiva-
lence of the two problems and prove the well-posedness of the variational formulation.

_—_

F

Figure 3: Elastic bar with stiffness £ A, loaded with a force F'.

(20 points)
Solution:

Total potential energy:

where:

b(u,v) = EA /l u'v' dx l(v) = Pu(l).

Energy space:
Vi={ue H(0,1) : u(0) =0}.

Minimization problem:
{ Find u € V such that:

J(u) = {UHEI‘I/IJ(IU) :
The corresponding variational formulation:

Find v € V such that :
b(u,v) =1l(v) YveV.

The problems are equivalent since form b(u, v) is symmetric and positive-definite.

In order to prove the well-posedness, we need to check:



Continuity of the bilinear form:
!
MOMUH=LEA/PUﬁmﬂéEAWNMWHSEAWMmHMMw
0

Continuity of the linear form:
l(v)| < Plo(1)] < PC|[v]| s

where C'is the continuity constant of the embedding H'(0,1) < C([0,]).

Completness of the energy space: As the operation H'(0,1) > v — v(0) € R is continu-
ous, V is a closed subspace of Hilbert space H* (0,1) and, therefore, it is itself a Hilbert
space.

V-Coercivity of the bilinear form: This follows form the Poincaré inequality:

l
/ (W)2dz > cplv]2 veV.
0

Indeed,
b, 0) = [[V]]?
chPb(U’U> Z ||UH2

Summing up,

1
ﬂ(l +cp)b(v,0) > ol = b(v,v) > EA(L+ ') Hulin veV.



