
CSE386L MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING
Spring 22, Final Exam

1. Characteristics. Consider the equation:

3
∂u

∂x
+ 2

∂u

∂y
+

∂u

∂z
= 0 .

Use the method of prime integrals to find the general solution of the equation. Complement
then the equation with the initial condition:

u(x, y, 0) = x+ 2y ,

and find the solution to the initial-value problem. Use characteristics to verify the solution.

(20 points)

Solution: Equation for characteristics:

dx

dt
= 3

dy

dt
= 2

dz

dt
= 1 or

dx

3
=

dy

2
= dz .

Prime integrals:
dx = 3z ⇒ x− 3z = C1

dy = 2z ⇒ y − 2z = C2 .

General solution:
u = F (C1, C2) = F (x− 3z, y − 2z) .

Accounting for IC at z = 0:
F (x, y) = x+ 2y .

Final solution of the IVB:
u = x− 3z + 2(y − 2z) .

Alternatively, the parametric equation for a characteristics emanating from (x0, y0, z0) is:

x = 3t+ x0, y = 2t+ y0, z = t+ z0 .

Intersection with plane z = 0 gives: t = −z0, and x = x0−3z0, y = y0−2z0. Consequently,

u(x0, y0, z0) = x+ 2y = x0 − 3z0,+2(y0 − 2z0) ,

the same solution as above.



2. Calculus of variations. Given a point P and a line l in plane IR2, see Fig. 1, determine the
shortest curve connecting the point with the line. Write down precisely the minimization
problem, the corresponding variational formulation, and the E-L BVP. Solve then the BVP.
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Figure 1: The shortest path between a point and a line.

(20 points)

Solution: See the lecture notes.



3. Jordan decomposition and systems of ODEs. Consider the matrix:

A =

 1 1 0
0 2 1
0 0 2

 .

• Determine generalized eigenvectors of matrix A and the corresponding Jordan form.

• Use the Jordan form to determine general solution for the system of ODEs:

u̇ = Au .

(20 points)

Solution:

• We have a single eigenvalue λ = 1, and a double eigenvalue λ = 2.

Determining the eigenvector for λ = 1.

(A− λI)x =

 0 1 0
0 1 1
0 0 1

 x1

x2

x3

 = 0 ⇒ x = (t, 0, 0)T .

Choose t = 1.

Determining an eigenvector for λ = 2.

(A− λI)x =

 −1 1 0
0 0 1
0 0 0

 x1

x2

x3

 = 0 ⇒ x = (t, t, 0)T .

The corresponding generalized eigenvector:

(A− λI)x =

 −1 1 0
0 0 1
0 0 0

 x1

x2

x3

 =

 t
t
0

 ⇒ x = (s, t+ s, 0)T .

Choosing t = s = 1, we obtain vectors:

a1 = (1, 0, 0)T , a2 = (1, 1, 0)T , a3 = (1, 2, 0)T .

In the system of coordinates generated by the vectors, the matrix takes the form: 1 0 0
0 2 1
0 0 2

 .



Seeking the solution in the form: x = yi(t)ai, we obtain the system of equations:

ẏ1 = y1 ⇒ y1 = C1e
t

ẏ2 = 2y2 + y3 ⇒ ẏ2 − 2y2 = C3e
2t ⇒ y2 = (C3t+ C2)e

2t

ẏ3 = 2y3 ⇒ y3 = C3e
2t

The final solution is thus:

x = C1e
ta1 + (C3t+ C2)e

2ta2 + C3e
2ta3 .



4. Separation of variables. Consider the BVP defined in Fig. 2. Use separation of variables to
derive the solution in a form of a series. Define the coefficients in the series but you do not
need to compute them.
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Figure 2: Laplace equation in a conical domain. un stands for the normal derivative ∂u
∂n

.

(20 points)

Solution 1: Use separation of variables: u = R(r)Θ(θ) to arrive at:

−1

r
(rR′)′Θ− 1

r2
RΘ′′ = 0 ⇒ −r(rR′)′

R
=

Θ′′

Θ
= λ .

BCs imply that we should consider the Sturm-Liouville problem in r,

LR := −r(rR′)′ = λR .

The operator L is self-adjoint in the weighted space L1
1/r and positive definite (easy to check)

so λ > 0. Assume λ = k2, k > 0. We obtain the Cauchy-Euler equation:

−r2R′′ − rR′ − k2 = 0 .

Seeking R = rα, we obtain α = ±ik. This gives

R = r±ik = e±ik ln r = cos(k ln r)± i sin(k ln r) .

Alternatively, we can represent the general solution as:

R = C cos(k ln r) +D sin(k ln r) .

The condition for the existence of non-trivial solutions with the homogeneous BCs is:∣∣∣∣∣ cos(k ln a) sin(k ln a)

cos(k ln b) sin(k ln b)

∣∣∣∣∣ = sin(k ln
b

a
) = 0 ⇒ k = kn =

nπ

ln b
a

.



With known separation constant, the corresponding Θ is:

Θ = Ane
knθ +Bne

−knθ ,

or,
Θ = An cosh(knθ) +Bn sinh(knθ) .

Imposing the BC at θ = 0, we get An = 0. The ultimate solution is:

u =
∞∑
n=1

(
cos(kn ln r)−

cos(kn ln a)

sin(kna)
sin(kn ln r)

)
︸ ︷︷ ︸

=:Rn(r)

Bn sinh(kn(θ)) .

Constants Bn are determined from the BC for θ = α,
∞∑
n=1

Rn(r)Bnkn cosh(kn(α)) = 10 .

Multiplying both sides with 1
r
Rm(r), integrating over (a, b) interval, and using the L2

1/r-
orthogonality of functions Rn(r), we get

Bm = −
∫ b

a
10
r
Rm(r) dr∫ b

a
1
r
R2

m(r) dr kn cosh(knα)
.

Solution 2: As the Sturm-Liouville problem in r is more complicated than in θ, we may try
to reverse the role of r and θ by introducing a lift U of Neumann data un = 10 at θ = α such
that U satisfies the Laplace equation. Upon inspection, we propose

U = 10 θ .

Indeed, U = 0 at θ = 0 and ∂U
∂n

= ∂U
∂θ

= 10 everywhere, also at θ = α. Function U is linear
in θ and independent of r, so it satisfies the Laplace equation. We seek the ultimate solution
in the form

u = U + v

where
v = −U ⇒ v = −U at r = a, b and v = 0 at θ = 0, α .

We have now a Sturm-Liouville problem in θ:

−Θ′′ = λΘ, Θ(0) = 0, Θ′(α) = 0 .

As the operator is self-adjoint and positive-definite (easy to check), we can look for the
separation constant λ = k2. We obtain:

Θ = A cos kθ +B sin kθ .



Θ(0) = 0 implies A = 0, and Θ′(α) implies

cos kα = 0 k = kn =
1

α
(
π

2
+ kπ) k = 1, 2, . . .

The solution of the corresponding Cauchy-Euler equation is:

Rn = Anr
kn +Bnr

−kn ,

which gives:

v =
∞∑
n=1

(Anr
kn +Bnr

−kn) sin(knθ) .

Enforcing BCs at r = a and r = b, we get:

∞∑
n=1

(Ana
kn +Bna

−kn) sin(knθ) = −10 θ and
∞∑
n=1

(Anb
kn +Bnb

−kn) sin(knθ) = −10 θ .

Multiplying both equations with sin kmθ, integrating over (0, α), utilizing the L2-orthogonality
of eigenfunctions sin knθ, and noticing that∫ α

0

sin2(kmθ) dθ =

∫ α

0

1− cos 2kmθ

2
dθ =

α

2
,

we get a system of two equations for constants An, Bn,(
akn a−kn

bkn b−kn

)(
An

Bn

)
= −10

∫ α

0

θ sin knθ dθ

(
1
1

)
.



5. Variational formulations. Consider the bar problem shown in Fig. 3. Formulate the energy
minimization problem and the corresponding variational formulation. Discuss the equiva-
lence of the two problems and prove the well-posedness of the variational formulation.
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Figure 3: Elastic bar with stiffness EA, loaded with a force F .

(20 points)

Solution:

Total potential energy:

J(u) =
1

2
b(u, u)− l(u)

where:

b(u, v) = EA

∫ l

0

u′v′ dx l(v) = Pv(l) .

Energy space:
V := {u ∈ H1(0, l) : u(0) = 0} .

Minimization problem: {
Find u ∈ V such that:

J(u) = min
w∈V

J(w) .

The corresponding variational formulation:{
Find u ∈ V such that :

b(u, v) = l(v) ∀ v ∈ V .

The problems are equivalent since form b(u, v) is symmetric and positive-definite.

In order to prove the well-posedness, we need to check:



Continuity of the bilinear form:

|b()u, v)| = |EA

∫ l

0

u′v′ dx| ≤ EA∥u′∥ ∥v′∥ ≤ EA∥u∥H1 ∥v∥H1 .

Continuity of the linear form:

|l(v)| ≤ P |v(1)| ≤ PC∥v∥H1‘

where C is the continuity constant of the embedding H1(0, l) ↪→ C([0, l]).

Completness of the energy space: As the operation H1(0, l) ∋ v → v(0) ∈ IR is continu-
ous, V is a closed subspace of Hilbert space H1(0, l) and, therefore, it is itself a Hilbert
space.

V -Coercivity of the bilinear form: This follows form the Poincaré inequality:∫ l

0

(v′)2 dx ≥ cP∥v∥2 v ∈ V .

Indeed,
1

EA
b(v, v) = ∥v′∥2

1
EAcP

b(v, v) ≥ ∥v∥2

Summing up,

1

EA
(1 + c−1

P )b(v, v) ≥ ∥v∥2H1 ⇒ b(v, v) ≥ EA(1 + c−1
P )−1∥v∥2H1 v ∈ V .


