CSE386L MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING Spring 22, Exam 1

1. 3D calculus. Consider cylindrical coordinates:

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \\
z=z
\end{array}\right.
$$

and a cylinder: $D: r<1,|z|<1$.

- Derive formulas for the gradient and divergence in the cylindrical system of coordinates.
- State Gauss Divergence Theorem.
- Verify the Gauss' Theorem for the field:

$$
\boldsymbol{v}=r \boldsymbol{e}_{r}+r \theta \boldsymbol{e}_{\theta}+z \boldsymbol{e}_{z}
$$

by computing the necessary volume and surface integrals.
(20 points)

Solution:

- The general formula for the gradient in any curvilinear system of coordinates $\boldsymbol{x}=$ $\boldsymbol{x}\left(\xi_{j}\right)$ is:

$$
\boldsymbol{\nabla} u=\frac{\partial u}{\partial \xi_{j}} \boldsymbol{a}^{j}
$$

where \boldsymbol{a}^{j} are the co-basis vectors. The basis vectors for cylindrical coordinates are:

$$
\boldsymbol{a}_{r}=\frac{\partial \boldsymbol{x}}{\partial r}=(\cos \theta, \sin \theta, 0), \quad \boldsymbol{a}_{\theta}=\frac{\partial \boldsymbol{x}}{\partial \theta}=(-r \sin \theta, r \cos \theta, 0), \quad \boldsymbol{a}_{z}=\frac{\partial \boldsymbol{x}}{\partial z}=(0,0,1) .
$$

The system is orthogonal, so determining the co-basis vectors reduces to scaling,

$$
\boldsymbol{a}_{r}=\boldsymbol{e}_{r} \Rightarrow \boldsymbol{a}^{r}=\boldsymbol{e}_{r} \quad \boldsymbol{a}_{\theta}=r \boldsymbol{e}_{\theta} \Rightarrow \boldsymbol{a}^{\theta}=\frac{1}{r} \boldsymbol{e}_{\theta} \quad \boldsymbol{a}_{z}=\boldsymbol{e}_{z} \Rightarrow \boldsymbol{a}^{z}=\boldsymbol{e}_{z}
$$

The gradient thus is:

$$
\boldsymbol{\nabla} u=\frac{\partial u}{\partial r} \boldsymbol{e}_{r}+\frac{1}{r} \frac{\partial u}{\partial \theta} \boldsymbol{e}_{\theta}+\frac{\partial u}{\partial z} \boldsymbol{e}_{z},
$$

Check quickly consistency of units for each term.

The fastest way to derive the formula for the divergence is by utilizing the integration by parts:

$$
\int \boldsymbol{v} \boldsymbol{\nabla} u=-\int \operatorname{div} \boldsymbol{v} u+B . T .
$$

Let $\boldsymbol{v}=v_{r} \boldsymbol{e}_{r}+v_{\theta} \boldsymbol{e}_{\theta}+v_{z} \boldsymbol{e}_{z}$. We have,

$$
\iiint v_{r} \frac{\partial u}{\partial r}+\frac{1}{r} v_{\theta} \frac{\partial u}{\partial \theta}+v_{z} \frac{\partial u}{\partial z} d r d \theta d z=-\iiint \underbrace{\boldsymbol{v}}_{=\operatorname{div}}\left(\frac{1}{r} \frac{\partial\left(r v_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{z}}{\partial z}\right) \quad r d r d \theta d z+B . T .
$$

- Gauss Divergence Theorem:

Let $\Omega \subset \mathbb{R}^{3}$ be a domain (= open and connected set), and let $\boldsymbol{v} \in C^{1}(\bar{\Omega})$. Then

$$
\int_{\Omega} \operatorname{div} \boldsymbol{v} d x=\int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{n} d S
$$

where \boldsymbol{n} is the outward normal unit vector to $\partial \Omega$.

- Verify the Gauss' Theorem for the field:

$$
\boldsymbol{v}=r \boldsymbol{e}_{r}+r \theta \boldsymbol{e}_{\theta}+z \boldsymbol{e}_{z}
$$

by computing the necessary volume and surface integrals. The volume integral is:

$$
\int \operatorname{div} \boldsymbol{v}=\int_{0}^{1} \int_{0}^{2 \pi} \int_{-1}^{1}(2+1+1) r d r d \theta d z=4 \pi 1^{2} 2=8 \pi .
$$

The integral over the lateral surface:

$$
v_{n}=\boldsymbol{v} \cdot \boldsymbol{e}_{r}=r=1 \quad \Rightarrow \quad \int_{S} v_{n} d S=\int_{S} d S=4 \pi
$$

The integrals over the bottom and top faces are equal since $v_{n}=-z=1$ on the bottom face, and $v_{n}=z=1$ on the top face as well. The sum of the two integrals is thus $2 \pi 1^{2}=2 \pi$. The theorem does not verify: $8 \pi \neq 6 \pi$. Reason: field \boldsymbol{v} is not even continuous over D. Drop the (discontinuous) θ component and everything checks out.
2. Jordan decomposition and systems of ODEs. Consider the matrix:

$$
\boldsymbol{A}=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right)
$$

- Determine generalized eigenvectors of matrix A and the corresponding Jordan form.
- Use the Jordan form to determine general solution for the system of ODEs:

$$
\dot{\boldsymbol{u}}=\boldsymbol{A} \boldsymbol{u}
$$

(20 points)
Solution: The matrix is upper triangular, so the terms on the diagonal are the eigenvalues, we have a single eigenvalue $\lambda=1$, and a double eigenvalue $\lambda=2$. Solving for the eigenvector corresponding to $\lambda=1$,

$$
(\boldsymbol{A}-1 \boldsymbol{I}) \boldsymbol{x}=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \boldsymbol{x}=(t, 0,0)^{T} .
$$

We can choose $t=1$, getting $\boldsymbol{e}_{1}=(1,0,0)^{T}$. Solving for eigenvectors corresponding to $\lambda=2$,

$$
(\boldsymbol{A}-2 \boldsymbol{I}) \boldsymbol{x}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \boldsymbol{x}=(t, t, 0)^{T} .
$$

We have only one eigenvector. Solving for the corresponding generalized eigenvector in the chain:

$$
(\boldsymbol{A}-2 \boldsymbol{I}) \boldsymbol{x}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
t \\
t \\
0
\end{array}\right) \Rightarrow \boldsymbol{x}=\left(u, u+\frac{1}{3} t, \frac{1}{3} t\right)^{T} .
$$

We can choose $t=1, u=1$, getting $\boldsymbol{e}_{2}=(1,1,0)^{T}, \boldsymbol{e}_{3}=\left(1, \frac{4}{3}, \frac{1}{3}\right)$.
By the Jordan Theorem, matrix \boldsymbol{A} takes the following form in the eigenbasis.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Thus, seeking the solution to the system of ODEs in the eigenbasis,

$$
\boldsymbol{x}=c_{1}(t) \boldsymbol{e}_{1}+c_{2}(t) \boldsymbol{e}_{2}+c_{3}(t) \boldsymbol{e}_{3}
$$

we obtain the following system of equations:

$$
\left\{\begin{array}{l}
\dot{c_{1}}=c_{1} \\
\dot{c_{2}}=2 c_{2} \\
\dot{c_{3}}=c_{2}+2 c_{3}
\end{array}\right.
$$

This leads to: $c_{1}=C_{1} e^{t}, c_{2}=C_{2} e^{2 t}, c_{3}=\left(C_{2} t+C_{3}\right) e^{2 t}$ and the final formula for the solution:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=C_{1} e^{t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+C_{2} e^{2 t}\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)+\left(C_{2} t+C_{3}\right) e^{2 t}\left(\begin{array}{c}
1 \\
\frac{4}{3} \\
\frac{1}{3}
\end{array}\right) .
$$

3. A Sturm-Liouville problem. Consider the operator:

$$
A u=-u^{\prime \prime}, \quad D(A)=\left\{u \in L^{2}(0,1): u^{\prime \prime} \in L^{2}(0,1), \quad u(0)=0, \quad u(1)-2 u^{\prime}(1)=0\right\}
$$

- Use integration by parts to show (formally) that the operator is self-adjoint.
- Show that the eigenfunctions are of the form $\sin \sqrt{\lambda_{n}} x$, where the eigenvalues λ_{n} are solutions to the transcendental equation:

$$
\tan \sqrt{\lambda}=2 \sqrt{\lambda}
$$

- Argue that

$$
\lambda_{n}=(2 n-1)^{2} \frac{\pi^{2}}{4} \quad \text { as } n \rightarrow \infty
$$

(20 points)

Solution:

- We have,

$$
\begin{aligned}
\int_{0}^{1}\left(-u^{\prime \prime}\right) v d x & =\int_{0}^{1} u^{\prime} v^{\prime} d x-\left.\left(u^{\prime} v\right)\right|_{0} ^{1} \\
& =\int_{0}^{1} u\left(-v^{\prime \prime}\right) d x-\left.\left(u^{\prime} v\right)\right|_{0} ^{1}+\left.u v^{\prime}\right|_{0} ^{1} \\
& =\int_{0}^{1} u\left(-v^{\prime \prime}\right) d x-\frac{1}{2} u(1) v(1)+u^{\prime}(0) v(0)+u(1) v^{\prime}(1) \\
& =\int_{0}^{1} u\left(-v^{\prime \prime}\right) d x-\frac{1}{2} u(1)\left[v(1)-2 v^{\prime}(1)\right]+u^{\prime}(0) v(0) \\
& =\int_{0}^{1} u\left(-v^{\prime \prime}\right) d x
\end{aligned}
$$

provided $v(0)=0$ and $v(1)-2 v^{\prime}(1)=0$.

- The operator is self-adjoint and, actually, it is also positive definite. We have,

$$
\int_{0}^{1}\left(-u^{\prime \prime}\right) u d x=\int_{0}^{1}\left(u^{\prime}(x)\right)^{2} d x-\underbrace{u^{\prime}(1)}_{=\frac{1}{2} u(1)} u(1)+u^{\prime}(0) \underbrace{u(0)}_{=0}=\int_{0}^{1}\left(u^{\prime}(x)\right)^{2} d x-\frac{1}{2}(u(1))^{2}
$$

It is not obvious that the sum above must be positive. We need to utilize the BC at 0 ,

$$
(u(1))^{2}=\left(\int_{0}^{1} u^{\prime}(s) d s\right)^{2} \leq \int_{0}^{1}\left(u^{\prime}(s)\right)^{2} d s \quad(\text { Cauchy-Schwarz inequality at work })
$$

so

$$
\left(-u^{\prime \prime}, u\right)=\left\|u^{\prime}\right\|^{2}-\frac{1}{2}|u(1)|^{2} \geq \frac{1}{2}\left\|u^{\prime}\right\|^{2}
$$

Thus, if the left-hand side is zero, $u^{\prime}=0$, i.e., u is a constant and, by the $\mathrm{BC} u(0)=0$, it must be zero. Consequently, we know ahead of time that the eigenvalues are real and positive. This leads to:

$$
u(x)=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x
$$

BC at $x=0$ implies that $A=0 . \mathrm{BC}$ at $x=1$ leads to the equation:

$$
0=u(1)-2 u^{\prime}(1)=B(\sin \sqrt{\lambda}-2 \sqrt{\lambda} \cos \sqrt{\lambda})
$$

and, in turn, to:

$$
\tan \sqrt{\lambda}=2 \sqrt{\lambda}
$$

- A picture representing both sides of the equation shows that we have an infinite sequence of eigenvalues. For large values of n, the intersection point of $2 x$ with $\tan x$ gets close to the intersection between $2 x$ and the asymptote for the n-th branch of $\tan x$, i.e., the line $x=\left(n-\frac{1}{2}\right) \pi$. This gives,

$$
\lambda_{n} \approx\left(n-\frac{1}{2}\right)^{2} \pi^{2}=(2 n-1)^{2} \frac{\pi^{2}}{4}
$$

4. This is the correct rewrite of the original problem.

Another Sturm-Liouville problem. Consider the Sturm-Liouville operator,

$$
A u=-\left(a u^{\prime}\right)^{\prime}+c u, \quad D(A)=\left\{u \in L^{2}(-l, l): A u \in L^{2}(-l, l), u(-l)=u(l)=0\right\}
$$

where the diffusion and reaction coefficients are even functions, i.e.,

$$
a(-x)=a(x), \quad c(-x)=c(x)
$$

Prove that if $(\lambda, u(x))$ is an eigenpair for operator A then so is $(\lambda, u(-x))$. Conclude that, If the eigenvector is neither even nor odd, the even and odd parts of function $u\left(\frac{1}{2}(u(x)+\right.$ $\left.u(-x)), \frac{1}{2}(u(x)-u(-x))\right)$ must be eigenvectors corresponding to λ as well. One can search then from the very beginning separately for even and odd eigenvectors which simplifies greatly the algebra. The eigenspace is then at least two-dimensional. Note that, if the original eigenvector is even (odd) to begin with, then the search for the odd (even) eigenvector will simply fail.
(20 points)
Solution: Define: $v(x):=u(-x)$. The chain formula implies that

$$
\frac{d v}{d x}(x)=-\frac{d u}{d x}(-x) \quad \text { and } \quad \frac{d^{2} v}{d x^{2}}(x)=-\frac{d^{2} u}{d x^{2}}(-x),
$$

Consequently,

$$
\begin{aligned}
{\left[-\left(a v^{\prime}\right)^{\prime}+c v\right](x) } & =\left[-a v^{\prime \prime}-a^{\prime} v+c v\right](x) \\
& =\left[-a u^{\prime \prime}-a^{\prime} u+c u\right](-x)=\left[-\left(a u^{\prime}\right)^{\prime}+c u\right](-x) \\
& =\lambda u(-x)=\lambda v(x) .
\end{aligned}
$$

The rest of conclusions follows.
5. Legendre polynomials. Consider the Legendre operator:

$$
A u=-\left(\left(1-x^{2}\right) u^{\prime}\right)^{\prime}, \quad D(A):=\left\{u \in L^{2}(-1,1): A u \in L^{2}(-1,1)\right\}
$$

- Demonstrate (formally) that operator A is self-adjoint.
- Determine eigenpairs for the operator by seeking the eigenvectors in the form of their Taylor expansions at $x=0$. Hint: $\lambda_{n}=n(n+1), n=0,1,2, \ldots$.

(20 points)

- The boundary terms are zero since $a(x)=\left(1-x^{2}\right)$ vanishes at the end points,

$$
\int_{-1}^{1}\left(-\left(\left(1-x^{2}\right) u^{\prime}\right)^{\prime}\right) v d x=\int_{-1}^{1}\left(\left(1-x^{2}\right) u^{\prime} v^{\prime} d x=\int_{-1}^{1} u\left(-\left(\left(1-x^{2}\right) v^{\prime}\right)^{\prime}\right) d x\right.
$$

- Without loosing any generality, we can assume $\lambda=\nu(\nu+1), \nu \geq 0$. We begin by rewriting the Legendre equation in the form more suitable for the Frobenius method,

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\nu(\nu+1) y=0 .
$$

Note that any $x= \pm 1$ are regular singular points, and any other point $x_{0} \in I$ is a regular point. We will expand around zero and seek solutions for integer values of $\nu=: n$.

$$
\begin{aligned}
y & =\sum_{k=0}^{\infty} c_{k} x^{k} \\
y^{\prime} & =\sum_{k=1}^{\infty} k c_{k} x^{k-1} \\
y^{\prime \prime} & =\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}
\end{aligned}
$$

$$
n(n+1) y=n(n+1) \sum_{k=0}^{\infty} c_{k} x^{k}
$$

$$
-2 x y^{\prime}=-2 \sum_{k=1}^{\infty} k c_{k} x^{k}
$$

$$
-x^{2} y^{\prime \prime}=-\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k}
$$

Substituting into the equation, we get the relations:

$$
\begin{array}{lll}
k=0 & 2 c_{2}+n(n+1) c_{0}=0 & \Rightarrow c_{2}=-\frac{n(n+1)}{2} c_{0} \\
k=1 & 6 c_{3}+(n-1)(n+2) c_{1}=0 & \Rightarrow c_{3}=-\frac{(n-1)(n+2)}{6} c_{1} \\
k>1 & (k+2)(k+1) c_{k+2}+[n(n+1)-k(k+1)] c_{k}=0 & \Rightarrow c_{k+2}=-\frac{n(n+1)-k(k+1)}{(k+2)(k+1)} c_{k}
\end{array}
$$

We obtain thus two solutions corresponding to pairs $c_{0}=1, c_{1}=0$ and $c_{0}=0, c_{1}=1$,

$$
\begin{aligned}
& y_{1}=1-\frac{n(n+1)}{2!} x^{2}+\frac{(n-2) n(n+1)(n+3)}{4!} x^{4}-\ldots \\
& y_{2}=x-\frac{(n-1)(n+2)}{3!} x^{3}+\frac{(n-3)(n-1)(n+2)(n+4)}{5!} x^{5}-\ldots
\end{aligned}
$$

Note that if n is even, the y_{1} series at some point terminates, and y_{1} is simply a polynomial. Similarly, if n is odd, the y_{2} series terminates. Thus, for any natural number n, we have two solutions: a polynomial solution $P_{n}(x)$ and a second solution $Q_{n}(x)$ represented with an infinite series. Functions $P_{n}(x)$ are the Legendre polynomials or Legendre functions of the first kind and degree n, functions $Q_{n}(x)$ are Legendre functions of the second kind and degree n.

