[1] X. Wei, Y. Zhang, L. Liu, and T. J. R.
Hughes, “Truncated T-splines: Fundamentals and methods,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 316, pp. 349–372, Apr. 2017. http://www.sciencedirect.com/science/article/pii/S004578251630771X

[2] D. Toshniwal, H. Speleers, R. R. Hiemstra,
and T. J. R. Hughes, “Multi-degree smooth polar splines: A framework for
geometric modeling and isogeometric analysis,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 316, pp. 1005–1061, Apr. 2017. http://www.sciencedirect.com/science/article/pii/S004578251631533X

[3] S. K. F. Stoter, P. Müller, L. Cicalese,
M. Tuveri, D. Schillinger, and T. J. R. Hughes, “A diffuse interface method for
the Navier–Stokes/Darcy equations: Perfusion profile for a patient-specific
human liver based on MRI scans,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 321, pp. 70–102, Jul. 2017. http://www.sciencedirect.com/science/article/pii/S0045782516316644

[4] B. Marussig and T. J. R. Hughes, “A Review
of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation
Aspects,” *Arch Computat Methods Eng*, pp. 1–69, Jun. 2017. https://link.springer.com/article/10.1007/s11831-017-9220-9

[5] G. Lorenzo, M. A. Scott, K. Tew, T. J. R.
Hughes, and H. Gomez, “Hierarchically refined and coarsened splines for moving
interface problems, with particular application to phase-field models of
prostate tumor growth,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 319, pp. 515–548, Jun. 2017. http://www.sciencedirect.com/science/article/pii/S0045782516318254

[6] D. Kamensky, M.-C. Hsu, Y. Yu, J. A.
Evans, M. S. Sacks, and T. J. R. Hughes, “Immersogeometric cardiovascular fluid–structure
interaction analysis with divergence-conforming B-splines,” *Computer Methods
in Applied Mechanics and Engineering*, vol. 314, pp. 408–472, Feb. 2017. https://www.sciencedirect.com/science/article/pii/S0045782516308015

[7] R. R. Hiemstra, F. Calabrò, D.
Schillinger, and T. J. R. Hughes, “Optimal and reduced quadrature rules for
tensor product and hierarchically refined splines in isogeometric analysis,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 316, pp. 966–1004, Apr.
2017. http://www.sciencedirect.com/science/article/pii/S004578251631489X

[8] H. Zhu, N. Petra, G. Stadler, T. Isaac, T.
J. R. Hughes, and O. Ghattas, “Inversion of geothermal heat flux in a
thermomechanically coupled nonlinear Stokes ice sheet model,” *The Cryosphere*,
vol. 10, no. 4, pp. 1477–1494, Jul. 2016. http://www.the-cryosphere.net/10/1477/2016/

[9] X. Wei, Y. Zhang, L. Liu, and T. J. R.
Hughes, “Truncated T-splines: Fundamentals and methods,” *Computer Methods in
Applied Mechanics and Engineering*, Jul. 2016. https://www.sciencedirect.com/science/article/pii/S004578251630771X

[10] X. Wei, Y. J. Zhang, T. J. R. Hughes, and M.
A. Scott, “Extended Truncated Hierarchical Catmull–Clark Subdivision,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 299, pp. 316–336, Feb.
2016. https://www.sciencedirect.com/science/article/pii/S0045782515003618

[11] D. Toshniwal, H. Speleers, R. R. Hiemstra,
and T. J. R. Hughes, “Multi-degree smooth polar splines: A framework for
geometric modeling and isogeometric analysis,” *Computer Methods in Applied
Mechanics and Engineering*, Nov. 2016. https://www.sciencedirect.com/science/article/pii/S004578251631533X

[12] M. Taus, G. J. Rodin, and T. J. R. Hughes, “Isogeometric
analysis of boundary integral equations: High-order collocation methods for the
singular and hyper-singular equations,” *Math. Models Methods Appl. Sci.*,
vol. 26, no. 08, pp. 1447–1480, Apr. 2016. http://www.worldscientific.com/doi/abs/10.1142/S0218202516500354

[13] A. A. Oberai and T. J. R. Hughes, “A palette
of fine-scale eddy viscosity and residual-based models for variational
multiscale formulations of turbulence,” *Comput Mech*, vol. 57, no. 4, pp.
629–635, Apr. 2016. http://link.springer.com/article/10.1007/s00466-015-1242-2

[14] G. Lorenzo, M. A. Scott, K. Tew, T. J. R.
Hughes, Y. J. Zhang, L. Liu, G. Vilanova, and H. Gomez, “Tissue-scale, personalized
modeling and simulation of prostate cancer growth,” *PNAS*, vol. 113, no.
48, pp. E7663–E7671, Nov. 2016. http://www.pnas.org/content/113/48/E7663

[15] R. R. Hiemstra, F. Calabrò, D. Schillinger,
and T. J. R. Hughes, “Optimal and reduced quadrature rules for tensor product
and hierarchically refined splines in isogeometric analysis,” *Computer
Methods in Applied Mechanics and Engineering*, Nov. 2016. https://www.sciencedirect.com/science/article/pii/S004578251631489X

[16] M. J. Borden, T. J. R. Hughes, C. M. Landis,
A. Anvari, and I. J. Lee, “A phase-field formulation for fracture in ductile
materials: Finite deformation balance law derivation, plastic degradation, and
stress triaxiality effects,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 312, pp. 130–166, Dec. 2016. https://www.sciencedirect.com/science/article/pii/S0045782516311069

[17] X. Wei, Y. Zhang, T. J. R. Hughes, and M. A.
Scott, “Truncated hierarchical Catmull–Clark subdivision with local refinement,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 291, pp. 1–20,
Jul. 2015. http://www.sciencedirect.com/science/article/pii/S0045782515001292

[18] D. Schillinger, J. A. Evans, F. Frischmann,
R. R. Hiemstra, M.-C. Hsu, and T. J. R. Hughes, “A collocated C0 finite element
method: Reduced quadrature perspective, cost comparison with standard finite
elements, and explicit structural dynamics,” *Int. J. Numer. Meth. Engng*,
vol. 102, no. 3–4, pp. 576–631, Apr. 2015. http://onlinelibrary.wiley.com/doi/10.1002/nme.4783/abstract

[19] S. Morganti, F. Auricchio, D. J. Benson, F.
I. Gambarin, S. Hartmann, T. J. R. Hughes, and A. Reali, “Patient-specific
isogeometric structural analysis of aortic valve closure,” *Computer Methods
in Applied Mechanics and Engineering*, vol. 284, pp. 508–520, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514003806

[20] J. Liu, C. M. Landis, H. Gomez, and T. J. R.
Hughes, “Liquid–vapor phase transition: Thermomechanical theory, entropy stable
numerical formulation, and boiling simulations,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 297, pp. 476–553, Dec. 2015. https://www.sciencedirect.com/science/article/pii/S0045782515003011

[21] R. Kruse, N. Nguyen-Thanh, L. De Lorenzis,
and T. J. R. Hughes, “Isogeometric collocation for large deformation elasticity
and frictional contact problems,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 296, pp. 73–112, Nov. 2015. https://www.sciencedirect.com/science/article/pii/S0045782515002406

[22] J. Kiendl, F. Auricchio, T. J. R. Hughes,
and A. Reali, “Single-variable formulations and isogeometric discretizations
for shear deformable beams,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 284, pp. 988–1004, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004368

[23] D. Kamensky, M.-C. Hsu, D. Schillinger, J.
A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes, “An
immersogeometric variational framework for fluid–structure interaction:
Application to bioprosthetic heart valves,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 284, pp. 1005–1053, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004101

[24] S. S. Hossain, Y. Zhang, X. Fu, G. Brunner,
J. Singh, T. J. R. Hughes, D. Shah, and P. Decuzzi, “Magnetic resonance
imaging-based computational modelling of blood flow and nanomedicine deposition
in patients with peripheral arterial disease,” *Journal of The Royal Society
Interface*, vol. 12, no. 106, p. 20150001, May 2015. http://rsif.royalsocietypublishing.org/content/12/106/20150001

[25] L. De Lorenzis, J. A. Evans, T. J. R.
Hughes, and A. Reali, “Isogeometric collocation: Neumann boundary conditions
and contact,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 284, pp. 21–54, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S004578251400245X

[26] L. Beirão Da Veiga, T. J. R. Hughes, J.
Kiendl, C. Lovadina, J. Niiranen, A. Reali, and H. Speleers, “A locking-free
model for Reissner–Mindlin plates: Analysis and isogeometric implementation via
NURBS and triangular NURPS,” *Math. Models Methods Appl. Sci.*, vol. 25,
no. 08, pp. 1519–1551, Feb. 2015. http://www.worldscientific.com/doi/abs/10.1142/S0218202515500402

[27] C. Adam, T. J. R. Hughes, S. Bouabdallah, M.
Zarroug, and H. Maitournam, “Selective and reduced numerical integrations for
NURBS-based isogeometric analysis,” *Computer Methods in Applied Mechanics
and Engineering*, vol. 284, pp. 732–761, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0045782514004228

[28] D. Schillinger, S. J. Hossain, and T. J. R.
Hughes, “Reduced Bézier element quadrature rules for quadratic and cubic
splines in isogeometric analysis,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 277, pp. 1–45, Aug. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514001339

[29] A. A. Oberai, J. Liu, D. Sondak, and T. J.
R. Hughes, “A residual based eddy viscosity model for the large eddy simulation
of turbulent flows,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 282, pp. 54–70, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514002849

[30] T. J. R. Hughes, J. A. Evans, and A. Reali, “Finite
element and NURBS approximations of eigenvalue, boundary-value, and
initial-value problems,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 272, pp. 290–320, Apr. 2014. http://www.sciencedirect.com/science/article/pii/S0045782513003071

[31] T. J. R. Hughes, “Amplitude–phase
decompositions and the growth and decay of solutions of the incompressible
Navier–Stokes and Euler equations,” *Math. Models Methods Appl. Sci.*,
vol. 24, no. 05, pp. 1017–1035, May 2014. http://www.worldscientific.com/doi/abs/10.1142/S0218202513500759

[32] M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S.
Sacks, and T. J. R. Hughes, “Fluid–structure interaction analysis of
bioprosthetic heart valves: significance of arterial wall deformation,” *Comput
Mech*, vol. 54, no. 4, pp. 1055–1071, Oct. 2014. http://link.springer.com/article/10.1007/s00466-014-1059-4

[33] A. I. Ginnis, K. V. Kostas, C. G. Politis,
P. D. Kaklis, K. A. Belibassakis, T. P. Gerostathis, M. A. Scott, and T. J. R.
Hughes, “Isogeometric boundary-element analysis for the wave-resistance problem
using T-splines,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 279, pp. 425–439, Sep. 2014. http://www.sciencedirect.com/science/article/pii/S0045782514002230

[34] T. Elguedj and T. J. R. Hughes, “Isogeometric
analysis of nearly incompressible large strain plasticity,” *Computer Methods
in Applied Mechanics and Engineering*, vol. 268, pp. 388–416, Jan. 2014. http://www.sciencedirect.com/science/article/pii/S004578251300251X

[35] L. De Lorenzis, P. Wriggers, and T. J. R.
Hughes, “Isogeometric contact: a review,” *GAMM-Mitteilungen*, vol. 37,
no. 1, pp. 85–123, 2014. http://onlinelibrary.wiley.com/doi/10.1002/gamm.201410005/abstract

[36] M. J. Borden, T. J. R. Hughes, C. M. Landis,
and C. V. Verhoosel, “A higher-order phase-field model for brittle fracture:
Formulation and analysis within the isogeometric analysis framework,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 273, pp. 100–118, May
2014. http://www.sciencedirect.com/science/article/pii/S0045782514000292

[37] G. Bao, Y. Bazilevs, J.-H. Chung, P. Decuzzi,
H. D. Espinosa, M. Ferrari, H. Gao, S. S. Hossain, T. J. R. Hughes, R. D. Kamm,
W. K. Liu, A. Marsden, and B. Schrefler, “USNCTAM perspectives on mechanics in
medicine,” *Journal of The Royal Society Interface*, vol. 11, no. 97, p.
20140301, Aug. 2014. http://rsif.royalsocietypublishing.org/content/11/97/20140301

[38] Y. Zhang, W. Wang, and T. J. R. Hughes, “Conformal
solid T-spline construction from boundary T-spline representations,” *Comput
Mech*, vol. 51, no. 6, pp. 1051–1059, Jun. 2013. http://link.springer.com/article/10.1007/s00466-012-0787-6

[39] W. Wang, Y. Zhang, L. Liu, and T. J. R.
Hughes, “Trivariate solid T-spline construction from boundary triangulations
with arbitrary genus topology,” *Computer-Aided Design*, vol. 45, no. 2,
pp. 351–360, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0010448512002230

[40] M. A. Scott, R. N. Simpson, J. A. Evans, S.
Lipton, S. P. A. Bordas, T. J. R. Hughes, and T. W. Sederberg, “Isogeometric
boundary element analysis using unstructured T-splines,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 254, pp. 197–221, Feb. 2013. http://www.sciencedirect.com/science/article/pii/S0045782512003386

[41] D. Schillinger, J. A. Evans, A. Reali, M. A.
Scott, and T. J. R. Hughes, “Isogeometric collocation: Cost comparison with
Galerkin methods and extension to adaptive hierarchical NURBS discretizations,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 267, pp. 170–232,
Dec. 2013. http://www.sciencedirect.com/science/article/pii/S004578251300193X

[42] L. Liu, Y. Zhang, T. J. R. Hughes, M. A.
Scott, and T. W. Sederberg, “Volumetric T-spline construction using Boolean
operations,” *Engineering with Computers*, vol. 30, no. 4, pp. 425–439,
Nov. 2013. http://link.springer.com/article/10.1007/s00366-013-0346-6

[43] J. Liu, H. Gomez, J. A. Evans, T. J. R.
Hughes, and C. M. Landis, “Functional entropy variables: A new methodology for
deriving thermodynamically consistent algorithms for complex fluids, with
particular reference to the isothermal Navier–Stokes–Korteweg equations,” *Journal
of Computational Physics*, vol. 248, pp. 47–86, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0021999113002544

[44] J. Liu, L. Dedè, J. A. Evans, M. J. Borden,
and T. J. R. Hughes, “Isogeometric analysis of the advective Cahn–Hilliard
equation: Spinodal decomposition under shear flow,” *Journal of Computational
Physics*, vol. 242, pp. 321–350, Jun. 2013. http://www.sciencedirect.com/science/article/pii/S0021999113001186

[45] S. S. Hossain, T. J. R. Hughes, and P.
Decuzzi, “Vascular Deposition Patterns for Catheter-Injected Nanoparticles in
an Inflamed Patient-specific Arterial Tree,” *Biomechanics and Modeling in
Mechanobiology*, Aug. 2013. http://link.springer.com/article/10.1007%2Fs10237-013-0520-1

[46] Y. Ghaffari Motlagh, H. T. Ahn, T. J. R.
Hughes, and V. M. Calo, “Simulation of laminar and turbulent concentric pipe
flows with the isogeometric variational multiscale method,” *Computers &
Fluids*, vol. 71, pp. 146–155, Jan. 2013. http://www.sciencedirect.com/science/article/pii/S0045793012003507

[47] J. A. Evans and T. J. R. Hughes, “Isogeometric
Divergence-conforming B-splines for the Unsteady Navier-Stokes Equations,” *Journal
of Computational Physics*, 2013. http://www.sciencedirect.com/science/article/pii/S0021999113000363

[48] J. A. Evans and T. J. R. Hughes, “ISOGEOMETRIC
DIVERGENCE-CONFORMING B-SPLINES FOR THE DARCY–STOKES–BRINKMAN EQUATIONS,” *Mathematical
Models and Methods in Applied Sciences*, vol. 23, no. 04, pp. 671–741, Apr.
2013. http://www.worldscientific.com/doi/abs/10.1142/S0218202512500583

[49] J. A. Evans and T. J. R. Hughes, “Explicit
trace inequalities for isogeometric analysis and parametric hexahedral finite
elements,” *Numer. Math.*, vol. 123, no. 2, pp. 259–290, Feb. 2013. http://link.springer.com/article/10.1007/s00211-012-0484-6

[50] D. J. Benson, S. Hartmann, Y. Bazilevs,
M.-C. Hsu, and T. J. R. Hughes, “Blended isogeometric shells,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 255, pp. 133–146, Mar.
2013. http://www.sciencedirect.com/science/article/pii/S0045782512003696

[51] W. Wang, Y. Zhang, G. Xu, and T. J. R.
Hughes, “Converting an unstructured quadrilateral/hexahedral mesh to a rational
T-spline,” *Comput Mech*, vol. 50, no. 1, pp. 65–84, Jul. 2012. http://link.springer.com/article/10.1007/s00466-011-0674-6

[52] İ. Temizer, P. Wriggers, and T. J. R.
Hughes, “Three-dimensional mortar-based frictional contact treatment in
isogeometric analysis with NURBS,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 209–212, pp. 115–128, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511003355

[53] M. A. Scott, X. Li, T. W. Sederberg, and T.
J. R. Hughes, “Local refinement of analysis-suitable T-splines,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 213–216, pp. 206–222,
Mar. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511003689

[54] D. Schillinger, L. Dedè, M. A. Scott, J. A.
Evans, M. J. Borden, E. Rank, and T. J. R. Hughes, “An isogeometric
design-through-analysis methodology based on adaptive hierarchical refinement
of NURBS, immersed boundary methods, and T-spline CAD surfaces,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 249–252, pp. 116–150,
Dec. 2012. http://www.sciencedirect.com/science/article/pii/S004578251200093X

[55] H. A. F. A. Santos, J. A. Evans, and T. J.
R. Hughes, “Generalization of the twist-Kirchhoff theory of plate elements to
arbitrary quadrilaterals and assessment of convergence,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 209–212, pp. 101–114, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0045782511002738

[56] N. Petra, H. Zhu, G. Stadler, T. J. R.
Hughes, and O. Ghattas, “An inexact GaussNewton method for inversion of basal
sliding and rheology parameters in a nonlinear Stokes ice sheet model,” *Journal
of Glaciology*, vol. 58, no. 211, pp. 889–903, 2012. https://www.igsoc.org/journal/58/211/t11J182.html

[57] X. Li, J. Zheng, T. W. Sederberg, T. J. R.
Hughes, and M. A. Scott, “On linear independence of T-spline blending
functions,” *Computer Aided Geometric Design*, vol. 29, no. 1, pp. 63–76,
Jan. 2012. http://www.sciencedirect.com/science/article/pii/S0167839611000938

[58] S. S. Hossain, Y. Zhang, X. Liang, F.
Hussain, M. Ferrari, T. J. Hughes, and P. Decuzzi, “In silico vascular modeling
for personalized nanoparticle delivery,” *Nanomedicine (Lond)*, Dec. 2012.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909646/

[59] S. S. Hossain, S. F. A. Hossainy, Y.
Bazilevs, V. M. Calo, and T. J. R. Hughes, “Mathematical modeling of coupled
drug and drug-encapsulated nanoparticle transport in patient-specific coronary
artery walls,” *Comput Mech*, vol. 49, no. 2, pp. 213–242, Feb. 2012. http://link.springer.com/article/10.1007/s00466-011-0633-2

[60] J. A. Evans and T. J. R. Hughes, “ISOGEOMETRIC
DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS,” *Mathematical
Models and Methods in Applied Sciences*, pp. 1–58, Nov. 2012. http://www.worldscientific.com/doi/abs/10.1142/S0218202513500139

[61] J. A. Evans and T. J. R. Hughes, “Discrete
spectrum analyses for various mixed discretizations of the Stokes eigenproblem,”
*Comput Mech*, vol. 50, no. 6, pp. 667–674, Dec. 2012. http://link.springer.com/article/10.1007/s00466-012-0788-5

[62] R. Duddu, L. L. Lavier, T. J. R. Hughes, and
V. M. Calo, “A finite strain Eulerian formulation for compressible and nearly
incompressible hyperelasticity using high-order B-spline finite elements,” *International
Journal for Numerical Methods in Engineering*, vol. 89, no. 6, pp. 762–785,
2012. http://onlinelibrary.wiley.com/doi/10.1002/nme.3262/abstract

[63] L. Dedè, M. J. Borden, and T. J. R. Hughes, “Isogeometric
Analysis for Topology Optimization with a Phase Field Model,” *Arch Computat
Methods Eng*, vol. 19, no. 3, pp. 427–465, Sep. 2012. http://link.springer.com/article/10.1007/s11831-012-9075-z

[64] K. Chang, T. J. R. Hughes, and V. M. Calo, “Isogeometric
variational multiscale large-eddy simulation of fully-developed turbulent flow
over a wavy wall,” *Computers & Fluids*, vol. 68, pp. 94–104, Sep.
2012. http://www.sciencedirect.com/science/article/pii/S0045793012002320

[65] M. J. Borden, C. V. Verhoosel, M. A. Scott,
T. J. R. Hughes, and C. M. Landis, “A phase-field description of dynamic
brittle fracture,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 217–220, pp. 77–95, Apr. 2012. http://www.sciencedirect.com/science/article/pii/S0045782512000199

[66] F. Auricchio, F. Calabrò, T. J. R. Hughes,
A. Reali, and G. Sangalli, “A simple algorithm for obtaining nearly optimal
quadrature rules for NURBS-based isogeometric analysis,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 249–252, pp. 15–27, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S004578251200134X

[67] F. Auricchio, L. Beirão da Veiga, T. J. R.
Hughes, A. Reali, and G. Sangalli, “Isogeometric collocation for elastostatics
and explicit dynamics,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 249–252, pp. 2–14, Dec. 2012. http://www.sciencedirect.com/science/article/pii/S0045782512001028

[68] W. Wang, Y. Zhang, M. A. Scott, and T. J. R.
Hughes, “Converting an unstructured quadrilateral mesh to a standard T-spline
surface,” *Comput Mech*, vol. 48, no. 4, pp. 477–498, Oct. 2011. http://link.springer.com/article/10.1007/s00466-011-0598-1

[69] C. V. Verhoosel, M. A. Scott, T. J. R.
Hughes, and R. de Borst, “An isogeometric analysis approach to gradient damage
models,” *Int. J. Numer. Meth. Engng.*, vol. 86, no. 1, pp. 115–134, Apr.
2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3150/abstract

[70] C. V. Verhoosel, M. A. Scott, R. de Borst,
and T. J. R. Hughes, “An isogeometric approach to cohesive zone modeling,” *Int.
J. Numer. Meth. Engng.*, vol. 87, no. 1–5, pp. 336–360, Jul. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3061/abstract

[71] İ. Temizer, P. Wriggers, and T. J. R.
Hughes, “Contact treatment in isogeometric analysis with NURBS,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 200, no. 9–12, pp. 1100–1112,
Feb. 2011. http://www.sciencedirect.com/science/article/pii/S0045782510003440

[72] M. A. Scott, M. J. Borden, C. V. Verhoosel,
T. W. Sederberg, and T. J. R. Hughes, “Isogeometric finite element data
structures based on Bézier extraction of T-splines,” *Int. J. Numer. Meth.
Engng.*, vol. 88, no. 2, pp. 126–156, Oct. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.3167/abstract

[73] H. Gomez, “Provably unconditionally stable,
second-order time-accurate, mixed variational methods for phase-field models,” *Journal
of Computational Physics*, vol. 230, no. 13, pp. 5310–5327, Jun. 2011. http://www.sciencedirect.com/science/article/pii/S0021999111001847

[74] F. Brezzi, J. A. Evans, T. J. R. Hughes, and
L. D. Marini, “New rectangular plate elements based on twist-Kirchhoff theory,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 200, no. 33–36,
pp. 2547–2561, Aug. 2011. http://www.sciencedirect.com/science/article/pii/S0045782511001459

[75] M. J. Borden, M. A. Scott, J. A. Evans, and
T. J. R. Hughes, “Isogeometric finite element data structures based on Bézier
extraction of NURBS,” *Int. J. Numer. Meth. Engng.*, vol. 87, no. 1–5, pp.
15–47, Jul. 2011. http://onlinelibrary.wiley.com/doi/10.1002/nme.2968/abstract

[76] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T.
J. R. Hughes, “A large deformation, rotation-free, isogeometric shell,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 200, no. 13–16, pp. 1367–1378,
Mar. 2011. http://www.sciencedirect.com/science/article/pii/S0045782510003488

[77] Y. Zhang, T. J. R. Hughes, and C. L. Bajaj, “An
automatic 3D mesh generation method for domains with multiple materials,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 199, no. 5–8, pp. 405–415,
Jan. 2010. http://www.sciencedirect.com/science/article/pii/S004578250900214X

[78] S. Lipton, J. A. Evans, Y. Bazilevs, T.
Elguedj, and T. J. R. Hughes, “Robustness of isogeometric structural
discretizations under severe mesh distortion,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 199, no. 5–8, pp. 357–373, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509000346

[79] T. J. R. Hughes, A. Reali, and G. Sangalli, “Efficient
quadrature for NURBS-based isogeometric analysis,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 199, no. 5–8, pp. 301–313, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782508004295

[80] T. J. R. Hughes, G. Scovazzi, and T. E.
Tezduyar, “Stabilized Methods for Compressible Flows,” *J Sci Comput*,
vol. 43, no. 3, pp. 343–368, Jun. 2010. http://link.springer.com/article/10.1007/s10915-008-9233-5

[81] M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E.
Tezduyar, and T. J. R. Hughes, “Improving stability of stabilized and
multiscale formulations in flow simulations at small time steps,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 199, no. 13–16, pp. 828–840,
Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509002254

[82] H. Gomez, T. J. R. Hughes, X. Nogueira, and
V. M. Calo, “Isogeometric analysis of the isothermal Navier–Stokes–Korteweg
equations,” *Computer Methods in Applied Mechanics and Engineering*, vol.
199, no. 25–28, pp. 1828–1840, May 2010. http://www.sciencedirect.com/science/article/pii/S004578251000068X

[83] D. J. Benson, Y. Bazilevs, M. C. Hsu, and T.
J. R. Hughes, “Isogeometric shell analysis: The Reissner–Mindlin shell,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 199, no. 5–8, pp. 276–289,
Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509001820

[84] D. J. Benson, Y. Bazilevs, E. De Luycker,
M.-C. Hsu, M. Scott, T. J. R. Hughes, and T. Belytschko, “A generalized finite
element formulation for arbitrary basis functions: From isogeometric analysis
to XFEM,” *International Journal for Numerical Methods in Engineering*,
vol. 83, no. 6, pp. 765–785, 2010. http://onlinelibrary.wiley.com/doi/10.1002/nme.2864/abstract

[85] Y. Bazilevs, C. Michler, V. M. Calo, and T.
J. R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded
turbulent flows with weakly enforced boundary conditions on unstretched meshes,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 199, no. 13–16,
pp. 780–790, Feb. 2010. http://www.sciencedirect.com/science/article/pii/S0045782508004052

[86] Y. Bazilevs, V. M. Calo, J. A. Cottrell, J.
A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg, “Isogeometric
analysis using T-splines,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 199, no. 5–8, pp. 229–263, Jan. 2010. http://www.sciencedirect.com/science/article/pii/S0045782509000875

[87] F. Auricchio, L. B. Da Veiga, T. J. R.
Hughes, A. Reali, and G. Sangalli, “ISOGEOMETRIC COLLOCATION METHODS,” *Mathematical
Models and Methods in Applied Sciences*, vol. 20, no. 11, pp. 2075–2107,
Nov. 2010. http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878

[88] H. J. Kim, C. A. Figueroa, T. J. R. Hughes,
K. E. Jansen, and C. A. Taylor, “Augmented Lagrangian method for constraining
the shape of velocity profiles at outlet boundaries for three-dimensional
finite element simulations of blood flow,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 198, no. 45–46, pp. 3551–3566, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0045782509000887

[89] J. A. Evans, T. J. R. Hughes, and G.
Sangalli, “Enforcement of constraints and maximum principles in the variational
multiscale method,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 199, no. 1–4, pp. 61–76, Dec. 2009. http://www.sciencedirect.com/science/article/pii/S004578250900317X

[90] J. A. Evans, Y. Bazilevs, I. Babuška, and T.
J. R. Hughes, “n-Widths, sup–infs, and optimality ratios for the k-version of
the isogeometric finite element method,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 198, no. 21–26, pp. 1726–1741, May 2009. http://www.sciencedirect.com/science/article/pii/S0045782509000280

[91] Y. Bazilevs, J. R. Gohean, T. J. R. Hughes,
R. D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure
interaction analysis of thoracic aortic blood flow due to implantation of the
Jarvik 2000 left ventricular assist device,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 198, no. 45–46, pp. 3534–3550, Sep. 2009. http://www.sciencedirect.com/science/article/pii/S0045782509001674

[92] T. J. R. Hughes, A. Reali, and G. Sangalli, “Duality
and unified analysis of discrete approximations in structural dynamics and wave
propagation: Comparison of p-method finite elements with k-method NURBS,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 197, no. 49–50, pp. 4104–4124,
Sep. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508001618

[93] H. Gómez, V. M. Calo, Y. Bazilevs, and T. J.
R. Hughes, “Isogeometric analysis of the Cahn–Hilliard phase-field model,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 197, no. 49–50, pp. 4333–4352,
Sep. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508001953

[94] T. Elguedj, Y. Bazilevs, V. M. Calo, and T.
J. R. Hughes, “F-bar projection method for finite deformation elasticity and
plasticity using NURBS based isogeometric analysis,” *Int J Mater Form*,
vol. 1, no. 1, pp. 1091–1094, Apr. 2008. http://link.springer.com/article/10.1007/s12289-008-0209-7

[95] T. Elguedj, Y. Bazilevs, V. M. Calo, and T.
J. R. Hughes, “B-bar and F-bar projection methods for nearly incompressible
linear and non-linear elasticity and plasticity using higher-order NURBS
elements,” *Computer Methods in Applied Mechanics and Engineering*, vol.
197, no. 33–40, pp. 2732–2762, Jun. 2008. http://www.sciencedirect.com/science/article/pii/S0045782508000248

[96] V. M. Calo, N. F. Brasher, Y. Bazilevs, and
T. J. R. Hughes, “Multiphysics model for blood flow and drug transport with
application to patient-specific coronary artery flow,” *Comput Mech*, vol.
43, no. 1, pp. 161–177, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0321-z

[97] Y. Bazilevs and T. J. R. Hughes, “NURBS-based
isogeometric analysis for the computation of flows about rotating components,” *Comput
Mech*, vol. 43, no. 1, pp. 143–150, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0277-z

[98] Y. Bazilevs, V. M. Calo, T. J. R. Hughes,
and Y. Zhang, “Isogeometric fluid-structure interaction: theory, algorithms,
and computations,” *Comput Mech*, vol. 43, no. 1, pp. 3–37, Dec. 2008. http://link.springer.com/article/10.1007/s00466-008-0315-x

[99] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J.
R. Hughes, and S. Hulshoff, “The role of continuity in residual-based
variational multiscale modeling of turbulence,” *Comput Mech*, vol. 41,
no. 3, pp. 371–378, Feb. 2008. http://link.springer.com/article/10.1007/s00466-007-0193-7

[100] Y. Zhang, Y. Bazilevs, S. Goswami, C. L.
Bajaj, and T. J. R. Hughes, “Patient-specific vascular NURBS modeling for
isogeometric analysis of blood flow,” *Computer Methods in Applied Mechanics
and Engineering*, vol. 196, no. 29–30, pp. 2943–2959, May 2007. http://www.sciencedirect.com/science/article/pii/S0045782507000801

[101] G. Scovazzi, M. A. Christon, T. J. R. Hughes,
and J. N. Shadid, “Stabilized shock hydrodynamics: I. A Lagrangian method,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 196, no. 4–6, pp. 923–966,
Jan. 2007. http://www.sciencedirect.com/science/article/pii/S0045782506002374

[102] T. J. R. Hughes and G. Sangalli, “Variational
Multiscale Analysis: the Fine‐scale Green’s Function, Projection, Optimization, Localization, and
Stabilized Methods,” *SIAM Journal on Numerical Analysis*, vol. 45, no. 2,
pp. 539–557, Jan. 2007. http://epubs.siam.org/doi/abs/10.1137/050645646

[103] J. A. Cottrell, T. J. R. Hughes, and A. Reali,
“Studies of refinement and continuity in isogeometric structural analysis,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 196, no. 41–44, pp. 4160–4183,
Sep. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507001703

[104] Y. Bazilevs, C. Michler, V. M. Calo, and T. J.
R. Hughes, “Weak Dirichlet boundary conditions for wall-bounded turbulent
flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 196,
no. 49–52, pp. 4853–4862, Nov. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507002885

[105] Y. Bazilevs and T. J. R. Hughes, “Weak
imposition of Dirichlet boundary conditions in fluid mechanics,” *Computers
& Fluids*, vol. 36, no. 1, pp. 12–26, Jan. 2007. http://www.sciencedirect.com/science/article/pii/S0045793005001258

[106] Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and
T. J. R. Hughes, “YZβ discontinuity capturing for advection-dominated processes
with application to arterial drug delivery,” *International Journal for
Numerical Methods in Fluids*, vol. 54, no. 6–8, pp. 593–608, 2007. http://onlinelibrary.wiley.com/doi/10.1002/fld.1484/abstract

[107] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J.
R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based
turbulence modeling for large eddy simulation of incompressible flows,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 197, no. 1–4, pp. 173–201,
Dec. 2007. http://www.sciencedirect.com/science/article/pii/S0045782507003027

[108] T. J. R. Hughes and G. N. Wells, “Erratum to ‘Conservation
properties for the Galerkin and stabilised forms of the advection–diffusion and
incompressible Navier–Stokes equations’ [Comput. Methods Appl. Mech. Engrg. 194
(2005) 1141–1159],” *Computer Methods in Applied Mechanics and Engineering*,
vol. 195, no. 9–12, pp. 1277–1278, Feb. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505001416

[109] T. J. R. Hughes, G. Scovazzi, P. B. Bochev,
and A. Buffa, “A multiscale discontinuous Galerkin method with the
computational structure of a continuous Galerkin method,” *Computer Methods
in Applied Mechanics and Engineering*, vol. 195, no. 19–22, pp. 2761–2787,
Apr. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505002288

[110] T. J. R. Hughes, A. Masud, and J. Wan, “A
stabilized mixed discontinuous Galerkin method for Darcy flow,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 195, no. 25–28, pp. 3347–3381,
May 2006. http://www.sciencedirect.com/science/article/pii/S0045782505002732

[111] C. A. Figueroa, I. E. Vignon-Clementel, K. E.
Jansen, T. J. R. Hughes, and C. A. Taylor, “A coupled momentum method for
modeling blood flow in three-dimensional deformable arteries,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 195, no. 41–43, pp. 5685–5706,
Aug. 2006. http://www.sciencedirect.com/science/article/pii/S004578250500513X

[112] J. A. Cottrell, A. Reali, Y. Bazilevs, and T.
J. R. Hughes, “Isogeometric analysis of structural vibrations,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 195, no. 41–43, pp. 5257–5296,
Aug. 2006. http://www.sciencedirect.com/science/article/pii/S0045782505005451

[113] A. Buffa, T. J. R. Hughes, and G. Sangalli, “Analysis
of a Multiscale Discontinuous Galerkin Method for Convection‐Diffusion Problems,” *SIAM Journal on Numerical
Analysis*, vol. 44, no. 4, pp. 1420–1440, Jan. 2006. http://epubs.siam.org/doi/abs/10.1137/050640382

[114] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J.
R. Hughes, “Isogeometric Fluid–structure Interaction Analysis with Applications
to Arterial Blood Flow,” *Comput Mech*, vol. 38, no. 4–5, pp. 310–322,
Sep. 2006. http://link.springer.com/article/10.1007/s00466-006-0084-3

[115] Y. Bazilevs, L. Beirão da Veiga, J. A.
Cottrell, T. J. R. Hughes, and G. Sangalli, “Isogeometric analysis:
approximation, stability and error estimates for h-refined meshes,” *Mathematical
Models and Methods in Applied Sciences*, vol. 16, no. 7, pp. 1031–1090,
2006. http://www.worldscientific.com/doi/abs/10.1142/S0218202506001455

[116] T. J. R. Hughes, J. A. Cottrell, and Y.
Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry
and mesh refinement,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 194, no. 39–41, pp. 4135–4195, Oct. 2005. http://www.sciencedirect.com/science/article/pii/S0045782504005171

[117] T. J. R. Hughes and G. N. Wells, “Conservation
properties for the Galerkin and stabilised forms of the advection–diffusion and
incompressible Navier–Stokes equations,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 194, no. 9–11, pp. 1141–1159, Mar. 2005. http://www.sciencedirect.com/science/article/pii/S0045782504003172

[118] F. Brezzi, T. J. R. Hughes, L. D. Marini, and
A. Masud, “Mixed Discontinuous Galerkin Methods for Darcy Flow,” *J Sci
Comput*, vol. 22–23, no. 1–3, pp. 119–145, Jun. 2005. http://link.springer.com/article/10.1007/s10915-004-4150-8

[119] T. J. R. Hughes, G. N. Wells, and A. A. Wray, “Energy
transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence:
Comparison of dynamic Smagorinsky and multiscale models over a range of
discretizations,” *Physics of Fluids*, vol. 16, no. 11, pp. 4044–4052,
Oct. 2004. http://aip.scitation.org/doi/abs/10.1063/1.1789157

[120] T. J. R. Hughes, J. Tinsley Oden, and M.
Papadrakakis, “In memoriam to Professor John H. Argyris: 19 August 1913 – 2
April 2004,” *Computer Methods in Applied Mechanics and Engineering*, vol.
193, no. 36–38, pp. 3763–3766, Sep. 2004. http://www.sciencedirect.com/science/article/pii/S0045782504002361

[121] J. Holmen, T. J. R. Hughes, A. A. Oberai, and
G. N. Wells, “Sensitivity of the scale partition for variational multiscale
large-eddy simulation of channel flow,” *Physics of Fluids*, vol. 16, no.
3, pp. 824–827, Feb. 2004. http://aip.scitation.org/doi/abs/10.1063/1.1644573

[122] B. N. Steele, J. Wan, J. P. Ku, T. J. R.
Hughes, and C. A. Taylor, “In vivo validation of a one-dimensional
finite-element method for predicting blood flow in cardiovascular bypass
grafts,” *IEEE Transactions on Biomedical Engineering*, vol. 50, no. 6,
pp. 649–656, Jun. 2003. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1203803&queryText%3DIn+vivo+validation+of+a+one-dimensional+finite-element+method+for+predicting+blood+flow+in+cardiovascular+bypass+grafts

[123] J. T. Oden, T. Belytschko, I. Babuska, and T.
J. R. Hughes, “Research directions in computational mechanics,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 192, no. 7–8, pp. 913–922,
Feb. 2003. http://www.sciencedirect.com/science/article/pii/S0045782502006163

[124] T. J. R. Hughes and A. A. Oberai, “Calculation
of shear stresses in the Fourier–Galerkin formulation of turbulent channel
flows: projection, the Dirichlet filter and conservation,” *Journal of
Computational Physics*, vol. 188, no. 1, pp. 281–295, Jun. 2003. http://www.sciencedirect.com/science/article/pii/S0021999103001670

[125] J. Wan, B. Steele, S. A. Spicer, S. Strohband,
G. R. Feijo´o, T. J. R. Hughes, and C. A. Taylor, “A One-dimensional Finite
Element Method for Simulation-based Medical Planning for Cardiovascular
Disease,” *Computer Methods in Biomechanics and Biomedical Engineering*,
vol. 5, no. 3, pp. 195–206, 2002. http://www.tandfonline.com/doi/abs/10.1080/10255840290010670

[126] A. A. Oberai, F. Roknaldin, and T. J. R.
Hughes, “Computation of Trailing-Edge Noise Due to Turbulent Flow over an
Airfoil,” *AIAA Journal*, vol. 40, no. 11, pp. 2206–2216, Nov. 2002. http://arc.aiaa.org/doi/abs/10.2514/2.1582

[127] A. Masud and T. J. R. Hughes, “A stabilized
mixed finite element method for Darcy flow,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 191, no. 39–40, pp. 4341–4370, Aug. 2002. http://www.sciencedirect.com/science/article/pii/S0045782502003717

[128] G. Engel, K. Garikipati, T. J. R. Hughes, M.
G. Larson, L. Mazzei, and R. L. Taylor, “Continuous/discontinuous finite
element approximations of fourth-order elliptic problems in structural and
continuum mechanics with applications to thin beams and plates, and strain
gradient elasticity,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 191, no. 34, pp. 3669–3750, Jul. 2002. http://www.sciencedirect.com/science/article/pii/S0045782502002864

[129] M. T. Draney, R. J. Herfkens, T. J. R. Hughes,
N. J. Pelc, K. L. Wedding, C. K. Zarins, and C. A. Taylor, “Quantification of
Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging,”
*Annals of Biomedical Engineering*, vol. 30, no. 8, pp. 1033–1045, Sep.
2002. http://link.springer.com/article/10.1114/1.1513566

[130] T. J. R. Hughes, A. A. Oberai, and L. Mazzei, “Large
eddy simulation of turbulent channel flows by the variational multiscale
method,” *Physics of Fluids*, vol. 13, no. 6, pp. 1784–1799, Jun. 2001. http://aip.scitation.org/doi/abs/10.1063/1.1367868

[131] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and
A. A. Wray, “The multiscale formulation of large eddy simulation: Decay of
homogeneous isotropic turbulence,” *Physics of Fluids*, vol. 13, no. 2,
pp. 505–512, Feb. 2001. http://aip.scitation.org/doi/10.1063/1.1332391

[132] F. Brezzi, T. J. R. Hughes, and E. Suli, “Variational
approximation of flux in conforming finite element methods for elliptic partial
differential equations: A model problem,” *Atti della Accademia Nazionale dei
Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei
Matematica E Applicazioni*, vol. 12, no. 3, pp. 159–166, 2001. http://users.ices.utexas.edu/~hughes/photo-album/2001_brezzi_variationalappr.pdf

[133] S. M. Rifai, J. C. Buell, Z. Johan, and T. J.
R. Hughes, “Automotive design applications of fluid flow simulation on parallel
computing platforms,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 184, no. 2–4, pp. 449–466, Apr. 2000. http://www.sciencedirect.com/science/article/pii/S004578259900239X

[134] V. S. Rao, T. J. R. Hughes, and K. Garikipati,
“On modelling thermal oxidation of Silicon II: numerical aspects,” *International
Journal for Numerical Methods in Engineering*, vol. 47, no. 1–3, pp. 359–377,
2000. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(20000110/30)47:1/3<359::AID-NME775>3.0.CO;2-7/abstract

[135] V. S. Rao and T. J. R. Hughes, “On modelling
thermal oxidation of Silicon I: theory,” *International Journal for Numerical
Methods in Engineering*, vol. 47, no. 1–3, pp. 341–358, 2000. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0207(20000110/30)47:1/3<341::AID-NME774>3.0.CO;2-Z/abstract

[136] A. A. Oberai, F. Roknaldin, and T. J. . Hughes,
“Computational procedures for determining structural-acoustic response due to
hydrodynamic sources,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 190, no. 3–4, pp. 345–361, Oct. 2000. http://www.sciencedirect.com/science/article/pii/S0045782500002061

[137] T. J. R. Hughes, L. Mazzei, and K. E. Jansen, “Large
Eddy Simulation and the variational multiscale method,” *Comput Visual Sci*,
vol. 3, no. 1–2, pp. 47–59, May 2000. http://link.springer.com/article/10.1007/s007910050051

[138] T. J. R. Hughes and K. Garikipati, “Embedding
a Micromechanical Law in the Continuum Formulation: A Multiscale Approach
Applied to Discontinuous Solutions,” *International Journal for Computational
Civil and Structural Engineering*, vol. 1, pp. 64–78, 2000. http://users.ices.utexas.edu/~hughes/photo-album/2000_garikipati_embeddingam.pdf

[139] T. J. R. Hughes, G. Engel, L. Mazzei, and M.
G. Larson, “The continuous Galerkin method is locally conservative,” *J.
Comput. Phys.*, vol. 163, no. 2, pp. 467–488, Sep. 2000. http://dx.doi.org/10.1006/jcph.2000.6577

[140] K. Garikipati and T. J. R. Hughes, “A
variational multiscale approach to strain localization – formulation for
multidimensional problems,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 188, no. 1–3, pp. 39–60, Jul. 2000. http://www.sciencedirect.com/science/article/pii/S0045782599001565

[141] C. A. Taylor, T. J. R. Hughes, and C. K.
Zarins, “Effect of exercise on hemodynamic conditions in the abdominal aorta,” *Journal
of Vascular Surgery*, vol. 29, no. 6, pp. 1077–1089, Jun. 1999. http://www.sciencedirect.com/science/article/pii/S0741521499702491

[142] S. M. Rifai, Z. Johan, W.-P. Wang, J.-P.
Grisval, T. J. R. Hughes, and R. M. Ferencz, “Multiphysics simulation of
flow-induced vibrations and aeroelasticity on parallel computing platforms,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 174, no. 3–4, pp. 393–417,
May 1999. http://www.sciencedirect.com/science/article/pii/S0045782598003065

[143] F. Brezzi, T. J. R. Hughes, L. D. Marini, A.
Russo, and E. Süli, “A Priori Error Analysis of Residual-Free Bubbles for
Advection-Diffusion Problems,” *SIAM Journal on Numerical Analysis*, vol.
36, no. 6, pp. 1933–1948, Jan. 1999. http://epubs.siam.org/doi/abs/10.1137/S0036142998342367

[144] C. A. Taylor, T. J. R. Hughes, and C. K.
Zarins, “Finite Element Modeling of Three-Dimensional Pulsatile Flow in the
Abdominal Aorta: Relevance to Atherosclerosis,” *Annals of Biomedical
Engineering*, vol. 26, no. 6, pp. 975–987, Nov. 1998. http://link.springer.com/article/10.1114/1.140

[145] C. A. Taylor, T. J. R. Hughes, and C. K.
Zarins, “Finite element modeling of blood flow in arteries,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 158, no. 1–2, pp. 155–196,
May 1998. http://www.sciencedirect.com/science/article/pii/S004578259880008X

[146] J. R. Stewart and T. J. . Hughes, “A tutorial
in elementary finite element error analysis: A systematic presentation of a
priori and a posteriori error estimates,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 158, no. 1–2, pp. 1–22, May 1998. http://www.sciencedirect.com/science/article/pii/S0045782597002302

[147] M. OSHIMA, T. J. R. HUGHES, and K. JANSEN, “Consistent
Finite Element Calculations of Boundary and Internal Fluxes,” *International
Journal of Computational Fluid Dynamics*, vol. 9, no. 3–4, pp. 227–235,
1998. http://www.tandfonline.com/doi/abs/10.1080/10618569808940855

[148] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and
J.-B. Quincy, “The variational multiscale method—a paradigm for computational
mechanics,” *Computer Methods in Applied Mechanics and Engineering*, vol.
166, no. 1–2, pp. 3–24, Nov. 1998. http://www.sciencedirect.com/science/article/pii/S0045782598000796

[149] G. Hauke and T. J. R. Hughes, “A comparative
study of different sets of variables for solving compressible and
incompressible flows,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 153, no. 1–2, pp. 1–44, Jan. 1998. http://www.sciencedirect.com/science/article/pii/S0045782597000431

[150] K. Garikipati and T. J. R. Hughes, “A study of
strain localization in a multiple scale framework—The one-dimensional problem,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 159, no. 3–4,
pp. 193–222, Jul. 1998. http://www.sciencedirect.com/science/article/pii/S0045782597002715

[151] J. R. Stewart and T. J. . Hughes, “h-Adaptive
finite element computation of time-harmonic exterior acoustics problems in two
dimensions,” *Computer Methods in Applied Mechanics and Engineering*, vol.
146, no. 1–2, pp. 65–89, Jul. 1997. http://www.sciencedirect.com/science/article/pii/S004578259601225X

[152] J. R. Stewart and T. J. R. Hughes, “An a
posteriori error estimator and hp-adaptive strategy for finite element
discretizations of the Helmholtz equation in exterior domains,” *Finite
Elements in Analysis and Design*, vol. 25, no. 1–2, pp. 1–26, Mar. 1997. http://www.sciencedirect.com/science/article/pii/S0168874X96000595

[153] A. Masud and T. J. R. Hughes, “A space-time
Galerkin/least-squares finite element formulation of the Navier-Stokes
equations for moving domain problems,” *Computer Methods in Applied Mechanics
and Engineering*, vol. 146, no. 1–2, pp. 91–126, Jul. 1997. http://www.sciencedirect.com/science/article/pii/S0045782596012224

[154] M. Eldredge, T. J. R. Hughes, R. M. Ferencz,
S. M. Rifai, A. Raefsky, and B. Herndon, “High-performance parallel computing
in industry,” *Parallel Computing*, vol. 23, no. 9, pp. 1217–1233, Sep.
1997. http://www.sciencedirect.com/science/article/pii/S0167819197000495

[155] F. Brezzi, L. P. Franca, T. J. R. Hughes, and
A. Russo, “b = ∝ g,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 145, no. 3–4, pp. 329–339, Jun. 1997. http://www.sciencedirect.com/science/article/pii/S0045782596012212

[156] C. A. Taylor, T. J. R. Hughes, and C. K.
Zarins, “Computational investigations in vascular disease,” *Comput. Phys.*,
vol. 10, no. 3, pp. 224–232, Jun. 1996. http://dl.acm.org/citation.cfm?id=229737.229751

[157] J. R. Stewart and T. J. R. Hughes, “Explicit
residual-based a posteriori error estimation for finite element discretizations
of the Helmholtz equation: Computation of the constant and new measures of
error estimator quality,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 131, no. 3–4, pp. 335–363, May 1996. http://www.sciencedirect.com/science/article/pii/0045782595009531

[158] T. J. R. Hughes and J. R. Stewart, “A
space-time formulation for multiscale phenomena,” *Journal of Computational
and Applied Mathematics*, vol. 74, no. 1–2, pp. 217–229, Nov. 1996. http://www.sciencedirect.com/science/article/pii/0377042796000258

[159] I. Harari, K. Grosh, T. J. R. Hughes, M.
Malhotra, P. M. Pinsky, J. R. Stewart, and L. L. Thompson, “Recent developments
in finite element methods for structural acoustics,” *ARCO*, vol. 3, no. 2–3,
pp. 131–309, Jun. 1996. http://link.springer.com/article/10.1007/BF03041209

[160] Z. Johan, K. K. Mathur, S. L. Johnsson, and T.
J. R. Hughes, “A case study in parallel computation: Viscous flow around an
ONERA M6 wing,” *International Journal for Numerical Methods in Fluids*,
vol. 21, no. 10, pp. 877–884, 1995. http://onlinelibrary.wiley.com/doi/10.1002/fld.1650211008/abstract

[161] T. J. R. Hughes, A. Masud, and I. Harari, “Numerical
assessment of some membrane elements with drilling degrees of freedom,” *Computers
& Structures*, vol. 55, no. 2, pp. 297–314, Apr. 1995. http://www.sciencedirect.com/science/article/pii/0045794994004389

[162] T. J. R. Hughes, A. Masud, and I. Harari, “Dynamic
analysis and drilling degrees of freedom,” *International Journal for
Numerical Methods in Engineering*, vol. 38, no. 19, pp. 3193–3210, 1995. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620381902/abstract

[163] T. J. R. Hughes and K. Jansen, “A stabilized
finite element formulation for the Reynolds-averaged Navier-Stokes equations,” *Surv.
Math. Ind.*, vol. 4, pp. 279–317, 1995. http://users.ices.utexas.edu/~hughes/photo-album/1995_hughes_astabilizedfini.pdf

[164] T. J. R. Hughes, “Multiscale phenomena: Green’s
functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles
and the origins of stabilized methods,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 127, no. 1–4, pp. 387–401, Nov. 1995. http://www.sciencedirect.com/science/article/pii/0045782595008449

[165] Z. Johan, K. K. Mathur, S. L. Johnsson, and T.
J. R. Hughes, “Scalability of finite element applications on distributed-memory
parallel computers,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 119, no. 1–2, pp. 61–72, Nov. 1994. http://www.sciencedirect.com/science/article/pii/004578259400076X

[166] G. Hauke and T. J. R. Hughes, “A unified
approach to compressible and incompressible flows,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 113, no. 3–4, pp. 389–395, Mar.
1994. http://www.sciencedirect.com/science/article/pii/0045782594900558

[167] I. Harari and T. J. R. Hughes, “Studies of
domain-based formulations for computing exterior problems of acoustics,” *International
Journal for Numerical Methods in Engineering*, vol. 37, no. 17, pp. 2935–2950,
1994. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620371706/abstract

[168] I. Harari and T. J. . Hughes, “Stabilized
finite element methods for steady advection—diffusion with production,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 115, no. 1–2, pp. 165–191,
1994. http://www.sciencedirect.com/science/article/pii/0045782594901937

[169] J.-J. Droux and T. J. . Hughes, “A boundary
integral modification of the Galerkin least squares formulation for the Stokes
problem,” *Computer Methods in Applied Mechanics and Engineering*, vol.
113, no. 1–2, pp. 173–182, Mar. 1994. http://www.sciencedirect.com/science/article/pii/0045782594902178

[170] F. Chalot and T. J. R. Hughes, “A consistent
equilibrium chemistry algorithm for hypersonic flows,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 112, no. 1–4, pp. 25–40, Feb. 1994.
http://www.sciencedirect.com/science/article/pii/0045782594900175

[171] K. Jansen, Z. Johan, and T. J. R. Hughes, “Implementation
of a one-equation turbulence model within a stabilized finite element
formulation of a symmetric advective-diffusive system,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 105, no. 3, pp. 405–433, Jun. 1993.
http://www.sciencedirect.com/science/article/pii/0045782593900667

[172] T. J. . Hughes and K. Jansen, “Finite element
methods in wind engineering,” *Journal of Wind Engineering and Industrial
Aerodynamics*, vol. 46–47, pp. 297–313, Aug. 1993. http://www.sciencedirect.com/science/article/pii/016761059390296Z

[173] L. P. Franca and T. J. R. Hughes, “Convergence
analyses of Galerkin least-squares methods for symmetric advective-diffusive
forms of the Stokes and incompressible Navier-Stokes equations,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 105, no. 2, pp. 285–298,
Jun. 1993. http://www.sciencedirect.com/science/article/pii/004578259390126I

[174] N. Takashi and T. J. R. Hughes, “An arbitrary
Lagrangian-Eulerian finite element method for interaction of fluid and a rigid
body,” *Computer Methods in Applied Mechanics and Engineering*, vol. 95,
no. 1, pp. 115–138, Feb. 1992. http://www.sciencedirect.com/science/article/pii/004578259290085X

[175] J. C. Simo, D. D. Fox, and T. J. R. Hughes, “Formulations
of finite elasticity with independent rotations,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 95, no. 2, pp. 277–288, Mar. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901449

[176] Z. Johan, T. J. R. Hughes, K. K. Mathur, and
S. L. Johnsson, “A data parallel finite element method for computational fluid
dynamics on the Connection Machine system,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 99, no. 1, pp. 113–134, Aug. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901243

[177] I. Harari and T. J. R. Hughes, “What are C and
h?: Inequalities for the analysis and design of finite element methods,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 97, no. 2, pp. 157–192,
Jun. 1992. http://www.sciencedirect.com/science/article/pii/004578259290162D

[178] I. Harari and T. J. R. Hughes, “Galerkin/least-squares
finite element methods for the reduced wave equation with non-reflecting
boundary conditions in unbounded domains,” *Computer Methods in Applied Mechanics
and Engineering*, vol. 98, no. 3, pp. 411–454, Aug. 1992. http://www.sciencedirect.com/science/article/pii/0045782592900066

[179] I. Harari and T. J. R. Hughes, “Analysis of
continuous formulations underlying the computation of time-harmonic acoustics
in exterior domains,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 97, no. 1, pp. 103–124, May 1992. http://www.sciencedirect.com/science/article/pii/004578259290109W

[180] I. Harari and T. J. R. Hughes, “A cost
comparison of boundary element and finite element methods for problems of
time-harmonic acoustics,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 97, no. 1, pp. 77–102, May 1992. http://www.sciencedirect.com/science/article/pii/004578259290108V

[181] L. P. Franca, S. L. Frey, and T. J. R. Hughes,
“Stabilized finite element methods: I. Application to the advective-diffusive
model,” *Computer Methods in Applied Mechanics and Engineering*, vol. 95,
no. 2, pp. 253–276, Mar. 1992. http://www.sciencedirect.com/science/article/pii/0045782592901438

[182] H. J. C. Barbosa and T. J. R. Hughes, “Circumventing
the Babuška-Brezzi condition in mixed finite element approximations of elliptic
variational inequalities,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 97, no. 2, pp. 193–210, Jun. 1992. http://www.sciencedirect.com/science/article/pii/004578259290163E

[183] F. Shakib, T. J. R. Hughes, and Z. Johan, “A
new finite element formulation for computational fluid dynamics: X. The
compressible Euler and Navier-Stokes equations,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 89, no. 1–3, pp. 141–219, Aug. 1991. http://www.sciencedirect.com/science/article/pii/0045782591900414

[184] F. Shakib and T. J. R. Hughes, “A new finite
element formulation for computational fluid dynamics: IX. Fourier analysis of
space-time Galerkin/least-squares algorithms,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 87, no. 1, pp. 35–58, May 1991. http://www.sciencedirect.com/science/article/pii/004578259190145V

[185] Z. Johan, T. J. R. Hughes, and F. Shakib, “A
MATRIX-FREE IMPLICIT ITERATIVE SOLVER FOR COMPRESSIBLE FLOW PROBLEMS,” *Rend.
Sem. Mat. Univ. Pol. Torino Fascicolo Speciale*, pp. 141–161, 1991. http://users.ices.utexas.edu/~hughes/photo-album/1991_johan_amatrixfreeimpli.pdf

[186] Z. Johan and T. J. R. Hughes, “A globally
convergent matrix-free algorithm for implicit time-marching schemes arising in
finite element analysis in fluids,” *Computer Methods in Applied Mechanics
and Engineering*, vol. 87, no. 2–3, pp. 281–304, Jun. 1991. http://www.sciencedirect.com/science/article/pii/004578259190009U

[187] I. Harari and T. J. R. Hughes, “Finite element
methods for the helmholtz equation in an exterior domain: Model problems,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 87, no. 1, pp. 59–96,
May 1991. http://www.sciencedirect.com/science/article/pii/004578259190146W

[188] H. J. C. Barbosa and T. J. R. Hughes, “The
finite element method with Lagrange multipliers on the boundary: circumventing
the Babuška-Brezzi condition,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 85, no. 1, pp. 109–128, Jan. 1991. http://www.sciencedirect.com/science/article/pii/004578259190125P

[189] G. M. Hulbert and T. J. R. Hughes, “Space-time
finite element methods for second-order hyperbolic equations,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 84, no. 3, pp. 327–348,
Dec. 1990. http://www.sciencedirect.com/science/article/pii/004578259090082W

[190] I. Harari and T. J. R. Hughes, “Design and
Analysis of Finite Element Methods for the Helmholtz Equation in Exterior
Domains,” *Appl. Mech. Rev.*, vol. 43, no. 5S, pp. S366–S373, May 1990. http://dx.doi.org/10.1115/1.3120842

[191] F. Chalot, T. J. R. Hughes, and F. Shakib, “Symmetrization
of conservation laws with entropy for high-temperature hypersonic computations,”
*Computing Systems in Engineering*, vol. 1, no. 2–4, pp. 495–521, 1990. http://www.sciencedirect.com/science/article/pii/095605219090032G

[192] F. Shakib, T. J. R. Hughes, and Z. Johan, “A
multi-element group preconditioned GMRES algorithm for nonsymmetric systems
arising in finite element analysis,” *Computer Methods in Applied Mechanics
and Engineering*, vol. 75, no. 1–3, pp. 415–456, Oct. 1989. http://www.sciencedirect.com/science/article/pii/0045782589900406

[193] I. Miranda, R. M. Ferencz, and T. J. R.
Hughes, “An improved implicit-explicit time integration method for structural
dynamics,” *Earthquake Engineering & Structural Dynamics*, vol. 18,
no. 5, pp. 643–653, 1989. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290180505/abstract

[194] A. F. D. Loula, I. Miranda, T. J. R. Hughes,
and L. P. Franca, “On mixed finite element methods for axisymmetric shell
analysis,” *Computer Methods in Applied Mechanics and Engineering*, vol.
72, no. 2, pp. 201–231, Feb. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901618

[195] T. J. R. Hughes, L. P. Franca, and G. M.
Hulbert, “A new finite element formulation for computational fluid dynamics:
VIII. The galerkin/least-squares method for advective-diffusive equations,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 73, no. 2, pp. 173–189,
May 1989. http://www.sciencedirect.com/science/article/pii/0045782589901114

[196] T. J. R. Hughes and F. Brezzi, “On drilling
degrees of freedom,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 72, no. 1, pp. 105–121, Jan. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901242

[197] T. J. R. Hughes, “New directions in
computational mechanics,” *Nuclear Engineering and Design*, vol. 114, no.
2, pp. 197–210, Jun. 1989. http://www.sciencedirect.com/science/article/pii/002954938990191X

[198] C. Hoff, T. J. R. Hughes, G. Hulbert, and P.
J. Pahl, “Extended comparison of the Hilber-Hughes-Taylor α-method and the Θ1-method,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 76, no. 1,
pp. 87–93, Nov. 1989. http://www.sciencedirect.com/science/article/pii/0045782589901424

[199] T. J. R. Hughes and G. M. Hulbert, “Space-time
finite element methods for elastodynamics: Formulations and error estimates,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 66, no. 3, pp. 339–363,
Feb. 1988. http://www.sciencedirect.com/science/article/pii/0045782588900060

[200] T. J. R. Hughes and L. P. Franca, “Convergence
of transverse shear stresses in the finite element analysis of plates,” *Communications
in Applied Numerical Methods*, vol. 4, no. 2, pp. 185–187, 1988. http://onlinelibrary.wiley.com/doi/10.1002/cnm.1630040208/abstract

[201] T. J. R. Hughes and L. P. Franca, “A mixed
finite element formulation for Reissner-mindlin plate theory: Uniform
convergence of all higher-order spaces,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 67, no. 2, pp. 223–240, Mar. 1988. http://www.sciencedirect.com/science/article/pii/0045782588901272

[202] L. P. Franca, T. J. R. Hughes, A. F. D. Loula,
and I. Miranda, “A new family of stable elements for nearly incompressible
elasticity based on a mixed Petrov-Galerkin finite element formulation,” *Numer.
Math.*, vol. 53, no. 1–2, pp. 123–141, Jan. 1988. http://link.springer.com/article/10.1007/BF01395881

[203] L. P. Franca and T. J. R. Hughes, “Two classes
of mixed finite element methods,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 69, no. 1, pp. 89–129, Jul. 1988. http://www.sciencedirect.com/science/article/pii/0045782588901685

[204] A. F. D. Loula, T. J. R. Hughes, and L. P.
Franca, “Petrov-Galerkin formulations of the Timoshenko beam problem,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 63, no. 2, pp. 115–132,
Jul. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901678

[205] A. F. D. Loula, T. J. R. Hughes, L. P. Franca,
and I. Miranda, “Mixed Petrov-Galerkin methods for the Timoshenko beam problem,”
*Computer Methods in Applied Mechanics and Engineering*, vol. 63, no. 2,
pp. 133–154, Jul. 1987. http://www.sciencedirect.com/science/article/pii/004578258790168X

[206] A. F. D. Loula, L. P. Franca, T. J. R. Hughes,
and I. Miranda, “Stability, convergence and accuracy of a new finite element
method for the circular arch problem,” *Computer Methods in Applied Mechanics
and Engineering*, vol. 63, no. 3, pp. 281–303, Aug. 1987. http://www.sciencedirect.com/science/article/pii/0045782587900740

[207] G. M. Hulbert and T. J. R. Hughes, “An error
analysis of truncated starting conditions in step-by-step time integration:
Consequences for structural dynamics,” *Earthquake Engineering &
Structural Dynamics*, vol. 15, no. 7, pp. 901–910, 1987. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290150710/abstract

[208] T. J. R. Hughes, L. P. Franca, and M. Mallet, “A
new finite element formulation for computational fluid dynamics: VI.
Convergence analysis of the generalized SUPG formulation for linear
time-dependent multidimensional advective-diffusive systems,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 63, no. 1, pp. 97–112,
Jul. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901253

[209] T. J. R. Hughes and L. P. Franca, “A new
finite element formulation for computational fluid dynamics: VII. The stokes
problem with various well-posed boundary conditions: Symmetric formulations
that converge for all velocity/pressure spaces,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 65, no. 1, pp. 85–96, Nov. 1987. http://www.sciencedirect.com/science/article/pii/0045782587901848

[210] T. J. R. Hughes, T. Belytschko, and W. K. Liu,
“Convergence of an element-partitioned subcycling algorithm for the
semi-discrete heat equation,” *Numerical Methods for Partial Differential
Equations*, vol. 3, no. 2, pp. 131–137, 1987. http://onlinelibrary.wiley.com/doi/10.1002/num.1690030205/abstract

[211] T. J. R. Hughes, “Recent progress in the
development and understanding of SUPG methods with special reference to the
compressible Euler and Navier-Stokes equations,” *International Journal for
Numerical Methods in Fluids*, vol. 7, no. 11, pp. 1261–1275, 1987. http://onlinelibrary.wiley.com/doi/10.1002/fld.1650071108/abstract

[212] J. C. Simo and T. J. R. Hughes, “On the
Variational Foundations of Assumed Strain Methods,” *J. Appl. Mech.*, vol.
53, no. 1, pp. 51–54, Mar. 1986. http://dx.doi.org/10.1115/1.3171737

[213] A. MULLER and T. J. R. HUGHES, “PRECONDICIONADORES
ELEMENTO-POR-ELEMENTO Y GLOBALES. UNA PERSPECTIVA*.,” *Revista internacional
de metodos numericos para calculo y disefio’en ingenieria*, vol. 2, no. 1,
pp. 27–41, 1986. http://users.ices.utexas.edu/~hughes/photo-album/1986_muller_precondicionado.pdf

[214] T. J. R. Hughes, L. P. Franca, and M. Mallet, “A
new finite element formulation for computational fluid dynamics: I. Symmetric
forms of the compressible Euler and Navier-Stokes equations and the second law
of thermodynamics,” *Computer Methods in Applied Mechanics and Engineering*,
vol. 54, no. 2, pp. 223–234, Feb. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901271

[215] T. J. R. Hughes and F. Shakib, “Pseudo-corner
theory: a simple enhancement of J2-flow theory for applications involving
non-proportional loading,” *Engineering Computations*, vol. 3, no. 2, pp.
116–120, Dec. 1986. http://www.emeraldinsight.com/journals.htm?articleid=1662554

[216] T. J. R. Hughes, M. Mallet, and M. Akira, “A
new finite element formulation for computational fluid dynamics: II. Beyond
SUPG,” *Computer Methods in Applied Mechanics and Engineering*, vol. 54,
no. 3, pp. 341–355, Mar. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901106

[217] T. J. R. Hughes and M. Mallet, “A new finite
element formulation for computational fluid dynamics: IV. A discontinuity-capturing
operator for multidimensional advective-diffusive systems,” *Computer Methods
in Applied Mechanics and Engineering*, vol. 58, no. 3, pp. 329–336, Nov.
1986. http://www.sciencedirect.com/science/article/pii/0045782586901532

[218] T. J. R. Hughes and M. Mallet, “A new finite
element formulation for computational fluid dynamics: III. The generalized
streamline operator for multidimensional advective-diffusive systems,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 58, no. 3, pp. 305–328,
Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586901520

[219] T. J. R. Hughes, L. P. Franca, and M.
Balestra, “A new finite element formulation for computational fluid dynamics:
V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin
formulation of the stokes problem accommodating equal-order interpolations,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 59, no. 1, pp. 85–99,
Nov. 1986. http://www.sciencedirect.com/science/article/pii/0045782586900253

[220] J. M. Winget and T. J. R. Hughes, “Solution
algorithms for nonlinear transient heat conduction analysis employing
element-by-element iterative strategies,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 52, no. 1–3, pp. 711–815, Sep. 1985. http://www.sciencedirect.com/science/article/pii/0045782585900155

[221] A. Tessler and T. J. R. Hughes, “A three-node
mindlin plate element with improved transverse shear,” *Computer Methods in
Applied Mechanics and Engineering*, vol. 50, no. 1, pp. 71–101, Jul. 1985. http://www.sciencedirect.com/science/article/pii/0045782585901148

[222] A. Mizukami and T. J. R. Hughes, “A
Petrov-Galerkin finite element method for convection-dominated flows: An
accurate upwinding technique for satisfying the maximum principle,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 50, no. 2, pp. 181–193,
Aug. 1985. http://www.sciencedirect.com/science/article/pii/0045782585900891

[223] T. J. R. Hughes and T. E. Tezduyar, “Analysis
of some fully-discrete algorithms for the one-dimensional heat equation,” *International
Journal for Numerical Methods in Engineering*, vol. 21, no. 1, pp. 163–168,
1985. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620210113/abstract

[224] T. J. R. Hughes, “Discussion of a numerical
study of localized deformation in bi-crystals,” *Mechanics of Materials*,
vol. 4, no. 3–4, pp. 437–438, Dec. 1985. http://www.sciencedirect.com/science/article/pii/0167663685900389

[225] T. J. R. Hughes and T. E. Tezduyar, “Finite
element methods for first-order hyperbolic systems with particular emphasis on
the compressible euler equations,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 45, no. 1–3, pp. 217–284, Sep. 1984. http://www.sciencedirect.com/science/article/pii/0045782584901579

[226] T. J. R. Hughes and T. E. Tezduyar, “Stability
and accuracy analysis of some fully-discrete algorithms for the one-dimensional
second-order wave equation,” *Computers & Structures*, vol. 19, no. 4,
pp. 665–668, 1984. http://www.sciencedirect.com/science/article/pii/0045794984901135

[227] A. Tessler and T. J. R. Hughes, “An improved
treatment of transverse shear in the mindlin-type four-node quadrilateral
element,” *Computer Methods in Applied Mechanics and Engineering*, vol.
39, no. 3, pp. 311–335, Sep. 1983. http://www.sciencedirect.com/science/article/pii/0045782583900968

[228] T. Hughes, I. Levit, and J. Winget, “Element‐by‐Element Implicit Algorithms for Heat Conduction,” *Journal of
Engineering Mechanics*, vol. 109, no. 2, pp. 576–585, 1983. http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281983%29109%3A2%28576%29

[229] T. J. R. Hughes and T. Belytschko, “A Précis
of Developments in Computational Methods for Transient Analysis,” *J. Appl.
Mech.*, vol. 50, no. 4b, pp. 1033–1041, Dec. 1983. http://dx.doi.org/10.1115/1.3167186

[230] T. J. R. Hughes, I. Levit, and J. Winget, “An
element-by-element solution algorithm for problems of structural and solid
mechanics,” *Computer Methods in Applied Mechanics and Engineering*, vol.
36, no. 2, pp. 241–254, Feb. 1983. http://www.sciencedirect.com/science/article/pii/0045782583901159

[231] T. J. R. Hughes and E. Carnoy, “Nonlinear
finite element shell formulation accounting for large membrane strains,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 39, no. 1, pp. 69–82,
Jul. 1983. http://www.sciencedirect.com/science/article/pii/0045782583900749

[232] E. G. Carnoy and T. J. R. Hughes, “Finite
element analysis of the secondary buckling of a flat plate under uniaxial
compression,” *International Journal of Non-Linear Mechanics*, vol. 18,
no. 2, pp. 167–175, 1983. http://www.sciencedirect.com/science/article/pii/0020746283900434

[233] J. M. Winget and T. J. R. Hughes, “A profile
solver for specially structured symmetric-unsymmetric equation systems,” *Advances
in Engineering Software (1978)*, vol. 4, no. 2, pp. 64–67, Apr. 1982. http://www.sciencedirect.com/science/article/pii/S0141119582800557

[234] A. N. Brooks and T. J. R. Hughes, “Streamline
upwind/Petrov-Galerkin formulations for convection dominated flows with
particular emphasis on the incompressible Navier-Stokes equations,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 32, no. 1–3, pp. 199–259,
Sep. 1982. http://www.sciencedirect.com/science/article/pii/0045782582900718

[235] J. H. Prevost and T. J. R. Hughes, “Finite-Element
Solution of Elastic-Plastic Boundary-Value Problems,” *J. Appl. Mech.*,
vol. 48, no. 1, pp. 69–74, Mar. 1981. http://dx.doi.org/10.1115/1.3157594

[236] J. H. Prevost, R. F. Scott, T. J. R. Hughes,
and B. Cuny, “Offshore Gravity Structures: Analysis,” *Journal of the
Geotechnical Engineering Division*, vol. 107, no. 2, pp. 143–165, Feb. 1981.
http://cedb.asce.org/cgi/WWWdisplay.cgi?10036

[237] W. Kanok-Nukulchai, R. L. Taylor, and T. J. R.
Hughes, “A large deformation formulation for shell analysis by the finite
element method,” *Computers & Structures*, vol. 13, no. 1–3, pp. 19–27,
Jun. 1981. http://www.sciencedirect.com/science/article/pii/004579498190105X

[238] T. J. R. Hughes and T. E. Tezduyar, “Finite
Elements Based Upon Mindlin Plate Theory With Particular Reference to the
Four-Node Bilinear Isoparametric Element,” *J. Appl. Mech.*, vol. 48, no.
3, pp. 587–596, Sep. 1981. http://dx.doi.org/10.1115/1.3157679

[239] T. J. R. Hughes and R. A. Stephenson, “Convergence
of implicit-explicit algorithms in nonlinear transient analysis,” *International
Journal of Engineering Science*, vol. 19, no. 2, pp. 295–302, 1981. http://www.sciencedirect.com/science/article/pii/0020722581900306

[240] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann,
“Lagrangian-Eulerian finite element formulation for incompressible viscous
flows,” *Computer Methods in Applied Mechanics and Engineering*, vol. 29,
no. 3, pp. 329–349, Dec. 1981. http://www.sciencedirect.com/science/article/pii/0045782581900499

[241] T. J. R. Hughes and W. K. Liu, “Nonlinear
finite element analysis of shells: Part I. three-dimensional shells,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 26, no. 3, pp. 331–362,
Jun. 1981. http://www.sciencedirect.com/science/article/pii/0045782581901213

[242] T. J. R. Hughes and W. K. Liu, “Nonlinear
finite element analysis of shells-part II. two-dimensional shells,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 27, no. 2, pp. 167–181,
Jul. 1981. http://www.sciencedirect.com/science/article/pii/0045782581901481

[243] J. Prevost, T. Hughes, and M. Cohen, “Analysis
of Gravity Offshore Structure Foundations,” *Journal of Petroleum Technology*,
vol. 32, no. 2, Feb. 1980. http://www.onepetro.org/mslib/app/Preview.do?paperNumber=00007239&societyCode=SPE

[244] T. J. R. Hughes and J. Winget, “Finite
rotation effects in numerical integration of rate constitutive equations
arising in large-deformation analysis,” *International Journal for Numerical
Methods in Engineering*, vol. 15, no. 12, pp. 1862–1867, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620151210/abstract

[245] T. J. R. Hughes and J. E. Akin, “Techniques
for developing ‘special’ finite element shape functions with particular
reference to singularities,” *International Journal for Numerical Methods in
Engineering*, vol. 15, no. 5, pp. 733–751, 1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620150509/abstract

[246] T. J. R. HUGHES, “Some Current Trends In
Finite Element Research,” *AMR*, vol. 33, no. 11, pp. 1467–1477, Nov.
1980. http://users.ices.utexas.edu/~hughes/photo-album/1980_hughes_somecurrenttren.pdf

[247] T. J. R. Hughes, “Recent developments in
computer methods for structural analysis,” *Nuclear Engineering and Design*,
vol. 57, no. 2, pp. 427–439, May 1980. http://www.sciencedirect.com/science/article/pii/0029549380901168

[248] T. J. R. Hughes, “Generalization of selective
integration procedures to anisotropic and nonlinear media,” *International
Journal for Numerical Methods in Engineering*, vol. 15, no. 9, pp. 1413–1418,
1980. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620150914/abstract

[249] T. J. R. Hughes, K. S. Pister, and R. L.
Taylor, “Implicit-explicit finite elements in nonlinear transient analysis,” *Computer
Methods in Applied Mechanics and Engineering*, vol. 17–18, Part 1, pp. 159–182,
Jan. 1979. http://www.sciencedirect.com/science/article/pii/0045782579900860

[250] T. J. R. Hughes, W. K. Liu, and A. Brooks, “Finite
element analysis of incompressible viscous flows by the penalty function
formulation,” *Journal of Computational Physics*, vol. 30, no. 1, pp. 1–60,
Jan. 1979. http://www.sciencedirect.com/science/article/pii/002199917990086X

[251] D. S. Malkus and T. J. R. Hughes, “Mixed
finite element methods — Reduced and selective integration techniques: A
unification of concepts,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 15, no. 1, pp. 63–81, Jul. 1978. http://www.sciencedirect.com/science/article/pii/0045782578900051

[252] T. J. R. Hughes and W. K. Liu, “Implicit-Explicit
Finite Elements in Transient Analysis: Stability Theory,” *J. Appl. Mech.*,
vol. 45, no. 2, pp. 371–374, Jun. 1978. http://dx.doi.org/10.1115/1.3424304

[253] T. J. R. Hughes and W. K. Liu, “Implicit-Explicit
Finite Elements in Transient Analysis: Implementation and Numerical Examples,” *J.
Appl. Mech.*, vol. 45, no. 2, pp. 375–378, Jun. 1978. http://dx.doi.org/10.1115/1.3424305

[254] T. J. R. Hughes, T. K. Caughey, and W. K. Liu,
“Finite-Element Methods for Nonlinear Elastodynamics Which Conserve Energy,” *J.
Appl. Mech.*, vol. 45, no. 2, pp. 366–370, Jun. 1978. http://dx.doi.org/10.1115/1.3424303

[255] T. J. R. Hughes and R. L. Taylor, “Unconditionally
stable algorithms for quasi-static elasto/visco-plastic finite element
analysis,” *Computers & Structures*, vol. 8, no. 2, pp. 169–173, Apr.
1978. http://www.sciencedirect.com/science/article/pii/0045794978900196

[256] T. J. R. Hughes and K. S. Pister, “Consistent
linearization in mechanics of solids and structures,” *Computers &
Structures*, vol. 8, no. 3–4, pp. 391–397, May 1978. http://www.sciencedirect.com/science/article/pii/0045794978901839

[257] T. J. R. Hughes and J. E. Marsden, “Classical
elastodynamics as a linear symmetric hyperbolic system,” *J Elasticity*,
vol. 8, no. 1, pp. 97–110, Jan. 1978. http://link.springer.com/article/10.1007/BF00044512

[258] T. J. R. Hughes, M. Cohen, and M. Haroun, “Reduced
and selective integration techniques in the finite element analysis of plates,”
*Nuclear Engineering and Design*, vol. 46, no. 1, pp. 203–222, Mar. 1978. http://www.sciencedirect.com/science/article/pii/002954937890184X

[259] T. J. R. Hughes and M. Cohen, “The ‘heterosis’
finite element for plate bending,” *Computers & Structures*, vol. 9,
no. 5, pp. 445–450, Nov. 1978. http://www.sciencedirect.com/science/article/pii/004579497890041X

[260] T. J. R. Hughes, “A simple scheme for
developing ‘upwind’ finite elements,” *International Journal for Numerical
Methods in Engineering*, vol. 12, no. 9, pp. 1359–1365, 1978. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620120904/abstract

[261] H. M. Hilber and T. J. R. Hughes, “Collocation,
dissipation and [overshoot] for time integration schemes in structural
dynamics,” *Earthquake Engineering & Structural Dynamics*, vol. 6, no.
1, pp. 99–117, 1978. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290060111/abstract

[262] A. J. Chorin, T. J. R. Hughes, M. F.
McCracken, and J. E. Marsden, “Product formulas and numerical algorithms,” *Communications
on Pure and Applied Mathematics*, vol. 31, no. 2, pp. 205–256, 1978. http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160310205/abstract

[263] T. J. R. Hughes, “Equivalence of Finite
Elements for Nearly Incompressible Elasticity,” *J. Appl. Mech.*, vol. 44,
no. 1, pp. 181–183, Mar. 1977. http://dx.doi.org/10.1115/1.3423994

[264] T. J. R. Hughes, R. L. Taylor, and W.
Kanoknukulchai, “A simple and efficient finite element for plate bending,” *International
Journal for Numerical Methods in Engineering*, vol. 11, no. 10, pp. 1529–1543,
1977. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620111005/abstract

[265] T. J. R. Hughes and J. E. Marsden, “Some
applications of geometry in continuum mechanics,” *Reports on Mathematical
Physics*, vol. 12, no. 1, pp. 35–44, Aug. 1977. http://www.sciencedirect.com/science/article/pii/0034487777900441

[266] T. J. R. Hughes, T. Kato, and J. E. Marsden, “Well-posed
quasi-linear second-order hyperbolic systems with applications to nonlinear
elastodynamics and general relativity,” *Arch. Rational Mech. Anal.*, vol.
63, no. 3, pp. 273–294, Sep. 1977. http://link.springer.com/article/10.1007/BF00251584

[267] T. J. R. Hughes, “Unconditionally stable
algorithms for nonlinear heat conduction,” *Computer Methods in Applied
Mechanics and Engineering*, vol. 10, no. 2, pp. 135–139, Feb. 1977. http://www.sciencedirect.com/science/article/pii/0045782577900019

[268] T. J. R. Hughes, “A note on the stability of
Newmark’s algorithm in nonlinear structural dynamics,” *International Journal
for Numerical Methods in Engineering*, vol. 11, no. 2, pp. 383–386, 1977. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620110212/abstract

[269] H. M. Hilber, T. J. R. Hughes, and R. L.
Taylor, “Improved numerical dissipation for time integration algorithms in
structural dynamics,” *Earthquake Engineering & Structural Dynamics*,
vol. 5, no. 3, pp. 283–292, 1977. http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290050306/abstract

[270] T. J. R. Hughes, R. L. Taylor, J. L. Sackman,
A. Curnier, and W. Kanoknukulchai, “A finite element method for a class of
contact-impact problems,” *Computer Methods in Applied Mechanics and
Engineering*, vol. 8, no. 3, pp. 249–276, Jul. 1976. http://www.sciencedirect.com/science/article/pii/0045782576900189

[271] T. J. R. Hughes, H. M. Hilber, and R. L. Taylor,
“A reduction scheme for problems of structural dynamics,” *International
Journal of Solids and Structures*, vol. 12, no. 11, pp. 749–767, 1976. http://www.sciencedirect.com/science/article/pii/0020768376900408

[272] T. J. R. Hughes, “Stability, convergence and
growth and decay of energy of the average acceleration method in nonlinear
structural dynamics,” *Computers & Structures*, vol. 6, no. 4–5, pp.
313–324, Aug. 1976. http://www.sciencedirect.com/science/article/pii/0045794976900079

[273] T. J. R. Hughes, “Reduction scheme for some
structural eigenvalue problems by a variational theorem,” *International
Journal for Numerical Methods in Engineering*, vol. 10, no. 4, pp. 845–852,
1976. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620100411/abstract

[274] T. J. R. Hughes and J. Lubliner, “On the
one-dimensional theory of blood flow in the larger vessels,” *Mathematical
Biosciences*, vol. 18, no. 1–2, pp. 161–170, Oct. 1973. http://www.sciencedirect.com/science/article/pii/0025556473900278

[275] H. Allik and T. J. R. Hughes, “Finite element
method for piezoelectric vibration,” *International Journal for Numerical
Methods in Engineering*, vol. 2, no. 2, pp. 151–157, 1970. http://onlinelibrary.wiley.com/doi/10.1002/nme.1620020202/abstract