Parallel in Time Algorithms for Multiscale Dynamical Systems using Interpolation and Neural Networks

Gopal Yalla Björn Engquist

University of Texas at Austin Institute for Computational Engineering and Sciences

April 17, 2018

Outline

- 1 Parallel in Time Algorithms
- 2 Parareal Algorithm
- 3 Phase-accurate Coarse Solver
- 4 Numerical Examples
- 6 Future Work

Parallel in Time Algorithms¹

• Required for massively parallel simulations of systems governed by time-dependent dynamical systems, e.g., molecular dynamics.

• Challenge arises due to causality in time.

¹Martin J Gander. "50 years of time parallel time integration". In: *Multiple Shooting and Time Domain Decomposition Methods*. Springer, 2015, pp. 69–113.

Yalla & Engquist

Parallel in Time Algorithms

Parallel in Time Algorithms¹

Multiple Shooting Methods

2 Domain Decomposition & Waveform Relaxation Methods

3 Multigrid Based Methods

¹Martin J Gander. "50 years of time parallel time integration". In: *Multiple Shooting and Time Domain Decomposition Methods*. Springer, 2015, pp. 69–113.

Yalla & Engquist

Parallel in Time Algorithms

The Parareal Algorithm

Consider the dynamical system:

$$u'(t) = f(u(t)), \qquad t \in (t_0, t_f)$$

 $u(t_0) = u_0$ (1)

Divide the time domain (t_0, t_f) into N equal subdomains $\Omega_n = (T_n, T_{n+1})$.

$$u'_{n}(t) = f(u_{n}(t))$$
 $t \in (T_{n}, T_{n+1})$
 $u(T_{n}) = U_{n}$ (2)

This is simply a shooting method in time, and it equivalent to solving:

$$\begin{pmatrix} U_0 - u_0 \\ U_1 - \phi_{\Delta T_0}(U_0) \\ \vdots \\ U_{N-1} - \phi_{\Delta T_{N-2}}(U_{N-2})) \end{pmatrix} = 0$$
(3)

where $\phi_{\Delta T_n}(U_n)$ is solution of (1) with initial condition U_n after time ΔT_n .

The Parareal Algorithm

Consider the dynamical system:

$$u'(t) = f(u(t)), \qquad t \in (t_0, t_f)$$

 $u(t_0) = u_0$ (1)

Divide the time domain (t_0, t_f) into N equal subdomains $\Omega_n = (T_n, T_{n+1})$.

Parareal Algorithm

$$\begin{split} U_0^{k+1} &= u_0 \\ U_n^{k+1} &= \mathcal{G}(U_{n-1}^{k+1}) + \left[\mathcal{F}(U_{n-1}^k) - \mathcal{G}(U_{n-1}^k) \right] \end{split}$$

- U_n^k is the solution $u(T_n)$ on the k^{th} iteration of the algorithm.
- G denotes a coarse solver
- \mathcal{F} denotes a fine solver

Video Source: https://en.wikipedia.org/wiki/Parareal

Efficiency = Iterations for Convergence / Total Number of Steps

Video Source: https://en.wikipedia.org/wiki/Parareal

Drawbacks of the Parareal Algorithm

For Hamiltonian systems, very high accuracy is required for the coarse solver!² A good coarse approximation is needed.

Typical coarse integrators fail to predict phase correctly, leading to blow up of error during correction step with fine solver.

²Martin J Gander and Ernst Hairer. "Analysis for parareal algorithms applied to Hamiltonian differential equations". In: *Journal of Computational and Applied Mathematics* 259 (2014), pp. 2–13.

Consider a set of M initial conditions (training points) $\{u_0^i\}_{i=1}^M$ and a set of M corresponding (target points) $\{v^i\}_{i=1}^M$ defined by,

$$v^i = \mathcal{F}\left(u_0^i\right) \qquad i = 1, \dots, M$$

The set $\{u_0^i \to v^i\}_{i=1}^M$ acts as a type of look-up table for future initials conditions³.

Definition

Define a phase plane map $\mathcal{G}^{map}(\left\{u_0^i \to v^i\right\}_{i=1}^M, U_n)$ to be a coarse solver that uses the information contained in $\left\{u_0^i \to v^i\right\}_{i=1}^M$ and a point U_n at time T_n , to determine the solution U_{n+1} at time T_{n+1} . \mathcal{G}^{map} can be defined through, e.g., Interpolation or a Neural Network.

³Jürg Nievergelt. "Parallel methods for integrating ordinary differential equations". In: *Communications of the ACM* 7.12 (1964), pp. 731–733.

Yalla & Engquist

Parallel in Time Algorithms

The computation of $v^i = \mathcal{F}(u_0^i)$ is embarrassingly parallel.

For autonomous ODEs, \mathcal{G}^{map} can be applied over each subdomain Ω_n . Else, generate $\{u_j^i \to v^i\}_{i=1}^M$ for each Ω_j , $j = 0, \ldots, N-1$.

Numerical Examples

- Traditional parareal algorithm $\implies \mathcal{G} = \mathsf{RK4}$ with step size T/N
- Modified parareal algorithm $\implies \mathcal{G} =$ phase plane map with step size T/N
- For both, the fine solver is an adaptive RK45 solver.
- T = Total Simulation Time.
- N = Number of time-subdomains Ω_n .

Harmonic Oscillator

Consider a simple harmonic oscillator:

$$\dot{x_1} = \frac{1}{\varepsilon} x_2$$
$$\dot{x_2} = \frac{-1}{\varepsilon} x_1$$

with

- $\varepsilon = 0.01$
- T = 70 (1000 revolutions)
- $\mathbf{x}(0) = [-2/9, -2/3]^T$

Harmonic Oscillator

Lennard-Jones System

$$r'' = \frac{2}{m}F(r)$$

$$F(r) = -\nabla V(r)$$

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

- ε = "well depth"
- σ = zero distance
- $r_{\min} = 1.12$

Lennard-Jones System

$$T = 50$$
 $N = 400$ $\mathbf{r}_0 = [1.2, 0]^T$ M=50

Yalla & Engquist

		-	
Yalla	x	⊢n∩	i ai i i e
Tunu	6	Ling	quiu

3

5

April 17, 2018 14/20

High Dimensional Harmonic Oscillator

$$\dot{\mathbf{x}} = \frac{1}{\varepsilon} A \mathbf{x}$$

where $x = [x_1, v_1, x_2, v_2, x_3, v_3, x_4, v_4]^T$, $\varepsilon = 0.01$, and $A \in \mathbb{R}^{8 \times 8}$ is defined as,

High Dimensional Harmonic Oscillator

$$\dot{\mathbf{x}} = \frac{1}{\varepsilon} A \mathbf{x}$$

where $x = [x_1, v_1, x_2, v_2, x_3, v_3, x_4, v_4]^T$, $\varepsilon = 0.01$, and $A \in \mathbb{R}^{8 \times 8}$ is defined as,

*Neural network defined with logistic activation function, size 1000×1 , with a limited memory BFGS solver for optimization.

Yalla & Engquist

Parallel in Time Algorithms

Yalla & Engquist

April 17, 2018 16 / 20

Localized Multiscale Problem

- Type A: Problems that contain local defects or singularities. Microscale model needed only near defects.
- 2 Type B: Microscale model needed everywhere as a supplement to macroscale model, e.g., resolve constitutive model.⁴.

Type A Example: An N-body Problem:

$$m_i \mathbf{\ddot{q}}_i = \sum_{j \neq i}^n \frac{m_i m_j (\mathbf{q}_j - \mathbf{q}_i)}{\|\mathbf{q}_j - \mathbf{q}_i\|^3}$$

- m_i denotes the mass of the i^{th} body.
- \mathbf{q}_i denotes the position of the i^{th} body.

Let n = 2 and assume $m_2 >> m_1$.

⁴Weinan E. *Principles of multiscale modeling*. Cambridge University Press, 2011. Yalla & Engquist Parallel in Time Algorithms April 17, 2018

17/20

Apply a traditional parareal algorithm with

- ightarrow RK45 as fine scale solver with adaptive step size.
- \rightarrow RK4 as coarse solver with step size T/N.

Conclusion & Future Work

- Parallel in time algorithms needed for massively parallel simulations of time dependent dynamical systems.
- Results for parareal + phase plane map show promise. Demonstrate a proof of concept.
- Future Work
 - Potential Improvements include use of modern sparse grid and adaptive methods for interpolation or optimizing neural network approach.
 - ► More realistic examples in the realm of molecular dynamics.
 - Scaling/speedup results on modern supercomputing platforms.

References

- Weinan E. *Principles of multiscale modeling*. Cambridge University Press, 2011.
- Martin J Gander. "50 years of time parallel time integration". In: Multiple Shooting and Time Domain Decomposition Methods. Springer, 2015, pp. 69–113.
- Martin J Gander and Ernst Hairer. "Analysis for parareal algorithms applied to Hamiltonian differential equations". In: *Journal of Computational and Applied Mathematics* 259 (2014), pp. 2–13.
- Jacques-Louis Lions, Yvon Maday, et al. "A parareal method in time discretization of pde's". In: *Comptes Rendus de l'Académie des Sciences-Series I-Mathematics* 332.7 (2001), pp. 661–668.
- Jürg Nievergelt. "Parallel methods for integrating ordinary differential equations". In: *Communications of the ACM* 7.12 (1964), pp. 731–733.

*Code will be available at https://github.com/gyalla/interpareal