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Parallel in Time Algorithms1

• Required for massively parallel simulations of systems governed by
time-dependent dynamical systems, e.g., molecular dynamics.

• Challenge arises due to causality in time.

1Martin J Gander. “50 years of time parallel time integration”. In: Multiple Shooting and
Time Domain Decomposition Methods. Springer, 2015, pp. 69–113.
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Parallel in Time Algorithms1

1 Multiple Shooting Methods

2 Domain Decomposition &
Waveform Relaxation Methods

3 Multigrid Based Methods

1Martin J Gander. “50 years of time parallel time integration”. In: Multiple Shooting and
Time Domain Decomposition Methods. Springer, 2015, pp. 69–113.
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The Parareal Algorithm
Consider the dynamical system:

u′(t) = f(u(t)), t ∈ (t0, tf )

u(t0) = u0
(1)

Divide the time domain (t0, tf ) into N equal subdomains Ωn = (Tn, Tn+1).

u′n(t) = f(un(t)) t ∈ (Tn, Tn+1)

u(Tn) = Un
(2)

This is simply a shooting method in time, and it equivalent to solving:
U0 − u0

U1 − φ∆T0(U0)
...

UN−1 − φ∆TN−2
(UN−2))

 = 0 (3)

where φ∆Tn(Un) is solution of (1) with initial condition Un after time ∆Tn.
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Parareal Algorithm

Uk+1
0 = u0

Uk+1
n = G(Uk+1

n−1) +
[
F(Uk

n−1)− G(Uk
n−1)

]
• Uk

n is the solution u(Tn) on the kth iteration of the algorithm.

• G denotes a coarse solver

• F denotes a fine solver
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Uk
0 = u0 Uk

n = G(Uk
n−1) +

[
F(Uk−1

n−1)− G(Uk−1
n−1)

]

Efficiency = Iterations for Convergence / Total Number of Steps

Video Source: https://en.wikipedia.org/wiki/Parareal
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Drawbacks of the Parareal Algorithm
For Hamiltonian systems, very high accuracy is required for the coarse
solver!2 A good coarse approximation is needed.

Typical coarse integrators fail to predict phase correctly, leading to blow up
of error during correction step with fine solver.

2Martin J Gander and Ernst Hairer. “Analysis for parareal algorithms applied to
Hamiltonian differential equations”. In: Journal of Computational and Applied
Mathematics 259 (2014), pp. 2–13.
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Phase Plane Map
Consider a set of M initial conditions (training points) {ui0}Mi=1 and a set of
M corresponding (target points) {vi}Mi=1 defined by,

vi = F
(
ui0
)

i = 1, . . . ,M

The set {ui0 → vi}Mi=1 acts as a type of look-up table for future initials
conditions3.

Definition

Define a phase plane map Gmap(
{
ui0 → vi

}M
i=1

, Un) to be a coarse solver

that uses the information contained in
{
ui0 → vi

}M
i=1

and a point Un at
time Tn, to determine the solution Un+1 at time Tn+1. Gmap can be defined
through, e.g., Interpolation or a Neural Network.

3Jürg Nievergelt. “Parallel methods for integrating ordinary differential equations”. In:
Communications of the ACM 7.12 (1964), pp. 731–733.
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Phase Plane Map

vi = F
(
ui0
)

Un+1 ≈ Gmap(
{
ui0 → vi

}M
i=1

, Un)
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Phase Plane Map

The computation of vi = F(ui0) is embarrassingly parallel.
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Phase Plane Map

For autonomous ODEs, Gmap can be applied over each subdomain Ωn.
Else, generate {uij → vi}Mi=1 for each Ωj , j = 0, . . . , N − 1.
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Phase Plane Map

1 How to select {ui0}Mi=1?

2 How to select M?

3 Which method is best for Gmap?
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Numerical Examples

• Traditional parareal algorithm =⇒ G = RK4 with step size T/N

• Modified parareal algorithm =⇒ G = phase plane map with step
size T/N

• For both, the fine solver is an adaptive RK45 solver.

• T = Total Simulation Time.

• N = Number of time-subdomains Ωn.
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Harmonic Oscillator

Consider a simple harmonic oscillator:

ẋ1 =
1

ε
x2

ẋ2 =
−1

ε
x1

with

• ε = 0.01

• T = 70 (1000 revolutions)

• x(0) = [−2/9,−2/3]T
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Harmonic Oscillator

N = 100, M = 2
Iterations: 1

N = 10, 000
Iterations: 42
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Lennard-Jones System

r′′ =
2

m
F (r)

F (r) = −∇V (r)

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

• ε = “well depth”

• σ = zero distance

• rmin = 1.12
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Lennard-Jones System

Iterations: 10 Iterations: 53

T = 50 N = 400 r0 = [1.2, 0]T M=50
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(•) r = 1.12

M Iterations
3 7
5 3
10 2
50 1

(•) r = 1.2

M Iterations
10 19
50 10
100 8
500 4

(•) r = 1.4

M Iterations
50 207
100 39
500 14
1000 9
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High Dimensional Harmonic Oscillator

ẋ =
1

ε
Ax

where x = [x1, v1, x2, v2, x3, v3, x4, v4]T , ε = 0.01, and A ∈ R8×8 is
defined as,

A =



0 a 0 0 0 0 0 0
−a 0 0 0 0 0 0 0
0 0 0 b 0 0 0 0
0 0 −b 0 0 0 0 0
0 0 0 0 0 c 0 0
0 0 0 0 −c 0 0 0
0 0 0 0 0 0 0 d
0 0 0 0 0 0 −d 0



*Neural network defined with logistic activation function, size 1000× 1,
with a limited memory BFGS solver for optimization.
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Localized Multiscale Problem

1 Type A: Problems that contain local defects or singularities.
Microscale model needed only near defects.

2 Type B: Microscale model needed everywhere as a supplement to
macroscale model, e.g., resolve constitutive model.4.

Type A Example: An N-body Problem:

miq̈i =

n∑
j 6=i

mimj(qj − qi)

‖qj − qi‖3

• mi denotes the mass of the ith body.

• qi denotes the position of the ith body.

Let n = 2 and assume m2 >> m1.

4Weinan E. Principles of multiscale modeling. Cambridge University Press, 2011.
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Apply a traditional parareal algorithm with

→ RK45 as fine scale solver with adaptive step size.

→ RK4 as coarse solver with step size T/N .

T = 0.5 N = 5 Iterations = 2
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Conclusion & Future Work

• Parallel in time algorithms needed for massively parallel simulations
of time dependent dynamical systems.

• Results for parareal + phase plane map show promise. Demonstrate
a proof of concept.

• Future Work
I Potential Improvements include use of modern sparse grid and

adaptive methods for interpolation or optimizing neural network
approach.

I More realistic examples in the realm of molecular dynamics.
I Scaling/speedup results on modern supercomputing platforms.
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*Code will be available at https://github.com/gyalla/interpareal
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