Given n bodies in space with initial positions and velocities, under mutual gravitational attraction, what is their future motion? Define:

$$m_i = \text{mass of the } i\text{-th body} \quad q_i = \text{position of the } i\text{-th body in } \mathbb{R}^2$$

$$F = ma$$

Then, we have:

$$m_i q_i = \sum_{j \neq i} \frac{m_i m_j (q_i - q_j)}{|q_i - q_j|^3} \quad \text{for each } i \in \{1, 2, \ldots, n\}$$

Central Configurations

A central configuration (c.c.) is an initial configuration of bodies x_i, which satisfies the following equation:

$$\sum_{j \neq i} \frac{m_i m_j (x_i - x_j)}{|x_i - x_j|^3} + \omega^2 m_i x_i = 0 \quad \forall i \in \{1, 2, \ldots, n\}$$

for some proportionality constant ω^2.

- Providing a c.c. with the correct choice of initial velocities leads to a periodic solution called a relative equilibrium.
- Released from rest, a c.c. maintains the same shape as it heads toward total collision.
- Any Kepler orbit can be attached to a c.c. to obtain a new solution to the n-body problem.

Key Fact: Central configurations are critical points of the Newtonian potential function U restricted to the level surface $I = I_0$,

where $I = \frac{1}{2} \sum_{i=1}^{n} m_i ||x_i||^2$

Linear Stability

Due to symmetry, there are two invariant subspaces W_1 and W_2 that lead to the eight eigenvalues 0, 0, $\pm w_2$, $\pm w_3$, $\pm w_4$, for any relative equilibrium x. We say x is nondegenerate if the remaining $n - 8$ eigenvalues are nonzero. It is spectrally stable if the eigenvalues are pure imaginary and is linearly stable if in addition, the restriction of the matrix obtained upon linearizing about x, to the skew-orthogonal complement of $W_1 \cup W_2$ is diagonalizable.

Known Results

- In 1772, Lagrange discovered that three bodies of any mass located at the vertices of an equilateral triangle represent a solution to the 3-body problem. In 1843, Gascheau (and later in 1875, Routh) determined stability for Lagrange’s solution if

$$\frac{m_1 m_2 + m_1 m_3 + m_2 m_3}{(m_1 + m_2 + m_3)^2} < \frac{1}{27}$$

- All collinear relative equilibria are unstable

N-body Problem

We want to determine if linear stability in a relative equilibrium implies the existence of a dominant mass in the configuration. In other words, given a linearly stable relative equilibrium, we want to find the smallest possible ratio between the dominant mass and the sum of the remaining masses, for various n values. (Rick Moeckel)

- We normalize the sum of the non-dominant masses to 1:

$$\sum_{i=1}^{n} m_i = 1$$

- Let $R = \frac{m_1}{m_2 + m_3 + \cdots + m_n}$, and assume $m_1 > m_2 > \cdots > m_n$.

We want to find the infimum of R for different n values in the $(1+n)$-body problem:

$$n \quad R \quad 24.9599 \quad \text{Note: For } n = 3 \text{ and } n = 4 \text{ the analytic results are, } m_1 = \frac{25 + 3\sqrt{65}}{3} \approx 24.9599$$

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24.9599</td>
</tr>
<tr>
<td>3</td>
<td>24.9599</td>
</tr>
<tr>
<td>4</td>
<td>25.5132</td>
</tr>
<tr>
<td>5</td>
<td>31.5595</td>
</tr>
<tr>
<td>6</td>
<td>36.9582</td>
</tr>
<tr>
<td>7</td>
<td>42.0993</td>
</tr>
</tbody>
</table>

Conjecture: Let $m_1, m_j = \epsilon$. If $\lim_{\epsilon \to 0} R_{ij} = 0$, then the dominant mass required to keep the relative equilibrium linearly stable increases as $\epsilon \to 0$.

Techniques: MatLab

- We use gradient flow to locate minima of the Newtonian potential function U constrained to a level surface of the moment of inertia $I = \frac{1}{2}$.
- Given an initial configuration x_0 and a set of masses m, a MatLab function called $\text{config_analyzer}(x_0, m)$ was written to find a local minimum and determine its stability.
- Numerics: ODE15s (stiff ODE), Ret Tol, Abs Tol = 1e-10, and $||M^{-1/2}U(x) + \omega^2 x||$ is always $\leq 1e-13$. Check if real parts of eigenvalues are 0 (within 1e-10).
- For each family of relative equilibria, we use a “binary search” method incorporating $\text{config_analyzer}(\cdot)$ to locate the smallest possible m_1 such that the corresponding relative equilibrium is linearly stable.

Clustering

Conjecture: Let $m_1, m_j = \epsilon$. If $\lim_{\epsilon \to 0} R_{ij} = 0$, then the dominant mass required to keep the relative equilibrium linearly stable increases as $\epsilon \to 0$. For $n \geq 7$ the $(1+n)$-gon is a linearly stable relative equilibrium iff the central mass is at least $0.435 m^2$ (Roberts 2000) (Moeckel 1994).

Acknowledgments

- Thanks to the Holy Cross Summer Research Program
- Thanks to the National Science Foundation, award DMS-1211675.