Linearly Stable Relative Equilibria Utilizing a Dominant Mass

Margaret Hauser, Gopal Yalla, and Professor Gareth Roberts
Department of Mathematics and Computer Science, College of the Holy Cross

N-BODY PROBLEM

Given n bodies in space with initial positions and velocities, under mutual gravitational attraction, what is their future motion? Define:
$m_{i}=$ mass of the i-th body $\quad \mathbf{q}_{i}=$ position of the i-th body in \mathbb{R}^{2} $F=m a$ gives,

$$
m_{i} \ddot{\mathbf{q}}_{i}=\sum_{j \neq i}^{n} \frac{m_{i} m_{j}\left(\mathbf{q}_{j}-\mathbf{q}_{i}\right)}{\left\|\mathbf{q}_{i}-\mathbf{q}_{j}\right\|^{3}}
$$

for each $i \in(1,2, \ldots, n)$

CENTRAL CONFIGURATIONS

A central configuration (c.c.) is an initial configuration of bodies \mathbf{x}_{i}, which satisfies the following equation

$$
\sum_{j \neq i}^{n} \frac{m_{i} m_{j}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)}{\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|^{3}}+\omega^{2} m_{i} \mathbf{x}_{i}=0 \quad \forall i \in(1 \ldots n)
$$

for some proportionality constant ω^{2}

- Providing a c.c. with the correct choice of initial velocities leads to a periodic solution called a relative equilibrium
- Released from rest, a c.c. maintains the same shape as it heads toward total collision.
- Any Kepler orbit can be attached to a c.c. to obtain a new solution to the n-body problem.
- Key Fact: Central configurations are critical points of the Newtonian potential function U restricted to the level surface $I=I_{0}$.

$$
\text { where } I=\frac{1}{2} \sum_{i=1}^{n} m_{i}\left\|\mathbf{x}_{i}\right\|^{2}
$$

LINEAR STABILITY

Due to symmetry, there are two invariant subspaces W_{1} and W_{2} that lead to the eight eigenvalues $0,0, \pm \omega i, \pm \omega i, \pm \omega i$, for any relative equilibrium x. We say x is nondegenerate if the remaining $4 n-8$ eigenvalues are nonzero. It is spectrally stable if the eigenvalues are pure imaginary and is linearly stable if in addition, the restriction of the matrix obtained upon linearizing about x, to the skew-orthogonal complement of $W_{1} \cup W_{2}$ is diagonalizable

Known Results

- In 1772, Lagrange discovered that three bodies of any mass located at the vertices of an equilateral triangle represent a solution to the 3-body problem. In 1843 Gascheau (and later in 1875 Routh) determined stability for Lagrange's solution iff

$$
\frac{m_{1} m_{2}+m_{1} m_{3}+m_{2} m_{3}}{\left(m_{1}+m_{2}+m_{3}\right)^{2}}<\frac{1}{27}
$$

- All collinear relative equilibria are unstable

GOAL

We want to determine if linearly stability in a relative equilibrium implies the existence of a dominant mass in the configuration. In other words, given a linearly stable relative equilibrium, we want to find the smallest possible ratio between the dominant mass and the sum of the remaining masses, for various n values. (Rick Moeckel)

- We normalize the sum of the non-dominant masses to $1: \sum_{i=2}^{n+1} m_{i}=1$.
- Let $R=\frac{m_{1}}{m_{2}+m_{3}+\ldots+m_{n+1}}$, and assume $m_{1}>m_{2}>\ldots>m_{n+1}$

We want to find the infimum of R for different n values in the $(1+n)$-body problem

- Thanks to the Holy Cross Summer Research Program
- Thanks to the National Science Foundation, award DMS-1211675.

Techniques: MatLab

- We use gradient flow to locate minima of the Newtonian potential function U constrained to a level surface of the moment of inertia $I=\frac{1}{2}$
- Given an initial configuration \mathbf{x}_{0} and a set of masses m, a MatLab function called config_analyzer $\left(x_{0}, m\right)$ was written to find a local minimum and determine its stability.
- Numerics: ODE15s (stiff ODE), RelTol, AbsTol $=1 \mathrm{e}-10$, and $\left\|M^{-1} \nabla U(\mathbf{x})+\omega^{2} \mathbf{x}\right\|$ is always $\leq 1 \mathrm{e}-13$. Check if real parts of eigenvalues are 0 (within 1e-10).
- For each family of relative equilibria, we use a "binary search" method incor-- For each config_analyzer() to locate the smallest possible m_{1} such that the
porating corchation porating
corresponding relative equilibrium is linearly stable.
CLUSTERING

Conjecture: Let $m_{i}, m_{j}=\epsilon$. If $\lim _{\epsilon \rightarrow 0} r_{i j}=0$, then the dominant mass required to keep the relative equilibrium linearly stable increases as $\epsilon \rightarrow 0$.

$1+n-\mathrm{GON}$

- For $n \geq 7$ the $(1+n)$-gon is a linearly stable relative equilibrium iff the central mass is at least $0.435 n^{3}$ (Roberts 2000) (Moeckel 1994)

