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Gas Chromatography & Mass Spectrometry

The gas chromatograph (GC) and mass spectrometer (MS) are two
independent instruments which, when combined, create a powerful
analytic technique for separating and identifying the components of
complex mixtures.

GC + MS produces chromatograms:
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Chromatogram Alignment

When dealing with multiple samples, fluctuations in peak height and
peak location occur.

Without peak location alignment, trends determined by chemometric
methods will be skewed or meaningless.
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Alignement Techniques

Correlation Optimized Warping (COW): Given two parameters segment
size and max warp, a chromatogram P is aligned to a target chromatogram
T .

Developed our own..

æ Faster version of COW.

æ Only Align on Peaks

æ Includes a Peak Detection Feature
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Alignement Techniques

Correlation Optimized Warping (COW): Given two parameters segment
size and max warp, a chromatogram P is aligned to a target chromatogram
T .

Naturally named, MOO-COW:

æ Faster version of COW.
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Alignement Techniques

Correlation Optimized Warping (COW): Given two parameters segment
size and max warp, a chromatogram P is aligned to a target chromatogram
T .

æ Faster version of COW.

æ Only Align on Peaks

⌥⌃ ⌅⇧What is the optimal choice of COW parameters?

æ Includes a Peak Detection Feature
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Alignment Metrics

Warping E�ect = Simplicity + Peak Factor

Simplicity: How close is data to rank 1 matrix

simplicity =
Rÿ
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Peak Factor: How much the shape and peak area of chromatograms
have been changed by warping

peak factor =
1
N

Kÿ

k=1

Nkÿ

n=1
(1 ≠ min(ckn, 1)2)
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Alignment Metrics (con’t)
Hotelling Trace Criterion

Incorporates both within class and between class variation in the
data set.

HTC = trace(S≠1
2 S1)

S1 = Between Class Covariance Matrix
S2 = Within Class Covariance Matrix
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Data

5 Classes of Biodiesel:

Soy (6 di�erent samples)
Canola (3 di�erent samples)
Tallow (3 di�erent samples)
Waste Grease (2 di�erent samples)
Hybrid (1 sample)

Each sample tested
3 di�erent runs

45 Total Chromatograms

Data Preprocessing:
Baseline Corrected
Aligned (COW)
Normalized
PC Transformed
Computed Metric
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Sample Results

Max Warp E�ect Max HTC (1 PC)

soy (¶), canola (ù), tallow (⇤), waste grease (ú), hybrid (+).
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Sample Results

Max Warp E�ect Max HTC (2 PC)
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Sample Results

Max Warp E�ect Max HTC (3 PC)

soy (¶), canola (ù), tallow (⇤), waste grease (ú), hybrid (+).
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Results

Summary:

HTC leads to better alignment than warping e�ect

Shown From:

æ Superior clustering in principal component space

æ Greater Euclidean Distance between class means

æ Smaller within class variation.

Future Work:

Improve upon COW and other alignment algorithms.

Build classification scheme for unknown biofuels with similar chemical
makeup as a given training set by using HTC as a figure of merit.
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