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   Traditional LES Modeling 
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dū
dx )

≈ − CΔ
dΔ
dx

d2ū
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dx

d2ū
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Commutation Error :1

Analysis was incomplete due to a dimensionally inconsistent assumption ( ) 
that leads to the absence of several terms of the commutation error. 

Δ ≪ κΔ

S. Ghosal and P. Moin “The basic equations for the large eddy simulation of turbulent flows in complex geometry,” Journal of 
Computational Physics, vol. 118, no. 1, pp. 24-37, 1995
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∂ū
∂x

= ν(x)
∂2ū
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   Impact on LES

Fine Region
7th order Bsplines

Initial Reflections:  

Unresolvable scales reflected at high 
wavenumber into the fine region

2nd order Bsplines
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   Impact on LES
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   Impact on LES

Fine Region
7th order Bsplines

2nd order Bsplines

One flow through: 

Incoming turbulence interacts with spurious 
scales.
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   Model Formulation

•  limited by the underlying numerics based on number of available derivatives of 
filtered field. 


• Analytical constant needs adjusting to compensate for omitted commutation terms 
and numerical behavior. 

N

𝒞(ψ) ≈ C
dΔ
dx (ΔN−1 dNψ̄

dxN ) = CΔ
dΔ
dx (ΔN−2FN(ψ̄))

For large , the most significant commutation term is:  κ

for  (even) as large 
as possible, and 

N
FN(ψ̄) =

dNψ̄
dxN

.
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   Model Formulation

𝒞(ψ) ≈ C
dΔ
dx (ΔN−1 dNψ̄

dxN ) = CΔ
dΔ
dx (ΔN−2FN(ψ̄))

For large , the most significant commutation term is:  κ

for  as large as 
possible, and 

N
FN(ψ̄) =

dNψ̄
dxN

.

 We can create higher order filters from lower order differential operators. Consider the 
 operator: B2 − B1B1

(B2 − B1B1)ψ = Δx2F4(ψ) + 𝒪(Δx6)

(B7
2 − B7

1B7
1)ψ ∼ Δx8F10(ψ) + 𝒪(Δx12)

Taylor Expansion:
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   Model Results

Top:

)(N = 10
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   Model Results: 7-Bsplines
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   Model Results: 2-Bsplines
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Much more is required of LES models in practical applications than in the settings 
where they are typically developed.
•  

Models need to capture more than just the dissipation rate!

Probed the issue of resolution inhomogeneity to uncover what is required of LES 
models in this setting.•  

Developed a model based on the extended commutation error analysis and 
numerical analysis and demonstrated impact on turbulence statistics. 
•  

Need to account for commutation error and corresponding numerical behavior.

https://arxiv.org/abs/1812.03261


Homogeneous, Isotropic Turbulence

Flow over a cylinder

Flow through a wind turbine
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    Model Results: 7-Bsplines
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    Model Results: 2-Bsplines
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