
PARALLEL IN TIME ALGORITHMS FOR MULTISCALE DYNAMICAL SYSTEMS
USING INTERPOLATION AND NEURAL NETWORKS

Gopal R. Yalla

Institute for Computational Engineering and Sciences
University of Texas at Austin

201 East 24th Street
Austin, TX, USA

gopal@ices.utexas.edu

Bjorn Engquist

Institute for Computational Engineering and Sciences
University of Texas at Austin

201 East 24th Street
Austin, TX, USA

engquist@ices.utexas.edu

SpringSim-HPC 2018, April 15-18, Baltimore, MD, USA; c⃝2018 Society for Modeling & Simulation (SCS) International

ABSTRACT

The parareal algorithm allows for efficient parallel in time computation of dynamical systems. We present
a novel coarse scale solver to be used in the parareal framework. The coarse scale solver can be defined
through interpolation or as the output of a neural network, and accounts for slow scale motion in the system.
Through a parareal scheme, we pair this coarse solver with a fine scale solver that corrects for fast scale
motion. By doing so we are able to achieve the accuracy of the fine solver at the efficiency of the coarse
solver. Successful tests for smaller but challenging problems are presented, which cover both highly oscil-
latory solutions and problems with strong forces localized in time. The results suggest significant speed up
can be gained for multiscale problems when using a parareal scheme with this new coarse solver as opposed
to the traditional parareal setup.

Keywords: parareal, multiscale, dynamical systems, neural networks, interpolation

1 INTRODUCTION

Emerging multicore and many-core architectures will lead to a continued increase in computing power in
the coming years. These complex architectures necessitate highly parallel and distributed computing for
scientific simulations. While the capabilities of these machines benefit most scientific and engineering dis-
ciplines, they can also present challenges such as those for systems governed by time dependent dynamical
systems. The effect of causality in time is more naturally handled sequentially. In (Lions, Maday, et al.
2001), the parareal algorithm for parallel in time computations is introduced, which is essential for highly
parallel systems when distributed computation in space saturates. See also (Gander 2015) for a presenta-



Yalla, and Engquist

tion of early parallel in time techniques including parareal algorithms. Initially the technique was applied
to dissipative systems where the memory effect is more limited, but there are very important applications
without dissipations as, for example, hyperbolic partial differential equations (PDE) and systems of ordinary
differential equations (ODE) for molecular dynamics and celestial mechanics.

The parareal method is based on two solvers, one coarse scale solver, which is less accurate but fast enough
to be applied sequentially, and one fine scale solver with full accuracy that is applied in parallel in time.
At each iteration, the coarse solver is run sequentially over each subdomain similar to a shooting method,
and then the fine solver is run in parallel as a correction. See section 2 for how the coarse and fine solvers
interact. This coupling of the solvers is able to achieve the accuracy of the fine scale solver at the efficiency
of the coarse scale solver. The overall technique can be seen as a domain decomposition method for the
fine scale method; the coarse scale method and the iterative correction provide the coupling between the
domains.

The coarse solver is a usually based on one or a few steps of a regular numerical solver. For instance, the
coarse scale solver is typically taken to be an ODE solver with significantly larger time step compared to
the fine solver or an approximation where the ODE itself has been modified to be less stiff or oscillatory. In
opposition, the fine scale solver typically involves a very large number of local time steps for high accuracy.
Gander and Hairer (2014) show that for Hamiltonian systems, very high accuracy is required already for the
coarse solver for the process to work. This is not helpful in, for example, molecular dynamics where the fine
step size is chosen to be at the limit of what gives a meaningful result. Since the computational efficiency of
the parareal algorithm comes from the fact that the costly fine scale solver can be implemented in parallel in
time, forcing the sequential coarse solver to be nearly as accurate as the fine solver succumbs the algorithm
to Amdahl’s law and ruins any speed up gained by parallelization.

The main innovation in this work is the new coarse solver, which relies on a pre-computed phase plane map,
similar to the work in (Nievergelt 1964) and (Ying and Candès 2006), but applied in a parareal setting and
optimized for highly oscillatory, autonomous dynamical systems. See (Barker 2014) for additional work in
extending Nievergelt’s method. The phase-plane map can be built with interpolation or the output of a neural
network. A given dynamical system is accurately approximated with the fine solver for a single time interval
and for a number of different initial values. The pre-computing for different initial values is embarrassingly
parallel and the phase plane map does not suffer from the difficulties of highly oscillatory behavior, which is
a main problem with standard parareal computations. Even a linear harmonic oscillator is a severe challenge
for standard parareal simulations (Gander and Hairer 2014). For the interpolation based phase plane map
linear ODEs require only linear interpolation for getting the accuracy of the fine scale solver at the efficiency
of the coarse solver.

2 DESCRIPTION OF THE ALGORITHM

2.1 The Parareal Algorithm

Consider the dynamical system,

u′(t) = f (u(t)), t ∈ (t0, t f )

u(t0) = u0
, (1)

where f : Rd → Rd and u : R → Rd . To obtain the parareal algorithm as in (Gander, Hairer, et al. 2008),
first divide the time domain Ω ≡ (t0, t f ) into N equal subdomains Ωn = (Tn,Tn+1), n = 0,1, . . . ,N − 1,



Yalla, and Engquist

with t0 = T0 < T1 < · · · < TN−1 < TN = t f , and ∆T ≡ Tn+1 −Tn. Consider now the problem on each time
subdomain:

u′n(t) = f (un(t)), t ∈ (Tn,Tn+1)

u(Tn) =Un
, (2)

where the initial conditions Un are the solution of (1) at time Tn. If we let φ∆Tn(Un) denote the solution of (1)
with initial condition Un after time ∆Tn, equation (2) is simply a shooting method in time and is equivalent
to solving:


U0 −u0

U1 −φ∆T0(U0)
...

UN−1 −φ∆TN−2(UN−2))

= 0 (3)

Applying Newton’s method to (3) gives,

Uk+1
0 = u0

Uk+1
n = φ∆Tn−1(U

k
n−1)+φ

′
∆Tn−1

(Uk
n−1)(U

k+1
n−1 −Uk

n−1)
. (4)

Now, introduce a fine solver F and coarse solver G as follows. Let F(Un) be an accurate approximation
to the solution φ∆Tn(Un) and G(Un) be a less accurate approximation to φ∆Tn(Un). For example, G may be
defined on a coarser grid than F or be a lower order method than F . If we use the fine solver to approximate
φ∆Tn−1(U

k
n−1) in (4) and the coarse solver to approximate the Jacobian term in (4), the parareal algorithm to

solve (1) is given by, (Gander and Hairer 2014),:

Uk+1
0 = u0

Uk+1
n = G(Uk+1

n−1 )+
[
F(Uk

n−1)−G(Uk
n−1)

] (5)

so that Uk
n ≈ u(Tn), where k represents the kth iteration of the algorithm. See (Gander, Hairer, et al. 2008)

for a general convergence theory. The term in brackets in (5) can also be seen as a correction term and
highlights how the fine solver can be used in parallel at each iteration to correct the approximation made by
the coarse solver.

2.2 Phase Plane Map

Suppose now that the time domain has been divided into N equal subdomains so that ∆T = (TN −T0)/N.
This will be the step size over which our new coarse solver operates. Consider a set of M initial conditions
of (1) at time t = t0, denoted by {ui

0}M
i=1, and a set of M corresponding target points {vi}M

i=1 defined by,

vi = φ∆T0(u
i
0) i = 1, . . . ,M . (6)

As in the derivation of the parareal algorithm, we let F(ui
0) approximate φ∆T0(u

i
0) so that, computationally,



Yalla, and Engquist

vi = F(ui
0) i = 1, . . . ,M . (7)

Together, the set
{

ui
0 → vi

}M
i=1 acts as a type of look-up table for future initial conditions; given a new initial

condition and the mapping
{

ui
0 → vi

}M
i=1, it is possible to estimate a solution using, e.g., interpolation.

Formally, we define a phase plane map Gmap(
{

ui
0 → vi

}M
i=1 ,Un) to be a coarse approximation of φ∆T (Un)

that uses the information contained in
{

ui
0 → vi

}M
i=1 to determine the solution Un+1 at time Tn+1, given

a point Un at time Tn. Gmap may be defined through interpolation on the set
{

ui
0 → vi

}M
i=1, or through a

neural network where the network is trained using
{

ui
0

}M
i=1 as the inputs and

{
vi
}M

i=1 as the outputs. For
autonomous dynamical systems like those commonly found in molecular dynamics or celestial mechanics,
Gmap can be applied over each subdomain Ωn. For non-autonomous dynamical systems, one can easily

extend this idea by generating a set
{

ui
j → vi

}M

i=1
for each subdomain Ω j, j = 0, . . . ,N − 1, after some

initial coarse approximation of the solution is obtained, as in (Nievergelt 1964). Moreover, the computation
of

{
ui

0 → vi
}M

i=1 is embarrassingly parallel and can be done as a preprocessing step to the parareal algorithm,
i.e., each vi is computed independently using the fine solver over Ω0.

There are several trade offs and design considerations that need to be addressed when building Gmap. The
numerical examples presented in section 3 highlight initial findings for most of these considerations; how-
ever, many of them require further investigation. The first problem that needs to addressed is how to select
the number of necessary initial conditions M used to build the set

{
ui

0 → vi
}M

i=1. Clearly, the higher M the
more accurate Gmap can be; however, it may be computationally expensive to generate a suitable mapping
(even though the computation is highly parallel). Nievergelt (1964) suggests that a reasonable choice for M
would be one such that the interpolation error is of the same order of magnitude as the truncation error of the
fine scale method, F . In a parareal setup, one might expect that M should be chosen so that the interpolation
error is comparable to the truncation error of a suitable coarse solver in order for the scheme to provide
meaningful results. Furthermore, one must discuss the bounds within which to place these initial condi-
tions

{
ui

0

}M
i=1. In practice, we have used two methods for determining appropriate constraints on the initial

conditions. First, domain specific knowledge can often times provide meaningful bounds on the physical
phenomenon be simulated. For example, when simulating two atoms bound by a molecular potential, the
bounds can be determined from the actual initial condition of interest, U0, which specifies the positions of
the atoms and the total energy in the system. Secondly, for other problems where such information may be
difficult to obtain, a coarse approximation to the solution’s trajectory can be obtained. For example, if one
is interested in simulating one hundred revolutions of a harmonic oscillator, a coarse solver may be used to
estimate just one revolution of the oscillator, and appropriate bounds on

{
ui

0

}M
i=1 can be determined from

there. Lastly, the efficiency of the algorithm relies on choosing a suitable method for Gmap. For instance,
interpolation may work well for problems in low dimensions, whereas a neural network approach may be
better for problems in high dimensions where interpolation is more costly.

3 NUMERICAL EXAMPLES

3.1 Nomenclature

Throughout the numerical examples we will let T be the total simulation time, N be the number of time
subdomains, and M be number of grid points in each dimension so that Gmap is defined with {ui

0 → vi}Md

i=1.
The fine solver used in each computation is SciPy’s adaptive RK45 scheme (Jones, Oliphant, et al. 2001).
We refer to the traditional parareal algorithm as a parareal scheme where RK4 is used as the coarse solver



Yalla, and Engquist

(a) (b)

Figure 1: (a) Results of the modified parareal scheme applied to (8). (b) Results of the traditional parareal
scheme applied to (8). Recall that

{
ui

0

}
are the points used to define Gmap,

{
U0

n
}

is the initial approximation
made by the coarse solver, and {Un} is the final converged solution.

with time step T/N, and the modified parareal algorithm as that when the coarse solver is defined through
Gmap.

3.2 Harmonic Oscillator

Following similar steps to those in (Nievergelt 1964), it is possible to prove the modified parareal algorithm
with Gmap defined through linear interpolation will converge in just one iteration for any linear dynamical
system. Problems such as a harmonic oscillator that typically present a challenge for parareal schemes, can
now be solved in only one iteration. To demonstrate this speedup, consider the following system:

ẋ1 =
1
ε

x2

ẋ2 =
−1
ε

x1

(8)

with ε = 0.01 and the initial value x(0) = [−2/9,−2/3]T . We are interested in the long time solution of this
problem, so we set T = 70 which corresponds to 1000 revolutions of the harmonic oscillator. Setting M = 2
and N = 100 and applying the modified parareal algorithm to (8) produces the results show in Figure 1a,
and converges in just one iteration. In Figure 1a, the converged solution {Un} and the initial approximation
made by the coarse solver,

{
U0

n
}

, lie on top of each other, because the initial approximation made by Gmap is
exact. In fact, the results would be the same for any value of N. Recall that N sets the step size of the coarse
solve, ∆T = T/N. This is not the case if the traditional parareal scheme is applied to (8). For N smaller than
around 10000, the algorithm diverges. For N = 10000, the algorithm converges in 42 iterations; however,
the coarse step size is almost as small as the fine step size, so any speedup from the parareal algorithm
is lost. The results of the traditional parareal algorithm are shown in Figure 1b; the initial approximation
made by the coarse solver is far away from the true solution so many more parareal iterations are needed for
convergence.



Yalla, and Engquist

(a) (b)

Figure 2: (a) Results of the modified parareal scheme applied to (10). (b) Results of the traditional parareal
scheme applied to (10).

These results for a simple harmonic oscillator motivate the study of physical systems that behave in a similar
manner, such as those found in molecular dynamics or celestial mechanics.

3.3 Colinear Lennard-Jones System

Consider two colinear atoms bound by the Lennard-Jones Potential:

v(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
, (9)

where r is the separation of the atoms, ε is the ‘well depth’ and σ is the distance at which the potential is
zero. We set ε = 1 and σ = 1, which gives a minimum potential energy at r∗ = 1.12. The Lennard-Jones
potential is shown in Figure 3. The equation governing this system is given by:

r̈ =
2
m

F(r) (10)

where F(r)=−∇v(r). Near the minimum potential energy, equation (10) behaves very similar to a harmonic
oscillator. Further away, the system behaves nonlinearly.

First we set the initial condition to r0 = [1.2,0]T , T = 50, and N = 400. This corresponds to around 100
oscillations of the atoms. Applying the traditional parareal method to (10) gives the results shown in Figure
2b. As in the case of the harmonic oscillator, using a standard RK4 scheme as the coarse solver makes
a poor initial approximation of the true solution, which results in a larger number of iterations needed for
convergence; in this case, 53 iterations. The modified parareal algorithm with Gmap defined through linear
interpolation with M = 50 converges in just 10 iterations when applied to (10). Figure 2a shows the results.
The phase plane map makes a very accurate initial approximation of the solution, so the fine solver only
needs a few iterations of corrections to converge to the true solution.



Yalla, and Engquist

Figure 3: Lennard-Jones potential given by (9).

Unlike the linear harmonic oscillator, the efficiency of the modified parareal algorithm can be affected by
defining the phase plane map with more or less training and target points {ui

0 → vi}Md

i=1. Figure 4 indicates
how the number of parareal iterations needed for convergence decreases to one as the number of grid points
gets arbitrarily large. Since the computation of {ui

0 → vi}Md

i=1 is embarrassingly parallel and done in a pre-
processing step, the only adverse cost in increasing M comes from how one defines Gmap, e.g., interpolation
will be more expensive as M increases.

The nonlinearity of the Lennard-Jones system also affects the performance of the modified parareal algo-
rithm. Consider the three separation distances shown in Figure 3, r = 1.12,r = 1.2 and r = 1.4. As r
increases, (10) becomes increasingly nonlinear. Table 1 shows how this nonlinearity affects the efficiency
of the modified parareal algorithm. As r increases, so must M in order to maintain roughly the same number
of parareal iterations for convergence.

Table 1: Tables showing how the nonlinearity of the Lennard-Jones system affects the efficiency of the
modified parareal algorithm. Selected r values correspond to those found in Figure 3.

(•) r = 1.12

M Iterations
3 7
5 3
10 2
50 1

(•) r = 1.2

M Iterations
10 19
50 10
100 8
500 4

(•) r = 1.4

M Iterations
50 207

100 39
500 14
1000 9

As in the simple harmonic oscillator case, one can improve the results of the traditional parareal algorithm
by making the step size for the coarse solver smaller and smaller; however, as the coarse step size approaches
the fine step size, any speed up of the parareal algorithm is lost. With the phase plane map used as the coarse
solver, the coarse step size can stay significantly larger than the fine step size, while still achieving good
results. For example, suppose we increase the total time in the Lennard-Jones simulation shown in Figure
2 to T = 500 and take M = 1000. If we use the phase plane map as the coarse solver and take N = 400,
the parareal algorithm converges in 14 iterations. If we were to use the traditional parareal algorithm and
also wanted convergence in 14 iterations, we must take N ≈ 50,000. At this point, the coarse solver is



Yalla, and Engquist

almost as expensive as the fine solver. Furthermore, N is typically chosen to be the number of cores used
for the parareal algorithm, which implies less cores are needed for the modified parareal algorithm than the
traditional parareal algorithm to achieve the same efficiency.

Figure 4: The number of the parareal iterations needed for convergence vs. the number of points used to
define Gmap.

3.4 High Dimensional Harmonic Oscillator

In high dimensions defining Gmap through interpolation may be infeasible. This presents an interesting
opportunity to make use of neural networks. As a testing case, consider a high dimensional system of
harmonic oscillators:

ẋ =
1
ε

Ax (11)

where x = [x1,v1,x2,v2,x3,v3,x4,v4]
T , ε = 0.01, and A ∈ R8×8 is defined as,

A =



0 a 0 0 0 0 0 0
−a 0 0 0 0 0 0 0
0 0 0 b 0 0 0 0
0 0 −b 0 0 0 0 0
0 0 0 0 0 c 0 0
0 0 0 0 −c 0 0 0
0 0 0 0 0 0 0 d
0 0 0 0 0 0 −d 0


(12)

for parameters a,b,c,d. Since this system is linear, the modified parareal algorithm with Gmap defined
through interpolation will converge in just one iteration for any N and M ≥ 2. However, high dimensional
interpolation is quite expensive, especially if we were to consider a nonlinear problem.



Yalla, and Engquist

(a) (b)

(c) (d)

Figure 5: (a) Results of the modified parareal scheme applied to (11) with Gmap defined with a neural
network.

An alternative approach is to define Gmap through a neural network. Below we test this approach on (11)
setting T = 10, N = 50, M = 3, and take a = 1,b = 2,c = 3, and d = 4. The neural network is defined
with a logistic activation function and one hidden layer of size 1000; a limited memory BFGS solver is
used for optimization (Pedregosa, Varoquaux, et al. 2011). The results of this scheme applied to (11)
are shown in Figure 5. The algorithm converges in 6 iterations, as opposed to one iteration when linear
interpolation was used, however, the neural network approach converges in roughly a third of the time.
The initial approximation of the neural network, while not exact, is still very close to the true solution, so
only a few number of parareal iterations are needed for correction. Moreover, the neural network can be
improved by increasing M, as in section 3.3, and has the additional advantage that the cost of applying the
neural network does not increase with M, as opposed to the case when interpolation is used. This makes
defining Gmap through a neural network particularly advantageous for high dimensional problems, as all
additional cost is made in the preprocessing step, which is embarrassingly parallel. Using the output of
a neural network as a macroscopic model and coupling the result with a fine scale microscopic model for
corrections is an interesting approach for solving physical systems in general, and may help bridge the gap
between data science and computational science in the future.



Yalla, and Engquist

3.5 Localized Multiscale Problems

E, Engquist, et al. (2003) and E (2011) describe two types of multiscale problems. The first type are
problems that contain local defects or singularities so that a macroscale model is sufficient for most of the
physical domain, and a microscale model is needed only near the defects. These type of problems are known
as type A multiscale problems. The second type of multiscale problems are those for which a microscale
model is needed everywhere. These are known as type B multiscale problems. In the previous sections
we have only consider type B multiscale problems, and in fact, this is the situation in which most parareal
algorithms are applied, since the fine solver and coarse solver are coupled everywhere in the domain. The
coarse solver acts as the macroscale solver and picks up on slow scale motion, while the fine solver acts as
the microscale solver and corrects for fast scale motions. An important note can be made about the parareal
algorithm in general applied to type A multiscale problems.

A good example of a type A multiscale problem can be found in celestial mechanics. In the context of
an n-body problem, let mi denote the mass of the ith body, and qi denote the position of the ith body. The
equation governing the motion of the ith body is

miq̈i =
n

∑
j ̸=i

mim j(q j −qi)

∥q j −qi∥3 (13)

For illustrative purposes, let n = 2 in (13) and denote the two bodies as n1 and n2. Assume that m2 >> m1
so that q2 is essentially fixed. When the first body is far away from the second body, a macroscopic solver
is accurate enough to predict its motion. However, as the two bodies get closer, a fine scale solver is needed
to resolve their interactions. This situation is well-suited for the parareal algorithm. The coarse solver will
be accurate enough in all regions far from n2, so that the only corrections needed occur in regions where
n1 and n2 are close. We apply a traditional parareal algorithm to (13) where the fine scale solver is an
adaptive RK45 scheme and the coarse solver is a RK4 scheme with large step size. If we set T = 0.5 and
N = 5, the parareal algorithm converges in just two iterations. The true solution and the parareal solution

(a) (b)

Figure 6: (a) Initial coarse approximation given by the parareal algorithm applied to (13). (b) Results after
one correction step of the parareal algorithm applied to (13).



Yalla, and Engquist

for the trajectory of n1 after each iteration is shown in Figure 6. The initial approximation made by the
coarse solver (shown in Figure 6a) accurately predicts the motion of n1 during the first two time intervals
Ω0 and Ω1. During Ω3, n1 interacts with n2 and alters its trajectory. The coarse solver does not detect this
interaction due to the large step size, and incorrectly predicts the motion of n1 for Ω3, Ω4 and Ω5. After one
iteration of the parareal solution, the fine solver corrects for the interaction between the two bodies during
Ω3, and when the coarse solver is run again, it is able to accurately predict the motion of n1 far from n2 as
before. Therefore, the solution converges in just one iteration of the parareal algorithm. The fine solver is
only needed to detect the localized interaction of n1 and n2.

4 CONCLUSION

We have presented the methodology behind a novel coarse scale solver for the parareal computation of highly
oscillatory dynamical systems. This paper can be seen as a proof of concept. Further research is required to
improve this approach into a fully developed robust and successful technique. Potential improvements are
using modern sparse grid and adaptive methods for the interpolation, or optimizing the approach for neural
networks. We plan on performing numerical tests of large systems with more realistic examples in the realm
of molecular dynamics as well as determining scaling results on modern supercomputing platforms, even if
the embarrassingly parallel nature of the algorithms should generate predictable scaling.

REFERENCES

Barker, A. T. 2014. “A minimal communication approach to parallel time integration”. International Journal
of Computer Mathematics vol. 91 (3), pp. 601–615.

E, W. 2011. Principles of multiscale modeling. Cambridge University Press.

E, W., B. Engquist et al. 2003. “The heterognous multiscale methods”. Communications in Mathematical
Sciences vol. 1 (1), pp. 87–132.

Gander, M. J. 2015. “50 years of time parallel time integration”. In Multiple Shooting and Time Domain
Decomposition Methods, pp. 69–113. Springer.

Gander, M. J., and E. Hairer. 2014. “Analysis for parareal algorithms applied to Hamiltonian differential
equations”. Journal of Computational and Applied Mathematics vol. 259, pp. 2–13.

Gander, M. J., E. Hairer et al. 2008. “Nonlinear convergence analysis for the parareal algorithm”. Lecture
Notes in Computational Science and Engineering vol. 60, pp. 45.

Jones, E., T. Oliphant et al. 2001. “SciPy: Open source scientific tools for Python”.

Lions, J.-L., Y. Maday et al. 2001. “A parareal method in time discretization of pde’s”. Comptes Rendus de
l’Académie des Sciences-Series I-Mathematics vol. 332 (7), pp. 661–668.

Nievergelt, J. 1964. “Parallel methods for integrating ordinary differential equations”. Communications of
the ACM vol. 7 (12), pp. 731–733.

Pedregosa, F., G. Varoquaux et al. 2011. “Scikit-learn: Machine Learning in Python”. Journal of Machine
Learning Research vol. 12, pp. 2825–2830.

Ying, L., and E. J. Candès. 2006. “The phase flow method”. Journal of Computational Physics vol. 220 (1),
pp. 184–215.



Yalla, and Engquist

AUTHOR BIOGRAPHIES

GOPAL R. YALLA is a Graduate Student at the Institute for Computational Engineering and Sciences at the
University of Texas at Austin. His research interests lie in multiscale modeling and simulation, turbulence
modeling, high performance computing, and parallel algorithms. gopal@ices.utexas.edu.

BJORN ENGQUIST holds the Computational and Applied Mathematics Chair I at the Institute for Com-
putational Engineering and Sciences (ICES) at the University of Texas at Austin, and is director of the ICES
Center for Numerical Analysis. Before coming to ICES, Engquist received his Ph.D. in numerical analysis
from Uppsala University, was a professor of mathematics at UCLA, and the Michael Henry Stater University
Professor of Mathematics and Applied and Computational Mathematics at Princeton University. He was also
the director of the Research Institute for Industrial Applications of Scientific Computing and of the Centre
for Parallel Computers at the Royal Institute of Technology, Stockholm. Engquist’s research focuses on the
development and analysis of numerical methods for differential equations, computational multiscale meth-
ods, and fast algorithms for wave propagation with applications in seismology. engquist@ices.utexas.edu.

mailto://gopal@ices.utexas.edu
mailto://engquist@ices.utexas.edu

	Introduction
	Description of the Algorithm
	The Parareal Algorithm
	Phase Plane Map

	Numerical Examples
	Nomenclature
	Harmonic Oscillator
	Colinear Lennard-Jones System
	High Dimensional Harmonic Oscillator
	Localized Multiscale Problems

	Conclusion

