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Large eddy simulation (LES) is now over half a century old and while it has become more

widely used as computational capabilities have expanded, its adoption as an engineering

tool has arguably been limited by the shortcomings of subgrid models. Most current sub-

grid models are formulated under the assumption that the subgrid scales are approximately

isotropic, and that other complications, such as numerical discretization and inhomogeneous

resolution, are negligible. This limits the fidelity of the models when applied in complex

flows. For LES to become a robust engineering tool, subgrid models applicable to more com-

plex scenarios will be required. In particular, the effects of numerical discretization must be

considered.

In this thesis we develop several analytical and computational tools for identifying the

characteristics of an LES introduced by numerical discretization and filtering. First, the

effects of numerical dispersion error on the turbulent energy cascade are explored. It is shown

that dispersion error due to convection by a large mean velocity causes a decoherence of the

phase relationship among interacting Fourier modes, resulting in a reduction of the energy

transfer rate from large to small scales. Nonlinear dispersion error due to convection from

turbulent fluctuations is also explored through the development of an eddy-damped quasi-

normal markovian (EDQNM) type of analysis that is applicable to the filtered turbulence

in an LES. EDQNM is shown to be a useful tool for exploring dispersion effects because

it exposes the relaxation rate of the third-order velocity correlations. An explicit filtering

formulation based on the properties of the underlying numerics is developed to remove the
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highly dispersive wavemodes in an LES. Further, the EDQNM LES theory is also used to

determine the a priori properties of the subgrid stress needed to recover an inertial range

spectrum in the presence of non-spectral numerics and non-cutoff explicit filters.

Second, the convection of turbulence through nonuniform grids is explored. This intro-

duces additional challenges due to so-called commutation error, or neglect of the commutator

of the filtering and differentiation operators. We employ a multiscale asymptotic analysis

to investigate the characteristics of the commutator. Further, we show how commutation

error manifests in simulation and demonstrate its impact on the convection of homogeneous

isotropic turbulence through a coarsening grid. A connection is made between the commu-

tation error and the propagation properties of the underlying numerics. A framework for

modeling this commutator is proposed that accounts for properties of the discretization. The

forcing of turbulence convecting through a refining grid is also explored and a formulation

based on divergence-free wavelets is proposed. Results in isotropic turbulence suggest this

formulation may be effective at energizing newly resolvable scales and therefore allowing for

sharper grid transitions to finer resolved regions.

There are several additional challenges to formulating more broadly applicable subgrid

models for LES and we expect that the techniques developed here will also be useful for

addressing these wide range of issues.
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Chapter 1

Introduction

The on-going study of turbulence modeling may seem peculiar at first because the equations

governing the dynamics of this phenomenon have been known for over a century. These are

the celebrated Navier-Stokes equations, which for incompressible flows read

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(1.1)

∂ui
∂xi

= 0, (1.2)

where u is the velocity field, p is the pressure and ν is the kinematic viscosity. So why does the

mention of turbulence harbor such feelings of hopelessness, even among histories brightest

scientists1? To add my own foreboding quote, the devil is quite literally in the details

when it comes to turbulence, so perhaps Lamb and Heisenberg should be looking elsewhere

for their answers. Several fields of research spanning multiple disciplines are dedicated to

understanding the complexities of turbulence and extracting meaningful information from

equations (1.1) and (1.2) in the context of a variety of fluid dynamics systems.

This immense research effort is for good reason. Famously dubbed “the most important

1Both Horace Lamb and (allegedly) Werner Heisenberg expressed doubt about understanding turbulence
even in the heavens. Lamb famously stated, “I am an old man now, and when I die and go to heaven there
are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the
turbulent motion of fluids. And about the former I am rather optimistic.” Similarly, when asked what he
would ask God given the opportunity, Heisenberg is said to have replied, “When I meet God, I am going to
ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the
first.” Indeed, of these problems, turbulence remains the one unsolved.
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unsolved problem of classical physics” by Richard Feynman2, the importance of turbulence

cannot be overstated. This is generally because the flow of fluids in a wide variety of

settings (from astrophysical flows, to atmospheric flows, to technological flows, etc.) is often

accompanied by turbulence. Best defined through its characteristics, turbulence has a large

effect on the high Reynolds number (Re) flows in which it occurs. It greatly enhances mixing

and transport, tends to dissipate energy, is composed of a wide range of interacting scales,

and is intrinsically chaotic in nature. Therefore, as Moser et al. [1] write, when predicting the

evolution of a fluid system (e.g. the earth’s atmosphere) or when designing a fluid dynamic

system (e.g. an aircraft), it is critical to account for the effects of turbulence. As such, the

modeling of turbulent flows has been of primary interest in the study of turbulence since

Reynolds [2] identified it as a distinct fluid dynamic phenomenon.

However, the reliable prediction of the effects of turbulence in the flows of most inter-

est remains elusive, and this inability is a significant hindrance to progress in a number of

important fields. To see why, consider the approach of simulating equations (1.1) and (1.2)

by resolving all relevant length scales and time scales with appropriate boundary and initial

conditions, for a single realization of some flow. This is a technique known as Direct Nu-

merical Simulation (DNS). For isotropic turbulence, the total computational complexity of a

DNS scales as Re3, where Re is based on the root-mean-square velocity and integral length

scale. As a consequence, the cost of a DNS grows too rapidly with Reynolds number to be

computationally feasible for technologically relevant Re.

It is tempting to think that the computational challenge of DNS is a failing of current

computing power. However, even with an optimistic projection of the continuing growth

in computing power and reduction in computing costs, it will be many decades or even

centuries until DNS can be used as a routine tool of fluids engineering. Moreover, the vast

majority of computational effort in a DNS is dedicated to resolving the dissipation range,

2Ironically it is Feynman who is credited with addressing Lamb’s question on quantum electrodynamics.
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although the turbulent energy and anisotropy predominantly reside in the larger scales of

motion. Moreover, accurately computing statistical properties of a given flow, such as the

mean velocity, is usually sufficient for determining most quantities of interests in engineering

applications. This objective motivates the use of cheaper computational methods whose goal

is only to compute flow statistics.

Decomposition of the velocity field ui into its mean and fluctuating components as

ui = 〈ui〉+u′i is referred to as the Reynolds decomposition. Applying the Reynolds decompo-

sition to equations (1.1) and (1.2) and averaging yields the Reynolds Averaged Navier-Stokes

(RANS) equations:

∂〈ui〉
∂t

+
∂〈uj〉〈ui〉
∂xj

= −∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

− ∂〈u′ju′i〉
∂xj

(1.3)

∂〈ui〉
∂xi

= 0. (1.4)

The RANS equations describe the mean velocity field; however, the equations are unclosed

due to the last term in equation (1.3), namely the Reynolds stress tensor 〈u′ju′i〉. This term

represents an additional mean momentum flux due to the velocity fluctuations. Several

models have been proposed for the Reynolds stress tensor, including eddy viscosity models

and Reynolds stress transport models. Different choices of eddy viscosity lead to different

RANS models, such as the widely used k-ε model [3, 4] the Spalart-Allmaras model [5, 6],

and the v2-f model [7].

Although simulating only the slowly evolving mean flow is within current computational

capabilities, RANS suffers from several inadequacies [8, 9, 10]. RANS is particularly insuffi-

cient as a model for particular flow features such as unsteady or smooth wall separation [11].

The inadequacies of current RANS models may stem from trying to capture information

about turbulent fluctuations using only averaged quantities; however, it is not clear whether

3



this a fundamental problem with RANS or just a failing of current RANS models.

Since its inception in meteorological modeling in the early 1960’s [12, 13], large eddy sim-

ulation (LES) of turbulence has held promise as a potentially practical technique to model

turbulent flows, addressing the deficiencies of both DNS and RANS. LES is expected to be

more reliable than RANS models commonly used in engineering while being orders of mag-

nitude less expensive to compute than DNS, which, as stated above, is widely considered

to be highly reliable, but computationally intractable in most applications. In large eddy

simulation, one seeks to numerically represent the dynamics of the large scales of motion

while modeling the effects of the unrepresented small scales. The rationale for this approach

is that the largest scales in any turbulent flow are peculiar to the particulars of the flow and

simulating their dynamics avoids the necessity of modeling their effects as in RANS. On the

other hand, provided the Reynolds number is sufficiently high, the turbulent fluctuations are

expected to become statistically isotropic and therefore universal, as the scale of the fluctu-

ations decreases. Modeling the effects of these small scales should therefore be significantly

easier than modeling the large scales, and one might therefore expect such “subgrid scale”

(SGS) models to be universally applicable [1].

Unlike the equations for DNS and RANS above, properly formulating the equations for

LES has been a complication in the field since its establishment. The difficulty seems to stem

from the disconnect between the theoretical foundations of LES and practical considerations.

Consequently, this has led to much confusion in the LES literature particularly with how the

represented large scales and subgrid scales are defined. As we aim to demonstrate in this

thesis, being explicit about the practical considerations of LES is critically important for

properly representing the effects of turbulence in flows of interest. In the following section

we therefore present a formulation of LES proposed by Moser, Haering, and Yalla [1] for this

purpose, which is also general enough to subsume several commonly used LES formulations.
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1.1 LES formulation

The fundamental idea of large eddy simulation is simple, that the large scales of turbulence

dominate its effect on the mean flow while their effects are more difficult to model than the

small scales. So, directly simulating the large scales while modeling the effects of the small

scales should be an effective strategy for modeling turbulence. However, there are a number

of subtleties to the formulation of an LES that are addressed below. Similar considerations

are discussed in Pope [14].

In formulating an LES, one must first define the large scales that are to be simulated.

This is accomplished by defining a linear operator F that maps turbulent fields u(x, t) to

large-scale (LES) fields u(x, t). This operator is called the filter, and is commonly written

u(x, t) = F(u) =

∫

D
G(x,x′)u(x′, t) dx′, (1.5)

where D is the flow domain being simulated and G is the filter kernel. If F is shift invariant,

that is, if it commutes with spatial shift operators with arbitrary shifts, then the filter is

homogeneous and the kernel is given by G(x,x′) = G̃(x−x′). The filter is intended to isolate

the large scales of turbulent motion, so it should be smoothing; further it must define what

information regarding the turbulent field u is retained in the filtered field u. To formulate

an LES, an evolution equation for filtered fields will be determined which will be solved

numerically. A numerical solution must have a finite-dimensional state space to be solved on

a computer, so if the range of F is infinite dimensional, further discretization will be required,

which will project the solution to a finite dimensional space. In this case, it is clearly the

operator F along with the projection that defines the retained information regarding the

turbulent field. Thus, to ensure that F defines the information available in the LES field, it

is formulated here to include any required discretization or projection (commonly referred
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to as the implicit filter), so that the range of F is the finite dimensional space of the LES

[15, 16].

For ease of notation, a filtered quantity will be designated with an overbar, the expected

value with 〈·〉 as in the RANS equations, and resolved and unresolved fluctuations with ·>

and ·<, respectively. Accordingly, a filtered velocity is given by u = F(u) where u is the

velocity field of a real turbulence. Further 〈u〉 = 〈u〉 is the mean velocity, u> = u − 〈u〉 is

the resolved fluctuating velocity and u< = u− u is the unresolved fluctuating velocity. The

total fluctuating velocity is thus u′ = u> + u< = u − 〈u〉. A filter is characterized by its

filter scale ∆ which characterizes the LES resolution. When the resolution is anisotropic,

it is characterized by a resolution tensor Mij, which is formally the symmetric part of the

Jacobian defining the mapping of a unit cube to a resolution cell [17]. Its eigenvalues are

the resolution scales in the directions defined by its eigenvectors.

Applying the filter operator to equations (1.1) and (1.2) yields the filtered (incompress-

ible) Navier-Stokes equations:

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(1.6)

∂ui
∂xi

= 0. (1.7)

Note that F commutes with time differentiation, because it is a spatial filter, but does

not in generally commute with spatial differentiation. This leaves all the remaining terms

to be modeled. However, if F is homogeneous (shift-invariant), then it commutes with

differentiation, simplifying the above equations to the Navier-Stokes equations applied to u,

with the exception of the nonlinear term ∂juiuj. In this case, uiuj is the only term that would

need to be modeled in an LES. One can write this as ũiuj − τij, where ·̃ = F ′(·) is a possibly

different filter operator mapping uiuj to the LES solution space, and τij = −uiuj+ũiuj is the

subgrid stress. This formulation applies to F for which the truncation to a finite dimensional
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space is a Fourier truncation, such as a Fourier cut-off filter [18] or a homogeneous Gaussian

filter composed with a Fourier cutoff. As an example, using a Fourier cut-off filter for both

F and F ′ is equivalent to using a dealiased spectral (or Fourier Galerkin) method, while

changing F ′ to a collocated projection is equivalent to an aliased pseudo-spectral method

[19].

In most LES applications, however, a spectral discretization is not used, and F is not

homogeneous. In this case, all terms in equations (1.6) and (1.7), other than the time

derivative, need to be modeled. However, F can be discretely homogeneous; that is, invariant

to shifts by integral multiples of ∆αeα (no summation on Greek indices), where ∆α is the

“grid spacing” in the direction defined by the unit vector eα. Examples of the F operator

include finite volume, finite element and spline [20, 21] projections defined on uniform grids,

as well as these projections composed with homogeneous continuous filters. The filtered

spatial derivative terms can then be approximated by applying a discrete derivative operator

appropriate to the LES solution space defined by F (e.g. a finite volume, finite element, or

spline derivative approximation). Denote such discrete derivative operators δ/δxi or δi, then

for a generic quantity φ, ∂iφ ≈ δiφ. The error in this approximation is in principle subject to

further modeling, and includes two effects: the usual discretization error associated with the

numerical derivative δi, and the effect of aliasing when the projection in F is not a Fourier

truncation.

When F is inhomogeneous, usually because it includes a projection onto a nonuniform

grid, the effective resolution scale is spatially dependent. This introduces an additional

contribution to the commutator Ci(φ) = ∂iφ − δiφ, commonly called “commutation error.”

Ghosal and Moin [22] analyzed the commutation error by introducing a transformation of

the spatial domain to a new set of spatial coordinates ξ in which the grid is uniform. This

7



then allows C(φ) to be decomposed as:

Ci(φ) = CIi (φ) + CHi (φ) CIi (φ) =
∂φ

∂xi
− ∂φ

∂ξj

∂ξj
∂xi

CHi (φ) =
∂φ

∂ξj

∂ξj
∂xi
− δφ

δxi
, (1.8)

where CI and CH are the inhomogeneous and homogeneous contributions to the commutator.

Generally, the homogeneous part represents the effects of the numerical discretization error

in δ/δx and is non-zero even if the resolution is homogeneous. The inhomogeneous part

characterizes the effects of the inhomogeneous resolution and is zero when the resolution

is homogeneous or F is discretely homogeneous. Similarly, there is a commutator for the

Laplacian in the viscous term CV (φ) = ∂i∂iφ − δ2
iiφ, where δ2

ii is an appropriate numerical

approximation to the Laplacian. With this, equations (1.6) and (1.7) can be written

∂ui
∂t

+
δũiuj
δxj

= − δp

δxi
+ ν

δ2ui
δxiδxi

+
δτij
δxj
− CIj (uiuj)− CHj (uiuj)− Ci(p) + νCV (ui) (1.9)

δui
δxi

= −Ci(ui). (1.10)

It will be convenient to refer to the sum of all the model terms in equation (1.9) as Mi. Here

the nonlinear terms are written in conservative form, although a similar formulation holds

for the convective, skew-symmetric, and rotational forms as well (see chapter 3).

It should be noted that there is a subtlety to this formulation when the filter is discretely

homogeneous in ξ since discretely homogeneous filters can be decomposed into a homoge-

neous filter followed by sampling on a uniform grid. If the homogeneous filter is defined to

include a Fourier cutoff with cutoff wavenumber less than the Nyquist wavenumber for the

grid, the sampling does not discard information, and this is usually what is intended when

defining the filter. When applying this to the decomposition given by equation (1.8), we can

choose to include the effect of sampling as part of CI or CH . Here, we will generally choose

the latter, so that CI is expressed in terms of a non-invertible homogeneous filter in ξ.
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Further, equations (1.9) and (1.10) are intended to be general enough to subsume all

LES formulations and their numerical discretizations. One way this may not be obvious

is the δjũiuj term, which can be interpreted as a binary operator B(ui, uj) that maps into

the LES solution space. This binary operator will be designated as δ̃j, and can subsume all

finite volume and finite element flux estimates, numerical schemes that employ non-linear

derivative approximations (e.g. TVD, WENO), various deconvolution, reconstruction, and

explicit filtering techniques.

1.2 Statistical requirements of LES models

In addition to formulating an LES, realistic goals for LES and LES modeling should also

be made explicit. A discussion from Moser, Haering, and Yalla [1] is presented here for this

purpose. Early investigations of the fundamentals of SGS modeling showed that the model

proposed by Smagorinsky [12] could be quite effective in the LES of isotropic turbulence

[23, 24, 25, 26], producing reasonable predictions of both the decay of turbulent kinetic

energy and the energy spectra. However, by applying the model in large-scale (filtered) fields

derived from DNS, it was found that the Smagorinsky model output was poorly correlated

with the exact subgrid term computed from the DNS [27, 28]. Further, the similarity model

proposed by Bardina et al. [29] correlated much better with the exact subgrid term [30],

but performed poorly as an LES model for isotropic turbulence because it was insufficiently

dissipative [29]; that is, it did not adequately represent the transfer of energy from the

resolved large scales to the unresolved small scales. Clearly, at least for these models and

for performance in predicting the low-order statistics of isotropic turbulence, the dissipative

characteristics of the model were more important than accurately representing the subgrid

term as determined from DNS.

This supposed disconnect between representing the instantaneous subgrid term as deter-

mined from DNS and the actual performance of an SGS model in LES can be understood by
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observing that an LES field, which only includes the large scale turbulent fluctuations, does

not generally include enough information to reconstruct the missing small scale turbulence.

This is a direct consequence of the implicit filter included in F . Following the nomenclature

used in Pope [14] and Langford and Moser [15], let an LES solution be denoted w, to dis-

tinguish it from a filtered turbulence. Both u and w reside in the same finite-dimensional

LES solution space, and clearly the objective of an LES must be for the evolution of w to

resemble that of u to the extent possible. However, it is not possible for their evolutions to

match in detail because there are many turbulent fields u with the same filtered field u; and

further, both the turbulence and the LES are chaotic. Knowledge of the resolved field u is

thus insufficient to uniquely determine its evolution in time. The best possible evolution of

w can “only” ensure that the single-time statistics of w match those of u [15]. This is the

ideal LES, which is obtained when at each time, ∂tw of the LES is the average of ∂tu over

all u for which F(u) = w. However, this ideal LES evolution is practically unattainable, so

the LES modeling challenge is to approximate it. The LES evolution equations are therefore

obtained by substituting wi for ui in equations (1.6) and (1.7) and posing models for τij and

the C’s in terms of wi.

Since there are an infinite number of small-scale fields that are consistent with a given

large-scale (filtered) turbulence, there is a distribution of possible subgrid terms [15]. This

suggests that an appropriate model for the subgrid term may be the average over this dis-

tribution (that is, a conditional average). Such a model was called an ideal LES model by

Langford and Moser [15] because it will yield an LES whose statistics match those of the

filtered real turbulence and will minimize the mean-square error in the subgrid term. Fur-

thermore, the ideal SGS model will correctly represent any correlation between the subgrid

term and the resolved turbulent field that is linear in the subgrid term. In particular, the
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ideal SGS model guarantees that

〈G(u)m(u)〉 = 〈G(u)M(u)〉 (1.11)

and

〈G(w)m(w)〉 = 〈G(u)M(u)〉 (1.12)

where G is any operator acting on the LES solution space (space of filtered velocity fields).

A SGS model m that satisfies the a priori condition of equation (1.11) for all operators

G is both necessary and sufficient for the model to be ideal. This then ensures that the a

posteriori condition Equation 1.12 will be satisfied, with w an LES solution [15]. Hence, the

ideal LES is statistically defined and is sufficient for a posteriori consistency of all single-time

resolved statistical quantities.

Unfortunately, the ideal LES model is not attainable because it requires knowledge of

an infinite-dimensional set of statistics. However, the existence of an ideal SGS model and

its statistical definition and properties suggest that it is the statistical characteristics of an

SGS model that are important, rather than its instantaneous representation of the subgrid

term. Moreover, in a practical LES, we have more modest objectives than the ideal LES. As

discussed above, we may, for example, only need an LES to provide an accurate prediction of

the mean velocity and/or energy spectrum, and so naturally ask whether there are specific G,

for which satisfying equation (1.11) is either necessary or sufficient for accurate predictions.

Identifying such an a priori requirement would allow models to be designed and tested based

on a priori information from DNS or theory [31].

In some cases, it may be possible to analytically identify a G for which 〈G(w)m(w)〉 is

dynamically important to the statistical quantity to be predicted so that satisfying equa-

tion (1.12) is necessary for accurate predictions. This may imply that satisfying equa-

tion (1.11) is necessary, but even if not, it is a good candidate for an a priori condition
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on the model. Finally, for some prediction quantities, there may be no analysis available

that provides a closed necessary statistical condition [e.g. see 31]. In this case, it is still a

reasonable hypothesis that there are some statistical quantities (i.e. G’s) for which a priori

consistency is important, though they may need to be discovered empirically.

1.3 Research motivation

Large eddy simulation is now over half a century old and while it has become more widely

used as computational capabilities have expanded, its adoption as an engineering tool has

arguably been limited by the shortcomings of subgrid models. In equation (1.9) all of the

commutators and the subgrid stress generally require modeling. However, most current sub-

grid models were formulated under the assumption that the subgrid scales are approximately

isotropic, and that other complications, such as numerical discretization and inhomogeneous

resolution, are negligible. As such LES modeling efforts have largely been limited to τij and

all the commutator terms are typically neglected. The commutator on the viscous term νCV

is expected to be small when the Reynolds number is high, and so can safely be neglected

except in low Reynolds number regions such as near a wall. Similarly, errors in the pressure

term may be subsumed in the treatment of continuity. However, the nonlinear commutators

CIj and CHj are generally important in an LES, but are commonly neglected nonetheless. This

limits the fidelity of the models when applied in complex flows, and these limitations require

simulations to have finer resolution than they would otherwise to ensure reliable results. For

LES to become a widely applicable engineering tool, subgrid models applicable with much

coarser resolution will be required. The complexities introduced by numerical discretization

through the commutators must therefore be addressed in subgrid modeling.

To circle back to the somewhat rhetorical question posed at the beginning of this section,

the overarching challenges facing the development of more broadly capable LES models are:

(1) to identify a set of a priori statistical characteristics that are important for subgrid
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models in complex scenarios, and (2) to acquire adequate statistical information to inform

the development of models that are capable of representing these characteristics [1]. These

challenges, in the context of the commutators identified in section 1.1, motivate the work in

this dissertation. We aim to identify, either analytically or empirically, the important effects

introduced by numerical discretization in an LES and develop corresponding LES models

for the commutators that directly account for the properties of the underlying numerics.

Moreover, we aim to gain a better understanding of the flow physics represented in an LES,

which has typically been analyzed only in terms of isotropic turbulence represented on a

uniform grid with Fourier-spectral numerics and cutoff filters.

The remainder of this dissertation is organized as follows: A review of known statistical

subgrid properties and subgrid stress models is provided in chapter 2. The homogeneous

commutator is then explored in chapter 3, with a particular focus on the effects of numerical

dispersion error on the energy cascade in LES, as well as explicit filtering formulations

that aim to address these errors. An EDQNM type of analysis that is applicable to the

filtered turbulence in an LES is then developed in chapter 4, which is used to further explore

numerical dispersion effects and determine the a priori requirements of subgrid stress models

in the presence of non-spectral numerics and non-cutoff explicit filters. The characteristics

of the inhomogeneous commutator are then explored analytically in chapter 5, followed

by a numerical investigation of commutation error and commutator modeling for turbulence

convecting through a coarsening grid in chapter 6. Lastly, forcing formulations for turbulence

convecting through refining grids are explored in chapter 7. Concluding remarks are offered

in chapter 8.
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Chapter 2

Statistical properties of the subgrid stress

The subgrid stress term τij has widely received the most modeling attention in LES. In

this chapter we therefore present a review of the known statistical properties and models as

mainly related to τij. This review was previously published in the recent Annual Review of

Fluid Mechanics paper by Moser, Haering, and Yalla [1] and will be useful in later chapters

when exploring the homogeneous and inhomogeneous commutators.

2.1 Dissipative models

It has long been appreciated that the mean rate of energy transfer to the unresolved scales

(dissipation) is a critical statistical characteristic of a SGS model. In stationary forced

isotropic turbulence, and by extension in LES of stationary flows in which the turbulence

at the resolution scale is approximately isotropic, the subgrid dissipation must similarly be

equal to the rate of production. However, this will be trivially true a posteriori if the LES

is stationary. The important question is whether the modeled subgrid dissipation matches

production when evaluated in an a priori sense, that is, when evaluated using data from

DNS or theory. This is then a necessary condition for a stationary LES or an LES with the

correct decay rate to match the statistical characteristics of the filtered real turbulence. As

an example, in a constant eddy viscosity SGS model, a priori consistency of the dissipation is

necessary for a posteriori consistency of the energy spectrum. The mean rate of turbulence
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kinetic energy dissipation is the most obvious statistical characteristic of an SGS model

and many SGS models are therefore designed specifically to dissipate kinetic energy. These

models are discussed here.

2.1.1 Eddy diffusivity

By far, the most commonly used class of LES subgrid models are eddy viscosity models.

For modeling the mean momentum transport, as in RANS, an eddy viscosity form can be

justified by gradient diffusion arguments. Consider convective transport of some fluctuating

conserved quantity φ by a fluctuating velocity field. Using the first term in a Taylor expansion

of a stochastic fluid particle location, χ′i, and assuming isotropic turbulence, one obtains [32]

an eddy viscosity representation for 〈u′jφ′〉 with the eddy viscosity given by νt = C〈k〉Tc,

where Tc is a velocity correlation time. Such a formulation based on the expected energy

and correlation timescale suggests an eddy viscosity model is justified in the mean, but in an

LES, the SGS τij is a fluctuating quantity. The physical justification for an eddy viscosity

representation of τij fluctuations is thus questionable.

In an LES, however, the subgrid scale fluctuations are critical, since the rate of turbulent

energy transfer to the small scales (dissipation) is given by 〈εs〉 = 〈S>ijτ ′ij〉, which is one of the

critical a priori model characteristics. While gradient transport arguments do not justify an

eddy viscosity model for τ ′ij, such a model is guaranteed to be dissipative, and is useful for

this reason. Particularly, with τ dij ≈ νtSij, where τ dij = τij − 1
3
τkkδij, [see e.g. 33] the mean

subgrid stress and the dissipation are given by

−1
2
〈τ dij〉 ≈ 〈νt〉〈Sij〉+ 〈ν ′jS>ij 〉 (2.1)

1
2
〈εs〉 ≈ 〈νt〉〈S>ijS>ij 〉+ 〈ν ′tS>ij 〉〈Sij〉+ 〈ν ′jS>ijS>ij 〉. (2.2)

The function of a subgrid model is often considered to be providing the total subgrid energy
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flux, 〈τijSij〉 = 〈τij〉〈Sij〉 + 〈εs〉. But this is conflating two of the distinct statistical roles

of the subgrid scale model; to transport mean momentum via 〈τij〉 and to transfer resolved

turbulent energy to the subgrid through 〈εs〉.

Note first that if the eddy viscosity fluctuations and the resolved strain rate are correlated,

they contribute to the mean momentum transport, which is not consistent with the gradient

transport argument above. Second, the eddy viscosity need not fluctuate for the model to

be dissipative. Also, note that use of the standard model form, τ dij ≈ νtSij, with fluctuating

νt results in the mean strain contributing to εs, which is inconsistent with εs representation

of nonlinear transfer of energy across turbulence scales [34]. This has led to much difficulty

when using eddy viscosity subgrid models in mean-shear-dominated regions such as near

walls [35, 36] and often necessitates ad-hoc damping. Use of this model form to represent

〈τij〉 while representing 〈εs〉 is also inconsistent since the required eddy viscosities scale

differently [37]. Models of this form therefore require the LES resolution be sufficiently fine

to make the mean subgrid stress negligible. An alternative is to use a different eddy viscosity

for the mean momentum transport and the dissipation [38, 39, 40] as will be discussed in

section 2.2.1.

Generally in LES then, eddy viscosity models for the mean subgrid stress 〈τij〉 are justified

by gradient transport arguments, and eddy viscosity models for τ ′ij are useful because they

are inherently dissipative. In most LES formulations, it is the dissipative characteristics of

eddy viscosity models that are of greatest interest, and these are discussed in the following

subsections. Such models have been used successfully in LES of a wide variety of complex

turbulent flows [41, 42, 43, 44, 45]. The success of eddy viscosity models can usually be

attributed to the use of an LES resolution fine enough to ensure that only the dissipative

properties of the model are important. They are likely to continue to be valuable in ensuring

that subgrid models represent the transfer of energy to the small scales. However, additional

or alternative model forms may be needed to represent other statistical characteristics of the
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subgrid terms. Fluctuations in the eddy viscosity are not justified on physical grounds nor

do they appear to be necessary. Indeed, subgrid models with non-fluctuating eddy viscosities

have been used successfully [46, 17], though most subgrid models employ a fluctuating eddy

viscosity (e.g. the Smagorinsky model). Finally, real space eddy viscosity models do not

provide the well-known spectral cusp behavior resulting from incomplete wavenumber triad

interactions near the cutoff [47, 48]. This fact motivates the use of hyperviscosity models as

discussed in section 2.1.3 and further in chapter 4.

Mean dissipation formulations

When considering only the exchange of energy from the resolved to unresolved scales, it

is natural to formulate an eddy viscosity directly in terms of the dissipation. If the eddy

viscosity is presumed to not fluctuate, it can be simply defined as

νt =
〈ε〉

2〈S>ijS>ij 〉
, (2.3)

which guarantees that the model will have dissipation 〈ε〉 a priori. Notice that νt from equa-

tion (2.3) grows without bound as filter scale ∆ increases. Equation 2.3 is not particularly

useful by itself; additional modeling is required before it can be employed in an LES. The

denominator 〈|S>|2〉 in Equation 2.3 can be computed a priori from the spectrum tensor, if

known. Assuming an isotropic inertial range spectrum, we have [49]

〈∂ku>i ∂lu>j 〉 =
Ck〈ε〉2/3

4π

∫

D
κkκlF̂2(κ)|κ|−11/3

(
δij −

κiκj
|κ|2

)
dκ, (2.4)

where F̂ is the Fourier transform of the filter operator F defined in section 1.1. Assume

that F is simply a Fourier cutoff at wavenumber κc = π/∆ so that F̂(κ) = 1 for |κ| < κc,

and 0 otherwise, and that the inertial range extends to wavenumbers as low as |κ| = π/L,

where L is proportional to the integral scale. The domain of integration in equation (2.4)
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can then be set to D = {κ |π/L < |κ| < κc}, and the integral performed to determine

〈|S>|2〉 = Ckπ
4/3〈ε〉2/3(∆−4/3 − L−4/3), where Ck is the Kolmogorov constant. For L � ∆,

we get the simple result

νt = C〈ε〉1/3∆4/3, (2.5)

with C = 0.11/Ck [17], showing that provided ∆ is sufficiently small, the eddy viscosity is

insensitive to the details of the large scales, as expected. It remains only to specify 〈ε〉, which

unfortunately is generally not known a priori. A more sophisticated theoretical spectrum

can be used in a similar analysis to obtain a model constant that accounts for effects of finite

Reynolds number and small L/∆ [50].

Through approximations of 〈ε〉, many subgrid models can be cast into the form of equa-

tion (2.5). First, the “Kolmogorov expression” model of Carati et al. [51] and Dantinne

et al. [46] is basically equation (2.5), though they do not apply the expected value to the

dissipation. Second, assuming equilibrium, i.e. 〈ε〉 = 〈εs〉 = 2νt〈S>ijS>ij 〉, a variant of the

Smagorinsky model [12] is recovered, νt = C(2〈S>ijS>ij 〉)1/2∆2. This is the argument put

forward by Deardorff [52] to justify use of the Smagorinsky model. Note that the more

standard Smagorinsky form, νt = C(2〈SijSij〉)1/2∆2, is recovered only if we conflate subgrid

statistical roles and require 〈ε〉 ≈ 〈εs〉+ 〈τij〉〈Sij〉. Alternatively, 〈ε〉 in equation (2.5) could

be determined through an approximation of the second order structure function, F2(r) and

the Kolmogorov 2/3-law, F2(r) = C(〈ε〉r)2/3 [53] where r is the separation. With the fil-

tered structure function related to the total F2 through a coefficient in the inertial range

[54, 11] and setting r = ∆, we have νt = C(F 2(∆))1/2∆, which is a variant of the structure

function model of Métais and Lesieur [54]. Assuming isotropic resolution and the 2/3 law

simply yields 〈ε〉 = C〈∂ju>i ∂ju>i 〉3/2∆2 and νt = C〈∂ju>i ∂ju>i 〉1/2∆2 which is similar to the

Smagorinsky form and is another variant of the structure function model [48]. Thus, many

common models, when formulated as an expected value, differ only in how they approximate

the dissipation.
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Rarely are LES models formulated in terms of expected values, even when the underlying

assumptions only hold in expectation. Instead, instantaneous gradients are used to define a

subgrid time scale so that νt fluctuates and the ν ′t terms in equation (2.2) affect model behav-

ior. For instance, in the analysis of the dissipation due to the Smagorinsky model, Lilly [55]

neglects these terms under the assumption that νt has undergone “some form of averaging

sufficient to assure stability of velocity covariances.” However, this fluctuating term does

contribute to the dissipation and its neglect in Lilly’s a priori analysis leads to an overes-

timate of the Smagorinsky constant through 〈ν ′jS>ijS>ij 〉 and especially through 〈ν ′tS>ij 〉〈Sij〉

in regions of high mean shear. Furthermore, the use of numerical derivative operators to

estimate S>ij adds further complication to estimating the constant. As a consequence of these

complications, the constants in the Smagorinsky model and other models with fluctuating

νt generally need to be adjusted for a priori consistency of the dissipation.

The eddy viscosity models described in this section are formulated in terms of average

quantities, making it straight-forward to ensure a priori consistency with dissipation. In

the remainder of section 2.1.1 we consider ensuring a priori statistical consistency when the

eddy viscosity fluctuates.

The dynamic procedure

The dynamic procedure [56] has been widely used to determine constants in subgrid models.

The procedure relies on a second filter Fd at scale d (a test filter, signified by ·̂) that is

coarser than the “grid filter” F∆ at scale ∆ (d > ∆). The Germano identity relates the

subgrid stress determined for the composite filter F ∆̂ = FdF∆ (∆̂ is the effective scale of

the composite filter) evaluated for the LES filter, and the “resolved stress” (Leonard stress).

Letting Fd(u) = û, the identity reads:

τ ∆̂
ij − τ̂∆

ij = ûi uj − ûiûj = Lij (2.6)
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where τ ∆̂ and τ∆ are the subgrid stresses determined for the composite and grid filters

respectively. The resolved stress can be evaluated from an LES solution, and if τ ∆̂ and τ∆

are modeled using the same model, evaluated for the different filters, equation (2.6) can be

used to determine an overall multiplicative constant in the model (e.g. the Smagorinsky

constant). Let mij = (τ ∆̂
ij − τ̂∆

ij )/C, as determined by the model, with C the multiplicative

constant. Then the Germano identity requires Cmij = Lij, which in principle should be true

locally in space and instantaneously in time.

As an expression for C this relation is over-determined, since C is just a scalar in a tensor

equation. Germano et al. [56] originally proposed contracting this equation with Ŝij to obtain

a scalar equation, and later Lilly [57] and Ghosal et al. [58] proposed contracting it with mij.

The former is motivated by the fact that τ ∆̂
ij Ŝij is the dissipation for the composite filtered

turbulence, while C determined from the latter minimizes the square error [57]. In either

case, C varies wildly in space and time [58], resulting in regions with large negative eddy

viscosity, and the resulting instabilities in an LES. This is generally avoided by averaging,

resulting in

C =
〈LijŜij〉
〈mijŜij〉

or
〈Lijmij〉
〈|m|2〉 . (2.7)

In an LES, the averages have been defined as over homogeneous spatial dimension, as La-

grangian time averages [59, 60] and as averages in local spatial neighborhoods. By far, the

most common model to which the dynamic procedure has been applied is the Smagorinsky

model [12]. However, the dynamic procedure can be used for any subgrid stress model and

is not limited to simple multiplicative constants. Other subgrid models to which it has been

applied include the Vreman model [61, 62], transport-based subgrid kinetic energy [63] and

mixed models, both similarity-based [64, 65] and gradient-based [66, 67] The dynamic proce-

dure has also been used to determine 〈Cε1/3〉 in equation (2.5) which was shown to perform

equally well to dynamic Smagorinsky with fewer operations [46].
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Given the low correlation between the resolved stress and strain [68, 69], the scaling of

the eddy viscosity by the dynamic procedure can only adjust the amount of energy removed

by the model. Jimenez and Moser [37] analyzed the Lilly form of the dynamic procedure

applied to the Smagorinsky model and noted that the expression for C was essentially a

relation between production of turbulent energy at scales smaller than the test filter (LijŜij)

to the dissipation provided by the model formulated for the grid filter due to the fluctuations

at scales between the grid and test filter. This connection can be seen more clearly through an

a priori analysis for models with non-fluctuating eddy viscosity, such as those mentioned in

section 2.1.1, applied to isotropic turbulence with a Kolmogorov inertial range with Fourier

cutoff filters. With a non-fluctuating eddy viscosity, the Germano and Lilly forms of the

contracted Germano identity (equation (2.7)) are equivalent because in this case Cmij =

(ν∆̂
t − ν∆

t )Ŝij. Further with the Fourier cutoff filters, Ŝij = Ŝij, and with a Kolmogorov

inertial range, one can easily determine that 〈|S|2〉/〈|Ŝ|2〉 = ∆̂4/3/∆4/3 and that for each of

the model forms mentioned in section 2.1.1 ν∆̂
t /ν

∆
t = ∆̂4/3/∆4/3. Using these results, the

Germano and Lilly relationships reduce to 〈LijŜij〉 = ν∆
t (〈|S|2〉− 〈|Ŝ|2〉). The left hand side

is the production of energy at scales less than ∆̂ and the right hand side is precisely the

dissipation of the model for τ∆ due to the scales between ∆̂ and ∆.

In regions of flow where the filter is not well within the inertial subrange, Pope [14] has

argued that the dynamic procedure functions by minimizing the dependence of the statistical

characteristics of the model on the filter width. Porté-Agel et al. [70] propose using multiple

test filters to infer the dependence on ∆ in this situation.

Representing dissipation in inhomogeneous flows

The broad success of the dynamic procedure arises from its ability to overcome a number

of deficiencies in the base model. One such deficiency arises when the Smagorinsky model

is applied to inhomogeneous flows, especially wall-bounded flows. The Smagorinsky eddy
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viscosity does not go to zero as it should near the wall because of the asymptotic limits

of the velocity gradients at the wall, and in laminar flows because of the contributions of

the mean to |S|. The dynamic procedure corrects for this by adjusting the constant. The

discussion in section 2.1.1 suggests that the important characteristic of the |S| factor in the

Smagorinsky eddy viscosity is that it scales with 〈ε〉1/3 for filter widths in an inertial range.

However, the contribution of the mean to S spoils this, which is a fundamental reason for the

poor behavior in laminar flows. Alternatives to Smagorinsky eddy viscosity that attain the

required ε scaling with different scalar functions of the velocity gradient have been formulated

to produce the correct wall behavior and reduce sensitivity to specific mean characteristics.

These include the wall adaptive large eddy (or WALE) model of Nicoud and Ducros [71]

which corrects the behavior near walls, the Vreman model [61] which is insensitive to pure

shear, and the σ-model [72] which has both these features plus insensitivity to solid body

rotation, axisymmetric strain and pure dilatation. The particular behaviors of such models

in response to different mean flow conditions have been thoroughly examined [36]. Consistent

with the expectations for such models, when the dynamic procedure is applied to the Vreman

model, the coefficient is significantly less variable than Smagorinsky [62].

To completely eliminate the dependence of the eddy viscosity on the mean, which would

be most consistent with parameterizing it for dissipation of resolved turbulence, it can be

made proportional to |S>| as done by Schumann [38] and Moin and Kim [39]. Similarly,

Lévêque et al. [35] formulate the eddy viscosity in terms of |S| − |〈S〉| which also vanishes

in laminar flows, and is designed to represent the total energy transfer to the subgrid scales

including both the production by the mean and the dissipation of the resolved fluctuations.

Minimum dissipation models

The motivation for the eddy viscosity formulations discussed above is arguably to yield a good

approximation of the mean dissipation when evaluated a priori. An alternative approach is
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to target the local resolved dynamics, which if correctly represented would naturally produce

the a priori statistics. The minimal dissipation (MD) family of models [73, 74, 75] are of

this type. They shed any pretense of representing the subgrid and instead pose a model that

counteracts the formation of fluctuations smaller than the specified filter scale. Through

the Poincaré-Wirtinger inequality, the production of subfilter energy is bound above by

the production of filtered gradient energy (∂iuj∂iuj), so limiting filtered gradient growth is

sufficient to limit production of subfilter energy in the resolved subspace. A “production

of subfilter scales” in the resolved space would physically manifest in an increasing pile-up

of energy at the cutoff. The fact that only the resolved scales are considered is the reason

the Poincaré-Wirtinger inequality can be used with the resolved gradient, since otherwise

explicit knowledge of the unfiltered velocity gradients would be required.

The MD models consider the evolution equation of the filtered gradient energy with an

eddy viscosity subgrid model integrated over a grid cell [73]. Assuming negligible transport,

variation of eddy viscosity νt and resolved viscous dissipation, a zero time derivative of the

gradient energy requires

νt ≥ C∆
r

q
(2.8)

where q = 1
2
SijSij, r = −1

3
SikSkjSji. In practice, r is clipped at zero to prevent negative

νt, and equation (2.8) is taken as an equality with C∆ = 0.2∆2. Models stemming from

equation (2.8) have been tested on decaying turbulence and mixing layers [74] in addition to

channel flow [73, 75] and the anisotropic MD model (AMD) [74] has been shown to produce

remarkably accurate energy spectra in isotropic turbulence with anisotropic resolution [17].

It appears that the correlations between ν ′t, and S>ij account for the AMD model per-

formance, but it is not clear how. One insight is derived by comparing the AMD eddy

viscosity with equation (2.3), which suggests that the AMD eddy viscosity produces local

dissipation consistent with the nonlinear gradient model [27, 68, 33], when it is dissipa-

tive. Note that an anisotropic resolution generalization of the gradient model is given by
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τCij = CMkl∂luiMkp∂puj, and that εC = τCijSij is the energy transfer due to that stress and

the value of r in AMD. An alternate interpretation is that τCij arises from contracting an

approximation of the two-point second-order structure function. In the AMD model then,

the resulting energy transfer is ε = τijSij = CεC/(SklSkl + ΩmnΩmn)(SijSij) ≤ CεC due to

(ΩmnΩmn) ≥ 0. However, the gradient model is known to be unstable [66]. It seems then,

that minimum dissipation models provide a convenient vehicle for stabilizing such gradi-

ent models. Clipping of r is justified because the processes responsible for inverse energy

transfer, which would be represented by negative viscosity, is not consistent with the char-

acteristics of negative diffusivity. In particular, the former enhances energy in larger scales

while the latter amplifies energy in smaller scales. In any case, equation (2.8) is an eddy

viscosity formulated to match a model of local dissipation variations.

The success of MD models indicates more careful consideration of gradient energy trans-

port is warranted. Though the resulting models are all of the eddy viscosity type, and

therefore act on all scales of motion, MD arguments suggest the energy transfer role of the

subgrid turbulence could be replaced by preventing the formation of subfilter scales of mo-

tion by the nonlinear product. This perspective is shared by implicit LES (Section 2.1.2),

explicit filtering (Section 3.6), and Leray regularization [76] methods.

Transport-based eddy viscosity

The algebraic eddy viscosity models described in the previous subsections were formulated

based on the assumption that the subgrid turbulence is in statistical equilibrium with the

resolved turbulence. If this condition does not hold, the statistical evolution of the subgrid

scales will be important, prompting the use of transport models for the state of the subgrid

turbulence. For example, to address the effects of stratification, Deardorff [77] introduced

evolution equations for the subgrid stress, analogous to the Reynolds stress transport equa-

tions. More common has been the use of the equation for subgrid kinetic energy k> = 1
2
τkk
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[38, 78], which can be written:

∂k>

∂t
+ ui

∂k>

∂xi
= τijSij − 2ν|S>|2 − ε+

∂

∂xi

(
ν + σkνt)

∂k>

∂xi

)
, (2.9)

where σk is a model constant representing the inverse of the Prandtl number relating trans-

port of momentum and k>, and ε must be modeled. The eddy viscosity and dissipation can

then be written in terms of k> and ∆:

νt = Cµ(k>)1/2∆ ε = Cε(k
>)3/2/∆. (2.10)

If the subgrid turbulence is in equilibrium so that ∂tk
> = 0, the Reynolds number is

high so that viscous dissipation due to the resolved scales is negligible and turbulence

is homogeneous, then equation (2.9) with τij = νtSij can be solved for k>, resulting in

νt = (Cµ/Cε)
1/2∆2|S|, which is just the Smagorinsky model. Other choices for the closure

models for νt and ε could also be made, which could be formulated to yield an equilibrium

consistent with the other algebraic models discussed in the previous subsections. However,

because the subgrid production term is written τijSij rather than 〈τijSij〉 and because of

the convective velocity fluctuations, k> is a fluctuating quantity, and equation (2.9) will

generally not be in equilibrium. The resulting eddy viscosity will fluctuate differently from

Smagorinsky (using equation (2.10)), due to the dynamics introduced by equation (2.9).

However, there is no reason to expect these fluctuations to contribute to the fidelity of

the model in representing τij any more than they do for Smagorinsky, especially since the

closure models of equation (2.10) are in essence only valid statistically. However, one likely

consequence of the change in the fluctuations is a reduction in the correlation between νt

and S>, which is generally unrealistically high in the algebraic models like Smagorinsky.

While originally used extensively for atmospheric simulations [77], transport-based sub-

grid models have seen more recent application in so-called “bridging” models [79]. The par-
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tially averaged Navier-Stokes (PANS) [80] and partially integrated transport model (PITM)

[81] models are intended for use in hybrid RANS/LES simulations, but, in practice, are gen-

erally used with coarse LES throughout a simulated domain. In both approaches, RANS-like

transport models are made a function of the level of resolved turbulence, often specified ab

initio. Bridging methods have been used to varying degrees of success in a number of flows

with wide ratios of unresolved to total turbulent kinetic energy as high as 70% [80] but

typically show good results with levels in the vicinity of 20% (see Chaouat and Schiestel

[82], Razi et al. [83] for instance). Such resolution levels are well past the typical limits of

< 10% for a well-resolved LES [37]. A reduction in the correlation between νt and S> and

the resulting improvement in representing the Reynolds stress may be the reason.

Dissipation anisotropy

In the analysis of eddy viscosity models in the previous subsections, only the kinetic energy

dissipation (transfer to unresolved scales) has been considered. However, another necessary

condition for correct first, second and third order resolved velocity correlations is an a priori

consistent dissipation tensor εij = 〈∂ku>i τkj + ∂ku
>
j τki〉 [31]. If the unresolved scales are

isotropic, εij consistency will follow from consistency of εkk. However, if the LES resolution

is coarse or anisotropic, this will not be the case [84]. There has unfortunately been little

work towards developing models that capture dissipation anisotropy. It is possible that

similarity models (section 2.2.1) are improving representation of dissipation anisotropy but,

to the authors knowledge, this conjecture has not been examined to date.

Two exceptions are the M43 model [17] and the AMD model [74], which were both

designed to account for resolution anisotropy. The AMD model was described briefly in

section 2.1.1. It employs a fluctuating scalar eddy viscosity determined from a triple prod-

uct of the velocity gradients. The M43 model on the other hand employs a non-fluctuating

tensor eddy viscosity determined from an estimate of 〈ε〉. Both models depend explicitly on
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Figure 2.1: Normalized one-dimensional energy spectra from LES of forced isotropic tur-
bulence at infinite Re in a periodic box using the Smagorinsky, AMD, and M43 models,
and anisotropic resolution with of (8 : 8 : 1) aspect ratio cells and varying ratios of cutoff
wavenumber (grid size) to box size, κcc/κm, compared with the equivalently filtered |κ|−5/3

Kolmogorov inertial energy spectra [see 17, for details]. Shown are spectra in both the fine
and coarse directions. All models yield virtually identical results for isotropic resolution.
Values of κcc/κm are: 8, 16, 32, 64.

an anisotropic tensor measure of the resolution, and both do an excellent job of capturing

the kinetic energy spectrum over a wide range of grid aspect ratios (see figure 2.1). With

regard to εij, the M43 model is qualitatively consistent a posteriori as a function of aspect

ratio, while with AMD, εij remains approximately isotropic [17]. Also, the formulation and

function of the models is significantly different. The AMD model is formulated based on the

minimum dissipation considerations described in section 2.1.1, and it’s good performance in

reproducing spectral anisotropy must be a consequence of the correlations of the eddy viscos-

ity fluctuations with the fluctuations of S>ij , since the eddy viscosity is a scalar. On the other

hand, the M43 model is formulated as a straight-forward generalization of the Kolmogorov

model [51, 46], based on a priori consideration of the fourth rank velocity gradient tensor

〈∂kui∂luj〉, and the eigenstructure of the modified dissipation tensor 〈∂iu>k τjk + ∂ju
>
k τik〉. Its

good performance reproducing the spectral anisotropy arises from its use of a tensor eddy

viscosity. It suggests that a tensor eddy viscosity could be formulated to represent the effects

of turbulence anisotropy as well.
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2.1.2 Implicit LES

An alternative approach to modeling the subgrid dissipation is to design the numerical

divergence operator, δ̃i, to include the dissipation usually provided by eddy diffusivity models

of τij. This leads to implicit LES models (ILES), in which the goal is essentially to define

the δ̃i operator so that δjτij + CHj (uiuj) can be neglected. However, τij may still need to be

modeled to represent important statistical properties other than dissipation, such as subgrid

Reynolds stress. As pointed out by Fureby and Grinstein [85], the ILES approach simply

shifts the modeling challenge from τij to δ̃i where concerns for the consistency of statistical

properties remain.

The most common ILES model exploits the leading order dissipation term introduced

by numerical upwinding of the convection term. Boris [86] introduced this approach in the

Monotone Integrated LES (MILES) model based on flux-limiting finite volume discretiza-

tions. A connection between the dissipation of the ILES δ̃i operator and dissipative models

of τij can be established with modified equation analysis [87]. Also, a priori consistency of

the dissipative and transport properties of δ̃i can be tested with DNS data, though to the

authors’ knowledge this has not been pursued. Implicit models can also be built from the

high-order adaptive flux reconstruction techniques used in finite volume methods [88], which

has features of the deconvolution methods described in section 3.7. See Grinstein et al. [89]

for a more detailed review of ILES models.

Finally, note that the ILES modeling considerations are different from the approaches

to ameliorate the effects of discretization error described in chapter 3. The objective of the

former is to replace models for τij while the objective of the latter is to minimize CH .
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2.1.3 Hyperviscosity models

Applying the analysis of Meneveau [31] to the equation for the energy spectrum in isotropic

turbulence yields the necessary condition that the subgrid dissipation spectrum be a pri-

ori consistent. With a Fourier cutoff filter, it is well known that the a priori dissipation

spectrum has a cusp near the cutoff [48, 90, 91]. A wavenumber-dependent eddy viscosity

to represent this cusp has been proposed [92]; however, such an eddy viscosity is only eas-

ily applicable with Fourier spectral methods. To approximate the cusp in the dissipation

spectrum, hyperviscosity models have been proposed by several authors [see 34]. Moreover,

Cerutti et al. [93] showed that a fourth order hyperviscosity model is the simplest model

that correctly represents the dissipation of resolved enstrophy.

Hyperviscosity models are formulated as a sum of Laplacian operators of various orders,

providing an approximation of a wavenumber-dependent eddy viscosity. They have been

evaluated a priori using both experimental [93] and computational data [46, 94, 95].

2.2 Beyond dissipation

There are statistical characteristics beyond dissipation that the subgrid model needs to

satisfy to enable reliable simulations. However, these have received much less attention in

both modeling and analysis. One such characteristic, the mean subgrid stress is discussed in

the following subsection. Lastly, the Optimal LES modeling technique of Langford and Moser

[15] is discussed, which is guaranteed to produce a model that satisfies a given statistical

requirement in the a priori sense. However, the burden is still on identifying the important

statistical characteristics.
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Figure 2.2: Mean subgrid shear stress, τSGS normalized by the total Reynolds stress, τ , as
a function of the filter width, ∆12, normalized by the local integral scale, Lε(0) in channel
flow. Data is obtained a priori from a DNS at Reτ ≈ 600, and ∆ a posteriori from an LES
at Reτ ≈ 1000 using dynamic Smagorinsky model [from 37].

2.2.1 Mean subgrid stress

The main limitation preventing modeling both stress and dissipation with a single eddy

viscosity is the single degree of freedom that an eddy viscosity affords to adjust the behavior of

the model. In essence, we can adjust the viscosity to provide either the correct mean subgrid

stress or the correct dissipation, but not generally both [96, 37, 97]. This is problematic

because, as pointed out by Meneveau [31], both are necessary to predict the mean velocity

and the resolved Reynolds stress.

Jimenez and Moser [37] measured the magnitude of the problem in an a priori analysis

of turbulence channel flow using box filters. They found that when tuned for dissipation, the

Smagorinsky model yielded a mean subgrid stress that is too small by about a factor of 5,

with the discrepancy increasing with the fraction of unresolved turbulent kinetic energy (see

figure 2.2). This suggested that when using a simple Smagorinsky model, the filter width

needed to be small enough to ensure that the subgrid contribution to the mean subgrid stress

is negligible. Similarly, using Gaussian filters on a theoretical energy spectrum representing

30



turbulence in shear flow [98], Li and Meneveau [97] showed that in the limit of weak shear the

Smagorinsky eddy viscosity needed for consistency with the mean subgrid stress is a factor

of 2.6 larger than that needed for consistency with dissipation. With Fourier cutoff filters,

however, consistency of mean subgrid stress and dissipation yield nearly the same model

constant. Except possibly in this special case, a priori consistency of mean subgrid stress

and dissipation are distinct requirements that are incompatible for a single eddy viscosity

model.

One approach to addressing this problem is to use a different eddy viscosity to repre-

sent the mean subgrid stress and the dissipation [38, 39, 40, 99]. In this approach, the

resolved strain rate is decomposed into mean and fluctuating components, and a different

eddy viscosity is applied to each, as in:

τ dij ≈ −2(νs〈S〉ij + νeS
>
ij ). (2.11)

Most applications of this formulation have been motivated by coarse near-wall resolution

with νs made a function of wall distance [38, 39, 100]. The mean part of the model is then

only active near the wall so that the model reverts to a form similar to that of Lévêque et al.

[35] over most of the domain. However, this split model approach is not limited to near-

wall regions and may be useful anywhere in a simulation with coarse local resolution. More

recently, hybrid RANS/LES methods have emerged [40, 99] that use a RANS-like formulation

of νs. If a standard fluctuating eddy viscosity model is used for νe (e.g. Smagorinsky), 〈νeS>ij 〉

will contribute to the mean subgrid stress when ν ′e and S> are correlated, and would have

to be taken into account in formulating νs. However, if both νs and νe are formulated as

expected values, as with the models described in section 2.1.1, then mean subgrid stress and
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dissipation reduce to

〈τ dij〉 ≈ −2〈νs〉〈Sij〉 〈εs〉 ≈ 2〈νe〉〈S>ijS>ij 〉 (2.12)

and the mean stress and energy transfer roles of the subgrid model become distinct [40].

This split-τ approach has the additional benefit of allowing the dissipative and momentum

transport roles of the subgrid to be represented by models best suited for these effects.

Another approach to obtaining consistency with both the mean subgrid stress and the

dissipation is with a mixed model, in which the subgrid model consists of the sum of two

different models with different characteristics. For example, Li and Meneveau [97] interpreted

the inconsistency of the eddy viscosity for mean stress and dissipation as arising from the

Leonard stress, and so proposed addressing it with a mixed model consisting of the quadratic

gradient model [27, 68, 33] plus Smagorinsky:

τ dij = −2C1∆2|S|Sij + C2∆2
(
∂kui∂kuj − 1

3
∂kul∂kulδij

)
(2.13)

They were able to satisfy both the a priori dissipation and mean stress, through production,

consistency requirements for weak mean deformation, based on a theoretical spectrum as

discussed above. However, the coefficients in equation (2.13) were found to depend on the

strength and structure of the mean velocity gradient tensor. This dependence was strong for

sharp spectral filters but reduced for Gaussian filters. For stronger mean gradients, where

the assumptions of Ishihara et al. [98] are invalid, this strong coefficient dependence on the

mean is expected to increase. Practical application of this model would require developing

robust broadly applicable coefficients as a function of the invariants of the mean velocity

gradient tensor and, potentially, statistics of the resolved scales. Finally, in Gaussian filtered

isotropic turbulence, the nonlinear gradient term is highly correlated with the true subgrid

stress, to the extent that Borue and Orszag [69] referred to them as “statistically equivalent”.
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Therefore, enforcing a priori consistency of 〈τij〉〈Sij〉 through the nonlinear gradient term,

as in Li and Meneveau [97], may also minimize the error in the modeled subgrid stress

alignment Explicit algebraic subgrid stress models (EASSM) [101] might also be useful for

this approach as they have similar forms to equation (2.13).

Another class of mixed models that should effectively represent the mean stress is the

scale similarity model, which is usually paired with the Smagorinsky model [29, 68],

τ dij ≈ −2C1∆2(SklSkl)
1/2Sij + ûiuj − ûiûj, (2.14)

where, as in section 2.1.1, ·̂ signifies a secondary filter. Such models were reviewed by

Meneveau and Katz [33]. The scale similarity term is much better correlated with exact

subgrid stress a priori than the Smagorinsky model, with correlation coefficients as large as

0.6 [68, 33], except when used with Fourier cutoff filters. However, the authors are not aware

of studies that have measured the a priori consistency of the mean stress. Nonetheless,

it is expected that models such as equation (2.14) will enable a priori consistency of the

mean stress and dissipation since the gradient model discussed above can be considered a

first-order Taylor series approximation of the similarity model [68].

It appears then that to enable accurate LES with the coarsest possible resolution with

eddy viscosity models, one of the modeling enhancements discussed above should be em-

ployed, as they allow simultaneous representation of both dissipation and mean stress.

2.2.2 Optimal LES

An LES modeling technique called “optimal LES” was introduced by Langford and Moser

[15] as a formal approximation to the ideal LES described briefly in section 1.2. The ideal

LES is obtained when the model term M(w) in the LES equation is modeled as

m(w) = 〈M(u)|u = w〉 (2.15)
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whereas in section 1.1, M(u) is the exact subgrid force associated with a real turbulent field.

Notice that the conditional average in equation (2.15) is conditioned on the entire filtered

field u being the same as the entire LES field w. With this definition, the evolution of the

probability density of an ensemble of LES fields w will be the same as that of the filtered real

turbulence. Unfortunately, because the condition is on the equality of the entire filtered field,

it is essentially impossible for the conditional average in equation (2.15) to be determined.

To obtain an optimal LES model, we formally approximate the conditional average in

equation (2.15) using stochastic estimation [102, 103, 104, 105]. In this approach, one pos-

tulates a restricted dependence of m on w as a linear operator acting on a specified vector

of possibly non-linear functions of w (an event vector). The linear operator is then de-

termined by minimizing the mean-square error between the estimate and the conditional

average [106, 102], which also minimizes the mean-square discrepancy between and optimal

model and the exact subgrid term. It is the latter that is actually optimized using theory

[107] or data from DNS. As a generalization of this approach, optimal estimates of sub-

grid terms formulated in terms of neural networks have been proposed by several authors

[108, 109, 110].

However, most interesting in the context of the current review is another property of

optimal LES models. The model is guaranteed to produce the correct statistical correlations

between the model term and the elements of the event vector, in an a priori sense [15]. This

has two important implications. First, if one has a statistical requirement for the model

term as discussed in section 1.2, then one can use the optimal LES formulation to construct

a model that satisfies this requirement a priori. Second, one can use this property of optimal

LES formulations to help identify important a priori statistical properties of LES models

through a posteriori testing of a variety of optimal LES models formulated to have different

a priori statistical properties.

These ideas were applied to isotropic turbulence with Fourier cutoff filters by Langford
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and Moser [15]. A general linear model that ensured a priori consistency of the subgrid

dissipation spectrum was found to be equivalent to the well-known wavenumber-dependent

eddy viscosity with a cusp at the cutoff [47, 90, 111], and was in excellent a posteriori

agreement with DNS energy spectra and third-order structure functions [112]. Introducing

higher order terms to the optimal model did not significantly improve a priori correlation

with the exact subgrid term or a posterior agreement with DNS.

A similar study was conducted in channel flow at Reτ = 590 by Völker et al. [113], using

DNS data. A number of optimal LES formulations were explored. It was found that those

formulated for a priori consistency of mean subgrid stress, the subgrid wall-normal transport

of resolved kinetic energy, and the dissipation yielded the best LES solutions, with accurate

wall shear stress, mean velocity, and one-dimensional spectra. This is consistent with the

analysis of Meneveau [31] who identified these a priori necessary conditions.

When optimal LES is applied with finite volume or box filters, it is most natural to

pose the model in terms of stochastic estimates of both viscous and convective momentum

fluxes. This effectively treats the numerical operators and the model terms together. In

isotropic turbulence, a model of this type that conserves momentum and is formulated for a

priori consistency of dissipation out-performs dynamic Smagorinsky [56] for both the energy

spectrum and the third-order structure function at both finite and infinite Reynolds number

[114, 107]. In channel flow with unresolved wall-layers, an optimal model formulated for

a priori consistency of mean convection and production terms, in addition to mean stress,

wall-normal transport and dissipation was needed to attain good a posteriori agreement with

DNS [115].

The extensive statistical information required to formulate the optimal models described

above has generally been obtained from DNS, which makes them unsuitable for use in prac-

tical applications. Instead, these models are interesting because of what they say about

important a priori statistical characteristics of the subgrid model. Possible exceptions are
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optimal models constructed based on inertial range models of the statistics for isotropic tur-

bulence as in [107], which may be more generally applicable, provided the filter scale is small

enough and the Reynolds number is high enough. An alternative approach proposed by

[116] is to determine the optimal estimate dynamically based on information from a coarser

filtering of the LES solution, as in the dynamic model [56]. In addition, Park et al. [117]

and Fabre and Balarac [67] used optimal estimation models as standards by which to assess

errors in other models.

2.2.3 Discussion

The review in the chapter makes it clear that the majority of effort in LES modeling has

largely been dedicated toward constructed SGS models that represent the mean rate of ki-

netic energy dissipation. Progress in subgrid model development to address other challenges

in LES has been painfully slow, albeit for a few notable exceptions mentioned above. To move

past the “well-resolved” barrier in LES where the majority of the turbulence is resolved, sub-

grid models must do more for us than dissipate energy. The less the turbulence is resolved,

the more the subgrid motions contribute to mean momentum and energy transport. The ef-

fects of numerical discretization and resolution inhomogeneity/anisotropy cannot be ignored

since the smallest resolved scales, which are the ones impacted, will also be the important

energy-containing scales. The statistical characteristics introduced by these complexities are

explored in the follow chapters along with corresponding subgrid model developments.
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Chapter 3

Numerics and filtering in LES

We turn our attention now to the commutators introduced in equation (1.9), beginning with

the homogeneous commutator CHj (uiuj). We will consider the case of uniform resolution in

this chapter so that CIj is zero. CHj arises because the numerical properties of the discrete

derivative operator δ̃j usually differ from those of the partial derivative ∂j, with the sole

exception being for Fourier spectral methods. In numerical analysis, one generally aspires to

make the resolution sufficiently fine so that discretization error (and thus CH) is negligible,

however, LES is, by definition, under-resolved. As discussed in section 1.1, information

about the small-scale turbulence is discarded through the process of numerical discretization

in practice. This includes the projection of the infinite-dimensional velocity field onto a finite-

dimensional solution space (often referred to as the implicit filter) and the introduction of

numerical derivative operators, which together characterize the scales in the resolved field

whose dynamics are accurately represented. In practical applications, numerical projection

is typically the only “filter” used to define the LES. Since the resolution scale in an LES often

lies in the energy-containing inertial range, the effects of discretization error must generally

be considered (again with the sole exception being for Fourier-spectral methods).

Moreover, we are particularly focused on the effects of discretization error in this chapter;

however, the non-linearity of the convection term also leads to aliasing, which introduces

additional errors in the small-scale features of the approximate convection term (δ̃juiuj).

When Fourier analyzed, this aliasing error affects the Fourier modes of the derivative with
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κ > 2π/3∆. The analysis of Ghosal [118] indicates that aliasing error can overwhelm subgrid

stress modeling error and can corrupt the entirety of the resolved turbulence, which was

demonstrated experimentally by Kravchenko and Moin [119] and Chow and Moin [120] in

simulations of channel flow and stably stratified shear flow, respectively. Thus the effects of

aliasing should generally be considered in addition to the discretization errors explored here.

3.1 The effective wavenumber

Numerical approximations to differential operators are typically characterized by the leading

order term in their local truncation error e.g, the standard finite difference formula

df

dx
=
fj+1 − fj−1

2∆
+O(∆2) (3.1)

is considered a second-order centered difference approximation to the first derivative on a

uniform grid of spacing ∆, indicating that the local truncation error will reduce by a factor

of four if the mesh spacing is halved. For most applications, this is a sufficient means of

characterizing discretization error. However, as discussed above, the resolution scale in LES

is fixed significantly above the Kolmogorov scale, so discretization error cannot be resolved

away without approaching DNS limits.

It will therefore be more useful to understand how well numerical derivatives δ/δx ap-

proximate analytical derivatives ∂/∂x across the range of resolved spatial scales in LES. The

appropriate tool is known as the effective or modified wavenumber and corresponds to the

eigenvalue iκ̃(κ) of the numerical derivative operator associated with the eigenfunction eiκx.

For example, substituting f = eiκx into equation (3.1) yields the effective wavenumber

κ̃(κ) =
sin(κ∆)

∆
, (3.2)
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Figure 3.1: The effective wavenumbers corresponding to the first derivative operators for a
Fourier-spectral method ( ), 7th order B-spline collocation method ( ), 4th order B-
spline collocation method ( ), 3rd order B-spline collocation method ( ), 2nd order
B-spline collocation method ( ), and 2nd order centered difference method ( ).

which is plotted in figure 3.1. Clearly, equation (3.1) is an appropriate approximation to the

derivative only for the smallest wavenumbers.

Similarly, the effectiveness of a numerical second derivative operator can be examined

through its spectrum. In this case, there are two approximations to the second derivative

∂2/∂x2 we will consider. The first is repeated applications of the numerical first derivative

operators, denoted δ
δx

δ
δx

with spectrum −κ̃κ̃. For the second order centered difference case

δ

δx

(
δf

δx

)
=
fj+2 − 2fj + fj−2

4∆2
, and κ̃κ̃ = −sin(κ∆)2

∆2
, (3.3)

which is plotted in figure 3.2b. The second is the usual approximation to the second derivative

denoted δ2

δx2 with spectrum −κ̃2. For the second order centered difference case

δ2f

δx2
=
fj+1 − 2fj + fj−1

∆2
, and κ̃2 = −2(cos(κ∆)− 1)

∆2
, (3.4)
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Figure 3.2: The (negative) spectrum of the second derivative operators corresponding to a
Fourier-spectral method ( ), 7th order B-spline collocation method ( ), 4th order B-
spline collocation method ( ), 3rd order B-spline collocation method ( ), 2nd order
B-spline collocation method ( ), and 2nd order centered difference method ( ).
(a) is the standard compact approximation to the second derivative, while (b) is repeated
applications of the first derivative operator.

which is plotted in figure 3.2a.

In multiple dimensions a corresponding effective wave “vector” κ̃ can be defined with

components κ̃i. Similarly, the spectrum of the numerical Laplacian operator can defined as

either −κ̃jκj if second derivative operators are used, or −κ̃jκ̃j if repeated application of the

first derivative is used.

In addition to second order centered difference methods, a periodic B-spline collocation

scheme will be used throughout this work, as it provides a convenient numerical treatment

for both homogeneous and inhomogeneous resolutions and offers easy access to a range of

orders of accuracy. Although second order schemes largely remain the most popular choice

among LES practitioners, B-splines have also seen significant use in turbulence simulations

[119, 121, 122, 123, 124]. Unlike finite-difference formulas, or more generally any Padé ap-

proximation, the effective wavenumber for a periodic B-spline collocation method is most

readily determined numerically, with the peculiar exception of cubic B-splines whose first
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derivative approximation exactly matches the standard fourth-order compact Padé approx-

imation [125]. Specifically, let Bk
n denote the nth derivative B-spline operator of order k (as

defined in, e.g., [20]). In the periodic case, Bk
n is a circulant matrix, so its eigenvalues can

be determined through the Fourier analysis. On the domain [0, 2π] divided into N inter-

vals, let FDFT be the standard discrete Fourier transform matrix whose j, ` component is

e−2j`πi/N for 0 ≤ j, ` ≤ N and let bkn be a column of Bk
n. The spectra for the first derivative

operator Bk
1 and the second derivative operator Bk

2 can be computed as FDFTbk1/iF
DFTbk0

and −FDFTbk2/F
DFTbk0, respectively. These spectra are plotted in figure 3.1 and figure 3.2 for

various orders of B-splines.

The effective wavenumbers indicate that, for non-spectral numerics, the dynamics of all

the resolved scales cannot accurately be represented by the numerical derivative operators.

In the following subsections we explore the profound effects this has on implicitly filtered

LES, particularly with the representation of the convection term.

Finally, we note that although the numerical experiments here are limited to collocation

schemes, similar considerations carry over to Galerkin formulations. In this case, although

the derivatives that appear on the basis functions are exact, the associated “discretization

error” comes from the properties of the particular discrete basis used. For instance, uni-

form hat basis functions lead to the same derivative matrices as equations (3.1) and (3.4).

Moreover, projecting the resulting first derivative approximation back onto the hat functions

and approximating the first derivative again yields the same matrix as equation (3.3), as ex-

pected. Further, the extension to multiple dimensions is more straightforward in Galerkin

formulations, particularly with non-Cartesian grids, suggesting that this may be a worth-

while approach to explore in extending the work here to more practical three-dimensional

applications.
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3.2 Numerical energy transfer spectra

Note that much of the material here and in section 3.3 was published previously by Yalla,

Oliver, and Moser [126].

A simple flow in which to explore dispersion error effects is infinite Reynolds number

forced homogeneous isotropic turbulence with fluctuating velocities u transported with a

uniform convection velocity U, with magnitude U . We consider an LES with homogeneous

isotropic resolution ∆, and solve

∂ui
∂t

+ Uj
δui
δxj

+
δF ′(uiuj)

δxj
= − δp

δxi
+
δτij
δxj

+ fi (3.5)

δui
δxi

= 0 (3.6)

with periodic boundary conditions, where fi is the forcing. The homogeneous commutators

that should appear in equations (3.5) and (3.6) have been neglected, as is typical in LES, to

assess the effects of discretization error. Both filters · and F ′(·) are defined to be Fourier cutoff

filters, to allow us to isolate dispersion effects from aliasing effects. However, simulations

using a collocation projection for F ′ yielded results similar to those presented here.

All the operators are implemented in a modified version of the Fourier spectral code

POONGBACK [124] by substituting the effective wavenumbers associated with each method

for the true wavenumber when evaluating derivatives in Fourier-space. A third-order low

storage Runge-Kutta method [127] is used for time advancement, with time step selected to

maintain CFL=0.5 as defined in Spalart et al. [127]. The filtered Navier-Stokes equations are

solved using the vorticity-velocity formulation of Kim et al. [128]; see appendix A for more

details regarding the implementation of the vorticity-velocity formulation for non-spectral

numerics.
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The forcing fi is formulated to inject energy at a constant rate ε as in [129] and the sim-

ulations are performed in a cubical domain of size L. Because the turbulence is statistically

stationary, ε is also the mean rate of kinetic energy dissipation. Unless otherwise indicated,

all quantities are reported in units in which ε = 1 and L = 2π. The filtered velocity will

typically be represented with either 32 or 16 Fourier modes in each direction (as specified),

for an effective uniform resolution of ∆ = 2π/32 or ∆ = 2π/16, and the forcing fi is active

only in the wavenumber range 0 < |κ| ≤ 2. The filter F(·) (a Fourier cutoff) is applied

to the nonlinear terms as in a dealiased pseudo-spectral method, by evaluating the nonlin-

ear product on a grid with 3/2 the number of grid points as the number of Fourier modes,

and truncating the discrete Fourier transform of the result back to the original number of

Fourier modes (the 3/2 rule) [130]. The subgrid stress is approximated by a Kolmogorov

model τij = 2νtSij, where νt = Cm∆4/3ε1/3 is the eddy viscosity and Sij = 1
2
(δiuj + δjui)

is the filtered strain rate tensor as in section 2.1.1. The requirements of the subgrid stress

model in the context of numerics and filtering will be more closely analyzed in chapter 4.

Further, note that the dispersion phenomena reported here is not dependent on this choice

of the subgrid model. To isolate the effects of numerical dispersion error the Laplacian that

arises from the eddy viscosity model for the subgrid stress because νt is constant is treated

spectrally. In this case, Cm = 0.065 [131, 17].

The statistical effects of dispersion error can be assessed by considering the evolution

equation for the instantaneous resolved energy spectrum E(κ, t) = 1
2
û
∗
j(κ, t)ûj(κ, t). In this

setting,

∂E(κ, t)

∂t
= TN(κ, t)− 2νt|κ|2E(κ, t) + F (κ, t), (3.7)

where TN(κ, t) is a numerical approximation to the resolved transfer spectrum T>(κ, t) that

represents the exchange of energy between wavenumbers due to triad interactions in the

presence of numerical dispersion error, and F = Re
{
û
∗
j(κ, t)f̂j(κ, t)

}
is the spectrum of the

energy production arising from the forcing.
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One-dimensional energy spectraE1D(κ1) =
∑

κ2,κ3
〈E(κ, t)〉 and analogous one-dimensional

transfer spectra T1D(κ1) =
∑

κ2,κ3
〈TN(κ, t)〉 are reported here, where the expected value 〈·〉

is approximated as a time average. When U 6= 0, the convection velocity is chosen to be

aligned with the grid direction (i = 1) so the one-dimensional spectra reported are in the

direction of convection.

Four different forms of the nonlinear terms are commonly used for numerical discretization

of the filtered or unfiltered Navier-Stokes equations. While they are equivalent analytically,

they are not equivalent in the presence of discretization error, and so result in different forms

of the discrete energy transfer spectra. These forms and associated transfer spectra are listed

below. For generality, ui represents the filtered or unfiltered velocity, depending on whether

the equations being solved are filtered, for just the remainder of this subsection.

1. Conservative form, δj(ujui):

Tcons(κ, t) = −Im

{∑

κ′

κ̃`ûk(κ, t)û
∗
k(κ

′, t)û∗`(κ− κ′, t)

}
(3.8)

2. Convective form, ujδj(ui):

Tconv(κ, t) = −Im

{∑

κ′

κ̃′`ûk(κ, t)û
∗
k(κ

′, t)û∗`(κ− κ′, t)

}
(3.9)

3. Skew-Symmetric form, 1
2

(δj(ujui) + ujδj(ui)):

Tskew(κ, t) = −1

2
Im

{∑

κ′

(κ̃′` + κ̃`)ûk(κ, t)û
∗
k(κ

′, t)û∗`(κ− κ′, t)

}
(3.10)
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Figure 3.3: One dimensional spectra of energy E1D and energy transfer rate T1D with a
convection velocity of U = 0 and effective resolution ∆ = 2π/16. Shown are spectra from a
Fourier-spectral method ( ), and 4th order B-spline collocation method using the skew-
symmetric form ( ), conservative form ( ), convective form ( ), and rotational
form ( ). In this case, 〈∑κ Tconv〉 ≈ 0.5, 〈∑κ Tcons〉 ≈ 0.4, 〈∑κ Tskew〉 = 0, and
〈∑κ Trot〉 = 0.

4. Rotational form, ujδj(ui)− ujδi(uj) + 1
2
δi(ujuj):

Trot(κ, t) = −Im

{∑

κ′

κ̃′`ûk(κ, t)û
∗
k(κ

′, t)û∗`(κ− κ′, t)− κ̃′kûk(κ, t)û∗`(κ′, t)û∗`(κ− κ′, t)

}

(3.11)

The transfer spectrum T (κ, t) is responsible for transferring energy between resolved

modes so
∑

κ T (κ, t) = 0 for all t, reflecting conservation of energy. However, it is well

known that in the presence of discretization error, both the conservative and convective

forms do not satisfy this condition [132, 133, 120, 134]. To analyze this error in the context
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of LES, notice that for the conservative form

∑

κ

Tcons(κ, t) = −Im

{∑

κ

∑

κ′

κ̃`ûk(κ, t)û
∗
k(κ

′, t)û
∗
`(κ− κ′, t)

}

= −1

2
Im

{∑

κ

∑

κ′

(κ̃` − κ̃′`)ûk(κ, t)û
∗
k(κ

′, t)û
∗
`(κ− κ′, t)

}

= −1

2
Im

{∑

κ

∑

κ′

(κ̃` − κ̃′` − ˜(κ− κ′)`)ûk(κ, t)û
∗
k(κ

′, t)û
∗
`(κ− κ′, t)

}
. (3.12)

Similarly, for the convective form,

∑

κ

Tconv(κ, t) = −1

2
Im

{∑

κ

∑

κ′

(
κ̃′` − κ̃` + ˜(κ− κ′)`

)
ûk(κ, t)û

∗
k(κ

′, t)û∗`(κ− κ′, t)

}
.

(3.13)

For numerical methods other than Fourier spectral, κ̃ is a nonlinear function of κ (see

figure 3.1), so κ̃ − κ̃′ − ˜(κ− κ′) 6= 0. Therefore, the violation of conservation of energy

for the conservative and convective forms can be directly attributed to the fact that the

effective wavenumbers of triad interacting wavemodes do not sum to zero. Thus, the con-

servative and convective forms will act as an additional source term to the energy balance

equations. Interestingly, the velocity field seems to adjust in such a way that both the conser-

vative and convective forms add energy into the system, despite equations (3.12) and (3.13)

being equal and opposite, leading to a significant pile up in energy in the dispersion wave-

modes in both cases (see figure 3.3). However, the skew-symmetric form does indeed satisfy
∑

κ Tskew(κ, t) = 0 (with the convective part adding energy and the conservative part remov-

ing energy) and therefore avoids any energy pile up in the spectrum (figure 3.3). Similarly,

the rotational form is energy conserving by construction so
∑

κ Trot(κ, t) = 0. In more com-

plex settings, non-conservative numerics can lead to a blow-up of the numerical simulation

and so the skew-symmetric or rotational form is generally preferred. Alternatively, this ad-
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ditional energy source must be taken into account in the formulation of the subgrid model

(see chapter 4). It should be noted that although the skew-symmetric and rotational forms

lead to the correct energy characteristics, they do not correct the underlying dynamics of

the dispersive modes, as seen in the following subsection.

3.3 Numerical dispersion effects in LES

The effects of numerical dispersion error are examined in the context of equations (3.5)

and (3.6) with a zero and non-zero mean convection velocity. The convection velocity is

chosen to be aligned with the grid direction (i = 1) so the one-dimensional spectra reported

here are in the direction of convection. When the convection velocity is not aligned with the

grid, dispersive effects on the one-dimensional spectra similar to those reported here occur in

each grid direction in which U has a non-zero component. The skew-symmetric form of the

nonlinear terms is used so energy is conserved between nonlinear interactions. Additionally,

six different discrete first derivative operators δ/δx are used: a Fourier-spectral method, a

2nd order centered difference method, and 2nd, 3rd, 4th, and 7th order B-spline collocation

methods (see figure 3.1). The effective resolution is set at ∆ = 2π/32 so that each of these

schemes can adequately represent the forcing modes |κ| ∈ (0, 2].

In the absence of mean convection (U = 0), each numerical scheme produces spectra

that roughly agree with an equivalently filtered κ−5/3 theoretical inertial range spectrum (see

figure 3.4a). Furthermore, the transfer spectra are identical to that for the Fourier-spectral

case for all the numerical approximations (see figure 3.4b). For reference, the statistical

characteristics of the turbulence for the U = 0, Fourier-spectral case are reported in Table 3.1.

To demonstrate numerical dispersion effects, consider the case with mean convection

velocity U = 35. In this case, the value of U/u′ ≈ 27 (u′ is the root-mean square velocity

as defined in table 3.1) is comparable to that at the centerline of a turbulent channel flow,

where U/u′ ranges from 23 to 30 for friction Reynolds number ranging from 180 to 5200
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Table 3.1: Statistical characteristics of LES turbulence averaged over
500 eddy turnover times for the U = 0 case with Fourier spectral numerics.

Values are normalized by ε and L/2π.

Resolved Kinetic Energy, kres = 1
2
〈uiui〉 2.467

RMS Velocity, u′ =
√

(2/3)kres 1.282

Integral Scale, L = πE1D(0)

u′2
1.129

Large Eddy Turnover Time, TL = L/u′ 0.880

[124]. As expected, for spectral numerics, no change from the U = 0 case occurs in either

the energy spectrum or transfer spectrum. However, for all other numerical schemes, the

one-dimensional energy spectra in the direction of convection are significantly reduced over

a range of the highest resolved wavenumbers (see figure 3.4c). The corresponding transfer

spectra in the direction of convection tend to zero over this range of resolved modes (see

figure 3.4d). In effect, numerical dispersion error prevents energy from transferring at the

appropriate rate from the largest to smallest resolved scales. As a consequence, energy also

piles up in the larger resolved scales as energy is not transferred to the smallest resolved

scales at the correct rate for the subgrid model to dissipate (see figure 3.4c). For energy

conserving numerics, we must have
∑

κ TN(κ, t) = 0 for all t. To maintain this balance,

the energy transfer spectrum at all wavenumbers is affected by the dispersion error that is

primarily in the largest wavenumbers (see figure 3.4d). Moreover, the energy transfer rates

in directions orthogonal to convection are not degraded, however, the energy spectra in the

orthogonal directions are impacted by the errors in the convection direction (not shown).

The reason for the observed degradation of energy transfer to the smallest resolved scales

can be understood through analysis of a case in which U � u′. Let ε = u′/U � 1 be a

small parameter (not to be confused with the mean dissipation rate ε). Then the velocity

Fourier coefficients ûi vary on a fast and a slow time scale. Using a multiscale asymptotic
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Figure 3.4: One dimensional spectra in the convection direction of energy E1D and energy
transfer rate T1D, with convection velocities U = 0 and 35. Shown are spectra from theory
( ), Fourier-spectral method ( ), 7th order B-spline collocation method ( ), 4th
order B-spline collocation method ( ), 3rd order B-spline collocation method ( ),
2nd order B-spline collocation method ( ), 2nd order centered difference method ( ).

representation, ûi can be said to depend on a fast time variable tf = t/ε and a slow time

variable ts = t. Further, as with Taylor’s hypothesis, in the continuous case, ∂/∂tf =

εUj∂/∂xj is order one in ε. But, when using discrete derivatives as in equation (3.5), the
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same analysis yields ∂/∂tf = εUjδ/δxj. Therefore, ûi can be written:

ûi(κ, tf , ts) = ûi(κ, ts)e
−iεU·κ̃tf +O(ε), (3.14)

where ûi(κ, ts) is simply the fast time average of ûi, which varies in slow time due to the non-

linear turbulent processes. The instantaneous energy transfer rate for the skew-symmetric

form as used here (see equation (3.10)) is then

Tskew(κ, tf , ts) = −1

2
Im

{∑

κ′

(κ̃′` + κ̃`)ûk(κ, ts)û
∗
k(κ

′, ts)û
∗
`(κ− κ′, ts)e

iεU·(κ̃′−κ̃− ˜(κ′−κ))tf

}
+O(ε).

(3.15)

Since the turbulence is assumed to be stationary and ergodic, the expected value 〈T (κ)〉 is

time independent and can be estimated as a time average as follows:

〈Tskew(κ)〉 = −1

2
Im

{∑

κ′

(κ̃′` + κ̃`)〈ûk(κ, ts)û
∗
k(κ

′, ts)û
∗
`(κ− κ′, ts)〉

〈
eiεU·(κ̃

′−κ̃− ˜(κ′−κ))tf
〉
tf

}
+O(ε),

(3.16)

where 〈·〉tf is the fast time average, and the (slow) time average of the ûi triple product has

been replaced by the expected value by ergodicity.

Clearly, the fast time average in equation (3.16) is zero unless

ωT = U · (κ̃′ − κ̃− ˜(κ′ − κ)) = 0, (3.17)

in which case it is one. When using Fourier spectral numerics, κ̃ = κ and equation (3.17) is

satisfied identically for all the triad interactions represented in equation (3.16). However, for

other numerical schemes, such as those analyzed in figure 3.1, κ̃ is a nonlinear function of

κ, and so (3.17) will generally not be satisfied unless |U ·κ| = |U ·κ′|, severely limiting the

triad interactions that contribute to net energy transfer among wavenumbers. This occurs

because the spatial Fourier modes that can interact to transfer energy are determined by
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the wavenumbers κ, while the convective dynamics of those modes are determined by κ̃.

The result is that the interacting wavemodes do not maintain consistent phase relationships,

essentially shutting down the energy transfer and producing spectral anomalies like those

shown in Fig. 3.4. The inhibition of energy transfer due to phase scrambling discussed here

is similar to that caused by rapid rotation as described, for example, in [135, 136].

Of course, this analysis is asymptotic for ε → 0. For any finite ε, there will be O(ε)

corrections because the phase scrambling effect of the mean convective dispersion errors

as described above will compete with the nonlinear evolution of the Fourier modes. In this

case, one would expect that triad interactions for which ωT 6= 0 in (3.17) would be weakened,

rather than completely excluded, depending on the magnitude of ωT . This may be the reason

the spectra in Fig. 3.4 roll off smoothly for wavenumbers with significant dispersion error.

The condition (3.17) suggests that the strength of the dispersion effect on the energy

transfer at any wavenumber is determined by U(κ− κ̃) = U∆κ, which measures the rapidity

of the phase scrambling. Provided U∆κ at some wavenumber is sufficiently small compared

to the rate of other processes, one would expect the dispersion effects on the energy transfer

at that wavenumber to be negligible. This is supported by the observation that, for the

third, fourth and seventh order B-splines 1, the value of ∆κ at the wavenumbers where the

transfer spectrum crosses that for spectral numerics in Figure 3.4d is approximately the same

(∼ 0.4). In addition, in simulations with the convection velocity increased (decreased) by a

factor of two (not shown), ∆κ at this cross-over is decreased (increased) by about a factor

of two.

While the above analysis was performed for the skew-symmetric form of the nonlinear

terms, the structure of the transfer spectrum is similar for other forms (see section 3.2), and

the same analysis applies. This suggests that the same dispersion effects should occur for the

convective, conservative and rotational form of the nonlinear terms, and this was confirmed

1The lower order approximations do not have a wide enough range of non-dispersive scales for the scaling
to hold.
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numerically. In particular, when U � u′, dispersion errors due to mean convection dominate

the energy pile-up introduce by non-conservative numerics, and the results are similar to

those presented here for the skew-symmetric form.

In many LES applications, the turbulence is convected with a velocity large compared to

the turbulence fluctuations (e.g., turbulent boundary layers [137], flow through a wind tur-

bine [138]). In LES of such turbulent flows, numerical dispersion error causes a decoherence

of the phase relationship among interacting Fourier modes, which results in a reduction of

the energy transfer rate from large to small resolved scales in the direction of convection.

This leads to nonphysical changes in the energy distribution across all resolved scales.

On the other hand, the U = 0 results indicate that the nonlinear dispersion error has

little effect on the LES spectra, despite an inaccurate representation of the resolved scale

dynamics (see Figures 3.4a and 3.4b). This is interesting because one might expect the

energy transfer to be affected by phase scrambling due to convection of the small scales by

the large scales even when U = 0. By analogy with the scaling with the mean convection

velocity, the strength of this effect should scale with u′ so that, provided u′∆κ is sufficiently

small compared to the rate of other processes, the impact of dispersion on energy transfer

should be negligible. Presumably this is the case for all scales in the U = 0 simulations

shown in Figure 3.4. However, the good U = 0 results presented here should be interpreted

with caution, since the highly dispersive scales can have a damaging effect in more complex

flows [118, 119, 120, 139]. Consequently, in an LES, we generally cannot expect the scales

with significant dispersion error to be dynamically meaningful.

In later subsections we explore approaches to addressing the consequences of discretiza-

tion error in LES. The results here make it clear that the standard for sufficiently small

dispersion error depends on the convection velocity and possibly other flow characteristics,

not just the characteristics of the derivative approximation. As such, the effective range

of dynamically resolved scales is not defined by the grid spacing, but rather the dispersive

52



0 2 4 6 8 10 12 14
κ1

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

E
1D

(κ
1)

(a)

0 2 4 6 8 10 12 14
∑1

°0.30

°0.25

°0.20

°0.15

°0.10

°0.05

0.00

0.05

E
1D

(∑
1)

(b)

0 1 2 3 4 5 6 7
κ1

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

E
1D

(κ
1)

(c)

Figure 3.5: One-dimensional energy transfer spectra in the direction of mean convection for
the following cases. (a) 3rd order Bspline collocation method with U = 70 ( ) with
U = 35 ( ) with U = 17.5 ( ) and κc = 16. (b) 4th ( ) and 7th ( ) order
Bspline collocation method with κc = 16 and U = 35. (c) 4th order Bspline collocation with
U = 35 ( ) and U = 25 ( ) and 7th order Bspline collocation with U = 35 ( )
and U = 25 ( ). In all plots the Fourier-spectral case is shown in ( ). The vertical

dashed lines represent the scaling U∆κ ∼ ε1/3κ−2/3κ
4/3
c for each case of the corresponding

color (see table 3.2).

properties of the numerical approximation to the convection term.

3.4 Scaling of the dispersive timescale

In the previous section the timescale 1/U∆κ was identified as a measure of the rapidity of the

phase scrambling introduce by numerical dispersion. In this section we present preliminary

results that are suggestive of a scaling law for this timescale.

Nine simulations were performed in the same setting as in section 3.3 for various mean

convection velocities, numerical schemes, and cutoff wavenumbers. We use the wavenumber

region where the one dimensional energy transfer spectra crosses that for the Fourier-spectral

case as an indicator for the scale at which dispersion error shuts down the energy transfer

rate to higher wavenumbers (see figure 3.5). The data is suggestive of the scaling

U∆κ ∼ ε1/3κ−2/3κ4/3
c (3.18)
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Table 3.2: Data for the scaling U∆κ = Cε1/3κ−2/3κ
4/3
c for the cases shown in figure 3.5

U κ ∆κ κc C

70 7.25 0.21 16 1.36

35 8.15 0.38 16 1.33

17.5 9.06 0.73 16 1.37

35 9.25 0.36 16 1.37

35 11.5 0.31 16 1.37

25 4.9 0.29 8 1.31

25 6.0 0.26 8 1.34

35 4.7 0.22 8 1.35

35 5.8 0.19 8 1.34

with constant of proportionality C ≈ 1.3 (see table 3.2), although it is not clear why this

scaling is appropriate. More work is needed to make this scaling robust, however, this result

may be helpful for suggesting model dependencies for the timescale U∆κ. This timescale

will be explored further in chapter 4.

3.5 Numerical adjustments to the subgrid stress model constant

Although the focus here is primarily on the effects of dispersion error introduced through

the numerical approximation to the first derivative operator, the dissipative effects of the

numerical approximation to the second derivative operator are also worth discussing. This

is particularly important because the numerical approximation to the Laplacian affects the

dissipation of the subgrid stress term and the dissipation rate was identified as the most

critically important statistical characteristic to satisfy in LES modeling in chapter 2. The

effects of dissipative numerical approximations to the nonlinear terms are not considered

here (see section 2.1.2).

The Kolmogorov eddy viscosity model of the SGS term leads to−T<(κ, t) = 2Cmε
1/3∆4/3|κ|2E(κ, t).

Therefore, setting the constant based on equations (2.3) and (2.4) will guarantee the model
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Figure 3.6: One dimensional energy spectra for an LES computed with Fourier-spectral first
derivatives operators and 3rd order B-spline second derivatives ( ), and 2nd order cen-
tered difference second derivatives ( ). An LES with 4th order B-spline first derivatives,
Fourier-spectral second derivatives and the conservative form of the nonlinear terms is also
shown ( ). In (a) the spectral value of Cm = 0.065 is used. In (b) the constants corre-
spond to those calculated from equations (3.19) and (3.20). The theoretical energy spectra
are shown in .

produces a dissipation rate of ε a priori for isotropic turbulence. However, the dissipative

characteristics of the numerical approximation to the second derivative operators must be

taken into account (see figure 3.6a). If the goal of the SGS model is solely to represent the

dissipation rate correctly and an energy-conserving approximation to the nonlinear terms

is used, numerical second derivative approximations can be incorporated into the model by

setting

Cm =
2π

Ckol∆4/3

∫

D
κ̃`κ`|κ|−11/3dκ, (3.19)

where Ckol is the Kolmogorov constant. Values for the numerical schemes shown in fig-

ure 3.2a are listen in table 3.3. This formulation will guarantee the SGS model produces

the correct dissipation in the presence of numerical dissipation a priori. To demonstrate the

effects of this a posteriori, consider an LES of isotropic turbulence represented with uni-

form resolution of ∆ = 2π/16, Fourier-spectral first derivative operators, and lower-order
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Table 3.3: Subgrid stress model constants for νt = Cmε
1/3∆4/3 based on equation (3.19)

and Ckol = 1.75.

Numerics for κ̃jκj Cm

Fourier-spectral 0.065

2nd order centered difference 0.085

2nd order B-splines collocation 0.063

3rd order B-splines collocation 0.053

4th order B-splines collocation 0.062

7th order B-splines collocation 0.064

numerical approximations to the second derivative operator that appears on the subgrid

stress term (see figure 3.6a). Clearly for over-dissipative numerics (e.g., 3rd-order B-splines)

or under-dissipative numerics (e.g., 2nd-order centered difference) setting the constant this

way restores balance to energy equation, leading to five-thirds inertial range spectrum (see

figure 3.6b).

This restorative property of the SGS can be pushed further by incorporating other in-

formation from the energy balance equation into the model constant. For instance recall

that the conservative form of the nonlinear term leads to the energy source
∑

κ Tcons > 0.

Considering the same example as in figure 3.3 but setting the subgrid stress model constant

Cm as

Cm =
2π (ε+

∑
κ Tcons)

Ckol∆4/3ε

∫

D
κ̃`κ`|κ|−11/3dκ (3.20)

also leads to five-thirds inertial range spectrum, appropriately reducing the energy pile up in-

troduced by the conservative form (see figure 3.6). Here we are not advocating for correcting

dispersive errors simply through the SGS constant, but that the energy injection/dissipation

rate introduced by numerical approximations to T< must be accounted for in the energy

balance (in this case, through the subgrid stress model for T>). One cannot expect equa-
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tion (3.19) or equation (3.20) to work for all cases, i.e., producing a five-thirds spectrum

cannot always be done by simply adding or removing energy through an eddy viscosity. In

chapter 4 the requirements of the subgrid stress to produce a Kolmogorov spectrum for given

numerics and filter are explored further. An a priori estimate of the numerical approximation

to
∑

κ T
<(κ) for a general form of the nonlinear terms is also derived so that adjusting the

subgrid stress constant as equation (3.20) may be computed a priori.

3.6 Explicit filtering

To mitigate discretization error, the large scales to be simulated can be defined using an

explicit filter, acting in addition to the implicit filter defined by the numerical discretization,

to ensure that the scales with significant dispersion error are not energized [140, 141, 142,

143, 144, 145, 146, 147, 148, 149]. In this case the filter F ′ = ·̃ includes an explicit smoothing

filter with filter kernel G̃ and filter width ∆̃ ≥ ∆. Although the explicit filter is only directly

applied to the nonlinear terms, the velocity field is considered to be effectively filtered by

G̃, because the nonlinear terms are responsible for transferring energy to larger modes. As

such, the frequency content of the filter velocity field u is dictated by the properties of filter

·̃. It is important to note that this procedure is different from the approach of filtering the

velocity field after a certain number of time steps, which should generally be avoided because

the filter will then depend on the temporal discretization and result in a cumulative effect

of multiple filterings of the velocity field [140, 1].

Explicit filters are commonly not used in practice to maximize the range of scales being

represented — it is argued that removing resolved scales is a waste of computational effort

that could be spent performing an LES on a finer grid. To explore this, consider the ideal-

ized case of a Fourier cutoff explicit filter applied to the nonlinear terms in the convecting

homogeneous isotropic turbulence examples shown in figure 3.4. By using an explicit filter

width corresponding to the wavenumber at which the energy transfer rate shuts down due
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Figure 3.7: One-dimensional energy spectra in the convection direction with a mean convec-
tion velocity of U = 35: Theory ( ); Fourier-spectral method for a resolution scale of
∆ = 2π/16 ( ); 3rd order Bsplines at a resolution scale of ∆ = 2π/16 ( ); 3rd order
Bsplines at a resolution scale of ∆ = 2π/32 ( ); 3rd order Bsplines at a resolution scale
of ∆ = 2π/32 with a Fourier-cutoff filter applied at an effective filter width of ∆ = 2π/16
( ).

to dispersion, the explicit filter removes the highly dispersive modes and thus corrects the

energy dynamics in the well resolved modes (see figure 3.7). Simply increasing the resolution

without introducing an explicit filter leads to an LES without meaningful statistics at any

resolved scale, because the dispersive modes interact with the well represented modes in a

way that is damaging to the entire spectrum. As such the cost penalty truly comes from

using numerical schemes with poor dispersive characteristics and explicit filters serve as a

potential remedy for a range of the resolved scales. We note that it may also be possible

to address discretization error through further refinements to the subgrid model as will be

explored in chapter 4. In either case, the dispersion characteristics place a fundamental limit

on the range of scales that are dynamically meaningful in an LES.

The goal of explicit filtering needs to be examined. The literature, e.g., [148], often
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suggest that explicit filters are needed to obtain “grid independent” LES solutions so that

LES models and flow statistics are decoupled from the computational grid resolution. This

goal is not very useful to practical LES and convergence studies often require resolutions

that approach DNS limits. Instead, the aim here is to formulate an LES that maximizes the

range of meaningful statistics across the resolved scales for a given computational grid.

Many of the considerations regarding numerics carry over to explicit filtering. For in-

stance, applying an explicit filter to the nonlinear term in conservative form δjũiuj leads to

the energy transfer function

T̃cons(κ, t) = −Im

{∑

κ′

G̃(κ)κ̃`ûk(κ, t)û
∗
k(κ

′, t)û
∗
`(κ− κ′, t)

}
. (3.21)

The combined energy injection rate introduced by numerics and filtering in this formulation

is then

∑

κ

T̃cons(κ, t) = −1

2
Im

{∑

κ

∑

κ′

(G̃(κ)κ̃` − G̃(κ′)κ̃′` − G̃(κ− κ′) ˜(κ− κ′)`)ûk(κ, t)û
∗
k(κ

′, t)û
∗
`(κ− κ′, t)

}
.

(3.22)

Therefore non-Fourier cutoff explicit filters destroy the symmetries necessary to conserve

energy in the same way as non-Fourier spectral numerics. The equivalent skew-symmetric

form needed to restore conservation of energy in this context reads 1
2
(δjũiuj +uj δ̃jui) so that

the convective part introduces an energy injection rate of

∑

κ

T̃conv(κ, t) = −1

2
Im

{∑

κ

∑

κ′

(G̃(κ′)κ̃′` + G̃(κ)κ̃` − G̃(κ′ − κ) ˜(κ′ − κ)`)ûk(κ, t)û
∗
k(κ

′, t)û
∗
`(κ− κ′, t)

}
,

(3.23)

exactly canceling equation (3.22). However, note that uj δ̃jui does not necessarily reside

in the LES solution space and so it may generally not be possible to correct the energy

balance in this way without introducing additional aliasing errors. Instead, the additional

energy source/sink introduced by graded explicit filters must be accounted for in the formu-
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lation of the dissipative model for the subgrid stress. Clearly for Fourier-spectral numerics

equations (3.22) and (3.23) approach zero as G̃(κ) approaches a Fourier cutoff filter.

Further, non-Fourier cutoff filters introduce an additional operator to the nonlinear terms

that is not Galilean invariant, as with non-Fourier spectral numerics. As such, we can expect

the same dispersive effects from section 3.3 to carry over to explicit filters. Introducing the

same type of multiscale assumption, the explicitly filtered velocity field can be written

ûi(κ, tf , ts) = ûi(κ, ts)e
−iεU·G̃(κ)κ̃tf +O(ε), (3.24)

and the expected value 〈T̃ (κ)〉 can be estimated to leading order as

〈T̃cons(κ)〉 = −Im

{∑

κ′

G̃(κ)κ̃`〈ûk(κ, ts)û
∗
k(κ

′, ts)û
∗
`(κ− κ′, ts)〉

〈
eiεU·(G̃(κ′)κ̃′−G̃(κ)κ̃−G̃(κ′−κ) ˜(κ′−κ))tf

〉
tf

}
.

(3.25)

As in equation (3.16), this is zero unless

ωT = U · (G̃(κ′)κ̃′ − G̃(κ)κ̃− G̃(κ′ − κ) ˜(κ′ − κ)) = 0. (3.26)

For example, consider a spherical Gaussian filter with filter width equal to twice the reso-

lution scale

G̃gauss(κ) = exp

(
−|κ|

2(2∆)2

24

)
, (3.27)

which has been commonly advocated as an explicit filter in LES [120, 144]. We apply this

filter to the nonlinear terms in conservative form with Fourier-spectral numerics in the same

setting as section 3.3 with the subgrid stress model length scale now defined through ∆̃ = 2∆

(see figure 3.8). In the presence of a mean convection velocity, the explicit filter disrupts the

phase relationship between velocity Fourier modes, in the same way as numerical dispersion

error, leading to a further degradation of the energy spectrum in the larger wavenumbers
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Figure 3.8: One-dimensional energy spectra in the direction of the mean convection velocity
U . Filtered five-thirds spectrum ( ); 2nd order centered difference method in the skew-
symmetric form with U = 35 from figure 3.4 ( ); Fourier-spectral numerics with a
spherical Gaussian explicit filter applied to the conservative form of the nonlinear terms
with an effective filter width of ∆̃ = 2∆ and a mean convection velocity of U = 0 ( )
and U = 35 ( ).

(see figure 3.8). This may not sound problematic at first since the goal of an explicit filter is

to shut down the energy transfer rate to large wavenumbers. However, for non-cutoff filters,

wavenumbers greater than π/∆̃ are still energized and interact with the well resolved modes

in a way that must be accounted for. Clearly in the case of mean convection, the further shut

down of the energy transfer rate by the explicit filter leads to an energy pile up in the well

resolved modes, corrupting the energy distribution throughout the entire range of resolved

modes (see figure 3.8).

As shown here, although explicit filters offer a potential remedy to the issues introduced

by numerical discretization error, unless properly constructed they can lead to the same type

of errors in LES. In the following sections we explore the construction of practical explicit

filters that closely approximate a Fourier cutoff filter, as has been advocated in the literature
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[146, 150, 147], so that the errors in equations (3.21) and (3.26) are small. In chapter 4, we

develop an a priori estimate of what is required from the subgrid stress model for a given

numerics and filter to lead to meaningful second order statistics in an LES.

Before proceeding we note that, despite their similarities, there is a fundamental difference

between filtering and numerical dispersion. In one-dimension we can cast the numerical errors

as filters through the filter Gnum(κ) = κ̃/κ. For the second order centered difference case,

GCD = sin(κ∆)/κ∆ and, in fact,

GCD(κ) ≈ 1− (∆κ)2

6
+O(∆κ)4 ≈ Ggauss(κ). (3.28)

Therefore we expect the errors in equations (3.21) and (3.26) to be similar for second order

centered difference numerics and a Gaussian filter with filter width at twice the resolution

scale, which is indeed the case for the dispersion results shown in figure 3.8. However, in

three dimensions the process of numerical discretization introduces an inherent anisotropy

that cannot be represented by an effective three-dimensional filter operator acting on the

velocity field [140]. As such, the implicit filter essentially acts on each coordinate direction

whereas the explicit filter can be defined as a three dimensional operator as in equation (1.5).

This fact has been used as an argument against implicitly filter LES [140], however, it should

be noted that an implicit filter always exists whether or not an explicit filter is applied.

3.7 Filtering in practice

The theoretical developments of several filtering techniques in LES (beyond just explicit

filtering) rely on being able to apply analytical filters in wavespace whose transfer function

is known. However, for simulations performed in physical space, applying a convolution filter

is computational infeasible. There are generally only two approaches that are used in LES

for applying a filter in physical space, which will be discussed in this section.
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The first approach involves constructing discrete filters whose value at a point is defined

as linear combinations of weights at the neighboring points [146, 147, 151]. In one-dimension,

the filter value of the variable u at the grid point of index i is

ui ≡
N∑

j=−N

wjui+j (3.29)

where N is the radius of the discrete filter stencil and
∑

j wj = 1. The larger N , the better

3.29 can approximate a Fourier cutoff filter. An additional requirement is usually placed

on the values of wj so that the discrete filter also has N vanishing moments to reduce

commutation error, although this requirement does not seem necessary (see section 5.4).

Common values for the weight wj can be found in, e.g., Vasilyev et al. [146]. However,

a straightforward extension of this approach is often not possible in multiple dimensions,

especially when considering non-uniform or unstructured grids where an obvious dimensional

splitting is not available. Bose et al. [149] provides a nice summary of the difficulties with

discrete filtering in multiple dimensions and writes,

“Marsden et al. [147], Haselbacher and Vasilyev [151] have suggested the

unstructured generalization of the structured grid approach where the filtering

operator relies on a weighted sum of neighboring values. The primary difficulty of

both these approaches is that there is no way to ensure that the filtering operator

is well behaved (i.e., 0 ≤ G(κ) ≤ 1 ∀κ), and moreover the exact behavior of the

filter kernel is strongly controlled by the distribution of the surrounding mesh

points. The algorithm of Marsden et al. [147] additionally requires a careful

selection of a subset of neighboring grid points, but it is not obvious that a

reasonable subset of neighboring mesh points will exists in the presence of badly

skewed and stretched grids. Another difficulty is that there is no clear way to

fix the filter width in physical space when the grid is refined even if the data
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structures of the unstructured solvers are altered in order to allow for more

neighbors.”

Another approach to explicit filtering that circumvents the issues mentioned above is

to specify a continuous filter kernel and discretize the associated filter operator. This can

be thought of as a discrete filter whose weighted coefficients of the neighboring nodes are

the coefficients of the discrete scheme associated with the given differential operator [34]. A

common choice is to define the filtering operator through the solution of an elliptic relaxation

equation, i.e., (
1− α∆̃2 ∂2

∂xj∂xj

)
u = u (3.30)

where α is a positive constant usually taken to be 1 and ∆̃ is the desired cutoff length [144]. In

this case, the actual filter operator is defined through the Green’s function of the associated

elliptic operator [144]. The transfer function associated with the filter in equation (3.30) can

be analyzed by considering

û(κ) =

(
1

1 + α∆̃2κ2

)
û(κ), (3.31)

which is shown in figure 3.9 for various choices of filter width.

Although equation (3.30) seems to be the most common type of explicit filter used in

practice in LES [149, 143, 152], the filters are not particularly sharp and would therefore

introduce significant errors in the energy balance as discussed in section 3.6. Mullen and

Fischer [150] recognized the need for filters sharper than a second order elliptic relaxation

and proposed the general higher order case

(
I − p(∇2)m

)
u = u (3.32)

where p is a dimensional constant, I is the identity operator, and m > 1. Because the higher

order operators (∇2)m are generally not available in practical LES codes, the work in [150]
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Figure 3.9: Transfer functions for differential filters of the form
(

1− ∆̃2 ∂2

∂xjxj

)
ũ = u for:

∆̃ = ∆/4 ( ), ∆̃ = ∆/2 ( ), ∆̃ = ∆ ( ), ∆̃ = 2∆ ( ), ∆̃ = 4∆ ( ),

focused on approximating solutions to equation (3.32) through a Poisson equation with a

particular choice of preconditioner and conjugate gradient method, however, it was noted

that much more work was needed to make the formulation robust (in particular, incom-

pressibility was lost). In the work here, we use this discussion as motivation for developing

higher order filters that are accessible in practical LES applications. Before constructing

such filters, we briefly discuss two other general techniques that are related to filtering in

LES that will be useful.

First, an alternative to explicitly filtering the nonlinear terms is to introduce a hyper-

viscosity or similar term into the LES evolution equations as in section 2.1.3, which has

the effect of damping small-scale motions [153, 139]. Such a hyperviscosity can be consid-

ered part of the model for δjτij, and has the advantage of directly controlling the growth of

fluctuations at scales too small to be well represented numerically. However, this approach

has the disadvantage that the smoothing filter defining ui is effectively being determined
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implicitly through the action of the small-scale damping process and has an inherent time

scale dependence.

Second, when an explicit smoothing filter is used, there may be an opportunity to improve

the fidelity of the convective term δ̃juiuj as a model for ∂juiuj, and thereby reduce the burden

on the subgrid stress model. One can reformulate the δ̃j operator to include applying an

inverse filter to u before forming the nonlinear product and then applying the explicit filter

F ′ to the result. This could provide a better approximation of uiuj. Of course, one cannot

invert the finite-dimensional projection, so these techniques are only applicable to the explicit

filter. In the following, F includes a homogeneous smoothing filter operator G in addition

to the finite dimensional projection, which is expressed as a convolution with a filter kernel

G̃ with filter width ∆G as in equation (1.5).

One way to approximate the deconvolution operator is to expand u in a Taylor series in

the filter width ∆G to obtain

u(x) =
∞∑

k=0

(−1)k

k!
∆k
GMk(x)

∂kG−1u

∂xk
, (3.33)

where Mk is the kth order moment of G̃ [154]. By truncating and approximately inverting

equation (3.33) we obtain a differential expression for the unfiltered field in terms of the

filtered field. The second-order expansion, for example, leads to the gradient model discussed

in section 2.2.1 [144, 27]. An alternative approximation comes from a formal expansion of

G−1, assuming it exists, about the identity to obtain

G−1 =
∞∑

n=0

(I − G)n. (3.34)

Truncating this expansion provides an approximate inverse, leading to the approximate

deconvolution method (ADM). Stolz et al. [155] showed that these two inversion techniques

were practically equivalent. In general, the inverse filter operation will be ill-conditioned, so
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the inverse filter is approximate. Mathew et al. [156] showed that approximately inverting

the smoothing filter through truncation of equation (3.33) or 3.34 allows for reconstruction

of the large scales while keeping the small scales damped, thus preserving the effect of

the explicit filter. Because the finite-dimensional projection cannot be inverted, the subgrid

stress still needs to be modeled, and Smagorinsky is commonly used. So in many ways, these

approximate reconstruction models are similar to scale similarity models and the gradient

model.

Formal reconstruction methods of this type were reviewed by Domaradzki and Adams

[157]. Here we simply note that, as with explicit filtering methods in general, a priori tests

of the ability of the δ̃j and τij to maintain the expected filtered energy spectrum, as required

to minimize numerical artifacts, would be useful as is explored in chapter 4.

3.8 The B2 −B1B1 operator

In this section we introduce an operator that is useful for addressing a wide range of numer-

ical and discretization issues in LES. This operator is given by the difference between the

numerical second derivative operator, B2 = δ2

δxδx
, and repeated application of the numerical

first derivative operator, B1B1 = δ
δx

δ
δx

, for a general numerical scheme. The spectrum of

this operator is shown in figure 3.10 for several choices of numerics. In three dimensions

this operator is δ2

δxjδxj
− δ

δxj

δ
δxj

, namely the difference between the numerical Laplacian made

up of numerical second derivatives and the numerical divergence of the gradient made up of

repeated numerical first derivatives.

It is intuitively reasonable that such an operator would be useful. For numerically well-

resolved wavenumbers, the B2 and B1B1 operators are almost identical, and they cancel

out. However, for insufficiently resolved wavenumbers, their difference is nonzero and can be

used to filter out highly dispersive wavenumbers. Moreover, the operator naturally adapts

to the underlying numerics. Further, a simple Taylor expansion for second-order centered
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Figure 3.10: The spectrum of the B2 − B1B1 operator for a 7th order B-spline collocation
method ( ), 4th order B-spline collocation method ( ), 3rd order B-spline colloca-
tion method ( ), 2nd order B-spline collocation method ( ), and 2nd order centered
difference method ( ).

difference numerics shows that

(BCD
2 −BCD

1 BCD
1 )u ≡ −uj+2 + 4uj+1 − 8uj + 4uj−1 + uj−2

4∆2
= −∆2

4

d4u

dx4
+O(∆4). (3.35)

Similarly, it can be shown that (B7
2 − B7

1B
7
1)u ≈ ∆8 d10u

dx10 and (B2
2 − B2

1B
2
1)u ≈ −∆2 d4u

dx4 .

Therefore, the B2 − B1B1 operator essentially mimics higher order differential operators.

Additionally the B2 − B1B1 operator is particularly useful because the first and second

differential operators are already required by the governing equations, and are thus readily

available in practical applications.

We consider two ways in which the B2 −B1B1 operator could be used in LES modeling.

First, the operator could be added to the right hand side of the governing equations as with

the SGS model with appropriate length and time scale dependencies. The analysis above

indicates this is roughly equivalent to filtering via a hyperviscosity, however, the B2 −B1B1
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Figure 3.11: The transfer function

(
1

1+α[∆̃2(κ̃2−κ̃κ̃)]
N

)
of differential filters with the B2−B1B1

operator for 7th order B-spline collocation method ( ), 4th order B-spline collocation
method ( ), and 2nd order B-spline collocation method ( ). In (a) α = 2 and
N = 1. In (b) α is tuned so that the filters roughly roll off around the wavenumber at which
∆κ = 0.4 for a resolution of ∆ = 2π/32 as in section 3.3, and N is taken to be 1 (solid
lines) and 2 (dashed lines), and 3 (dotted lines). The corresponding effective wavenumber
for each numerical scheme is shown opaquely in the background and the standard second
order differential filter of [144] is also shown ( ).

operator does not change the order of the differential equation, avoiding the need to explicitly

define higher order derivative approximations and additional boundary conditions, which are

the typical shortcomings of hyperviscosity models [153]. This will be explored in section 6.3.

Second, the B2 −B1B1 operator can be used to construct higher order differential filters

approximating the form given in equation (3.32). In one-dimension, consider the explicit

filter defined as (
1− α∆2

(
δ2

δxδx
− δ

δx

δ

δx

))
ũi = ui (3.36)

with transfer function

ˆ̃ui(κ) =


 1

1 + α∆2
(
κ̃2 − κ̃κ̃

)


 ûi(κ). (3.37)

These filters are significantly sharper than the standard second order differential filter of
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Figure 3.12: (a) One-dimensional energy spectra in the convection direction with a mean
convection velocity of U = 35, 3rd order Bspline collocation method, and a resolution scale
of ∆ = 2π/32. (b) The transfer function of the explicit filters used in (a). Theory ( );
No explicit filter ( ); A Fourier-cutoff explicit filter applied at an effective filter width of
∆ = 2π/16 ( ); A B2 − B1B1 differential explicit filter with α = 2 and N = 2 ( );
A Gaussian explicit filter with an effective filter width of ∆ = 2π/16 ( ); The standard
second order differential filter of [144] with α = 1 ( ). The effective wavenumber a 3rd
order Bspline collocation method is shown opaquely in the background.

[144, 149] and clearly behave appropriately with respect the underlying numerics, i.e., fil-

tering the dispersive wavemodes while preserving the well resolved modes (see figure 3.11a).

Further, Mullen and Fischer [150] found that repeated application of the standard second or-

der differential filter (equation (3.30)) converges to a Gaussian filter. Interestingly, repeated

application of the B2 −B1B1 operator in the form of:

ˆ̃ui(κ) =


 1

1 + α
[
∆2
(
κ̃2 − κ̃κ̃

)]N


 ûi(κ). (3.38)

converges to a Fourier cutoff filter as N increases (see figure 3.11b).

The utility of these filters is demonstrated in the convecting homogeneous isotropic tur-

bulence case as in figures 3.4 and 3.7. A mixed B2 − B1B1 differential filter with 3rd order
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Bsplines first derivatives and Fourier-spectral second derivatives (see section 3.3) and α = 2

and N = 2 is used in each coordinate direction (see figure 3.12b). A Gaussian explicit filter

with filter width of ∆̃ = 2∆ is also tested along with the standard second order differential

filter of [144] with α = 1 (see figure 3.12b). In each case the length scale of the subgrid stress

model corresponds to the effective filter width of 2∆, which is the wavenumber at which

the energy transfer rate shuts down due to dispersion. The B2 − B1B1 differential filter

effectively reduces the highly dispersive modes and leads to the correct energy spectrum in

the modes up the effective filter width (see figure 3.12a). The results vary only slightly from

the Fourier-cutoff explicit filter. The Gaussian explicit filter suffers from the same dispersion

errors as in figure 3.8 as does the standard second order differential filter which is simply not

suitable for this purpose. However, we do not want to claim too much for these results yet,

as we still need to understand what’s required of the subgrid stress model for a given filter

and numerics in LES (this will be explored in the following chapter). As demonstrated here,

for filters that are close to a Fourier-cutoff filter, modifying the length scale of the constant

eddy viscosity model to the effective filter width and adjusting the constant to provide the

correct a priori dissipation rate over the resolved scales seems sufficient for representing sec-

ond order statistics. The results here do highlight the importance of considering numerics

and filtering together and designing explicit filters that account for the properties of the

underlying numerics.

Lastly we note that while the B2 − B1B1 differential filters presented here have several

desirable properties of an explicit filter, they do involve inverting the B1B1 operator. For

finite difference formulas this is not much of an issue, however, for any projective numerical

schemes such as B-spline collocation/Galerkin, this involves a dense matrix solve since the

inverse of the matrix mass matrix B−1
0 is needed when computing repeated first derivative

approximations, i.e., the operator is really B2 − B1B
−1
0 B1. Since the low-order KMM for-

mulation described in appendix A was used in the simulations here, inverting the B1B
−1
0 B1
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matrix was already required by the governing equations so the differential filters did not

introduce additional computational cost. If this cost is prohibitive, the B2−B1B1 operators

can be used as a term on the right hand side of the equations in the hyperviscosity fashion

described above, although this requires additional modeling. It may also be possible to de-

sign numerical operators/explicit filters that avoid this computational issue but still respond

the properties of the underlying numerics in a similar way. One may also be tempted to

directly filter the nonlinear terms with an operator of the form (I − (B2 − B1B1)) where I

is the identity, however there is generally no guarantee this will lead to a well defined filter

(0 ≤ G(κ) ≤ 1); the differential form in equation (3.36) ensures this property is satisfied.
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Chapter 4

An eddy-damped quasi-normal markovian model for LES

The discussion in chapter 3 on numerics and filtering in LES raises the question of how the

formulation of an LES — including explicit and implicit filtering, numerical approximations

to the differential operators, and the form of the nonlinear terms — affect the requirements

for subgrid scale turbulence models. In fact, even in the case of Fourier-spectral numerics

and a cutoff filter, using a constant eddy viscosity model that is designed solely to represent

the correct dissipation rate a priori (as in equations (2.3) and (2.4)) will lead to a posteriori

energy spectra with excess energy in the largest wavenumbers and deficient energy in the

low-intermediate wavenumbers (see figure 4.1). This is a result of the well-known ‘spectral-

cusp’ in the eddy viscosity near the cutoff wavenumber κc, first identified by Kraichnan

[158]. Specifically, several statistical theories of turbulence, such as eddy-damped quasi-

normal markovian (EDQNM) theory, predict that a wavenumber dependent eddy viscosity

that is constant for κ � κc but rises sharply near κc is required for an LES to represent a

theoretical inertial range spectrum. This wavenumber dependent eddy viscosity has informed

the development of several subgrid stress models in LES (see section 4.2.3). Further, EDQNM

theory has been useful in understanding the energy transfer process between resolved and

subgrid scales [159, 160, 131].

However, traditional applications of EDQNM to LES have been mainly limited to isotropic

Fourier cutoff filters and Fourier-spectral numerics. Although this is theoretically interesting,

it is not practically realistic. We are therefore interested in identifying how the complex-
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Figure 4.1: One-dimensional energy spectrum computed from an LES with Fourier-spectral
numerics and a Fourier-cutoff filter in the same setup as section 3.2. A Kolmogorov
eddy viscosity model νt = Cε1/3∆4/3 is used with constant C = 0.054 chosen so that
νt
∑

κCkolε
−2/3κ−5/3/2πκ2 = ε ( ). A equivalently filtered Kolmogorov spectrum with

Ckol = 2.1 is also shown ( ).

ities of an LES enumerated above affect the wavenumber dependent behavior of the eddy

viscosity. To do so, we develop a two-point closure model based on EDQNM theory that

is applicable to the filtered turbulence in an LES. The techniques developed here may be

a useful guide for developing better subgrid stress models for practical LES applications.

Further, this theory is also useful to illuminate how numerical discretization and filtering

affect the nonlinear energy transfer between Fourier-modes in an LES.

The remainder of this chapter is organized as follows. In section 4.1 EDQNM theory is

reviewed, and in section 4.2 applications of EDQNM theory to LES represented with Fourier-

cutoff filters and spectral numerics are revisited with some new insights. In section 4.3, the

limitations of the traditional approach are discussed and a new EDQNM-type theory is

developed for filtered turbulence LES. This is used to study nonlinear and linear dispersion

in sections 4.3.3 and 4.3.4, respectively. A further discussion is offered in section 4.4.
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4.1 EDQNM Theory

EDQNM theory arose as one of many approaches to an analytical statistical theory of tur-

bulence. The resulting model for the two-point correlation can be obtained in several ways

(see Figure 7.1 in [161] for example). The route taken here will be to first apply the quasi-

normal (QN) approximation to the Navier-stokes equations, then to apply the eddy damped

hypothesis (EDQN), and finally to use the Markovian assumption to arrive at the EDQNM

closure. This is the sequence proposed by Orszag [162], and for completeness each of these

hypotheses are reviewed briefly below. Although several other analytical theories of turbu-

lence have been developed [161], the EDQNM formulation was chosen for use here because

it has proven to be an excellent tool for predicting the energy transfer between modes in

high Reynolds number turbulence [159, 160].

Quasi-normal approximation

Consider the evolution equation for a velocity Fourier-mode ûk(κ) for isotropic turbulence

represented in a cubical periodic domain

(
∂

∂t
+ νκ2

)
ûk(κ) = −iPki(κ)

∑

κ′

κ`ûi(κ
′)û`(κ− κ′), (4.1)

where Pij(κ) = (δij −κiκj/|κ|2) is the projection tensor. Then the evolution of the velocity-

spectrum tensor Φkj(κ) = 〈ûk(κ)û∗j(κ)〉 is given by

(
∂

∂t
+ 2νκ2

)
Φkj(κ) =− iPki(κ)

∑

κ′

κ`〈û∗j(κ)ûi(κ
′)û`(κ− κ′)〉

+ iPji(κ)
∑

κ′

κ`〈ûk(κ)û∗i (κ
′)û∗`(κ− κ′)〉.

(4.2)
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Continuing, the evolution of the third-order correlation 〈ûk(κ)û∗i (κ
′)û∗`(κ− κ′)〉 is

(
∂

∂t
+ ν(|κ|2 + |κ′|2 + |κ′ − κ|2)

)
〈ûk(κ)ûi(−κ′)û`(−κ + κ′)〉 =

− iPkm(κ)
∑

κ′′

κs〈ûm(κ′′)ûs(κ− κ′′)ûi(−κ′)û`(−κ + κ′)〉

− iPim(κ′)
∑

κ′′

−κ′s〈ûm(κ′′)ûs(−κ′ − κ′′)ûk(κ)û`(−κ + κ′)〉

− iP`m(−κ + κ′)
∑

κ′′

(−κ+ κ′)s〈ûm(κ′′)ûs(−κ + κ′ − κ′′)ûk(κ)ûi(−κ′)〉

. (4.3)

Clearly a closure problem is manifesting. An additional relationship between the velocity

moments is needed to close this hierarchy of moments. Millionshchikov [163] and Chou [164]

introduced the quasi-normal approximation, which was extended to isotropic turbulence

by Proudman and Reid [165] and Tatsumi et al. [166] to close equation (4.3). The key

observation is that, for a Gaussian random variable, even-order moments can be expressed

in terms of the second-order moments. It is unrealistic to approximate the velocity by a

Gaussian random field (there would be no energy transfer between wavenumbers as odd

order moments are then zero), so instead the quasi-normal approximation assumes that the

fourth order cummulants are zero as for a Gaussian process, without any assumptions on the

third-order moments. Lesieur [161] argues that Gaussianity may not be totally unphysical,

if turbulence is considered to be the result of independent Brownian-like chaotic motions to

which the central limit theorem applies. Orszag [130] argues that a Gaussian initial state

is as plausible as any other. In any case, under this modeling assumption the fourth-order

moments in equation (4.3) can be expressed as

∑

κ′′

〈um(κ′′)us(κ− κ′′)ui(−κ′)u`(−κ + κ′)〉 = Φmi(κ
′)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φsi(κ

′),

(4.4)
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∑

κ′′

〈um(κ′′)us(−κ′ − κ′′)uk(κ)u`(−κ + κ′)〉 = Φkm(κ)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φks(κ),

(4.5)

and,

∑

κ′′

〈um(κ′′)us(−κ + κ′ − κ′′)uk(κ)ui(−κ′)〉 = Φkm(κ)Φsi(κ
′) + Φmi(κ

′)Φks(κ). (4.6)

so that the Q.N. equations for the third order moments are

(
∂

∂t
+ ν(|κ|2 + |κ′|2 + |κ′ − κ|2)

)
〈ûk(κ)ûi(−κ′)û`(−κ + κ′)〉 =

− iPkm(κ) [κs (Φmi(κ
′)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φsi(κ

′))]

− iPim(κ′) [−κ′s (Φkm(κ)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φks(κ))]

− iP`m(−κ + κ′) [(−κ+ κ′)s (Φkm(κ)Φsi(κ
′) + Φmi(κ

′)Φks(κ))]

. (4.7)

Eddy-damped approximation

Equations (4.2) and (4.7) form a closed set of equations for the velocity spectrum tensor.

However, when the spectrum tensor is allowed to evolve according to this model, negative

values of the energy spectrum develop [167, 168]. Orszag [162] argued that this deficiency

of the quasi-normal approximation is a result of improper treatment of relaxation effects.

In particular, correlations between velocity Fourier modes are weakened by two processes

in high Reynolds number flows. First, turbulent convection leads to a decoherence of the

phase correlations between Fourier-modes through nonlinear scrambling. Second, viscous

dissipation damps the velocity Fourier-modes. However, the quasi-normal approximation

only represents this latter effect. Orszag [162] proposed to model the effects of nonlinear

convection through a linear damping term η that reduces the third-order correlations. This
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leads to the eddy-damped quasi-normal equations

(
∂

∂t
+ µ(κ) + µ(κ′) + µ(κ′ − κ)

)
〈ûk(κ)ûi(−κ′)û`(−κ + κ′)〉 =

− iPkm(κ) [κs (Φmi(κ
′)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φsi(κ

′))]

− iPim(κ′) [−κ′s (Φkm(κ)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φks(κ))]

− iP`m(−κ + κ′) [(−κ+ κ′)s (Φkm(κ)Φsi(κ
′) + Φmi(κ

′)Φks(κ))]

. (4.8)

where µ(κ) = η(κ) + ν|κ|2 and η(κ) must be modeled and represents a relaxation rate.

Markovian Approximation

The EDQN approximation does not guarantee positiveness of the energy spectrum in all

situations. Orszag [162] showed that this can be ensured by assuming that the right hand side

of equation (4.8) varies on a timescale that is long compared to (µ(κ) + µ(κ′) + µ(κ′ − κ))−1.

In this case, the solution for the triple correlation is quasi-steady and can therefore be

approximated as

〈ûk(κ)ûi(−κ′)û`(−κ + κ′)〉 = Θ(κ,κ′,κ′ − κ)

[

− iPkm(κ) [κs (Φmi(κ
′)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φsi(κ

′))]

− iPim(κ′) [−κ′s (Φkm(κ)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φks(κ))]

− iP`m(−κ + κ′) [(−κ+ κ′)s (Φkm(κ)Φsi(κ
′) + Φmi(κ

′)Φks(κ))]

]

(4.9)

where

Θ(κ,κ′,κ′ − κ) =

[
1

(µ(κ) + µ(κ′) + µ(κ′ − κ))

]
. (4.10)

This is commonly referred to as a Markovian assumption (putting the “M” in EDQNM)

because the approximation involves neglecting the history effects of Φij so that the evolution

of the triple correlation at any time depends only on the solution for Φij at that time. All
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that is needed to close these equations is a model for η(κ), which is discussed in section 4.2.1.

4.2 Applications to LES and the spectral eddy viscosity

EDQNM theory is largely successfully in predicting the inertial range energy transfers in

three dimensional turbulence [159, 169]. This has motivated its use to formulate an LES

model. As Kraichnan [158] notes, equations (4.2) and (4.10) form a closed set of equations

for Φij(κ) and is therefore applicable to anisotropric, inhomogeneous turbulence. However,

applications of EDQNM to LES have mainly been limited to isotropic turbulence represented

with a Fourier-cutoff filter and spectral numerics. As we will see, EDQNM predicts that a

wavenumber dependent eddy viscosity νt(κ) can be specified in this case to produce any given

energy spectrum, such as a Kolmogorov spectrum. In this section we review the formulation

of νt(κ) via EDQNM for spectral cutoff filters and spectral numerics, providing some new

insight in the process. Moreover, the ability of the eddy viscosity to produce a theoretical

Kolmogorov spectrum in an LES a posteriori is demonstrated. The application of EDQNM

to non-cutoff filters and non-spectral numerics is pursued in section 4.3.

There is an important subtlety to the formulation here that differs from standard ap-

proaches that should be discussed. In isotropic turbulence the spectrum tensor is fully

determined by the three-dimensional energy spectrum (Φij(κ) = Pij(κ)E(κ)/4πκ2), and the

evolution of the spectrum is governed by the energy transfer between scales. The same is true

for the filtered spectrum Φij(κ) = G(κ)2Φij(κ) in an LES when an isotropic Fourier-cutoff

filter and spectral numerics are used. This is the setting in which EDQNM has commonly

been applied to LES and so the primary interest has been on isotropic inertial range energy

transfers. However, we will be interested in including the anisotropies induced by discretiza-

tion and filtering. Therefore, we will generally let the filter G(κ) be anisotropic. The focus

in this chapter will remain on the anisotropic scalar energy spectrum equation, determined

through the trace of the filtered spectrum tensor E(κ) ≡ 1
2
Φkk(κ), and the effects of nu-
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merical discretization and filtering on the energy transfer process. In this case, a scalar

wavenumber dependent eddy viscosity νt(κ) that is allowed to varying anisotropically with

κ is sufficient for an LES to produce a given energy spectrum. This is contrary to typ-

ical formulations of the spectral eddy viscosity in which νt is taken to be isotropic. The

EDQNM theory formulated here would also be useful for analyzing the anisotropies of the

full spectrum tensor Φij(κ) as discussed further in section 4.4.

Consider for instance the formulation of the spectral eddy viscosity for an LES of statis-

tically stationary forced infinite Reynolds number isotropic turbulence in a cubical domain

of size L = 2π represented with Fourier-spectral numerics and a Cartesian Fourier cutoff

filter G(κ) = Π3
α=1H(κc − κα) where H is the heavyside function. This G is anisotropic

as opposed to its spherical counterpart H(κc − |κ|). The equation for the filtered energy

spectrum can be written

∂E(κ)

∂t
= T<(κ) + T>(κ) + 2F (κ)E(κ) (4.11)

where T< and T> are the resolved and subgrid energy transfers, respectively, and F (κ) is

the spectrum of the forcing which injects energy at a rate of ε (taken to be 1). A negative

viscosity forcing is used so that F (κ) = −α|κ|2I{0<|κ|≤2} where I is the indicator function.

In this setup,

T<(κ) = −Im

[∑

κ′

G(κ)2G(κ′)G(κ′ − κ)κ`〈ûk(κ)û∗k(κ
′)û∗`(κ− κ′)〉

]
(4.12)

T>(κ) = −Im

[∑

κ′

G(κ)2(1−G(κ′)G(κ′ − κ))κ`〈ûk(κ)û∗k(κ
′)û∗`(κ− κ′)〉

]
, (4.13)

so that T< only involves triad interactions between resolved wavenumbers, and T> involves

triad interactions that cross the cutoff wavenumber κc. EDQNM provides a closure for the

triple correlation 〈ûk(κ)û∗k(κ
′)û∗`(κ − κ′)〉 in equation (4.13) for a given spectrum Φij(κ).
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Therefore, we can determine the eddy viscosity needed to produce a given energy spectrum

as

− 2νt(κ)|κ|2E(κ) = T>(κ) =⇒ νt(κ) = − T>(κ)

2|κ|2E(κ)
. (4.14)

In particular, we can take Φij(κ) = G(κ)2Pij(κ)E(κ)/4πκ2 with E(κ) = Ckolε
2/3κ−5/3 to de-

termine the eddy viscosity required to produce an equivalently filtered Kolmogorov spectrum.

A Kolmogorov constant of Ckol = 2.1 will be used here as this was found to lead to good

agreement between the a priori EDQNM approximations and a posteriori LES calculations.

All that is needed to formulate νt(κ) is a model for the relaxation rate η in equation (4.10),

which is pursued in the following subsection.

4.2.1 The relaxation timescale η

Typically η is modeled as depending on ε and κ through dimensional analysis consistent with

inertial range assumptions, i.e., η = Dε1/3κ−2/3 for some constant D. Kraichnan [159] set

D = 0.1904C2
kol so that the EDQNM approximation of the energy transfer agree with that

from direct interaction approximation (DIA) theory, which was used in several subsequent

EDQNM studies [131, 170, 160]. However, this value did not necessarily lead to a statistically

stationary LES a posteriori as it does not guarantee that
∑

κ T
>(κ) = −ε. Further, DIA is

often a poor approximation of high Reynolds number flows [161], so there is reason to doubt

this value of D. In fact, Kraichnan [171] showed that DIA predicts η ∼ (κurms)
−1, although

this scaling is found to perform poorly in high Reynolds number turbulence [131]. Thus, we

propose an alternative calculation for the constant D here.

The parameter D can be determined so that the relaxation rate of the turbulence leads

to the correct dissipation rate, i.e.,
∑

κ T
>(κ) = −ε. This guarantees the eddy viscosity

will provide the correct rate of mean kinetic energy dissipation a priori. This is a necessary

condition to produce correct LES statistics a posteriori [1]. However, there is a further

subtlety here. Numerically approximating T>(κ) via equation (4.13) involves computing
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triad interactions up to some κmax > κc. For infinite Reynolds number turbulence, κmax is

formally infinite, so we are interested in the convergence of the estimates as κmax →∞. We

consider the steady state solution of equation (4.11) and examine the balance between T>

and T< + 2FE as κmax increases. In this case, the spectral eddy viscosity can be determined

either through equation (4.14) or equivalently as

2νt(κ)|κ|2E(κ) = T<(κ) + 2F (κ)E(κ) =⇒ νt(κ) =
T<(κ) + 2F (κ)E(κ)

2|κ|2E(κ)
. (4.15)

For instance, consider a resolution of ∆ = 2π/32 so that the LES can represent wavenumber

components up to κc = 16. We compute the spectral eddy viscosity via equation (4.14)

for triad interactions up to κmax = 32, 64, and 128. In all cases, there is a constant D

such that
∑

κ T
>(κ) = −ε, all leading to spectral eddy viscosity with approximately the

same one-dimensional spectra (see figure 4.2a). However, equation (4.15) only leads to an

equivalent eddy viscosity for κmax ≥ 128 (see figure 4.2b). Notice that there is a discrepancy

between these two eddy viscosities in the lowest wavenumbers due to the forcing, which is

not surprising since the forcing is not representative of realistic turbulence in these scales.

For κmax = 8κc, D ≈ 0.772, which was found to hold regardless of κc and is used for the

remainder of this chapter.

These results suggest that important nonlocal triad interactions occur between the re-

solved wavenumbers and wavenumbers up to (at least) 8κc. Domaradzki and Rogallo [169]

emphasize that one must be careful to distinguish between local/nonlocal energy transfers

and local/nonlocal triad interactions. In particular, both DNS data and EDQNM theory

suggest that local energy transfers (which dominate nonlocal energy transfers) arise primar-

ily from nonlocal triad interactions, typically where two legs of the triad are much longer

than the remaining one [169]. This may explain why large values of κmax are needed here to

recover the correct local relaxation timescale of the turbulence.
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Figure 4.2: (a) One-dimensional spectral eddy viscosity
∑

κ2,κ3
ν1D(κ) computed from equa-

tion (4.14) with κc = 16 and κmax = 32 ( ), 64 ( ) and 128 ( ). In each case
the relaxation time scale η(κ) = Dε1/3κ2/3 is determined so that

∑
κ T

>(κ) = −ε, leading
to D = 0.587, 0.719, and 0.772, respectively. (b) One-dimensional eddy viscosity computed
from equation (4.15) with the same values of η(κ) from (a), i.e., D = 0.587 ( ), D = 0.719
( ), D = 0.772 ( ).

4.2.2 A posteriori LES calculation

The EDQNM approximation to the energy transfer developed in the previous subsection led

to the well-known spectral-cusp behavior of the eddy viscosity. Recall, the EDQNM ap-

proximation was for a Cartesian cutoff filter, spectral numerics, and an equivalently filtered

Kolmogorov spectrum. The behavior of the eddy viscosity spectra here are consistent with

the three dimensional isotropic eddy viscosity spectra reported in the literature for a spher-

ical cutoff filter [158, 131, 170]. The one-dimensional eddy viscosity spectra are constant for

κ1 � κc and rise sharply near κc (see figure 4.2). This behavior has also been verified using

filtered DNS data of isotropic turbulence by Chasnov [160]. Additionally, Chollet and Lesieur

[92] showed that the EDQNM equations lead to a Kolmogorov spectrum given this param-

eterization of the eddy viscosity. However, a posteriori LES calculations of high Reynolds

number turbulence with this spectral-eddy viscosity model are scarce in the literature and
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Figure 4.3: One-dimensional energy and energy transfer spectra computed from an LES with
Fourier-spectral numerics, a cutoff filter, and the spectral EDQNM eddy viscosity model as
shown in figure 4.2 ( ). Theoretical energy and energy transfer spectra are also shown
based on a Kolmogorov model with Ckol = 2.1 and the EDQNM approximation for T<

( ). The energy spectrum computed from an LES with a Kolmogorov eddy viscosity
model νt = Cε1/3∆4/3 with constant C = 0.054 chosen so that νt

∑
κ 2.1ε−2/3κ−5/3/2πκ2 = ε

is also shown in (a) ( ).

so they are pursued here.

An LES of infinite Reynolds number turbulence with a Cartesian cutoff filter, Fourier-

spectral numerics, and a resolution of ∆ = 2π/32 is performed. The same setup described

in section 3.2 is used here with the wavenumber dependent model for the eddy viscosity

predicted by EDQNM theory with a Kolmogorov spectrum. This LES leads to energy

spectra that are in excellent agreement with an equivalently filtered Kolmogorov spectrum

throughout the entire inertial range (see figure 4.3a). Further, the a posteriori energy transfer

spectra agree with the a priori estimates from EDQNM theory with a Kolmogorov spectrum

(see figure 4.3b), suggesting that the theoretically determined LES model not only leads to

correct second-order statistics (for which it was developed) but also third-order statistics.
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4.2.3 Impact on LES modeling

The existence of a spectral cusp in the eddy viscosity has had a large impact on the field of

LES modeling. Based on the analysis of Kraichnan [47], Chollet and Lesieur [92] introduced

a parameterization of the spectral eddy viscosity in wavespace that depends on the value of

the energy spectrum at the cutoff wavenumber, E(κc), and the constant value of the spectral

eddy viscosity for κ� κc. Lesieur and Metais [48] then proposed a constant eddy viscosity

model based on the average value of the parameterization in [92]. This is similar to the

constant eddy viscosity discussed in sections 2.1.1 and 3.5 which was constructed solely to

represent the correct dissipation rate. As shown above, an LES with a constant eddy viscosity

model cannot exactly reproduce a Kolmogorov spectrum throughout the entire inertial range.

An average eddy viscosity will be over-dissipative for scales κ� κc and under-dissipative for

scales near κc (see figure 4.3a). Alternatively, one may view a constant eddy viscosity model

as consistent with a Kolmogorov spectrum for a slightly different value of Ckol except near

the cutoff (as in section 3.3 and [17]). However, a constant eddy viscosity may be largely

acceptable in practice, and several realspace eddy viscosity models can be interpreted as

approximating this spectral average [34, 1]. To include the effects of the spectral cusp in

realspace, several authors have introduced hyperviscosity models that will have a strong

effect on wavenumbers near κc [92, 48, 172, 173, 174, 175, 46, 176, 177, 94, 178, 179]. The

parameterization of the eddy viscosity based on E(κc) also motivated the structure function

models of Métais and Lesieur [54], which can be viewed as a way to approximate E(κc) in

realspace based on the second-order structure function. Lastly, we note that EDQNM has

informed the development of stochastic subgrid models aimed at representing back-scatter

effects [180, 181].
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4.3 EDQNMLES

EDQNM theory provides a good model of the energy transfer process in turbulent flows. It

is reasonable then to suspect that EDQNM may also be useful for modeling the dynamics

represented in an LES when including the practical considerations that are introduced by

the underlying numerics and discretization. This may further inform the requirements of

SGS models in practical LES applications.

At first it may seem that a straightforward introduction of effective wavenumbers and

filters into the formulations of T> and T< in equations (4.12) and (4.13), along with the

EDQNM approximation for 〈ûk(κ)û∗k(κ
′)û∗`(κ − κ′)〉, would be sufficient for this purpose.

In fact, Leslie and Quarini [131] first introduced such a formulation to represent general

filters in an LES and showed that the eddy viscosity analysis of Kraichnan [47] could be

extended to a Gaussian and Box filter. However, their formulation cannot be extended

in a consistent way to account for numerical discretization. The reason is that (1) the

effect of numerical discretization in an LES cannot be represented by an effective three-

dimensional filter operator acting on the velocity field [140]; (2) numerical discretization and

explicit filtering impact the EDQNM hypotheses; and (3) the numerical approximation to

the continuity constraint can lead to an ill-posed formulation in equation (4.13) because the

effective wavenumbers are not defined for wavenumbers beyond the Nyquist wavenumber.

Therefore, although EDQNM theory provides a good approximation for the unfiltered triple

correlations 〈ûk(κ)û∗k(κ
′)û∗`(κ − κ′)〉, in an LES a model for the filtered triple correlations

〈ûk(κ)û
∗
k(κ

′)û
∗
`(κ−κ′)〉 is needed. An extension of the theory, denoted here as EDQNMLES,

is developed in this section for this purpose.
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4.3.1 Formulation

The EDQNMLES approximation is derived for an LES of statistically stationary infinite

Reynolds number turbulence represented with uniform resolution ∆, an explicit filter G̃(κ)

applied to the nonlinear terms, and numerical approximations to the first derivative oper-

ator κ̃j and Laplacian operator −κ̃jκj. The derivation for the skew-symmetric form of the

nonlinear terms 1
2

(
δjũiuj + ujδjũi

)
is presented here. The corresponding conservative and

convective forms follow immediately. The filter · is defined through a Cartesian Fourier

cutoff filter as in the previous section. However, recall from chapter 3 that although the ex-

plicit filter is only directly applied to the nonlinear terms, the frequency content of the filter

velocity field u is dictated by the properties of filter G̃(κ) because the nonlinear terms are

responsible for transferring energy to higher wavenumbers. Therefore, the filtered velocity

spectrum tensor is defined as Φij(κ) = G̃(κ)2Φij(κ).

The evolution of a filtered Fourier-mode ûk(κ) with a spectral eddy viscosity subgrid

model νt(κ) is

(
∂

∂t
+ νt(κ)κ̃jκj − F (κ)

)
ûk(κ) = −iPkm(κ̃)

∑

κ′

1

2

(
κ̃`G̃(κ) + κ̃′`G̃(κ′)

)
ûm(κ′)û`(κ− κ′).

(4.16)

The projection tensor is evaluated at the effective wavenumber as Pkm(κ̃) = δkm−κ̃kκ̃m/κ̃jκ̃j.

The equation for the filtered velocity spectrum tensor Φkp(κ) is then

(
∂

∂t
+ 2νt(κ)κ̃jκj − 2F (κ)

)
Φkp(κ) =− iPki(κ̃)

∑

κ′

1

2
(κ̃`G̃(κ) + κ̃′`G̃(κ′))〈û∗j(κ)ûi(κ

′)û`(κ− κ′)〉

+ iPpi(κ̃)
∑

κ′

1

2
(κ̃`G̃(κ) + κ̃′`G̃(κ′))〈ûk(κ)û

∗
i (κ

′)û
∗
`(κ− κ′)〉.

(4.17)
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Lastly, the evolution equation for the triple correlation 〈ûk(κ)û
∗
i (κ

′)û
∗
`(κ− κ′)〉 is

(
∂

∂t
+ νt(κ)κ̃jκj + νt(κ

′)κ̃′jκ
′
j + νt(κ

′ − κ)
︷ ︸
(κ′j − κj)(κ′j − κj)−

F (κ)− F (κ′)− F (κ′ − κ))

)
〈ûk(κ)ûi(−κ′)û`(κ′ − κ)〉 =

− iPkm(κ̃)
∑

κ′′

1

2
(κ̃sG̃(κ) + κ̃′′sG̃(κ′′))〈ûm(κ′′)ûs(κ− κ′′)ûi(−κ′)û`(κ′ − κ)〉

− iPim(κ̃′)
∑

κ′′

1

2
(−κ̃′sG̃(κ′) + κ̃′′sG̃(κ′′))〈ûm(κ′′)ûs(−κ′ − κ′′)ûk(κ)û`(κ

′ − κ)〉

− iP`m(κ̃′ − κ)
∑

κ′′

1

2
( ˜(κ′ − κ)sG̃(κ′ − κ) + κ̃′′sG̃(κ′′))〈ûm(κ′′)ûs(−κ + κ′ − κ′′)ûk(κ)ûi(−κ′)〉

.

(4.18)

The EDQNM hypotheses can be applied to approximate the solution of equation (4.18)

as

〈ûk(κ)ûi(−κ′)û`(κ′ − κ)〉 = Θ(κ,κ′,κ′ − κ)

[

− iPkm(κ̃)

[
1

2
(κ̃sG̃(κ) + κ̃′sG̃(κ′))Φmi(κ

′)Φ`s(κ
′ − κ)

+
1

2
(κ̃sG̃(κ)− (κ̃′ − κ)sG̃(κ′ − κ))Φ`m(−κ + κ′)Φsi(κ

′)

]

− iPim(κ̃′)

[
1

2
(−κ̃′sG̃(κ′)− κ̃sG̃(κ))Φkm(κ)Φ`s(κ

′ − κ)

+
1

2
(−κ̃′sG̃(κ′)− (κ̃′ − κ)sG̃(κ− κ′))Φ`m(κ′ − κ)Φks(κ)

]

− iP`m(κ̃′ − κ)

[
1

2
( ˜(−κ+ κ′)sG̃(κ′ − κ)− κ̃sG̃(κ))Φkm(κ)Φsi(κ

′)

+
1

2
( ˜(−κ+ κ′)sG̃(κ′ − κ) + κ̃′sG̃(κ′))Φmi(κ

′)Φks(κ)

]]

, (4.19)

where the long-time relaxation timescale is Θ(κ,κ′,κ′−κ) = [µ(κ)+µ(κ′)+µ(κ′−κ)]−1 and

µ(κ) must be modeled. The EDQNMLES model provides a closure for the filtered spectrum

tensor Φij(κ) in equation (4.17). As before, the focus here will be on the energy spectrum
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E(κ) = 1
2
Φkk(κ) and the EDQNMLES approximation of the filtered energy transfer rate

T<skew(κ) = −Im

[∑

κ′

1

2

(
κ`G̃(κ) + κ′`G̃(κ′)

)
〈ûk(κ)û

∗
k(κ

′)û
∗
`(κ− κ′)〉

]
. (4.20)

The eddy damping hypothesis suggests that µ(κ) = η(κ)+νt(κ)κ̃jκj +F (κ). In particu-

lar, νt(κ)κ̃jκj is the relaxation rate introduced by the eddy viscosity and accounts for phase

scrambling effects due to nonlinear interactions between the resolved and subgrid scales.

The eddy-damping term η represent the decorrelation rate of Fourier modes as a result of

nonlinear interactions between resolved modes. The scaling of η is more complicated than

η because of interactions with the subgrid stress. However, we can ensure the EDQNM and

EDQNMLES approximations of the energy transfer agree for the case of Fourier spectral

numerics and a Fourier cutoff filter by equating equations (4.9) and (4.19). This implies

Θ = Θ, i.e.,

η(κ) + νt(κ)κ̃jκj = η(κ). (4.21)

Thus, at least in the idealized case, this theory will provide a good approximation to

the filtered energy transfer rate T<skew. As before, we can determine the spectral eddy

viscosity needed to reproduce a filtered Kolmogorov spectrum by substituting Φij(κ) =

G̃(κ)2Pij(κ̃)E(κ)/4πκ2 with Kolmogorov E(κ) into equation (4.19) to approximate T<skew(κ)

a priori, and solve for spectral eddy viscosity via the steady state equation for the energy

spectrum as νt(κ) =
(
T<skew(κ) + 2F (κ)E(κ)

)
/2|κ|2E(κ). This leads to the same eddy vis-

cosity as in figure 4.2 and therefore the same a posteriori energy and energy transfer spectra

as in figure 4.3. This model is extended to non-spectral numerics and graded explicit filters

below.
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4.3.2 Numerical dispersion error

The key observation in developing a statistical theory for the resolved nonlinear terms in an

LES is that non-spectral numerics and non-cutoff filters lead to a phase decoherence between

velocity Fourier modes that disrupts the energy transfer rate in the dispersive wavenumbers.

This behavior was first identified by Yalla et al. [126] for the case of dispersion error in-

troduced by a large mean convection velocity and lower-order numerics (linear dispersion

error). They presumed that a similar phenomena may occur for nonlinear dispersion error

that arises due to convection through the grid by turbulent fluctuations. Further, the anal-

ysis of Yalla et al. [126] indicates that the inverse timescale, ω, on which phase-scrambling

due to dispersion error occurs is related to a characteristic velocity scale U and the error in

the effective wavenumber and non-cutoff filter, i.e., ω(κ) ∼ U · (κ− G̃(κ)κ̃).

The phase scrambling effects introduced by dispersion error therefore influence the eddy-

damping hypothesis and must be accounted for in the corresponding eddy-damping model.

There are at least two ways an appropriate model may be formulated. First, we propose to

model Θ = (µ(κ) + µ(κ′) + µ(κ′ − κ))−1 through

µ(κ) ≡ η(κ) + νt(κ)κ̃jκj + F (κ) = η(κ) + ω(κ) + F (κ), (4.22)

where ω(κ) ∼ U·(κ−G̃(κ)κ̃) as above. In this case, the linear damping term ω(κ) appears in

the evolution equation for each wavenumber in the triad interaction. Second, it would also be

reasonable to instead introduce ω(κ,κ′,κ′−κ) ∼ U ·(G̃(κ′)κ̃′−G̃(κ)κ̃−G̃(κ′−κ) ˜(κ′ − κ))

to the denominator of Θ. Based on the analysis in [126], this may more directly represent

the dispersive characteristics of the triad interactions. However, we found that these two

models performed identically for the tests reported in this chapter. Thus, we will generally

consider ω(κ) ∼ U · (κ− G̃(κ)κ̃) here.

The EDQNMLES approximation exposes the relaxation timescale of the filtered turbu-
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Figure 4.4: One-dimensional energy spectra computed from an LES with (a) second-order
centered difference first derivative operators, Fourier-spectral second derivative operators,
the skew symmetric form of the nonlinear terms, and a Fourier-cutoff filter and (b) Fourier-
spectral numerics, the skew symmetric form of the nonlinear terms, and a Gaussian filter
with filter width ∆̃ = 2∆. The eddy viscosity models in (a) and (b) are derived from the a
priori EDQNM approximation for Fourier-spectral numerics and a cutoff filter ( ) and
the EDQNMLES approximation corresponding to each formulation with the Fourier-spectral
model for Θ (i.e., ωN = 0) ( ). The equivalently filtered theoretical spectra are shown
in both cases ( ).

lence and is therefore well-positioned for directly investigating the effects of both nonlinear

and linear dispersion error on the evolution of the third-order correlation. This is unlike the

analysis in [126] which was only applicable to linear dispersion error in the regime of Taylor’s

hypothesis. An ω model is needed for each of these phenomena as they operate on different

velocity scales. In the following subsection, we explore nonlinear dispersion error and its

effect on the wavenumber dependent behavior of the eddy viscosity. Linear dispersion is

considered in section 4.3.4.

4.3.3 Nonlinear dispersion error

Yalla et al. [126] demonstrated the effects of linear dispersion error on the energy and en-

ergy transfer spectra in LES. We pursue a similar investigation for the effects of nonlinear
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dispersion error here. In particular, we are interested in how nonlinear dispersion error ef-

fects the energy spectrum when compared to an equivalently filtered Kolmogorov spectrum.

This can be demonstrated in two ways. First, the EDQNMLES model of the eddy viscosity

for the case of Fourier spectral numerics, a cutoff filter, and a Kolmogorov spectrum (see

figure 4.2) can be applied to an LES computed with a lower-order numerical approximation

to the convective derivative. For instance, consider an LES computed with second-order

centered difference first derivatives operators, Fourier-spectral second derivatives, the skew-

symmetric form of the nonlinear terms, and a mean velocity of U = 0. The ‘spectral cusp’

eddy viscosity model is not appropriate in this case. Excess energy is observed in the middle

of the spectrum and the largest wavenumbers are overly damped (see figure 4.4a). This is not

unlike the effects of linear dispersion error, which shut down the energy transfer for higher

wavenumbers and led to an energy pile up in lower wavenumbers [126]. Second, we can com-

pute the EDQNMLES eddy viscosity model for second-order centered difference numerics,

the skew-symmetric form, a Kolmogorov spectrum, and the Fourier-spectral model for Θ,

i.e., not modifying the eddy-damping hypothesis to account for dispersive phase scrambling.

Applying this eddy viscosity to the same LES calculation leads to a posteriori energy spec-

tra that are deficient for lower wavenumbers and increased near the cutoff (see figure 4.4a).

Similar behaviors are also observed for non-cutoff explicit filters. For instance, consider an

LES defined with an isotropic Gaussian explicit filter G̃(κ) = exp(−|κ|2∆̃2/24) with filter

width ∆̃ = 2∆ and computed with Fourier-spectral numerics. As expected from [131], the

spectral-cusp eddy viscosity is clearly not appropriate in this case (see figure 4.4b), however,

neither is the EDQNMLES approximation of the eddy viscosity with the standard model of

Θ (see figure 4.4b). Thus, when accounting for implicit and explicit filtering, the formula-

tion of Leslie and Quarini [131] for the eddy viscosity will generally not lead to the correct

a posteriori energy spectra.

This discussion indicates that nonlinear dispersion error has a meaningful impact on
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the relaxation time of the filtered turbulence. To account for these effects, we introduce

an additional relaxation rate ωN into the eddy damping model as in equation (4.22). We

are interested in determining ωN so that the a priori EDQNMLES approximation of the

energy transfer with a Kolmogorov model for Φij(κ) lead to a posteriori LES energy spectra

that agree with a filtered Kolmogorov spectrum. This will determine the requirements of

the spectral eddy viscosity needed to produce a Kolmogorov spectrum in the presence of

nonlinear dispersion error. The model ωN(κ) = CωN
urms(κ− κ̃G̃(κ)) for some constant CωN

was found to be sufficient for this purpose. The constant CωN
was determined by fitting the

energy spectrum computed from an LES with the EDQNMLES model of the spectral eddy

viscosity to a theoretical spectrum. The constant was found depend on κc for this model,

with CωN
= −0.185 for κc = 16 and CωN

= −0.275 for κc = 8, although we anticipate a

limiting value for large κc in the inertial range. Part of the κc dependence comes from the

a priori estimate of urms =
√

2k/3 used, which was determined from k =
∑

κ
1
2
Φii(κ) based

on a Kolmogorov spectrum, yielding urms = 1.49 for κc = 16 and urms = 1.43 for κc = 8.

The a priori EDQNMLES approximation of the spectral eddy viscosity needed to repro-

duce a Kolmogorov spectrum is evaluated a posteriori in four different LES. In each case

the eddy viscosity is determined via νt(κ) =
(
T<(κ) + 2F (κ)E(κ)

)
/2|κ|2E(κ) given the

EDQNMLES approximation of T<skew with an equivalently filtered Kolmogorov spectrum and

nonlinear dispersion model ωN . In each LES, the skew symmetric form of the nonlinear terms

is used. In the first two LES, a Fourier-cutoff filter is used and the convective derivative is

approximated with a second-order centered difference method and a second-order B-spline

method. In the other two LES, Fourier-spectral numerics are used, but a Gaussian explicit

filter is applied with filter width ∆̃ = ∆ and ∆̃ = 2∆. These cases were chosen because they

are expected to introduce significant dispersion error, either through the lower order numer-

ics or the graded explicit filters. In each simulation, EDQNMLES approximates the eddy

viscosity needed to represent an equivalently filtered Kolmogorov spectrum, which deviate
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Figure 4.5: (a) One-dimensional energy spectra of an LES computed with the EDQNMLES
approximation of the eddy viscosities whose one-dimensional spectra are shown in (b). All
cases correspond to the skew-symmetric form of the nonlinear term, a mean velocity of U = 0,
a resolution of ∆ = 2π/32, and Fourier-spectral second derivative operators. The following
four cases of explicit filters and first derivative approximations are shown: A Fourier cutoff
filter with filter width ∆̃ = ∆ and second-order centered difference numerics ( ), and
second-order B-spline numerics ( ); Fourier-spectral numerics and a Gaussian explicit
filter with filter width ∆̃ = ∆ ( ) and ∆̃ = 2∆ ( ). The corresponding equivalently
filtered Kolmogorov spectra for each case are also shown in (a) ( ) and the spectral-cusp
eddy viscosity spectra from figure 4.2 is shown in (b) ( ).

significantly from the spectral-cusp eddy viscosity model (see figure 4.5b). The a posteri-

ori spectra in all LES using these eddy viscosity models match remarkable well with the

theoretical spectra (see figure 4.5a).

This can be extended to non-conservative formulations as well. Consider the second-order

B-spline case for the skew-symmetric, convective, and conservative form of the nonlinear

terms. EDQNMLES provides an a priori estimate of the energy injection rate introduced by

the non-energy conserving resolved nonlinear interactions in each case (
∑
|κ|≤8 T

<
cons = 0.47,

∑
|κ|≤8 T

<
conv = 0.55,

∑
|κ|≤8 T

<
skew = 0), and adjusts the eddy viscosities accordingly (see

figure 4.6c). Again, the a posteriori energy spectra match very well with a theoretical Kol-

mogorov spectrum for all nonlinear forms (see figure 4.6a) as do the energy transfer spectra
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(see figure 4.6b). This result is particularly impressive since LES in this setting with ei-

ther of the non-conservative nonlinear forms and standard subgrid stress models (such as a

Kolmogorov or Smagorinsky model) are numerically unstable. However, we note that the

EDQNMLES eddy viscosity model cannot correct these numerical instabilities in all cases.

For instance, in the same setup but with second-order centered difference numerics, the a

posteriori LES are numerically unstable. This is perhaps not surprising as EDQNMLES

indicates that
∑
|κ|≤8 T

<
conv = 0.85 in this case, i.e., the convective formulation injects energy

at a rate that is 85% of the total dissipation rate. Lastly, we note that EDQNMLES theory

predicts that both the convective and conservative forms add energy into the system, despite

the skew-symmetric form being energy conserving. This behavior was observed experimen-

tally in section 3.5, and it was hypothesized that the turbulence was adjusting in both cases

so that the convective and conservative forms added energy to the resolved scales. However,

such an adjustment is clearly not possible in the theoretical analysis, so it is inherent to the

numerical formulation of the nonlinear terms. Further, this behavior is contrary to explicit

filters in non-energy conserving formulations where the conservative form is found to remove

energy from the system, while the convective form adds energy, which is observed in both a

priori EDQNMLES approximations and a posteriori LES calculations.

4.3.4 Linear dispersion error

The EDQNMLES model of the energy transfer can also be extended to include the effects of

linear dispersion error introduced by a nonzero mean velocity U and non-spectral numerics or

non-cutoff explicit filters. For the study of nonlinear dispersion error in the previous section,

EDQNMLES approximated the eddy viscosity needed to reproduce a Kolmogorov spectrum,

which was evaluated a posteriori in an LES. Although important, nonlinear dispersion effects

are small enough that a good approximation to a Kolmogorov spectrum is attainable a

posteriori with the right wavenumber dependent eddy viscosity. However, for U � urms, the
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Figure 4.6: One-dimensional energy (a) and energy transfer (b) spectra from an LES com-
puted with the EDQNMLES approximation of the eddy viscosities whose one-dimensional
spectra are shown in (c). Each case corresponds to second-order B-spline first derivative
operators, a mean velocity of U = 0, a resolution of ∆ = 2π/16, Fourier-spectral second
derivative operators, and a Fourier-cutoff filter. The skew-symmetric ( ), conservative
( ), and convective ( ) form of the nonlinear terms are shown. In (b) the a priori
EDQNMLES approximations of the energy transfer are given by the solid lines, and the
corresponding a posteriori LES energy transfer spectra are given by the dashed lines. The
equivalently filtered Kolmogorov spectrum is also shown in (a) ( ), and the EDQNM-
LES approximation of the energy transfer and energy viscosity spectra for Fourier spectral
numerics and filtering are shown (b) and (c) ( ).

results in [126] suggest that a Kolmogorov spectrum is not attainable when considering linear

dispersion error. This is because the shut down of energy transfer rate T< is so strong for the

dispersive wavenumbers that no dynamic balance resembling a Kolmogorov spectrum can

be obtained. Therefore, we instead ask if EDQNMLES can predict the energy and energy

transfer spectra that arise in an LES of turbulence being convected through a grid with a

given mean velocity.

To answer this question, first consider the EDQNMLES approximation of the energy

transfer T<skew given a filtered energy spectrum Φij computed from an LES. Specifically, we

follow Yalla et al. [126] and consider an LES computed with a Cartesian Fourier-cutoff filter,

a mean velocity of U = 35, the skew-symmetric form of the nonlinear terms, Fourier-spectral

second derivative approximations, and third-order B-spline collocation first derivative ap-
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proximations. The eddy viscosity model used in this LES is determined from EDQNMLES

with nonlinear dispersion model ωN so that the energy spectra match a Kolmogorov spectrum

for U = 0 (as in section 4.3.3). The energy spectra in this case exhibit the same behavior as

reported in section 3.3. The energy transfer rate in the direction of mean convection shuts

down around κ1 = 8 (see figure 4.7b), leading to an energy spectrum that is increased for

intermediate wavenumbers and depleted in the largest wavenumbers (see figure 4.7a). In

directions orthogonal to mean convection, the energy transfer rate remains consistent with

the theoretical result throughout the inertial range (see figure 4.7d), and a slight energy-pile

up is observed in the mid-to-largest wavenumbers of the energy spectrum because of the

deficiency in the x-direction (see figure 4.7c). Given Φij(κ) from the LES, the EDQNMLES

closure of the energy transfer (via equations (4.19) and (4.20)) is then computed.

First suppose that the relaxation timescale of the EDQNMLES approximation is not

adjusted to account for linear dispersion error. In this case, the approximation of the energy

transfer in the direction of mean convection is highly inaccurate. There seems to be a type

of inflection point at the wavenumber where the true energy transfer shuts down (κ1 = 8),

with the approximated transfer spectra going negative for κ1 < 8 and rising sharply for

κ1 > 8 (see figure 4.7b). This behavior is difficult to interpret physically. However, an

additional damping term ωL is clearly needed to account for the relaxation rate introduced

by linear dispersion error. We take ωL(κ) = CωL
U · (κ− κ̃G̃(κ)) so that Θ(κ,κ′,κ′ − κ) =

[µ(κ) + µ(κ′) + µ(κ′ − κ)]−1 is modeled through

µ(κ) ≡ η(κ) + νt(κ)κ̃jκj + F (κ) = η(κ) + ωN(κ) + ωL(κ) + F (κ). (4.23)

The constant CωL
is determined so that the EDQNMLES approximation of the energy trans-

fer agree with the a posteriori LES computation of the energy transfer (a value of CωL
= −2.0

is used here).
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The EDQNMLES approximation with this model for ωL yields a much more physically

meaningful approximation to the energy transfer. The energy transfer spectra agree roughly

the calculation from an LES for low wavenumbers and tends to zero over the range of disper-

sive wavenumbers (see figure 4.7b). Although the shut down of the energy transfer is captured

well for κ1 > 8, the model does not quite capture the increase in the energy transfer observed

in the low-to-mid wavenumbers in the LES (see figure 4.7b). Additional refinements to the

ωL model may be needed to improve this behavior. Nonetheless, these results demonstrate

that the relaxation timescale introduced by linear dispersion error is a significant component

of the energy transfer process in an LES, as expected, and must therefore be represented

by the eddy-damping model in EDQNMLES. Further, this model for ωL is able to preserve

the correct energy transfer in the directions orthogonal to mean convection (see figure 4.7d),

which is particularly encouraging as it indicates that the EDQNMLES theory developed

here is rich enough to represent such anisotropies in the turbulence. Lastly we note that the

behavior reported here was found to be consistent across mean velocities U and numerical

first derivative approximations. The seventh-order B-spline case is shown in figure 4.8 for

completeness.

The EDQNMLES approximation of the energy spectrum for a given eddy viscosity and

ωL model could also be determined by solving equation (4.17) for Φij with the closure

in equation (4.18). However, this would require the development of software capable of

solving this highly non-linear three-dimensional systems. This is a much more challenging

computational task than solving for the spectral eddy viscosity or energy transfer rate for

a given spectrum because of the anisotropies introduced by numerical discretization and

filtering. Such an EDQNMLES solver for the energy spectrum will be pursued in future

work. This will serve as a further validation test for the ωL model and provide further

insight into the effects of dispersion error on the nonlinear dynamics of turbulence.
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Figure 4.7: One-dimensional energy and energy transfer spectra corresponding to an im-
plicitly filtered LES with 3rd-order B-spline collocation first derivative approximations,
Fourier-spectral second derivatives, the skew-symmetric form of the nonlinear terms, and
U = 35. The EDQNMLES eddy viscosity with nonlinear dispersion model ωN is used. The
spectra computed from an LES are shown ( ), along with the EDQNMLES approxi-
mation to the energy transfer given the LES energy spectrum with ωL = 0 ( ), and
ωL = CωL

U · (κ− G̃(κ)κ̃) ( ). The theoretical case for a Kolmogorov spectrum is also
shown ( ). (a) and (b) are one-dimensional spectra in the direction of mean convection,
while (c) and (d) are in a direction orthogonal to mean convection.
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Figure 4.8: One-dimensional energy and energy transfer spectra corresponding to an im-
plicitly filtered LES with 7th-order B-spline collocation first derivative approximations,
Fourier-spectral second derivatives, the skew-symmetric form of the nonlinear terms, and
U = 35. The EDQNMLES eddy viscosity with nonlinear dispersion model ωN is used. The
spectra computed from an LES are shown ( ), along with the EDQNMLES approxi-
mation to the energy transfer given the LES energy spectrum with ωL = 0 ( ), and
ωL = CωL

U · (κ− G̃(κ)κ̃) ( ). The theoretical case for a Kolmogorov spectrum is also
shown ( ). (a) and (b) are one-dimensional spectra in the direction of mean convection,
while (c) and (d) are in a direction orthogonal to mean convection.
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4.4 Discussion

In this chapter we introduced an analytical statistical theory for the filtered turbulence

represented in an LES based on EDQNM theory. Previous applications of EDQNM to LES

were mainly restricted to the case of a Fourier-cutoff filter and Fourier-spectral numerics [47]

or to graded filters with no regard for implicit filtering [131], because the underlying two-point

closure ultimately applied to the unfiltered third-order correlations (see section 4.2). Here we

extended EDQNM to represent the filtered third-order correlations (denote EDQNMLES),

so the formulation extends naturally to implicit and explicit filtering, non-Fourier spectral

numerics and other particulars of an LES formulation (see section 4.3). This theory is useful

for exposing how these particulars of an LES influence the nonlinear energy transfer between

Fourier modes and indicating the requirements of subgrid scale turbulence models for a given

LES formulation.

Classical EDQNM theory informed the eddy-damping model in the LES case through

η, however, it was necessary to further modify the eddy-damping hypothesis to account for

the effects of filtering and numerics on the relaxation time of velocity correlations for both

linear and nonlinear dispersion error (see section 4.3.2). Notably, the results here indicate

that nonlinear dispersion error has a meaningful impact on the evolution of the third-order

correlations and must therefore be accounted for in the formulation of subgrid scale turbu-

lence models. In fact, this was important for recovering a Kolmogorov spectrum a posteriori

for non-spectral numerics and non-cutoff filters (see section 4.3.3). As hypothesized by Yalla

et al. [126], the underlying process through which nonlinear dispersion error affects the energy

transfer is by increasing the relaxation rate of the correlation between velocity Fourier-modes

for dispersive wavenumbers. This timescale is directly accessible in the EDQNMLES closure,

unlike in the analytical approach in section 3.3, which only applies to the mean convection

case in the regime of Taylor’s hypothesis.
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The techniques developed here may be useful for exploring several characteristics of an

LES as discussed by Moser et al. [1]. Regarding dissipation, the results here may inform

the requirements of SGS models for a given choice of numerics and filter. For instance,

hyperviscosity models may not be appropriate for lower-order numerics, since the spectral-

eddy viscosity do not exhibit as large of a cusp near the cutoff (see figure 4.5b). Similarly,

the a priori estimates of the energy injection rate for different numerical formulations of the

nonlinear terms could inform SGS constants (as in equation (3.20)) or even provide an a

priori test of implicit LES models. The formulation here should also extend naturally to the

case of resolution anisotropy. This may indicate the effect of anisotropic resolution on the

energy transfer rate that lead to the energy spectra reported by Haering et al. [17]. It may

also inform the requirements of anisotropic subgrid-stress models, which could lead to model

improvements or explain why certain anisotropic models perform well despite not seemingly

representing the dissipation anisotropy of the turbulence [17]. It would also be interesting

to see if EDQNMLES could say something useful about very-coarse LES where modeling

mean subgrid stress effects become important [37]. Perhaps these techniques could inform

the requirements of split eddy viscosity formulations [38, 40, 99] for instance. The effects of

resolution inhomogeneity in LES could be explored. In chapter 5 a spectral representation

of the inhomogeneous commutator is developed. EDQNMLES would be useful for informing

nonlinear commutation error in this case, computing an a priori estimate of the effects

of commutation error on the energy spectrum, and perhaps informing the requirements of

commutator models. Lastly, this analysis may be useful for analyzing aliasing errors a priori.

Lastly, we note that although the focus in this chapter was on the energy spectrum and

energy transfer process, the EDQNMLES theory developed here would be useful in analyzing

the anisotropies of the full filtered spectrum tensor Φij(κ) as well as the anisotropies of the

corresponding spectral eddy viscosity. This may be particularly important because practical

numerical discretizations and filtering induce anisotropies.
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Chapter 5

Analysis of the inhomogeneous commutator

Note that much of the material in this chapter was published previously by Yalla, Oliver,

Haering, Engquist, and Moser [139]

In this chapter we investigate the issues that arise from inhomogeneous filtering/resolution

(note that by inhomogeneity of an LES filter or resolution, we mean that the filter or resolu-

tion characteristics vary in space; this should not be confused with homogeneity or inhomo-

geneity of the turbulence). The challenges posed by resolution inhomogeneity arise because,

in this case, the filter that defines the resolved scales does not commute with spatial dif-

ferentiation (see section 1.1). This effect is represented the commutation term CIj , which

should appear in the LES evolution equation. When this effect is neglected it gives rise to

“commutation error”, which was first analyzed in detail by Ghosal and Moin [22]. Since

then, several investigators have acknowledged the significant impact commutation error can

have on an LES solution [145, 146, 147, 151, 182, 34, 33, 183, 11, 184, 185]. Despite this,

the commutation term is often neglected in practice.

Most of the previous work to address commutation error has been in the context of ex-

plicit filtering. As discussed in section 3.6, explicit filters, which may be employed in addition

to the discrete projection that defines the implicit filter, are used to minimize the effects of

numerical discretization errors by defining a filter width larger than the discretization scale

[144, 140, 118, 120, 119, 141, 142, 149, 148]. Approximately commuting with differentiation
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is then viewed as a desirable property of explicit filters to minimize commutation error. In

this context, van der Ven [145] introduced a one-parameter family of analytical filters that

commute with differentiation up to a given order in filter width. Vasilyev et al. [146] devel-

oped a set of constraints for constructing discrete filters that commute with differentiation up

to a desired order. Marsden et al. [147] extended the work of [146] to unstructured meshes.

However, in an LES, the projection onto a finite dimensional LES solution space that

is inherent in numerical discretization is ultimately responsible for discarding information

about the small-scale turbulence [15, 16]. Therefore, the commutator between filtering and

differentiation that arises due to spatially nonuniform numerical discretization and the com-

mutation error that arises from neglecting it are the fundamental issues introduced by res-

olution inhomogeneity in LES. They are of particular importance in practical LES as many

applications rely solely on implicit filtering. Further, the commutation analysis of Ghosal

and Moin [22] only applies to smooth formally invertible filters, not filters that include a

discrete projection. Similarly, the commutative property of an explicit filter (such as those

mentioned above) would only reduce the additional commutation error introduced by the

explicit filter applied in addition to the discrete projection. These explicit filters do not

represent the commutator associated with the implicit filter and so, in general, do not re-

duce the corresponding commutation error. Neither the commutation error nor commutator

models applicable to implicit filtering have been well investigated.

In this section we explore a multiscale asymptotic analysis of CI , with the goal of ana-

lytically identifying an a priori statistical requirement imposed by this commutator on the

flow. The numerical effects of commutation error in LES are explored in chapter 6. For

the purposes of analysis, it is useful to start by considering the effects of the resolution

inhomogeneity on the filtered one-dimensional advection equation:

∂u

∂t
+ U

∂u

∂x
= 0, (5.1)
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where U is the constant convection velocity. In many turbulent flows the mean velocity

relative to the grid is much larger than the fluctuating velocity, so arguably the commutation

error for the mean convection term is most important. As before, we can write equation (5.1)

as

∂u

∂t
+ U

δu

δx
= −UC(u), (5.2)

where C(u) = ∂u/∂x−δu/δx is the commutation term, which can can be further decomposed

into an inhomogeneous and homogeneous part as C(u) = CI(u) + CH(u) where,

CI(u) =
∂u

∂x
− ∂u

∂ξ

dξ

dx
CH(u) =

∂u

∂ξ

dξ

dx
− δu

δx
, (5.3)

and ξ is the new spatial coordinate in which the grid or resolution is uniform as in [22].

In the seminal work of Ghosal and Moin [22], the commutator is estimated through Taylor

series analysis allowing the commutator to be analyzed. However there were limitations of

that work. First, the analysis uses an approximate inversion of the filter operator, and as

such is formally only applicable to invertible filters, and thus not to filters including discrete

projections as considered here. And second, in simplifying the expansions, an ad hoc ordering

is employed which resulted in the neglect of terms that a more careful analysis would identify

as important. Here we pursue a similar program using asymptotic analysis with the goals of

placing the results of Ghosal and Moin [22] for invertible filters on firmer ground (section 5.4),

and of developing statistical characterizations of the commutator applicable to non-invertible

filters (section 5.2). The results for invertible filters are of interest here because they can

provide guidance on appropriate forms and dependencies for a model of the commutator.

This may be valuable because filters that include discrete projections can be considered to

be limits of sequences of invertible filters. The multiscale analysis is presented in sections 5.1

to 5.3 with a general discussion section 5.4.
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5.1 Series representation of the inhomogeneous commutator

As in Ghosal and Moin [22], any smoothly nonuniform grid x with spacing ∆(x) can be

mapped to a uniform grid of spacing ∆ξ through some invertible monotonic differentiable

mapping function ξ = f(x). LetG(ξ) be a symmetric filter kernel normalized on ξ that decays

sufficiently fast so that all moments of G exist. To define the filtering operation applied to

an arbitrary function ψ(x), we first make a change of variables to ξ (ψ(ξ) ≡ ψ(f−1(ξ))) and

then filter ψ(ξ) with the homogeneous filter defined by G(ξ):

ψ(ξ) =
1

∆ξ

∫
G

(
ξ − η
∆ξ

)
ψ(η)dη. (5.4)

The result is then transformed back to x to obtain:

ψ(x) ≡ ψ(f(x)) =
1

∆ξ

∫
G

(
f(x)− f(y)

∆ξ

)
ψ(y)f ′(y)dy. (5.5)

Therefore
dψ

dx
≡ dψ

dξ

dξ

dx
, so that the inhomogeneous part of the commutator is

CI(ψ) =
dψ

dx
− dψ

dξ

dξ

dx
(5.6)

as in equation (5.3).

Now, suppose that the resolution (filter width) is slowly varying in x, that is d∆
dx

is order

ε � 1. Notice that this limit can be approached in two ways. In particular, consider the

length scale L∆ defined as the inverse logarithmic derivative of the resolution ( 1
L∆
∼ 1

∆
d∆
dx

).

Then the ε limit can be approached by (1) allowing L∆ to grow while ∆ remains constant,

or (2) letting L∆ remain constant while ∆ goes to zero. In either case, equation (5.5) is
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asymptotically equivalent to

ψ(x) =
f ′(x)

∆ξ

∫
G

(
f ′(x)(x− y)

∆ξ

)
ψ(y)dy +O(ε). (5.7)

Further, in the case of an inhomogeneous filter with slowly varying resolution, a filtered

quantity will vary over a long and short length scale, the scale of filter variation and the scale

of resolved turbulent fluctuations, respectively. As such, we use equation (5.7) to facilitate

a multiscale asymptotic analysis of the commutator in terms of a slow variable w = εx and

fast variable x̃. In this case, ∆ depends on w, but not x̃. Since f ′(x) = ∆ξ/∆(x), we have

ψ(w, x̃) =
1

∆(w)

∫
G

(
x̃− y
∆(w)

)
ψ(y)dy. (5.8)

In what follows, the dependence of ∆ on w is implied though no longer explicitly indicated.

Using multiscale asymptotics, the derivative of ψ with respect to x is written

dψ

dx
=
∂ψ

∂x̃
+ ε

∂ψ

∂w
+O(ε2). (5.9)

Since the filter is homogeneous in x̃,
∂ψ

∂x̃
=
dψ

dx
. Therefore, to leading order the commutator

is given by

CI(ψ) =
dψ

dx
− dψ

∂x
= −ε∂ψ

∂w
, (5.10)

which can be computed as

CI(ψ) =
1

∆2

d∆

dx

∫ (
x̃− y

∆
G′
(
x̃− y

∆

)
+G

(
x̃− y

∆

))
ψ(y) dy. (5.11)

where G′ is the derivative of G with respect to its argument. Introducing the variable
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ζ = (y − x̃)/∆ and expanding ψ(y) in a Taylor series about x̃ gives

CI(ψ) =
1

∆

d∆

dx

∫
(ζG′ (ζ) +G (ζ))

(
∞∑

n=0

(ζ∆)n

n!

dnψ

dxn
(x̃)

)
dζ

=
∞∑

n=1

( −∆2n−1

(2n− 1)!

d∆

dx

d2nψ

dx2n
(x̃)

∫
ζ2nG(ζ)dζ

) , (5.12)

where we have used the fact that odd order moments of G are zero. To express the commu-

tator in terms of the filtered field ψ, we first invert equation (5.8) using the same procedure

to obtain

ψ(x̃) = ψ(w, x̃)−
∞∑

n=1

∆2n

(2n)!

d2nψ

dx2n
(x̃)

∫
ζ2nG(ζ)dζ. (5.13)

Then we can recursively substitute equation (5.13) into equation (5.12) to obtain an expres-

sion for the commutator in terms of ψ. However, to properly order this expansion, the way

in which derivatives of ψ and ∆ scale with ε must be considered. When ε → 0 at constant

∆, both ψ and ∆ are order one in ε. However, when ε → 0 at constant L∆, ∆ ∼ ε and, in

general, the derivatives of ψ scale with powers of ε. In high Reynolds number turbulence that

has been filtered at scale ∆ in the inertial range, the Kolmogorov scale similarity hypotheses

for the statistics of velocity differences imply that the statistics of the derivatives of the

filtered velocity u depend only on ∆ and the rate of kinetic energy dissipation εk. Dimen-

sional analysis then requires that the standard deviation of ∂nu/∂xn scales as ε
2/3
k ∆1/3−n.

Thus, taking ψ to be u, the nth derivative of u in the series expansion will scale as ε1/3−n.
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Regardless of how the limit of small ε is approached, one obtains

CI(u) = −M2∆
d∆

dx

∂2u

∂x̃2
+

(
M2

2

2
− M4

6

)
∆3d∆

dx

∂4u

∂x̃4
+ · · ·+ CN∆N−1d∆

dx

∂Nu

∂x̃N
+ · · ·+O(εq)

=
∞∑

n=1

(
C2n∆2n−1d∆

dx

∂2nu

∂x̃2n

)
+O(εq)

,

(5.14)

where q = 2 when the asymptotic limit is taken with constant ∆ (the leading order series

being order ε) and q = 4/3 when it is taken at constant L∆ (the leading order series being

order ε1/3). Here we let Mk denote the kth order moment of the filter kernel, N is even, and

in general, the coefficient Cj on the jth order term depends on the moments of the filter up

to order j.

5.2 Spectral characteristics of the commutator

We turn our attention now to the spectral characteristics of the commutator. However, to

make a connection to the statistical properties of the commutator in LES of turbulence,

we consider instead a three-dimensional isotropic inhomogeneous filter, defined similarly to

equation (5.7) as

ψ(x) =
1

∆(x)3

∫
G

( |x− y|
∆(x)

)
ψ(y)dy, (5.15)

where G is now a scalar function on [0,∞) satisfying 4π
∫∞

0
G(r)r2 dr = 1. The same

multiscale expansion holds as above for the case where ∂∆
∂xi
∼ O(ε). The filtering operation

can be expressed as

ψ(w, x̃) =
1

∆(w)3

∫
G

( |x̃− y|
∆(w)

)
ψ(y)dy, (5.16)
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where w = εx is the slow variable and x̃ is the fast variable, and the commutator,

CIi (ψ) =
∂ψ

∂xi
− ∂ψ

∂xi
= −ε ∂ψ

∂wi
, can be computed as

CIi (ψ) =
ε

∆4

∂∆

∂wi

∫ ( |x̃− y|
∆

G′
( |x̃− y|

∆

)
+ 3G

( |x̃− y|
∆

))
ψ(y) dy

≡
∫
Ci(w, x̃− y)ψ(y)dy

, (5.17)

Furthermore, because the filter is homogeneous in the fast variable, it is useful to consider

the Fourier transform of ψ in the fast variable:

ψ̂(w,κ) =
1

(2π)3

∫
ψ(w, x̃)e−iκ·x̃ dx̃. (5.18)

Applying the convolution theorem to equation (5.16) yields ψ̂(w,κ) = ψ̂(κ)Ĝ(∆|κ|), where

ψ̂ is the Fourier transform of ψ and Ĝ(|κ|) = 1
(2π)3

∫
G(|z|)e−iκ·z dz is the Fourier transform

of the filter kernel, which depends only on |κ| because G(|z|) is isotropic. Note that because

the unfiltered quantity ψ does not depend on ∆, it also does not depend on w. The Fourier

transform of the commutator is thus given by

ĈIi (ψ) = −ε ∂ψ̂
∂wi

(w,κ) = −ψ̂(κ)
∂Ĝ(∆|κ|)

∂xi
= −ψ̂(κ)Ĝ′(∆|κ|)|κ|∂∆

∂xi
≡ −Ĉi(w,κ)ψ̂(κ).

(5.19)

where Ĝ′ is the derivative of Ĝ with respect to its argument.

While equations (5.17) and (5.19)) provide explicit expressions for the commutator, they

require knowledge of the unfiltered field ψ or its Fourier transform. If G were invertible,

we could relate ψ and ψ as in equation (5.13), but this is not the case for non-invertible

filters, such as those that include a finite dimensional projection. As such, this information

is generally not available in an LES, however, we may have theory or models for the statistics

of ψ, which could allow us to determine the statistics of the commutator.
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Consider, for example, homogeneous, isotropic turbulence flowing through an inhomo-

geneous grid at a velocity Ui that is much greater than the fluctuations ui so that Taylor’s

frozen field hypothesis holds. In this case, Kolmogorov theory provides a model for the

spectrum tensor φij(κ) =
∫
〈ûi(κ′)û∗j(κ)〉 dκ′, ∗ denotes complex conjugate, ûi is the Fourier

transform of the velocity, and φij is also the Fourier transform of the two-point correlation

tensor. The spectrum tensor of the filtered velocity is given by φij(κ) = Ĝ2(∆|κ|)φij(κ). The

commutator arising from the convection term in the filtered evolution equation is UkCk(uj),

and its contribution to the evolution of φij is given by

C̃I(φij) = Uk

∫
〈ûi(κ′)ĈIk(uj)

∗〉 dκ′+Uk
∫
〈û∗j(κ)ĈIk(ui)〉 dκ′ = −2Uk

∂∆

∂xk
Ĝ(∆|κ|)Ĝ′(∆|κ|)|κ|φij(κ)

(5.20)

where the C̃ nomenclature indicates the contribution of the commutator to the evolution

equation for its argument. The contribution of the commutator to the evolution of the

filtered three-dimensional energy spectrum E(|κ|) = 2π|κ|2φii(κ) and resolved turbulent

kinetic energy k> =
∫∞

0
E(κ) dκ can easily be obtained from equation (5.20) as:

C̃I(E) = −2Uk
∂∆

∂xk
Ĝ(∆κ)Ĝ′(∆κ)κE(κ) (5.21)

C̃I(k>) = −2Uk
∂∆

∂xk

∫ ∞

0

Ĝ(∆κ)Ĝ′(∆κ)κE(κ) dκ (5.22)

Note that unlike the analysis in section 5.1, the analysis outlined here does not rely on

deconvolution, and so is applicable to noninvertible filters that include implicit truncation.

For example, if G is a Fourier cutoff and G′ is interpreted in the sense of distributions, then

equation (5.22) simplifies to

C̃I(k>) = −Uk
∂κc
∂xk

E(κc), (5.23)

where κc is the cutoff wavenumber.
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5.3 Generalizing the analysis of Ghosal and Moin

Ghosal and Moin [22] did not employ a multiscale asymptotic analysis such as that above,

however, their analysis can be interpreted asymptotically. In this section, we explore the

relationship between the series analysis of section 5.1 and that of Ghosal and Moin, and

extend the latter to characterize the asymptotically higher order terms.

Recall, the filtering of an arbitrary function ψ(x) was defined in equation (5.5) as

ψ(x) =
1

∆ξ

∫
G

(
f(x)− f(y)

∆ξ

)
ψ(y)f ′(y)dy. (5.24)

As in Ghosal and Moin [22], we work directly with equation (5.24) and obtain

CI(ψ) =

∫
G(ζ)ψ′(y)

[
1− f ′(x)

f ′(y)

]
dζ (5.25)

for the inhomogeneous part of the commutator, where we have introduced the variable

ζ = (f(y)− f(x))/∆ξ.

To expand equation (5.25) in a series of explicit powers of ∆ξ, we follow [22] but consider

the general case including terms up to ∆N
ξ for some N . By inverting the definition of ζ, we

can express y as

y =
∞∑

i=0

∆i
ξζ
iyi, (5.26)

where y0 = x, y1 = 1/f ′(x) and yi is given by

yi = −
i∑

n=2

βn,i−n
n!f ′(x)

dnf

dxn
, (5.27)

where

βn,0 = yn1 , βn,m =
1

my1

m∑

k=1

(kn−m+ k)yk+1βn,m−k. (5.28)
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Then (y − x) can be expressed as

(y − x)n =

(
∞∑

m=1

∆m
ξ ζ

mym

)n

=
N−n∑

j=0

∆j+n
ξ ζj+nβn,j + . . . , (5.29)

for n > 0, which includes all terms with explicit powers of ∆ξ up to some power N . Substi-

tution of equation (5.29) into a general Taylor series expansion of ψ(y) about x gives:

ψ(y) = ψ(x) +
N∑

n=1

(
ψ(n)(x)

n!

N−n∑

j=0

∆j+n
ξ ζj+nβn,j

)
+ . . . . (5.30)

Equation (5.30) can be used to expand each term in equation (5.25) about x so that all the

terms of the commutator with explicit powers of ∆ξ up to some order N is given by:

CI(ψ) =
N∑

m=1

[
1

m!

[
ψ′
(

1

f ′

)(m)

f ′

]
(x)

N−m∑

k=0
k+m∈2Z

∆k+m
ξ βm,k

∫
ζk+mG(ζ)dζ

]

+
N∑

n=1

N∑

m=1

[
1

n!m!

[
ψ(n+1)

(
1

f ′

)(m)

f ′

]
(x)

N−n∑

j=0

N−m∑

k=0

j+k+n+m≤N
j+k+n+m∈2Z

∆j+k+n+m
ξ βn,jβm,k

∫
ζj+k+n+mG(ζ)dζ

]
.

(5.31)

For example, for N = 2 we obtain,

CI(ψ) =

(
f ′′

f ′3
d2ψ

dx2
+

(
f ′′′

2f ′3
− 3f ′′2

2f ′4

)
dψ

dx

)
∆2
ξ

∫
ζ2G(ζ)dζ , (5.32)

which agrees with equation (3.9) in [22].

To express the commutator in terms of ψ, we follow the same procedure as equation (5.13).
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Inverting equation (5.24) gives

ψ(x) = ψ(x)−
N∑

n=1



ψ(n)(x)

n!

N−n∑

j=0

j+n∈2Z

∆j+n
ξ βn,j

∫
ζj+nG(ζ)dζ


+ . . . . (5.33)

Equation (5.33) can be recursively substituted into equation (5.31) to obtain the commutator

in terms of the filtered velocity field. Moreover, the commutator can be expressed in terms

of the local grid spacing ∆(x) using the relationship f ′ = ∆ξ/∆. The terms with explicit

powers of ∆ξ up to N = 2 are

CI(ψ) =

(
−
[

1

2

(
∆′2 + ∆∆′′

)] dψ
dx
− [∆∆′]

d2ψ

dx2

)∫
ζ2G(ζ)dζ. (5.34)

For N = 4 we obtain,

CI(ψ) = −
[

1

2

(
∆′2 + ∆∆′′

)] dψ
dx

∫
ζ2G(ζ)dζ − [∆∆′]

d2ψ

dx2

∫
ζ2G(ζ)dζ

+

[−∆′4 − 11∆∆′2∆′′ − 7∆2∆′∆′′′ − 4∆2∆′′2 −∆3∆′′′′

24

]
dψ

dx

∫
ζ4G(ζ)dζ

+

[
∆′4 + 8∆∆′2∆′′ + ∆2∆′′2 + 2∆2∆′∆′′′

4

]
dψ

dx

(∫
ζ2G(ζ)dζ

)2

+

[−7∆∆′3 − 13∆2∆′∆′′ − 2∆3∆′′′

12

]
d2ψ

dx2

∫
ζ4G(ζ)dζ

+

[
11∆∆′3 + 11∆2∆′∆′′

4

]
d2ψ

dx2

(∫
ζ2G(ζ)dζ

)2

+

[−3∆2∆′2 −∆3∆′′

4

]
d3ψ

dx3

∫
ζ4G(ζ)dζ +

[
11∆2∆′2 + ∆3∆′′

4

]
d3ψ

dx3

(∫
ζ2G(ζ)dζ

)2

+

[−∆3∆′

6

]
d4ψ

dx4

∫
ζ4G(ζ)dζ +

[
∆3∆′

2

]
d4ψ

dx4

(∫
ζ2G(ζ)dζ

)2

.

(5.35)

Unlike the analysis in section 5.1, no ordering has been given to the commutation terms.
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They are simply expressed in explicit powers of ∆ξ to show the structure of the higher

order terms neglected in equation (5.14). To get back to this result, take the limit ∆ξ → 0

and recall that in high Reynolds number turbulence it makes sense to consider the scaling

dnψ/dxn ∼ ∆
1/3−n
ξ . In this case one obtains

CI(ψ) =
∞∑

n=1

(
C2n

f ′′

f ′2n+1
∆2n
ξ

∂2nψ

∂x2n

)
+O(∆

4/3
ξ ) =

∞∑

n=1

(
C2n∆2n−1d∆

dx

∂2nψ

∂x2n

)
+O(∆

4/3
ξ ),

(5.36)

which is the same as equation (5.14). Each term in the sum in equation (5.36) is of order ∆
1/3
ξ ,

and is proportional to d∆/dx and an even derivative of ψ. However, the asymptotically higher

order terms (order ∆
4/3
ξ and higher), such as those in equation (5.34) and equation (5.35),

include higher order derivatives of ∆, higher powers of d∆/dx and odd-order derivatives of

ψ.

To arrive at (5.8) and (5.9) in Ghosal and Moin [22], which are the analog of equa-

tion (5.36), the authors consider ∆ξ � 1, which we interpret in the sense of an asymptotic

analysis for ∆ξ → 0. They also introduce the ansatz ψ = exp(iκx), along with the assump-

tion that κ∆ξ � ∆ξ, which while dimensionally inconsistent, arose from the assertion that

κ∆ξ could be as large as order one. In the context of the current analysis, this implies a

scaling for the derivatives of ψ. Equations (5.8) and (5.9) in Ghosal and Moin [22] include

only the first term in equation (5.36) because the remaining terms would be higher order in

κ∆ξ. The authors do, however, point out that the series can be extended to higher order

in κ∆ξ, which would then include more of the terms in equation (5.36). We interpret these

arguments from [22] to be asymptotic for κ∆ξ → 0, while κ → ∞, which would be consis-

tent with κ ∼ ∆−pξ for 0 < p < 1. However, the introduction of the ψ = exp(iκx) ansatz

is essentially ad hoc, and is inconsistent with the scaling of the derivatives of the filtered

velocity for high Reynolds number turbulence.
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5.4 Recap of analysis and further discussion

To recap the analysis in sections 5.1 and 5.3, Ghosal and Moin [22] employ an ad hoc

ordering of the commutator terms, however, their results can be consistently interpreted

asymptotically. The analysis in [22] employs a mapping of the physical space x to a mapped

space ξ in which the resolution is uniform to define the filtering operator. A Taylor series

expansion yields a series representations for CI that is valid asymptotically for ∆ξ → 0,

where ∆ξ is the uniform resolution in ξ space. This expansion is in terms of the derivatives

of the unfiltered field u. To express the commutator in terms of the derivatives of u, the

filter is inverted through another asymptotic expansion in ∆ξ. But, to properly order the

expansion, the way in which the derivatives of u scale with ∆ξ must be determined. In

Ghosal and Moin [22], it is assumed that u = eiκx and their analysis is consistent with the

assumption that κ ∼ ∆−pξ for 0 < p < 1. However, this is not necessarily consistent with the

way the derivatives of u scale when u is the turbulent velocity.

Assuming the resolution in physical space ∆(x) is in the inertial range of a high Reynolds

number turbulence, the Kolmogorov hypotheses imply that

∂nu

∂xn
∼ ∆

1/3−n
ξ . (5.37)

With this ordering, the lowest order expansion for the commutator is given by

CI(u) = −M2∆
d∆

dx

∂2u

∂x2
+

(
M2

2

2
− M4

6

)
∆3d∆

dx

∂4u

∂x4
+ · · ·+ CN∆N−1d∆

dx

∂Nu

∂xN
+ · · ·+O(∆

4/3
ξ )

=
d∆

dx

∞∑

n=1

C2n∆2n−1∂
2nu

∂x2n
+O(∆

4/3
ξ )

,

(5.38)

where Mk is the kth order moment of the filter kernel, N is even, and in general, the coefficient
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Cj on the jth order term depends on the moments of the filter up to order j. In Ghosal and

Moin [22], only the first term in this series is retained because the other terms are higher

order in κ∆ ∼ ∆1−p
ξ , but clearly this would not be consistent with filtering turbulence in a

Kolmogorov inertial range as equation (5.38) is.

An alternative approach to developing a series representation of CI is formulated for a

different, though related asymptotic limit. Consider the situation in which the derivative

d∆/dx is order ε, where ε is asymptotically small. In this case, a multiscale asymptotic

analysis of u in terms of a fast variable x̃ and slow variable w = εx yields the simple result

CI = −ε∂u/∂w + O(ε2), which can be expressed directly as a convolution operator applied

to the unfiltered field, where the kernel is in terms of the filter kernel and its derivative

in equation (5.11). As with the analysis discussed above, a Taylor series representation of

the filter inverse can be applied to produce a series representation of the commutator in

terms of the filtered field and its derivatives. However, the asymptotic interpretation may be

different. In particular, the ε → 0 limit can be approached by allowing the length scale L∆

over which the resolution changes ( 1
L∆
∼ 1

∆
d∆
dx

) to grow while ∆ remains constant. In this

case derivatives of u as well as ∆ are order one in ε. Alternatively, L∆ can remain constant

while ∆ goes to zero, which is equivalent to the previous analysis. In this case, ∆ ∼ ε and for

inertial range turbulence, the nth derivative of u scales as ε1/3−n. In either case, one obtains

CI(u) =
d∆

dx

∞∑

n=1

C2n∆2n−1∂
2nu

∂x̃2n
+O(εq), (5.39)

where q = 2 when the asymptotic limit is taken with constant ∆ while q = 4/3 when it is

taken at constant L∆. This is the same series as in equation (5.38).

Despite the fact that the above analyses are predicated on the use of an invertible filter

and we are concerned with filters that include a discrete projection, the characteristics of

the commutator expression provide insights relevant to modeling of the commutation term.
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First, note that to leading order this approximation is proportional to d∆/dx, and is a series

in the even x derivatives of u. The lowest order term appears as a viscous term, which

is dissipative when d∆/dx > 0 (i.e. convecting from fine to coarse resolution), and the

higher order terms are hyperviscous. Similarly, these terms would be anti-dissipative when

convecting from coarse to fine resolution, and thus will create resolved energy in this case.

Clearly this commutator expression is characterizing the transfer of energy between resolved

and unresolved scales as a consequence of the resolution inhomogeneity. In addition, since

each of the terms in equations (5.38) and (5.39) are of the same asymptotic order, they are all

equally important, and indeed, depending on the characteristics of the filter, the higher order

derivative terms could dominate. This suggests that a model of the commutator formulated

as a differential operator should include as high-order derivatives as possible. It is also

interesting to observe that the asymptotically higher order terms include dispersive terms in

addition to dissipative ones, and that higher order derivatives of ∆ appear (see section 5.3).

Finally, this analysis may provide clarity on some of the existing literature surrounding

commutation error. In particular, the deconvolution analysis in [22] has often been used

to motivate the development of smooth explicit filters whose first N − 1 moments are zero

so that the commutation error is of explicit order ∆N (e.g, [146, 147, 145, 151]). However,

this is only meaningful if the derivatives of u scale sufficiently weakly with ∆, as discussed

above, so that the first terms in equation (5.38) dominate asymptotically. Unfortunately, for

high Reynolds number turbulence, each term in equation (5.38) is of the same asymptotic

order. Therefore, this analysis suggests that constructing filters so that the coefficients Cj

for j < N − 1 in equation (5.38) vanish would likely not render the commutator negligible.

The commutator will thus need to be modeled.

Further, as discussed in section 1.2, an LES filter always includes a projection to the

finite-dimensional numerical solution space, either explicitly or implicitly, and so the infor-

mation in a filtered turbulent field is not sufficient to determine the evolution of that filtered
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turbulence [15, 143, 141, 186]. As a consequence, one can only expect LES models, including

models of the commutator, to match statistical characteristics of the quantity being modeled

[1, 187]. Therefore, in section 5.2, we analyzed a priori statistical properties of the commu-

tator in terms of statistical characteristics of the unfiltered turbulence, to inform potential

commutator models.

The finite-dimensional projection inherent to LES filters determines the information avail-

able in an LES upon which to base a model, and so a deconvolution analysis is ill-suited

to determining statistical properties. Instead, we apply a multiscale asymptotic analysis

to characterize the statistics of the commutator for an inhomogeneous three-dimensional

isotropic filter characterized by a slowly varying filter width ∆. After performing a Fourier

transform in the fast variable for which the filter is homogeneous, the commutator between

filtering and differentiation applied to turbulent velocity fluctuations uj can be written ex-

plicitly as

ĈIi (uj) = −∂∆

∂xi
Ĝ′(∆|κ|)|κ|ûj(κ), (5.40)

where κ is the wavenumber vector, Ĝ is the Fourier transform of the isotropic filter kernel

G, and Ĝ′ is the derivative of Ĝ with respect to its argument. Note that the “local Fourier

transform” analysis in [188] holds in this multiscale asymptotic sense.

The commutator is a linear operator, and equation (5.40) shows that it is proportional

to the gradient of ∆ and its spectrum is proportional to Ĝ′. The commutator thus acts on

the wavenumbers over which the filter spectrum rolls off from order one to zero. These are

generally the smallest resolved scales of the LES. For a Fourier cutoff filter in which Ĝ is

discontinuous at the cutoff wavenumber κc, Ĝ
′ is a Dirac delta function at κc, so in this case

the commutator acts only at the slowly varying cutoff.

While equation (5.40) is an explicit expression for the commutator, it requires knowledge

of the unfiltered quantity, which is generally not available. If the turbulence is being con-

vected by a mean velocity Ui, then the commutator CIi (uj) arising from the mean convection
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term enters the uj evolution equation as UiCIi (uj), and equation (5.40) can be used to de-

termine the contribution of the commutator to the evolution of the filtered spectrum tensor,

and in particular the three-dimensional filtered energy spectrum E(w, κ), to obtain

C̃I(E) = −Uk
∂∆

∂xk
Ĝ(∆κ)Ĝ′(∆κ)κE(κ) (5.41)

where C̃ indicates the contribution of the commutator to the evolution equation for its

argument. This contribution still requires knowledge of the unfiltered turbulence, in this

case the unfiltered spectrum, but at least in high Reynolds number isotropic turbulence,

Kolmogorov inertial range theory provides a good model for E. This is useful because a

priori consistency of a commutator model with equation (5.41) is a necessary condition for

LES prediction of the energy spectrum [187, 1]. Similarly, integrating equation (5.41) over κ

yields the contribution of the commutator to the evolution of the resolved turbulent kinetic

energy k>, and a necessary condition for LES prediction of k>. For the special case of a

Fourier cutoff filter, the result simplifies to

C̃I(k>) = −Uk
∂κc
∂xk

E(κc), (5.42)

which is consistent with the result obtained by Moser et al. [1] by other means.

Further, when this spectral analysis is applied to the full nonlinear terms in the filtered

Navier-Stokes equations, an additional commutator contributes to the evolution of the spec-

trum tensor, which can be determined in terms of Ŝijk(κ), the Fourier transform of the

two-point third-order correlation tensor. For isotropic turbulence with uniform resolution,

this term shows up in the E equation as

C̃I(E) = Ĝ(∆κ)Ĝ′(∆κ)∆κ
∂∆

∂x`
Re

{∑

κ′

〈ûk(κ)û∗k(κ
′)û∗`(κ− κ′)〉

}
. (5.43)
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Interestingly, the standard EDQNM closure for isotropic turbulence (see section chapter 4)

suggests

〈ûk(κ)ûk(−κ′)û`(−κ + κ′)〉 = Θ

[

− iPkm(κ) [κs (Φmk(κ
′)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φsk(κ

′))]

− iPkm(κ′) [−κ′s (Φkm(κ)Φ`s(−κ + κ′) + Φ`m(−κ + κ′)Φks(κ))]

− iP`m(−κ + κ′) [(−κ+ κ′)s (Φkm(κ)Φsk(κ
′) + Φmk(κ

′)Φks(κ))]

]

(5.44)

which is a purely imaginary function. Therefore, the commutator arising from the nonlinear

terms is zero to leading order (the higher order term may be non-zero). Thus to leading

order the commutator related to mean convection dominates, which agrees with our intuition

at the beginning of this section. For a Kolmogorov spectrum and cutoff filter the convective

time derivative of the kinetic energy to leading order is then

Dk>

Dt
= Ckε

2/3κ−5/3
c Uk

∂κc
∂xk
− ε. (5.45)

For coarsening resolution (Uk∂κc/∂xk < 0), the commutator transfers energy to unresolved

scales with the dissipation occurring only at the cutoff wavenumber. Similarly, for refining

resolution (Uk∂κc/∂xk > 0), the commutator transfers energy from the subgrid to the re-

solved turbulence at the cutoff wavenumber. Further, it is clear from equation (5.45) that

depending on strength of the mean convection velocity or gradient of the grid resolution the

dissipation rate from the commutator may significantly outweigh that of the subgrid stress

and a model is clearly needed to maintain the correct energy balance.
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5.5 Extensions to three dimensional anisotropic inhomogeneous

resolution

The analyses in sections 5.1 and 5.2 can be extended to the general case of three dimensional

anisotropic inhomogeneous resolution. To support the development of anisotropic resolution,

we consider the resolution tensor Mij [17], which is the symmetric part of the Jacobian

defining the mapping of a unit cube to a resolution cell. The eigenvalues ofMij represent the

size of the resolution cell in the principal directions defined by the corresponding eigenvectors.

In the isotropic resolution case considered above Mij = ∆δij.

In the three-dimensional anisotropic case, the definition of the filter considered in equa-

tion (5.7) can written

ψ(x) =
1

det(M)

∫
G
(
|M−1(x)(x− y)|

)
ψ(y)dy. (5.46)

As before, suppose that ∂kMij is order ε and let w = εx and x be slow and fast variables so

that

ψ(x,w) =
1

det(M(w))

∫
G
(
|M−1(w)(x− y)|

)
ψ(y)dy. (5.47)

The inhomogeneous commutator is then CIi (ψ) = −ε∂ψ/dwi which can be computed as

CIi (ψ) =
1

det(M)

∂M`j

∂xi

∫ [
M−1

`t M−1
js ztzs

G′(|M−1z|)
|M−1z| +M−1

`j G(|M−1z|)
]
ψ(y)dy, (5.48)

where z = (x− y).

The generalized series representation of the inhomogeneous commutator can be derived

by introducing the variable ζi = M−1
ij (y − x)j. Then yk = Mkiζi + xk and equation (5.48)
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becomes

CIi (ψ) =
∂M`j

∂xi

∫ [
M−1

`r ζrζj
G′(|ζ|)
|ζ| +M−1

`j G(|ζ|)
]
ψ(Mkiζi + xk)dζ. (5.49)

Taylor expanding ψ about x gives

CIi (ψ) =
∂M`j

∂xi

∫ [
M−1

`r ζrζj
G′(|ζ|)
|ζ| +M−1

`j G(|ζ|)
]
×

[
ψ(x) + ∂kψ(x)Mkiζi +

1

2
∂k∂jψ(x)MkiζiMjsζs + · · ·

]
dζ.

(5.50)

Let CI−ki denote the kth term in this Taylor expansion. Since,
∫
ζrζj

G′(|ζ|)
|ζ| dζ = −

∫
δrjG(|ζ|)dζ,

the first term in equation (5.50), CI−1
i , is identically 0, i.e.,

CI−1
i =

∂M`j

∂xi

∫ [
M−1

`r ζrζj
G′(|ζ|)
|ζ| +M−1

`j G(|ζ|)
]
ψ(x)dζ

=
∂M`j

∂xi

∫
M−1

`j (G(|ζ|)−G(|ζ|))ψ(x)dζ

= 0,

(5.51)

as expected. Isotropy of G(|ζ|) implies the odd order moments of G are zero and the even

order moments can be computed as:

∫
ζiζjG(|ζ|)dζ = M2δij,

∫
ζsζkζiζjG(|ζ|)dζ = M4 [δskδij + δsiδkj + δsjδki] , etc.

(5.52)

where Mi is the i-th moment of the filter as above (not to be confused with the resolution

tensor M here). Therefore, the second term CI−2
i in equation (5.50) is

CI−2
i = −∂M`j

∂xi

∫
M−1

`rMkjζrG(|ζ|) ∂ψ
∂xk

dζ = 0. (5.53)
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The first nonzero term is CI−3
i which can be computed as

CI−3
i =

∂M`j

∂xi

∫
M−1

`rMkpMqbζrζpζb
ξj
|ζ|G

′(|ζ|)∂k
1

2
∂pψ(x)dζ

+
∂M`j

∂xi

∫
M−1

`j MkpMqbζpζbG(|ζ|)∂k
1

2
∂pψ(x)dζ

=
∂M`j

∂xi

∫
M−1

`rMkpMqb (δrpδbj + δrbδpj + δpbδrj)G(|ζ|)∂k
1

2
∂pψ(x)dζ

+
∂M`j

∂xi

∫
M−1

`j MkpMqbζpζbG(|ζ|)∂k
1

2
∂pψ(x)dζ

= −M2
∂M`j

∂xi
Mqj∂`∂qψ(x)

. (5.54)

Similarly, the fifth term CI−5
i will be

CI−5
i (ψ) = −12

4!
M4

∂M`j

∂xi
MpqMqsMtj∂`∂p∂s∂tψ(x), (5.55)

and so on. Notice that the multiplicity of the moments changes the constants from the one-

dimensional case. Similarly, replacing ψ with ψ as in section 5.1 will introduce additional

constants so that the structure of the commutator is generally

CIi (ψ) = C2
∂M`j

∂xi
Mqj

∂2ψ

∂x`∂xq
(x) + C4

∂M`j

∂xi
MpqMqsMtj

∂4ψ

∂x`∂xp∂xs∂xt
(x) + . . . (5.56)

for constants Ck that depend on the moments of G up to order k.

To further explore the structure of these commutators, consider equation (5.56) in three

different settings: a homogeneous, isotropic grid (see figure 5.1a), an inhomogeneous anisotropic

grid (see figure 5.1b), and an isotropic inhomogeneous grid (see figure 5.1c), with resolution
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Figure 5.1: Two-dimensional schematics of (a) a homogeneous, isotropic grid, (b) an inho-
mogeneous, anisotropic grid, and (c) an isotropic, inhomogeneous grid.

tensors

M(a)
ij =




∆

∆

∆



, M(b)

ij =




∆x(x)

∆y

∆z



, M(c)

ij =




∆(x)

∆(x)

∆(x)



,

(5.57)

respectively. In the homogeneous isotropic case, the commutator, CI−(a)
i (ψ), is clearly zero

as expected. In the inhomogeneous anisotropic case, the commutator CI−(b)
i (ψ) is

CI−(b)
1 (ψ) = C2

∂∆x

∂x
∆x

∂2ψ

∂x2
+ C4

∂∆x

∂x
∆x

[
∆2
x

∂4ψ

∂x4
+ ∆2

y

∂4ψ

∂y2∂x2
+ ∆2

z

∂4ψ

∂z2∂x2

]
+ . . .. (5.58)

Lastly, in the isotropic inhomogeneous grid case, the commutator CI−(c)
i (ψ) is

CI−(c)
2 (ψ) = C2

∂∆

∂x
∆

∂2ψ

∂xj∂xj
+ C4

∂∆

∂x
∆3 ∂4ψ

∂xj∂xj∂xi∂xi
+ . . .. (5.59)

It is interesting to compare the structure of these commutators to the numerical propagation

of a wave packet through each of these grids as explored in section 6.4.1.

The spectral characteristics of the inhomogeneous commutator can be extended to the
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anisotropic case in a similar way. Fourier transforming equation (5.47) in the fast variable

gives

ψ̂(w,κ) = ψ̂(κ)Ĝ(|M(w)κ|). (5.60)

The Fourier-transform of the inhomogeneous commutator ĈIi is then

ĈIi (ψ) = −ε ∂ψ̂
∂wi

= −εψ̂ Ĝ(|M(w)κ|)
∂wi

= −Ĝ
′(|M(w)κ|)
|M(w)κ| Msjκjκ`

∂Ms`

∂xi
ψ̂(κ). (5.61)

The spectral form of the commutator for the three cases considered in figure 5.1 are:

ĈI−(a)
i (ψ) = 0 (5.62)

ĈI−(b)
1 (ψ) =

Ĝ′(|∆xκx + ∆yκy + ∆zκz|)
(|∆xκx + ∆yκy + ∆zκz|)

∆xκ
2
x

∂∆x

∂x
ψ̂(κ) (5.63)

ĈI−(c)
1 (ψ) = Ĝ′(∆|κ|)|κ|∂∆

∂x
ψ̂(κ). (5.64)

Further, the full three dimensional velocity spectrum equations with anisotropic, inho-

mogeneous resolution/filtering can be derived as

1

2

∂φii(κ)

∂t
= T (κ)− CI

(
1

2
φii

)
+ ν|κ|2φii(κ), (5.65)

where

T̂ (κ) =
1

2
iκ`Pjk(κ)Ĝ(|Mκ|)2Ŝjk`(κ)− 1

2
iκ`Pjk(κ)Ĝ(|Mκ|)2Ŝ∗jk`(κ) (5.66)

and

ĈI =
1

2
Pjk(κ)

G′(|Mκ|)
|Mκ| Mstκtκq

∂Msq

∂x`
Ĝ(|Mκ|)Ŝjk`(κ)

+
1

2
Pjk(κ)

G′(|Mκ|)
|Mκ| Mstκtκq

∂Msq

∂x`
Ĝ(|Mκ|)Ŝ∗jk`(κ)

. (5.67)
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Chapter 6

Commutation error and modeling in LES

Note that much of the material in sections 6.1 to 6.3 was published previously by Yalla,

Oliver, Haering, Engquist, and Moser [139]

In the previous chapter we analyzed the properties of the inhomogeneous commutator

through a multiscale analysis. When the inhomogeneous commutator is ignored, as is typ-

ical in an LES, it gives rise to commmutation error. In this chapter we investigate the

numerical issues of commutation error that arise from the convection of turbulence through

inhomogeneous resolution.

When convecting through a coarsening grid, the resolved fluctuations in a fine region

will be moving into a coarse region in which not all the resolved scales can be represented.

Similarly, solution scales that cannot be resolved in a coarse region will become resolvable as

the solution convects into a finer resolution region. The previous subsections show how the

inhomogeneous commutator CI is responsible for transferring energy between the subgrid and

resolved turbulence in both these cases. However, notice that the injection of energy into the

resolved scales is required for the refining resolution case to maintain consistency with the

definition of the filter, but that neglecting this effect will not lead to numerical inconsistencies

since the coarse region solution is perfectly well represented in the fine region. This is not

true for flow through a coarsening grid. For this reason, our investigation of commutation

error (neglect of C) in this chapter is particularly focused on flow through coarsening grids
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because of the numerical consistency issues inherent to this case. Flow through refining grids

will be examined in chapter 7.

6.1 Numerical analysis of resolution inhomogeneity in one dimen-

sion

The impact of the commutator and specifically its neglect is affected by the characteristics

of the discrete derivative operator, which is accounted for in the homogeneous commutator

CH . Here, by recalling results from numerical analysis [189, 190, 191, 192, 45, 193, 194, 195],

we consider the impact of neglecting both commutators, as is typical in LES, in the case

of a filter consisting of just the projection to the finite-dimensional discrete solution space

(i.e. only an implicit filter). As in chapter 5, we will start by considering the effects of the

resolution inhomogeneity on the filtered one-dimensional advection equation. Neglecting the

commutator in equation (5.2) gives:

∂u

∂t
+ U

δu

δx
= 0. (6.1)

We begin by recalling, as an example, the solution of equation (6.1) using a second-order

centered finite difference scheme on a uniform mesh with mesh size ∆. The numerical first

derivative is then given by δuj/δx = 1
2∆

(uj+1 − uj−1).

It is well recognized that, for initial conditions of the form eiκx, solutions of equation (6.1)

take the form ei(κx−ωt) and propagate at a phase velocity that depends on their wavenumber

[189]. The relation ω = ω(κ) is called the dispersion relation. Individual waves propagate

at a phase speed given by c(κ) = ω(κ)/κ; however, the evolution of a wave packet, which

can be decomposed into Fourier modes with wavenumbers ranging over a relatively narrow
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Figure 6.1: The phase and group velocities for second-order centered difference ( ),
third-order B-spline collocation ( ), fifth-order B-spline collocation ( ) and exact
( ). Note, the vertical line as κ∆ = 2π/3 and marks the lower bound of wavenumbers
affected by aliasing.

band, is governed by the group velocity (see figure 6.1):

G(κ) =
dω

dκ
(κ). (6.2)

The group velocity is of particular important in LES because it is the velocity at which energy

propagates and we have been concerned with the statistical effects of the commutators.

Substituting the form uj = ei(κxj−ωt) into equation (6.1) with the second order centered

difference scheme yields the dispersion relation and group velocity:

ω(κ) = Uκ′(κ) = U
sin(κ∆)

∆
and G(κ) = U cos(κ∆), (6.3)

where κ′ is the spectrum of the numerical derivative operator (previously denoted κ̃), which

is often referred to as the effective or modified wavenumber (see section 3.1). Notice that at

the Nyquist wavenumber for the grid, κc = π/∆, both κ′ and ω are zero. As a consequence
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there is a wavenumber κa ∈ (0, κc) at which ω is maximized with value ωmax(∆) = ω(κa)

(κa = κc/2 for second order central difference) so that the group velocity is zero. Therefore,

for κ ∈ (κa, κc) the group velocity is negative so that wave packets with wavenumbers in

this range will propagate upstream against the convection velocity. Also note that for any

frequency ω < ωmax(∆), there are two wavenumbers that will evolve with that frequency, one

with positive and one with negative group velocity. The wavenumber with positive group

velocity (κ < κa) is a consistent approximation to a solution of the advection equation while

the other (κ > κa) is spurious. As pointed out by Vichnevetsky [190], a general solution to

(equation (6.1)) can therefore be decomposed as u = p+q, where p has a forward propagation

and is a consistent approximation, and q propagates backwards and is spurious.

Consider next a grid for a domain of length L = 4π with a sharp change in resolution

from ∆f = 2π/128 to ∆c = 2π/32 as shown in figure 6.2, and two different initial conditions

given by

ui(x, t = 0) = cos(ηix)e−5(x−3π/2)2

, (6.4)

with η1 = 4 and η2 = 18, which we refer to as wave packets P1 and P2, respectively. The

energy spectrum of these wave packets is the sum of three Gaussian functions of wavenumber,

with standard deviation of
√

5. They are centered around κ = ±ηi and 0. As a consequence,

more than 99% of the energy resides in wavenumbers with |κ| < η + 5.8. In the fine region,

κfa = 32, so both wave packets have virtually all of their energy in wavenumbers |κ| < κfa.

Both wave packets are thus well resolved in the fine region and propagate as expected

with approximately the convection velocity (figures 6.2b and 6.2d). The packet P1 is

centered around the wavenumber κ = 4 which can be supported on the coarse as well as

the fine grid (figure 6.2a), with more than 90% of the energy residing in wavenumbers with

|κ| < κca = 8. The packet therefore mostly propagates into the coarse region (figure 6.2c)

in a wave packet centered around a slightly larger wavenumber with a slightly lower group

velocity (T1 in figure 6.2a). But because of the resolution change, some of P1 is also reflected
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back into the fine region in a wave packet centered around a much higher wavenumber (R1 in

figure 6.2a) which has negative group velocity. Since equation (6.1) with a central difference

derivative scheme is an energy preserving approximation of the advection equation, the

energy from the incident wave is split between the reflected wave and the transmitted wave

[190, 191, 192, 45]. The P2 packet is centered around the wavenumber κ = 18 on the fine

grid, which cannot be supported on the coarse grid (P2 in figure 6.2a), and indeed virtually

none of the energy resides in wavenumbers with |κ| < κca. It therefore cannot propagate into

the coarse region and instead is entirely reflected back into the fine region (figure 6.2e) in a

packet centered around a much larger wavenumber (R2 in figure 6.2a). In both cases, it is

effective wavenumbers that are preserved through the resolution change (figure 6.2a). The

reflected waves R1 and R2 are entirely spurious.

Because the system is linear, the above results can be extended to grids with gradually

changing resolution. In this case, a local wavenumber κj and a local group velocity Gj can

be defined by substituting a given frequency ω (or κ′) and the local grid spacing ∆(xj) into

equation (6.3). As above, there will be two possible values of κj, κ
(1)
j and κ

(2)
j , satisfying

κ
(1)
j < κ

(2)
j and (κ

(2)
j ∆(xj)) = π− (κ

(1)
j ∆(xj)), with group velocities Gj and −Gj, respectively.

There are three main results of such an analysis [193, 45] that will be relevant for our

purposes. First, no reflections occur if the local group velocity is uniform and nonzero, as

expected. Second, a total reflection occurs for all wavenumbers that become unresolvable on

the grid (i.e., exceed the Nyquist wavenumber), and the reflection occurs at the point where

the local group velocity vanishes (Gj = 0). Thirdly, no reflections occur for wavenumbers

that can be resolved throughout the domain if ∆(xj) varies over length scales that are long

compared to the wavelength λ = 2π/κj ( λ
∆
d∆
dx
� 1). Thus, wave packets analogous to P1

will be completely transmitted through a sufficiently smooth resolution change.

The behavior described here is representative of all energy-conserving numerical schemes

with two wavenumbers per effective wavenumber. These are among the most common nu-
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Figure 6.2: (a) The second order centered difference dispersion relation for both the fine (∆f =
2π/128) and coarse (∆c = 2π/32) regions of the grid, (b) An incident wave P1 (•) that can
be resolved in both the fine and coarse regions. (c) The subsequent reflected wave R1 (•) and
transmitted wave T1 (•) after the P1 wave has propagated through the resolution change. (d) An
incident wave P2 (•) that can only be resolved in the fine region. (e) The subsequent reflected wave
R2 (•) after the P2 wave has propagated through the resolution change.
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merical schemes used in turbulence applications (e.g., centered difference, B-splines, finite

volume), however, other numerics with different propagation properties are possible. For

instance, consider the box scheme whose semi-discretization of equation (6.1) is given by

∂

∂t

(
uj + uj+1

2

)
+ U

uj+1 − uj
xj+1 − xj

= 0, (6.5)

which is also energy preserving. Instead of reflecting unresolvable scales of motion at higher

wavenumbers into the fine region, the box scheme transmits unresolvable scales at lower

wavenumbers through the coarse region (similar to an aliasing effect) [194, 195]. The result

is still spurious numerical oscillations.

These results from numerical analysis have profound consequences for LES. When LES

turbulence convects into a more coarsely resolved region, the spectral characteristics of the

numerical derivative operator δ/δx dictate that neglecting the inhomogeneous commutator

can produce non-physical fine-scale noise propagating upstream, spoiling the solution far

from the resolution change. This is explored in the next section.

6.2 Impacts of resolution inhomogeneity on LES

The commutator analysis of chapter 5 indicates that the combined effects of neglecting the

inhomogeneous commutator and the dispersion characteristics of the numerical derivative

operator could have a profound impact on an LES of turbulence flowing through a domain

with varying spatial resolution. To characterize this impact, we consider a simple case of such

a flow, making two simplifications to clearly expose the effects. As discussed in chapter 5, we

consider commutation error for mean convection since this is commonly the dominant effect.

This is consistent with the Taylor frozen field hypothesis. Moreover, a localized packet of

turbulent fluctuations is used to expose the non-local effects of commutation error. Again

we consider filters that consist of only an implicit projection to the discrete solution space.
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6.2.1 A numerical experiment

Under the frozen field hypothesis and neglecting commutators, the LES equations for tur-

bulence flowing at constant velocity Ux in the x direction simplify to:

∂u′

∂t
+ Ux

δu′

δx
= 0. (6.6)

The resolution in the x direction is made to vary with x, while the resolution in the other

directions is constant, and periodic boundary conditions are imposed in all three directions.

The filter is defined as a projection onto a periodic B-spline representation in the x-

direction and Fourier spectral representations in the y- and z-directions. The δ/δx operator

in equation (6.6) is defined as B-spline collocation. As in section 3.1, let Bk
n denote the

nth derivative B-spline operator of order k, and BCD
n denote the nth derivative second-order

centered difference operator. The spectra of the Bk
1 operators (figure 6.3) have similar prop-

agation properties as the BCD
1 operator discussed in section 6.1, in that there are generally

two wavenumbers κ that have the same effective wavenumber κ′, one with positive group

velocity and the other with negative group velocity. Further, with increasing κ, the neg-

ative group velocities get larger in magnitude (larger negative slopes on the right side of

figure 6.3a).

For the results presented here, a third-order low storage Runge-Kutta method is used

for time advancement [127]. Note that the spurious reflection/transmission phenomena de-

scribed in section 6.1 depend only on spatial discretization [196].

A two dimensional slice of the numerical grid is shown in figure 6.4a. The domain in

the propagation direction is divided into a uniform fine region of size 2π, a uniform coarse

region of size 6π, and two transition regions of approximate size 2π in which the resolution is

inhomogeneous. The fine resolution spacing between B-spline knot points is ∆f = 2π/128,

and the coarse knot spacing is ∆c = 2π/32. In the transition regions, the knot spacing is
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designed to vary as a Sigmoid function between ∆f and ∆c over a distance in x of order 1/α.

To this end, the mapping function g(ξ) : [0, 1] → [xstart, xend] is defined implicitly through

the differential equation:

∆(x) ≡ dg(ξ)

dξ
∆ξ =

∆f

1 + eαg(ξ)
+

∆c

1 + e−αg(ξ)
, (6.7)

where, ∆ξ = 1/Nξ is the uniform resolution in ξ ∈ [0, 1], with Nξ the number of knot

intervals in the transition region. The knot points xj are then defined as xj = g(j∆ξ)

for j = 0, 1, . . . Nξ. The parameter α controls the sharpness of the grid change, with the

transition thickness defined by (∆c−∆f )/(d∆/dx) = 4/α. To generate the knot points used

here, equation (6.7) was solved numerically for g(ξ) using a standard Runge–Kutta–Fehlberg

method and g(0) = xstart = −π, α = 4 and Nξ = 75. With these parameters, g(1) ≈ 3.1996,

defining a transition region grid on an interval slightly larger than 2π.

The domain in the two spectral directions is [0, 2π] and with an effective uniform grid

spacing of ∆f . Thus, LES turbulence will be convected through an anisotropic, inhomoge-

neous grid — a common scenario in practice for structured grids. Moreover, in this con-

figuration the three dimensional commutation error simplifies to the one dimensional case,

which will expose the implications of the numerical analysis in section 6.1 for commutation

error in LES.

The initial condition is taken to be a ‘packet’ of well-resolved, homogeneous, isotropic

turbulence. This packet is analogous to the wave packets studied in the one-dimensional

examples in section 6.1. To create this packet, a spectral LES of infinite Reynolds number

homogeneous, isotropic turbulence was performed in a 2π× 2π× 2π domain with 64 Fourier

modes in each direction. A Smagorinsky model was used to represent the subgrid stress

in this simulation and a negative viscosity forcing that isotropically injects energy over a

wavenumber shell of radius 0 < |κ| ≤ 2 was introduced to allow the turbulence to become
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Figure 6.3: (a) The spectrum of the first derivative operators for a B-spline collocation
method of several orders, a second-order centered difference method, and a spectral method;

(B2
1), (B3

1), (B4
1), (B5

1), (B6
1), (B7

1), (BCD
1 ),

(Spectral). (b) The consistently normalized spectrum of the B2
1 and B7

1 operators for the
fine region of the domain with spacing ∆f and the coarse region of the domain with spacing
∆c = 4∆f ; (B7

1), (B2
1).

statistically stationary. The energy injection rate and therefore, the equilibrium dissipation

rate was set to 1. A representative instantaneous velocity field from the LES was then

introduced into the fine region of the the B-spline/spectral simulation and modulated with

a Gaussian so that the fluctuations go smoothly to zero. Note that this procedure does

not produce a divergence free velocity, however, this is not an issue for the linear problem

solved here; in fact, a divergence free projection would distort the desirable properties of the

packet. The resolution used in the spectral simulation ensures that the modulated packet

is well-resolved by the B-splines in the fine resolution region. Specifically, an isotropic grid

spacing of 2π/64 in the fully spectral simulation corresponds to κmax∆f ≈ 1.5 in the B-spline

simulation, where κmax = 32 is the largest nonzero wavenumber in the turbulence packet.

As seen in figure 6.3a, (κ∆) = 1.5 is in the positive group velocity regime.
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Figure 6.4: Convection of a packet of homogeneous, isotropic turbulence through an
anisotropic, inhomogeneous grid with seventh-order B-splines and a convection velocity of 1.
The packet is moving through the resolution change to the right. (a) A slice of the numerical
grid. (b), (c), (d), and (e) show the streamwise velocity field at times 0.00, 7.03, 11.72, and
39.06, respectively. In part (c) the color scale is different to emphasize small amplitude fluc-
tuations to highlight the spurious high wavenumber reflections moving to the left through
the fine region of the grid. The results for the second-order B-spline case are qualitatively
similar to those shown here albeit with more dispersion in the higher wavenumbers and a
wider range of reflected scales.
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Figure 6.5: One dimensional energy spectra, Eii, in the direction of inhomogeneity at different
times t; κfine and κcoarse represent the wavenumbers in the fine and coarse regions of the
domain, respectively. (a) High wavenumber reflections propagating backward through the
fine region corresponding to the energy in the fine region in figure 6.4c. (b) The subsequent
reflections propagating forward through the fine region corresponding to the energy in the
fine region in figure 6.4d. (c) The spectra of the resolved turbulence packet in the coarse
region corresponding to the energy in the coarse region in figure 6.4d. (d) The spectra of
the turbulence packet after one flow through corresponding to the energy in the fine region
in figure 6.4e. (7th order B-splines), (2nd order B-splines), (Initial spectra
of the turbulence packet shown in figure 6.4b).

6.2.2 Results

The effects of resolution inhomogeneity on the spatial structure (see figure 6.4) and on the one

dimensional energy spectra (see figure 6.5) of the turbulence packet are examined at several
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stages of the simulation for a single flow-through. Seventh-order B-splines and second-order

B-splines are used to illustrate the behavior of higher- and lower-order methods. Based on

the numerical analysis in section 6.1, the consistently normalized spectra of the B2
1 and B7

1

operators in the fine and coarse regions of the domain are sufficient to predict the behavior

of the commutation error (see figure 6.3b). To see this, let the wavenumbers |κ| ∈ [0, 16] be

referred to as the coarse wavenumbers, wavenumbers |κ| ∈ (16, 32] be the fine wavenumbers,

and wavenumber |κ| ∈ (32, 64] be the spurious wavenumbers, and recall that the fine region

of the domain is capable of representing the fine, coarse, and spurious wavenumbers, while

the coarse region is only capable of representing the coarse wavenumbers. The initial packet

of turbulence only contains fine and coarse wavenumbers, so any energy transferred to higher

wavenumbers by the resolution inhomogeneity is indeed spurious.

As the turbulence packet convects into the coarse region of the domain, all of the energy

in the fine wavenumbers is transferred to scales with negative group velocity in the spurious

wavenumber regime (see figure 6.4c). As in section 6.1, this energy transfer occurs between

wavenumbers that share an effective wavenumber. The corresponding energy spectra at this

stage of the simulation show a pile up of energy in the largest wavenumbers in the fine

region of the domain (see figure 6.5a). Notice that, for each numerical scheme, the energy is

concentrated in a narrow band of wavenumbers that corresponds to the region with negative

slope in the effective wavenumbers shown in figure 6.3b. The reflections in the second order

B-spline case occur over a wider range of wavenumbers and are collectively more intense than

for seventh-order case, as more energy is being reflected (see figure 6.5a). Furthermore, the

propagation speed of the reflections is much greater for seventh-order B-splines than second-

order B-splines, as indicated by the slopes of the effective wavenumbers. Interestingly, we

observed that, for a B-spline collocation method, the ratio of the group velocity to the

convection velocity of the highest wavenumber reflections for each B-spline order matches

the order of the B-spline (e.g., the Nyquist wavenumber propagates at negative N times
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the convection velocity for Nth order B-splines). This appears to be a special property of

B-spline collocation that deserves proof and is consistent with the work of Vichnevetsky and

Scheidegger [197], who demonstrated that an infinite speed of reflection occurs for spectral

numerics.

Once the reflected fluctuations reach the resolution change on the left side of the fine

region, they are reflected back into the fine region with positive group velocity with their

initial wavenumbers. This re-reflection can be tracked from figure 6.4c in which the reflected

wavepacket consisting of spurious wavenumbers is visible on the left-hand side as it propa-

gates upstream (to the left), to figure 6.4d in which the re-reflected wavepacket consisting

now of fine wavenumbers is visible propagating down-stream. These secondary reflections

occur in the fine wavenumber regime but are as erroneous as the spurious reflections that

created them. For both B-spline orders, the energy spectra in the fine resolution region for

the initial turbulence packet and the reflected scales of motion match for all fine wavenum-

bers (see figure 6.5b). This indicates a total reflection occurs for all scales that are only

representable on the fine grid, which agrees with the analysis of the P2-type waves discussed

in section 6.1. Without the commutator CI , this cycle of reflection between fine and spurious

wavenumbers repeats. The energy initially contained in the fine wavenumber regime gets

trapped in the fine resolution region.

The only fluctuation scales that make it through to the coarse region of the domain

are those that can be represented on the coarse grid, i.e., the coarse wavenumbers (see

figure 6.4d). The energy spectra at the initial time, and after the packet has convected into

the coarse region, match almost identically for all coarse wavenumbers (see figure 6.5c). A

relatively small fraction of the energy in the coarse wavenumbers also gets trapped in the

fine region, as shown in figure 6.5b. This behavior is also predicted by the numerical analysis

of the P1-type waves discussed in section 6.1, and would vanish in the limit of a smoothly

varying grid.
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The numerical experiment described here focuses on the idealized case of frozen turbu-

lence consistent with Taylor’s hypothesis to emphasize the impact of commutation error.

The scales trapped in the fine region of the domain are physically incorrect and numerically

problematic. An increase in high wavenumber energy can lead to numerical instabilities, and

the trapped low wavenumber energy can corrupt otherwise meaningful statistics. Moreover,

it is reasonable to expect that in an LES nonlinear effects would magnify these problems

as erroneous fluctuations would interact with and contaminate incoming turbulence. Con-

sider, for instance, the turbulence packet after one flow through (see figure 6.4e). As the

coarsely resolved packet re-enters the fine region (without any active forcing), the spectrum

gets corrupted by the trapped energy (see figure 6.5d). Furthermore, a shift in energy from

lower wavenumbers to higher wavenumbers would be particularly damaging in real turbu-

lence as the former are more responsible for momentum transport while the latter are more

responsible for dissipation. The nonlocal wavenumber interactions introduced by resolution

inhomogeneity may corrupt the energy cascade, which, in homogeneous isotropic turbulence,

is known to be dominated by interactions local in wavespace [91]. Lastly, notice that unlike

the effects of discretization error, the effects of resolution inhomogeneity do not improve with

higher-order numerics. Further study of these effects in an actual LES is warranted, but is

out of scope for this paper. However, it is clear that a model for the inhomogeneous part of

the commutator is needed to mitigate the effects of the commutation error.

6.3 Commutator Modeling

In this section we propose an approach to modeling the inhomogeneous commutator based

on the characteristics of the commutator and the commutation error explored above. As pre-

viously discussed, a model for the commutator is responsible for transferring energy between

resolved and unresolved scales as a consequence of the resolution inhomogeneity. In the

coarsening grid case, a commutation model must transfer the energy in newly unresolvable
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scales to the subgrid scales. In the refining grid case, a model for CI would have to transfer

energy from the subgrid to the resolved turbulence, presumably through some type of forcing.

Notice that the requirements of a commutation model in the coarsening and refining cases

are fundamentally different. It has been suggested that a “good” commutation model should

handle both of these scenarios (e.g., [183]), however, because of these different requirements,

this may not be appropriate. A commutation model for the coarsening and refining grid

cases may need to be developed independently. We pursue this modeling approach here for

the case of flow through coarsening grids to address the issues discussed in section 6.2.

A common mechanism for providing the transfer of energy from resolved to subgrid scales

is a viscosity-based model, as suggested by the second order term in equation (5.38), which is

equipped with the viscosity νcomm = U∆∂∆/∂x. However, as indicated by equation (5.40),

a commutation model should ideally only affect wavenumbers near the cutoff wavenumber.

This property preserves wavenumbers that are well resolved throughout the resolution change

while removing those that are not. As such, a hyperviscosity is a more appropriate model for

the commutator, as also indicated by the leading order terms in equation (5.38). Specifically,

the leading order terms in equation (5.38) suggest the following form for a general one

dimensional hyperviscosity commutation model:

UCI(u) ' (−1)N/2CU∆
d∆

dx

(
∆N−2∂

Nu

∂xN

)
, (6.8)

for some coefficient C and even order N (N is assumed to be a positive even integer for the

remainder of this paper).

For any finite value of N in equation (6.8), there is a trade-off between removing high

wavenumber scales in fine regions of the grid that are approaching unresolvability, and pre-

serving the well-resolved scales in coarse regions of the grid. Larger values of N lead to

sharper filters, which perform better in the context of this trade-off than smaller values of
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N . Accordingly, it is desirable to make N as large as possible. Again, this is consistent with

equation (5.40). However, the number of available derivatives of the filtered field limits how

large N can be, i.e., the underlying numerics constrain N based on the number of accessible

derivative operators. For example, CFD codes typically only have access to second derivative

operators so that N would be limited to 2. Furthermore, larger values of N require not only

higher order numerics but also additional boundary conditions, which are often mentioned

as a problem with hyperviscosity models [153, 146].

Let FN(u) ≈ ∂Nu/∂xN be some numerical operator that approximates the Nth deriva-

tive. The commutation model (6.8) can then be written as:

CI(u) = (−1)N/2C∆
d∆

dx

(
∆N−2FN(u)

)
. (6.9)

As mentioned above, it is desirable to take N large, but the underlying numerics often limit

N . However, we saw earlier how lower-order numerical operators can be designed to mimic

higher-order filters without increasing the order of the differential equation. In particular, it

was shown in section 3.8 that (−1)N/2+1(B2 − B1B1) ∼ ∆N−2FN for some value of N (and

positive constant of proportionality), which corresponds exactly to the form of (6.9); i.e.,

CI(u) = −C∆
d∆

dx
(B2 −B1B1)u. (6.10)

This is equivalent to filtering via a hyperviscosity (as opposed an explicit filter — see sec-

tion 3.6) and is appropriate here since the time and length scales dependencies of the model

are determined from the analyses in chapter 5. Further, notice that the B2 − B1B1 oper-

ator is particularly well suited to reduce commutation error as it will significantly damp

wavenumbers with negative group velocity, which is where the commutation error manifests

for many typical numerical schemes (see figure 3.10).

The constant C in equation (6.10) must also be specified. In an LES, the statistical
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analysis in section 5.2 can be used to set the model coefficient C to produce the correct

rate of energy transfer to the subgrid scales (e.g., evaluating equation (5.41) or (5.42) for a

Kolmogorov spectrum). However, for the simple case of linear convection considered here,

it is useful to examine how the behavior of the model changes as the coefficient varies.

Momentarily, let ε ∈ (0, 1) be the maximum allowed fraction of energy at any wavenumber

to be reflected due to resolution variation. Now, consider the action of the commutation

model defined in equation (6.9) on the Fourier coefficient û(κ, t), which is given by

∂û(κ, t)

∂t
= (−1)

N−2
2 CU

∂∆

∂x
∆N−1F̂N(κ)û(κ, t), (6.11)

where F̂N(κ) is the spectrum of FN evaluated at wavenumber κ. After a time t, the ampli-

fication of û(κ) is:

û(κ, t)

û(κ, 0)
= exp

(
(−1)

N−2
2 CU

∂∆

∂x
∆N−1F̂N(κ)t

)
. (6.12)

As the resolved turbulence convects through a coarsening grid, we insist that û2(κ, t)/û2(κ, 0) ≤

ε for all reflected wavenumbers. This requires that C satisfy

C ≥ (−1)
N−2

2 log(ε)

2U ∂∆
∂x

∆N−1F̂N(κ)t
, (6.13)

for all reflected wavenumbers. If we assume for simplicity that d∆/dx ≈ (max(∆) −

min(∆))/L and that t = L/U , for some length of gradual coarsening L, equation (6.13)

simplifies to

C ≥ (−1)
N−2

2 log(ε)

2
(

max(∆)−min(∆)
∆

)(
∆N F̂N(κ)

) . (6.14)

Notice that the lower the wavenumber with positive group velocity, the higher the wavenum-

ber of the reflection with negative group velocity. Accordingly, the smallest wavenumber
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with nonpositive group velocity is dissipated the least by the model. Therefore, evaluating

F̂N at κa associated with the numerical first derivative operator B1, as defined in section 6.1

will ensure equation (6.14) is satisfied for all reflected wavenumbers. Furthermore, because

for any numerical approximations, κa ∼ 1/∆ and F̂N(κ∆) ∼ 1/∆N , ∆N F̂N(κa) depends only

on the numerical schemes, and is independent of ∆. Finally, by replacing the remaining ∆

with max(∆) in equation (6.14) when evaluating C, we ensure that the inequality is satis-

fied, and obtain an expression that depend only on the numerical schemes involved and the

extreme values of ∆:

C =
(−1)

N−2
2 log(ε)

2
(

(max(∆)−min(∆)
max(∆)

)(
∆N F̂N(κa)

) . (6.15)

Note that when using the B2−B1B1 model, one can simply substitute (−1)
N−2

2 ∆2(B̂2−B̂1B̂1)

for ∆NFN in equation (6.15) to obtain the coefficient in (6.10).

This choice of coefficient may indicate how the numerical properties of the commutation

error discussed in section 6.1 can be exploited to improve the model. To elaborate, notice that

we use the value of F̂N at the apex wavenumber κa. This choice is made to take advantage of

how the commutation error manifests numerically. Specifically, the coefficient is designed to

quickly damp high wavenumbers after they have been reflected. Targeting reflections yields

a larger separation between the scales that must be filtered out, and those that need to be

preserved. This approach is especially advantageous for low values of N for which the filters

produced from equation (6.8) are not particularly sharp. In essence, it is more advantageous

to use a model to correct for the absence of CI (commutation error) in this problem, than to

model CI directly. This strategy works particularly well with the B2−B1B1 filters described

in the previous section, which target the poorly resolved wavenumbers. In LES, more work

is needed to see if a similar exploit can be performed. For example, nonlinear interactions

may require scales to be removed before reflection, but this would lead to more dissipation

of the resolved turbulence.
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Figure 6.6: Spectra of the operator CFN for various forms of FN and the coefficient C
determined by (6.15). The scale is arbitrary and depends on ε and the resolution ∆.
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The spectrum of the operator CFN for second- and seventh-order B-splines with this

choice of coefficient and several different choices of N is shown is shown in figure 6.6. For

an arbitrary tolerance value of ε, the model coefficient creates an intersection point at κa

between different values of N . This intersection point shifts depending on the order of the

underlying numerics. figure 6.6 shows how as N increases, the poorly resolved scales are

dissipated more rapidly and the well resolvable scales are better preserved.

6.3.1 Model results

The ability of the model to correct for the issues related to resolution inhomogeneity is

tested in the same setting described in section 6.2. The commutation model is introduced

into equation (6.6) as

∂u′

∂t
+ Ux

δu′

δx
= (−1)

N
2

+1C∆x

(
Ux
∂∆x

∂x

)(
∆N−2
x FN(u′)

)
, (6.16)
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(a)

Figure 6.7: Convection of a packet of homogeneous, isotropic turbulence through an
anisotropic, inhomogeneous grid with seventh-order B-splines, a convection velocity of 1,
and a commutation model with ∆8F10 ∼ (B7

2 −B7
1B

7
1) and ε = 0.001. The packet is moving

through the resolution change to the right. (a) A slice of the numerical grid. (b), (c), (d),
and (e) show the streamwise velocity field at times 0.00, 7.03, 11.72, and 39.06, respectively.
Figure (c) is scaled to highlight the absence of the spurious high wavenumber reflections, as
in figure 6.4c.
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Figure 6.8: Energy spectra, Eii, in the direction of convection at different times t for 7th
order B-splines; κfine and κcoarse represent the wavenumbers in the fine and coarse regions of
the domain, respectively. (a) High wavenumber reflections propagating backward through
the fine region. (b) The subsequent reflections propagating forward through the fine region.
(c) The spectra of the resolved turbulence packet in the coarse region. (d) The spectra of
the turbulence packet after one flow through. (No model), (F2 = B7

2 , ε = 0.1),
(F4 = B7

4 , ε = 0.01), (∆8F10 ∼ (B7
2 −B7

1B
7
1), ε = 0.001), (Initial Packet)

where the coefficient C is given by equation (6.15), and the operator FN is an approximation

of the Nth derivative in the x-direction (FN ≈ ∂N/∂Nx ). Recall that in this setting the local

grid spacing is ∆(x) = (∆x(x),∆y,∆z) and the dependence on x in equation (6.16) arises

because the resolution inhomogeneity is only in the x-direction.
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Figure 6.9: Energy spectra, Eii, in the direction of convection at different times t for 2nd
order B-splines; κfine and κcoarse represent the wavenumbers in the fine and coarse regions of
the domain, respectively. (a) High wavenumber reflections propagating backward through
the fine region. (b) The subsequent reflections propagating forward through the fine region.
(c) The spectra of the resolved turbulence packet in the coarse region. (d) The spectra of the
turbulence packet after one flow through. (No model), (∆2F4 ∼ −(B2

2 −B2
1B

2
1),

ε = 0.1), (∆2F4 ∼ −(B2
2 − B2

1B
2
1), ε = 0.001), (F2 = B2

2 , ε = 0.001),
(F2 = B2

2 , ε = 0.1), (Initial Packet)

For the seventh-order B-spline results, three different choices of N and ε are tested: N = 2

corresponding to the second derivative operator F2 = B7
2 with ε = 0.1, N = 4 corresponding

to the fourth derivative operator F4 = B7
4 with ε = 0.01, and N = 10 corresponding to the

∆8F10 ∼ B7
2 − B7

1B
7
1 operator with ε = 0.001. For the second-order B-spline results, two
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choices of N are tested for both ε = 0.1 and ε = 0.001: N = 2 corresponding to the F2 = B2
2

operator, and N = 4 corresponding to the ∆2F4 ∼ −(B2
2 − B2

1B
2
1) operator. These values,

along with the model coefficients, are listed in table 6.1. The one-dimensional energy spectra

in the fine and coarse regions of the domain are shown in figures 6.8 and 6.9 for seventh-

and second-order B-splines, respectively. The results of the model in physical space for the

seventh order B-spline case with ∆8F10 ∼ (B7
2−B7

1B
7
1) and ε = 0.001 are shown in figure 6.7.

Compare these results with the pure convection case (i.e., the no model case) examined in

section 6.2. The model significantly corrects the spatial structure and the energy distribution

of the turbulence packet as it flows through the inhomogeneous grid. In all cases, the model

reduces the spurious high wavenumber reflections by (at least) a factor around ε, as desired

(see figures 6.8b and 6.9b). Recall that the largest initial wavenumber with positive group

velocity has the smallest reflected wavenumber and is dissipated the least by the model, so

the value of ε should be validated at these wavenumbers in the spectra results. Moreover,

the model preserves the resolvable turbulence in the coarse region as much as possible.

The seventh-order results show that higher order filters (i.e., larger values of N) preserve

the resolvable turbulence while dissipating the reflections more strongly. In particular, the

B7
2 − B7

1B
7
1 model matches the ideal spectra in the coarse region almost exactly and is still

Table 6.1: Model Coefficients.

N FN ε C

2 B7
2 0.1 0.24

4 B7
4 0.01 0.07

10 ∆−8(B7
2 −B7

1B
7
1) 0.001 4.31

2 B2
2 0.1 0.38

2 B2
2 0.001 1.15

4 −∆−2(B2
2 −B2

1B
2
1) 0.1 0.76

4 −∆−2(B2
2 −B2

1B
2
1) 0.001 2.28
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able to reduce reflections by at least three orders of magnitude (see figure 6.8c). Similarly,

in the second-order B-spline results, the N = 4 cases match the original spectra in the

coarse region more closely than the N = 2 cases for the same value of ε (see figure 6.9c).

Finally, the model mitigates the effect of erroneous reflections on incoming turbulence, as

demonstrated by examining the turbulence packet after one flow through (see figures 6.8d

and 6.9d). Even a modest reduction in the reflections — such as that from the low N and

ε cases — yields much better spectra than the pure convection case. The spectra after one

flow through match quite well with the initial packet’s spectrum for all coarse wavenumbers.

6.4 Commutation error and modeling in isotropic turbulence

The results in sections 6.2 and 6.3 expose the issues of commutation error in the simple

case of a convecting packet of homogeneous isotropic turbulence, and suggest a promising

approach to correcting commutation error in terms of the analysis discussed in chapter 5

and the filtering techniques discussed in chapter 3. In this section we extend those results

to the three dimensional isotropic turbulence case.

6.4.1 Multi-dimensional wave propagation

Based on the success in one dimension, we expect the multi-dimensional wave propaga-

tion characteristics of spatial discretization schemes to be useful in describing resolution

inhomogeneity effects in three dimensional evolving turbulence. However, to the authors

knowledge, the numerical analysis in [190, 191, 192, 45, 193] has not been extended to the

multi-dimensional case. To explore this, we consider the two-dimensional propagation of

a wave packet through two different grids — an anisotropic inhomogeneous grid and an

isotropic inhomogeneous grids — analogous to the example studied in the one dimensional

case (see figure 6.2).

Specifically, consider a two dimensional Cartesian grid with domain lengths Lx = 4π
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and Ly = 2π and a sharp change in the x-directional resolution, ∆x, from ∆xf = 2π/128

to ∆xc = 2π/32 at the location x = 2π. In the anisotropic, inhomogeneous grid ∆y = ∆xf

throughout the entire domain, and in the isotropic inhomogeneous grid ∆y = ∆x. The initial

condition is taken to be

u(x, y, t = 0) = cos(4x) cos(25y)e−[(x−π)2+(y−π)2], (6.17)

which is well resolved in the x- and y-directions of both grids in the fine region of the

domain (see figures 6.10a and 6.11a). We consider the convection of this two dimensional

wave packet in the x direction towards the resolution change with a mean velocity of U =

1. A second order centered difference scheme is used in the x-direction and a Fourier-

spectral representation is used in the y-direction. The isotropic grid is constructed in the

Fourier spectral case by setting the Fourier coefficients of wavenumbers greater than κc(x) =

bπ/∆x(x)e to zero.

In the anisotropic inhomogeneous grid case, the initial wave packet is resolvable in both

the fine and coarse regions of the domain. The wave packet is therefore transmitted through

the resolution change (see figure 6.10b) at wavenumber pair (κx, κy) ≈ (4, 25) (see fig-

ure 6.10d). The sharp resolution change also generates a reflected wave that propagates

upstream through the fine region of the domain and is centered around the wavenumber

pair (κx, κy) = (60, 25) since sin(4∆xf )/∆xf = sin(60∆xf )/∆xf (see figure 6.10c). This is

analogous to the R1-type wave examined in figure 6.2 and would vanish in the limit of a

smooth grid change. Notice that only the wavenumber in the direction of convection is

affected through the resolution change. Since wavenumbers |κy| < π/∆xf can be resolved

throughout the entire domain, totally reflected waves only occur for wavepackets for which

|κx| > π/∆xc . This is the sense in which commutation effects were limited to one-dimension

in section 6.2.
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Figure 6.10: Two dimensional wave propagation example through an anisotropic inhomoge-
neous grid with a mean velocity of U = 1. (a) The initial wave packet at t = 0 given by
equation (6.17) propagating to the right towards the resolution change. (b) The transmitted
and reflected wave generated through the resolution change at t = 6.38 propagating to the
right and left, respectively. (c) Two dimensional Fourier transform of the wave packet in
the fine region of the domain. The Fourier coefficient for the wave in part (a) and (b) are
shown. (d) Two dimensional Fourier transform of the wave packet in the coarse region of
the domain for the transmitted wave in part (b).
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Figure 6.11: Two dimensional wave propagation example through an isotropic inhomoge-
neous grid with a mean velocity of U = 1. (a) The initial wave packet at t = 0 given by
equation (6.17) propagating to the right towards the resolution change. (b) The reflected
wave generated through the resolution change at t = 6.38 propagating to the left. (c) Two
dimensional Fourier transform of the wave packet in the fine region of the domain before and
after the reflection before and after the reflection. (d) Two dimensional Fourier transform
of the wave packet in the coarse region of the domain, showing no energy is transmitted to
the coarse region in this case.
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In the isotropic inhomogeneous grid, the wavepacket in equation (6.17) cannot be re-

solved in the coarse region of the domain so a total reflection occurs as the packet convects

towards the resolution change (see figure 6.11b). However, notice in this case that it is the

wavenumber κy = 25 that cannot be represented in the coarse region, while the wavenumber

in the direction of convection κx = 4 can be represented in the coarse region. Nonethe-

less, the energy in the initial packet is also transferred to the wave packet centered around

(κx, κy) = (60, 25) (see figure 6.11c) as before, which has negative group velocity in the x-

direction and therefore propagates upstream. No energy is transmitted to the coarse region

in this case (see figure 6.11d). This simple example illustrates the energy exchange that can

occur between resolved turbulent modes in an LES due to resolution inhomogeneity. Re-

gardless of which wavenumber component causes a mode to become unresolvable in a certain

region of the grid, that energy is transferred to a mode whose wavenumber in the direction

of mean convection is larger (with the same effective wavenumber as the original mode), but

the wavenumber components in directions orthogonal to mean convection remain the same

as the original mode.

Further, it is useful to compare the analytical commutator to the numerical wave propa-

gation results in these cases. In section 5.5 the form of the inhomogeneous commutator was

analyzed in both the anisotropic and isotropic inhomogeneous grid case considered here. For

the isotropic inhomogeneous grid in particular, it was found that

UCI(ψ) = C2U
∂∆

∂x
∆

∂2ψ

∂xj∂xj
+ C4U

∂∆

∂x
∆3 ∂4ψ

∂xj∂xj∂xi∂xi
+ . . ., (6.18)

and

U ĈI(ψ) = Ĝ′(∆|κ|)|κ|U ∂∆

∂x
ψ̂(κ). (6.19)

As turbulence convects through a coarsening grid, the commutator affects the variation in

all directions to transfer energy in any wavenumber that cannot be represented in the coarse
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region of the grid to the subgrid scales. We can clearly see this in the wave packet cases

considered above; for the isotropic inhomogeneous grid, equation (6.19) simplifies to

U ĈI(ψ) = Uδ(π −∆xc |κ|)δ(x− 2π)∆xc|κ|ψ̂(κ), (6.20)

so that modes with |κ| > π/∆xc are removed at the resolution change. For a smooth

grid change, we may expect a similar behavior in the transition region between a fine and

coarse grid, namely U ĈI(ψ) ≈ Uδ(π −∆(x)|κ|)∂∆
∂x
|κ|ψ̂(κ). Thus, a model for the commu-

tator would need to have a similar behavior, presumably constructed through a Laplacian

or bi-harmonic operator as in equation (6.18). On the other hand, the wave propagation

characteristics discussed here suggest commutation error may be reduced by an operator

targeted at wavenumbers with negative group velocity in the direction of convection. For

instance, explicit filters aimed at reducing discretization error would also aid in reducing

commutation error, despite not modeling the actual commutator. Similarly, the subgrid

stress may be successful in reducing commutation error despite not representing the actual

commutator as it acts strongly on wavenumbers near the cutoff. Resolution inhomogeneity

effects in evolving turbulence are explored in the following sections.

6.4.2 Setup

We consider an LES of isotropic turbulence represented on a non-uniform grid in a similar

setup to the numerical experiments in sections 3.3 and 6.2.1. To handle the inhomoge-

neous resolution in this setup, a (significant) modification of the code POONGBACK [124],

originally designed for turbulent channel flow, was implemented.

The filtered Navier-Stokes equations are solved using the vorticity-velocity formulation of

Kim et al. [128] with periodic boundary conditions and the lower-order numerical implemen-

tation described in appendix A. A periodic Bspline collocation representation is used in the
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x-direction (allowing for inhomogeneous resolution) and a dealiased Fourier spectral method

is used in the y- and z-directions. To separate the issues of resolution anisotropy [17] and

inhomogeneity, we consider the convection of turbulence through an inhomogeneous isotropic

grid. The Fourier spectral numerics can represent wavenumbers up to π/max(∆x), however,

the isotropic grid is constructed in the y- and z-directions by setting the Fourier coefficients

of wavenumbers greater than κc(x) = bπ/∆(x)e to zero. Further, an isotropic numerical rep-

resentation is considered by using effective wavenumbers in the y- and z-directions that cor-

respond to the numerics used in the x-direction for the effective resolution of ∆(x) = π/κc(x)

at each x-location. As before, a third-order low storage Runge-Kutta method [127] is used

for time advancement.

A negative viscosity forcing fi is formulated to inject energy at a constant rate of ε, which

is active only in the wavenumber range 0 < |κ| ≤ 2. To ensure energy is only injected at

these low wavenumbers in the x-direction, we compute

ûi(κx, κy, κz) =
1

Lx

∫

x

ûi(x, κy, κz)e
−iκxxdx =

∑

j

cj
1

Lx

∫

x

B0j(x)e−iκxxdx (6.21)

for wavenumbers |κx| ≤ 2, where cj are the B-spline coefficients (cj = B−1
0 u), and the integral

in equation (6.21) is computed using Gaussian quadrature. The forcing is then computed

as fi(x, κy, κz) =
∑

κ f̂i(κ)eiκxx and added to the right hand side of the KMM formulation

along with the nonlinear terms and the subgrid stress model. For statistically stationary

turbulence, ε is also the mean rate of kinetic energy dissipation, which is taken to be ε = 1

here.

The domain length in the y- and z-directions is fixed to 2π. The isotropic resolution is

designed to vary as a Sigmoid function between ∆f and ∆c over a distance in x of order 1/α

as in section 6.2.1. The parameters in equation (6.7) will be specified below (see figure 6.13

for example). The same mapping function g(x) is used to define the refining and coarsening
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regions of the grid so that there are a total of 2Nξ points in the x direction. The fine region

of the grid is generally centered in the domain with the two coarse regions at the ends which

are connected through the periodic boundary condition (see figure 6.14).

Two different statistics are reported here. First are one-dimensional energy spectra in

y for a fixed x location, defined generally as E1D(κ2;x) =
∑

κ3

1
2
〈ûi(x, κ2, κ3)û

∗
i (x, κ2, κ3)〉.

These one-dimensional spectra provide information about second order statistics through the

resolution change, but only in directions orthogonal to the resolution change. Because of the

change in resolution, energy spectra in the x-direction are generally unavailable. Therefore,

also reported are the time-averaged one-point turbulence structure tensors of Kassinos et al.

[198] as a function of x and averaged in the y- and z-directions. In particular, for stream

function vectors Ψ′i defined as u′i = εits∂Ψ′s/∂xt, we consider the structure tensors

Rij = εipqεjts

〈
∂Ψ′q
∂xp

∂Ψ′s
∂xt

〉
, Dij =

〈
∂Ψ′n
∂xi

∂Ψ′n
∂xj

〉
, Fij =

〈
∂Ψ′i
∂xn

∂Ψ′j
∂xn

〉
, Cij =

〈
∂Ψ′i
∂xn

∂Ψ′n
∂xj

〉
,

(6.22)

which represent the resolved Reynolds stress tensor, dimensionality tensor, circulicity ten-

sor, and inhomogeneity tensor, respectively. Generally, Rij provides information about the

componentality of the turbulence, or anisotropy of the velocity components; Dij provides

information about the directionality of the turbulence, or the scale anisotropy; Fij provides

information about rotational anisotropy; and Cij provides information about the inhomo-

geneity of the turbulence[198]. In homogeneous isotropic turbulence, Rij = Dij = Fij = u′2δij

and Cii = 0 so we are generally interested in the anisotropy of the structure tensors induced

by the resolution inhomogeneity. In the results reported here, the structure tensors are av-

eraged over the same number of eddy-turn over times as the energy spectra. However, there

is still a noticeable amount of statistical noise in the y- and z-averaged structure tensors

in x-direction. This indicates that more samples may be needed in time to compute the

time-average, which will be explored in future work. The general behavior of the structure
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Figure 6.12: Diagonal components of the one-point structure tensors Rij and Dij averaged
in the y- and z-directions as a function of x. Shown are the 11-component ( ), the
22-component ( ), and the 33-component ( ). Both figures correspond to LES of
isotropic turbulence computed with a 7th order B-spline collocation method and a mean
convection velocity of U = 0 on a uniform grid with resolution ∆ = 2π/16. A Kolmogorov
subgrid stress model is used along with the skew symmetric form of the nonlinear terms.

tensors are discussed below. Further, the elongated domain size in the streamwise direction

Lx induces an anisotropy in the structure tensors computed here. For instance, consider

the one-point structure tensors for turbulence evolving in a uniform grid of resolution of

∆ = 2π/16 with Lx = 8π and Ly = Lz = 2π (see figure 6.12). Notably, the anisotropic

domain size leads to an increase in the 11-component of Dij (see figure 6.12b). There is a

similar decrease in the 11-component of Fij (not shown). Further, note that the velocity

components remain isotropic in this setting (see figure 6.12a).

6.4.3 Nonlinear commutation error

The work on the inhomogeneous commutator up to this point has been focused on the effects

of mean convection through a change in resolution. It was argued that, since the mean

velocity relative to the grid is much larger than the fluctuating velocity in many turbulent

flows, it is expected that the commutator for the mean convection term is most important.
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Figure 6.13: Nonuniform grid resolution defined through equation (6.7) with the following
parameters: For the grid, ∆f = 2π/32, ∆c = 2π/16, α = 2, Nξ = 48 and initial
condition g(0) = −2π. This leads to g(1) = 6.23, defining a transition region on an interval
slightly smaller than 4π with max(d∆/dx) = 0.09. See figure 6.14a for a two-dimensional
slice of the domain for this grid spacing. For the grid, ∆f = 2π/364, ∆c = 2π/16,
α = 2, Nξ = 96 and initial condition g(0) = −2.5π. This leads to g(1) = 7.96, defining a
transition region on an interval slightly larger than 5π with max(d∆/dx) = 0.14.

The analysis in chapter 5 seems to support this argument. In the asymptotic limit where

∂j∆/∂xj is order ε � 1, the leading order term of the inhomogeneous commutator for the

nonlinear convection term is identically zero (see section 5.4). This result seems intuitively

reasonable — for an asymptotically smooth change in resolution, the turbulence evolves

slowly enough through the resolution change that no extra forcing (through refining grids) or

dissipation (through coarsening grids) is needed, i.e., the commutator is negligible. However,

outside of this asymptotic regime, nonlinear commutation error may have a significant effect

on the evolution of the turbulence. These effects are explored in this subsection.

Consider first an isotropic inhomogeneous grid with a resolution change from ∆f = 2π/32

to ∆c = 2π/16 defined through equation (6.7) with parameters α = 2, Nξ = 48, and initial

condition g(0) = −2π. This leads to g(1) = 6.23, defining a coarsening grid on an interval

slightly smaller than 4π with max(d∆/dx) = 0.09 (see figure 6.13). An LES of isotropic

turbulence is computed on this grid with a 7th order B-spline collocation method and the
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Figure 6.14: Example of the large eddy simulations used to explore commutation error and
modeling in homogeneous isotropic turbulence. (a) A two dimensional slice of the numerical
grid with resolution varying from ∆f = 2π/32 to ∆c = 2π/16 as defined in figure 6.13.
(b) The streamwise velocity for isotropic turbulence computed with a 7th order B-spline
collocation method, a mean convection velocity of U = 0, the skew-symmetric form of the
nonlinear terms, a Kolmogorov subgrid stress model with constant C = 0.065, and no explicit
filtering or commutation model. The resolution change leads to a numerically instability as
shown in the snapshot here, eventually causing the simulation to blow-up.

skew symmetric form of the nonlinear terms. The mean convection velocity is taken to be

zero so that turbulent interactions across the resolution change occur only due to nonlinear

convection. An LES in this setting with a Kolmogorov SGS model is numerically unstable

(see figure 6.14). The resolution change leads to non-physical large scale velocity fluctuations

that eventually cause the simulation to blow up (see figure 6.14). However, the same LES

with a Smagorinsky SGS model is numerically stable and statistically stationary. This

result may highlight an important distinction between fluctuating and non-fluctuating SGS

models, namely the ability of former to respond to numerical errors even though the latter

is sufficient for producing the correct dissipation rate to the subgrid scales. However note

that the response of the Smagorinsky model to numerical errors may be generally incorrect,
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Figure 6.15: One dimensional energy spectra for fixed x locations for the LES of isotropic
turbulence computed with a 7th order B-spline collocation method and a mean convection
velocity of U = 0 on a grid with resolution varying from ∆f = 2π/32 to ∆c = 2π/16
(see figures 6.13 and 6.14). The theoretical spectrum ( ); Spectrum computed with a
Smagorinsky SGS model with constant C = 0.14 and no explicit filtering or commutation
model ( ); Spectrum computed with a Kolmogorov SGS model with constant C = 0.065
and a B2 −B1B1 differential explicit filter ( ).
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Figure 6.16: One dimensional energy spectra at fixed x locations for the LES of isotropic
turbulence computed with a 7th order B-spline collocation method and a mean convection
velocity of U = 0 on a grid with resolution varying from ∆f = 2π/64 to ∆c = 2π/16 (see
figure 6.13). The theoretical spectrum ( ); Spectrum computed with a Kolmogorov SGS
model with constant C = 0.065 and a B2−B1B1 differential explicit filter ( ). Spectrum
computed with a Kolmogorov SGS model with constant C = 0.065, a B2−B1B1 differential
explicit filter, and nonlinear commutation model equation (6.23). ( ).

as is the case here. As the sole subgrid scale model in this setting, the Smagorinsky model

is essentially overburdened with statistical properties of the flow to represent. We find that

a constant eddy viscosity model (for the dissipation rate) paired with appropriate explicit

filters and models (for addressing numerical effects) perform well in the LES here (see below),
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Figure 6.17: Diagonal components of the one-point structure tensors Rij and Dij averaged
in the y- and z-directions as a function of x. Shown are the 11-component ( ), the 22-
component ( ), and the 33-component ( ). All figures correspond LES of isotropic
turbulence computed with a 7th order B-spline collocation method and a mean convection
velocity of U = 0 on a grid with resolution varying from ∆f = 2π/32 to ∆c = 2π/16 (see
figures 6.13 and 6.14). Figures (a) and (b) are the structure tensors for LES computed with
a Smagorinsky SGS model with constant C = 0.14 and no explicit filtering or commutation
model, corresponding to the spectra in figures 6.17a and 6.17b. Further, the trace of the
structure tensors in this case are Rii = 1.6110, Dii = 1.5502, Fii = 1.5502 and Cii = 0.0007.
Figures (c) and (d) are the structure tensors for LES computed with a Kolmogorov SGS
model with constant C = 0.065 and a B2 − B1B1 differential explicit filter, corresponding
to the spectra in figures 6.17c and 6.17d). Further, the trace of the structure tensors in this
case are Rii = 1.5734, Dii = 1.5692, Fii = 1.5692 and Cii = 0.0001.
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although a more thorough investigation of fluctuating eddy viscosities is worthwhile.

The Smagorinsky model results allow us to investigate the statistical effects of nonlinear

commutation error. In both the fine and coarse regions of the domain, the LES successfully

reproduces a theoretical κ−5/3 spectrum (see figures 6.15a and 6.15c). However, in the region

of resolution change, a significant pile up of energy occurs in all y- and z-modes outside of

the forcing regime (see figure 6.15b). The most significant increase in energy occurs in the

streamwise velocity component where d∆/dx is largest (see figure 6.17a). There is a similar

increase in energy in the large x-directional wavenumbers near the resolution change (see

figure 6.17b near x = 20 for example). The inhomogeneous resolution is introducing nonlocal

wavenumber interactions, similar to those in mean convection case, resulting in a nonphysical

transfer of energy between small and large scales near the resolution change. In general, the

effects of nonlinear convection through a nonuniform grid can be particularly damaging in

LES of turbulent flows and must be addressed. Presumably, the same type of energy pile

up observed here was more severe for the Kolmogorov model simulation mentioned above

leading to the numerical instability.

The highly dispersive modes are particularly damaging in this setting because of their

interaction with the large scales through the resolution change. Recall that these dispersive

scales were not markedly harmful in the uniform resolution U = 0 cases, but we noted

their potential danger in more complex flows. Therefore, it may be useful to use an explicit

filter to remove the small-scale velocity fluctuations. Consider a B2−B1B1 differential filter

aimed at removing scales past the apex wavenumber κa (α = 2 in equation (3.36)) applied

to the nonlinear terms in the LES described above. A Kolmogorov SGS model is used now

with characteristics length scale π/κa. For the 7th order B-spline collocation method used

here, κa∆/π ≈ 0.8 (see figure 3.1). The explicit filter avoids any numerical instabilities and

successfully reduces large scale energy pile ups throughout the domain (see figure 6.15). The

energy spectrum follows a theoretical κ−5/3 spectrum as scales populate from the coarse to
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fine resolution regions and vise-versa (see figures 6.15a to 6.15c). Moreover, the explicit filter

significantly reduces wavenumbers passed κa throughout the entire domain (see figure 6.15).

Notably, the velocity components are isotropic in this case, avoiding the large energy spikes

in the streamwise velocity seen before (see figure 6.17c). Similarly, the model leads to the

correct behavior of the dimensionality tensor Dij (see figure 6.17d), avoiding large-scale

energy pile-ups near the resolution change.

In addition to dispersive errors, nonlinear convection may also result in well-resolved

turbulent fluctuations convecting into a region of the grid in which they can no longer be

represented. In certain cases a model for the inhomogeneous commutator may be needed for

these commutation effects as well as an explicit filter for the dispersive modes. For instance,

suppose we increase the resolution change by a factor of 2 from the previous simulation.

Now, the inhomogeneous grid transitions from ∆f = 2π/64 to ∆c = 2π/16, defined through

equation (6.7) with parameters α = 2, Nξ = 96, and initial condition g(0) = −2.5π. This

leads to a coarsening grid on an interval slightly larger than 5π with max(d∆/dx) = 0.14

(see figure 6.13). In this case, an LES with either a Kolmogorov or Smagorinsky SGS model

is numerically unstable without an explicit filter. Further, using the B2−B1B1 explicit filter

from above without a model for the commutator leads to excess energy in the spectrum

through the transition region (see figure 6.16). Since the leading order term of the nonlinear

inhomogeneous commutator is zero in the multiscale analysis, we base the model for the

commutator on the linear term with a characteristic velocity urms instead of U , e.g.,

CIi (uiuj) = Curms∆

∣∣∣∣
d∆

dx

∣∣∣∣
∂2ui
∂xj∂xj

. (6.23)

Hyperviscosity models may also be considered as in section 6.3. Interestingly, the statistical

analysis of the commutator in the linear case provides a good constant for the model in

equation (6.23). Specifically, by applying equation (5.42) to a Kolmogorov spectrum, the
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constant can be set so that the commutation model provides the correct dissipation rate

through a coarsening grid a priori, i.e.,

Ckolε
−2/3κ−5/3

c U
∂κc
∂xj

= Cπ2κ−3
c U

∂κc
∂xj

∫

D
κ̃jκj

1

2
Φii(κ)dκ

=
1

4
Ckolε

2/3Cπκ−3
c U

∂κc
∂xj

∫

D
κ̃jκj|κ|−11/3dκ.

(6.24)

Solving for C in equation (6.24) gives C ≈ 0.14, which leads to an energy spectrum that

follows a theoretical κ−5/3 spectrum as scales populate from the coarse to fine resolution

regions and vise-versa (see figure 6.16). The behavior of the structure tensors in these two

cases are similar to those in figure 6.17 (not shown). Further, we note that using the local

velocity fluctuations instead of urms in equation (6.23) leads to a similar spectrum as in

figure 6.16.

Lastly, we note that the nonlinear commutation errors reported here seem to worsen

as the order of the underlying numerical scheme increases. For instance, there are no ob-

served commutation errors in the ∆ = 2π/32 → 2π/16 LES considered above for a 2nd

order B-spline representation, even with a constant eddy viscosity model and no explicit

filters. However, as d∆/dx increases, similar types of errors are observed in the spectrum.

One reason for this may be that the nonlinear convection of the dispersive modes occurs on

velocity-scales that are much faster than, say, the characteristic velocity-scale of the turbu-

lence (e.g., the rms-velocity), because of large negative group velocities in the higher order

numerics cases. This results in a faster energy transfer rate from small to large scales through

the resolution change. For lower order numerics, the SGS model and/or explicit filters there-

fore have more time to dissipate the small scale fluctuations before they convect through the

resolution change, reducing commutation effects and avoiding energy piles up in the larger

scales. This behavior was confirmed experimentally through a frozen-field study of a ‘packet’

of dispersive modes convecting in a stationary turbulent field through a coarsening grid.
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6.4.4 Linear commutation error

Commutation error arising from linear convection was studied in section 6.2 for the case of a

localized packet of turbulent fluctuations under the Taylor frozen field hypothesis. This was

useful for exposing effects of commutation error in absence of other turbulence processes.

However, equally important is to characterize these commutation effects in evolving three-

dimensional turbulence. To do so, consider an LES computed on an isotropic inhomogeneous

grid with a resolution change from ∆f = 2π/64 to ∆c = 2π/16 defined through equation (6.7)

with parameters α = 4, Nξ = 72, and initial condition g(0) = −1.875π. This leads to g(1) =

5.75, defining a coarsening grid on an interval slightly smaller than 3.75π with max(d∆/dx) =

0.27 (see figure 6.18a and figure 6.19f). The differential operators are represented with

a second-order centered difference method and the skew-symmetric form of the nonlinear

terms are computed. A Kolmogorov SGS model is used with C = 0.065. Lastly, the mean

convection velocity is taken to be U = 5, which is roughly four-times larger than the rms-

velocity.

As resolved turbulent fluctuations convect through the downstream resolution change,

the energy in modes that cannot be represented in the coarse resolution region is transferred

to modes that propagate upstream through the fine resolution region. These erroneous re-

flections are clearly visible in the streamwise velocity near the downstream resolution change

(see figure 6.18b). Further, the discussion in section 6.4.1 indicates that this energy transfer

occurs between modes (κx1 , κy, κz) and (κx2 , κy, κz) where κ̃x1 = κ̃x2 and κx2 > π/2∆f . This

result is crucial for interpreting the flow statistics here. The large increase in the dimension-

ality tensor in the fine region is indicative of the erroneous reflections propagating backwards

through the fine region (see figure 6.20b). Further, the energy spectra for all wavenumbers in

the y- and z-directions experience a vertical shift upwards throughout the fine region, which

increases towards the downstream resolution change (see figures 6.19c to 6.19e). This behav-
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Figure 6.18: Two-dimensional slice of the large eddy simulation computed with a second-
order centered difference method, the skew-symmetric form of the nonlinear terms, a Kol-
mogorov SGS model, and a mean convection velocity of U = 5. (a) The numerical grid with
resolution varying from ∆f = 2π/64 to ∆c = 2π/16 (see figure 6.19f). (b) The streamwise
velocity.

ior is consistent with the observation that y- and z-directional wavenumbers remain constant

through the energy transfer process induced by resolution inhomogeneity. In other words,

the energy spectra and dimensionality tensor indicate that large x-directional wavenumbers

are carrying energy backwards through the fine region in scales with the same y- and z-

wavenumber components as before the interaction with the downstream resolution change.

Similarly, the energy in all velocity components significantly increases near the downstream

resolution change (see figure 6.20a). Only far from downstream resolution change is the LES

able to reproduce a theoretical κ−5/3 spectrum (see figures 6.19a and 6.19b).

There are more considerations in designing an LES to expose linear commutation effects

than the nonlinear case. First, for large U , mean dispersion effects will shut down the energy

transfer in the direction of convection from large to small scales (see section 3.3). This can
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Figure 6.19: One dimensional energy spectra at fixed x locations for the LES of isotropic
turbulence computed with 2nd-order centered difference numerics and a mean convection
velocity of U = 5. In (a)-(e) are the computed spectra, and are the theoretical
spectra. The resolution varies from ∆f = 2π/64 to ∆c = 2π/16 as shown in (f). Also shown
in (f) are the x-locations for the energy spectra in (a)-(e).
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Figure 6.20: Diagonal components of the one-point structure tensors Rij and Dij averaged
in the y- and z-directions as a function of x. Shown are the 11-component ( ), the
22-component ( ), and the 33-component ( ). Both figures correspond to LES of
isotropic turbulence shown in figure 6.18.

significantly reduce commutation error because not all the scales that can be represented in

the fine region will be populated upon interaction with the resolution change. Thus, U was

chosen here to be larger than urms so that linear commutation error dominated nonlinear

commutation error, but small enough so that mean dispersion error had little effect on the

energy cascade. Second, since there is no active forcing as the turbulence convects through

the refining resolution (see chapter 7), the length of the fine region must be long enough to

allow the energy cascade to populate the small scales in the fine region. Presumably, this

length is related to the scaling

L ∼ U

∫ κfine
c

κcoarse
c

E(κ)dκ

/
ε = U

3

2
Ckolε

−1/3
(
κcoarse
c − κfine

c

)
, (6.25)

where κcoarse
c = π/∆c and κfine

c = π/∆f . This was roughly used to inform the parameters for

equation (6.7) listed above. Lastly, the effects of the order of the numerics are important.

For the second-order centered difference case, the ‘reflections’ occur at relatively large scales,
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(up to κfine
c /2) and propagate at a speed equal to or less than the mean convection velocity.

Thus, the reflections are particularly damaging near the downstream boundary — interacting

with and contaminating the well-resolved turbulence in the fine region. However, for higher

order numerics, the reflections propagate at a speed much larger than U (up to 7U for

7th-order B-splines for example) and occur at much smaller scales in the x-direction than

the lower order numerics cases. Thus, the linear commutation error for these higher order

numerics cases are also particularly damaging at the upstream resolution change (notice

this was not the case above as shown in figure 6.19b). The small scale reflections reach the

upstream resolution extremely quickly when compared to the mean velocity, at which point

the energy is transferred to the large scales in the coarse region, often resulting in a numerical

instability similar to figure 6.14b. For these reasons, second-order numerics were chosen here

to investigate the statistical properties of commutation error in stationary turbulence.

Although the setup in this section is useful for demonstrating the effects of commutation

error and dispersion error in LES, it is not well-suited to explore LES modeling. This is

because second-order centered difference numerics cannot accurately represent the dynamics

of enough resolved scales for the LES to be meaningful. Either much finer resolution or

higher order numerics are needed instead. Higher order numerics can introduce additional

modeling challenges, as indicated above, because the reflections propagate at a velocity scale

that is much larger than the mean velocity. Moreover, particularly sharp grid changes,

such as the one used here, combined with large mean velocities may not give commutator

models based on the resolution gradient enough time to remove the energy in scales that

cannot be resolved in the coarse region. We expect the developments in explicit filtering

and commutation modeling in this thesis will be useful for addressing linear commutation

error, however, more work is needed to formulate a robust commutation model applicable to

a wide range of LES scenarios.

171



6.5 Conclusion

Practical LES of high Reynolds number turbulent flows often requires inhomogeneous reso-

lution. The inhomogeneous part of the commutator CI is responsible for transferring energy

between resolved and unresolved scales as a consequence of the resolution inhomogeneity,

and so it must be modeled. However, CI is often ignored in practice leading to commutation

error. In chapters 5 and 6, we investigate the commutator and corresponding commutation

error as related to filters that include a discrete projection.

The impact of the commutation error that occurs as turbulence convects through coars-

ening grids is governed by the propagation properties of the underlying numerics (see sec-

tion 6.1). For many conservative numerical schemes such as those considered here, the

energy in newly unresolvable scales is unphysically transferred to higher wavenumbers in

the fine region of the grid, instead of to the subgrid scales in the coarse region of the grid.

The result is a non-physical reflection of unresolvable scales back into the fine region of the

grid at higher wavenumbers with negative group velocities. The nonlocal energy exchange

in wavespace introduced by resolution inhomogeneity is especially problematic in LES of

turbulence where the energy cascade occurs primarily between local wavenumbers [169].

This was demonstrated for both nonlinear and linear commutation error in LES of isotropic

turbulence.

The statistical analysis of the commutation term CI developed in chapter 5 yields a

quantitative measure of the magnitude of CI and therefore how important it is to model, as

a function of the resolution gradient and the convection velocity. Furthermore, a commutator

model can be formulated to match important statistical features of the commutator a priori,

such as its spectrum. For example, the dependence of the commutator spectrum on the

derivative of the Fourier transformed filter kernel shows that a commutator model should

act at the high wavenumbers over which the filter rolls off. Similarly, the parameters in
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a model of the commutator can be calibrated to match known statistical characteristics a

priori (e.g., evaluating (5.41) for a Kolmogorov spectrum). This was found to be effective

in modeling the nonlinear part of the inhomogeneous commutator (see section 6.4.3). It is

important to consider the statistical characteristics of the commutation term because a priori

consistency of certain statistical characteristics of an LES model is a necessary condition for

accurate a posteriori statistics of an LES solution [187, 1].

The series approximation of CI from section 5.4, is also useful for informing commutation

models, despite the fact that this analysis is formally only applicable to invertible filters. In

particular, (5.39) shows that asymptotically, the commutator is expressible in terms of even

derivatives of the filtered field, is proportional to the resolution gradient and proportional to

the convection velocity. This places significant constraints on any operator intended to model

the commutator. Furthermore, when applied to inertial range turbulence, the fact that all the

terms in the series (5.39) are of the same asymptotic order implies that high order derivatives

of the filtered field are as important as low order derivatives, suggesting that practical models

expressed in terms of derivatives of the filtered field should include derivatives of as high an

order as feasible. Indeed, this observation motivated the formulation of the model proposed

in section 6.3. The asymptotic ordering of the terms in (5.39) also suggests that using

“commuting filters” whose low-order moments vanish, which has often been proposed based

on the analysis of [22], is not sufficient to make the commutator negligible. This is not to

say that explicit filters are not useful for other purposes, such as eliminating energy in scales

with negative group velocity due to numerical dispersion, which will also mitigate the effects

of commutation error.

Finally, the commutator modeling pursued here has focused on the case when the turbu-

lence flows from fine resolution to coarse resolution. However, the other situation (flowing

from coarse to fine resolution) is also of interest. Modeling CI in this case is challenging be-

cause resolved fluctuations must be created. Models based on negative dissipation [22] and
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forcing [99], have been proposed, but more work is required. As in the coarsening resolution

case, the analysis in chapter 5 may be useful in developing an appropriate model. This is

explored in the following chapter.
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Chapter 7

Wavelet-based forcing of turbulence through refining grids

The previous chapter was focused on commutation errors that arise as turbulence convects

through coarsening grids because of the inherent numerical inconsistency issues. However,

as indicated by the analysis in chapter 5, the inhomogeneous commutator is also responsible

for injecting energy into the turbulence as it convects through refining grids. A model for

the commutator must therefore force the resolved scales that become newly-representable as

turbulence convects from a coarse to fine resolution region.

It is clear that injecting energy into the resolved scales is required for the refining res-

olution case to maintain consistency with the definition of the filter in an LES, however,

the effect of neglecting the commutator in this case, i.e., commutation error, is less obvi-

ous than for coarsening grids. This is in part due to the fact that the energy cascade will

naturally populate additional finer scales of motion as they become representable. To mo-

tivate the need for forcing in this case, we briefly mention a result from Haering et al. [99],

who were interested in hybrid RANS/LES turbulence models. Hybrid RANS/LES model-

ing exhibits several unique complications — in addition to inheriting the challenges of both

LES and RANS — many of which are beyond the scope of the work here. However, hybrid

RANS/LES applications provide a particularly useful setting for examining the effects of

resolution inhomogeneity as there are often sharp transitions to/from RANS and LES re-

gions in the domain. For instance, we expect the numerical issues discussed in chapter 6

to be especially damaging in hybrid RANS/LES as turbulence convects from an LES to
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RANS region, since no turbulence fluctuations can be resolved in the RANS regions of the

domain. For refining grids, Haering et al. [99] showed that reliance on the passive genera-

tion of resolved turbulence results in the well-known phenomenon of model stress depletion

[199, 200, 201], which causes several common errors such as log-layer mismatch, reduced

body forces, premature flow separation, and delayed flow reattachment [99]. Further, Haer-

ing et al. [99] demonstrated that explicitly introducing resolved fluctuations through refining

grids avoids many of these issues. Thus, we may expect that even in LES, the coarse-to-fine

transition will require forcing to accurately represent the flow statistics. In this chapter we

explore the properties of a forcing formulation and propose an approach based on the use of

divergence-free wavelets to circumvent some of the issues with the forcing scheme in [99].

7.1 The active-model-split forcing formulation for isotropic tur-

bulence

The active-model-split (AMS) forcing formulation proposed by Haering et al. [99] relied

on three ingredients, which they describe as: 1) the identification of regions where more

turbulence can be resolved, 2) determination of the rate at which resolved fluctuations should

be introduced, and 3) specification of the structure of the generated velocity fluctuations.

Each of these components are recalled briefly here for the simple case of isotropic turbulence

with periodic boundary conditions.

First, the resolution capacity of the grid is described by the resolution tensorMij, which

in the simple case considered here is simply ∆δij. It is worth noting that the resolution

properties of lower-order numerics are not taken into account here, which would characterize

an effective resolution capacity of the discretization. To separate the issues of forcing and

numerical discretization error, we will therefore only consider Fourier-spectral numerics,

although the results in [99] generally relied on a 2nd-order finite volume method. More
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Figure 7.1: Estimates of kres, ktot and ksgs based on a known energy spectrum E(κ) for a
refining grid.

turbulence can be resolved when the largest unresolved scale is larger than the scales that

can be represented on the grid. A length scale measure for the largest unresolved scale of

the turbulence is given by Lsgs = k
3/2
sgs/ε, where ksgs is the subgrid kinetic energy, analogous

to the expression for the usual integral length scale of turbulence. Therefore, when the

resolution indicator ρ = ∆/Lsgs < 1, the grid is locally capable of resolving smaller scale

fluctuations. There are several ways in which ksgs can be computed. In [99], a transport

equation for the total turbulent kinetic energy ktot appears as part of the RANS equations,

so ksgs can be estimated through ktot and kres, where kres is the resolved turbulent kinetic

energy. In the simple case of isotropic turbulence considered here, ksgs can be estimated by

integrating the energy spectrum. In particular, we compute

ktot = kres
∣∣
[0,κcoarsec ]

+

∫ ∞

κcoarsec

E(κ)dκ (7.1)

where kres
∣∣
[0,κcoarsec ]

is the resolved kinetic energy up to the coarse wavenumber cutoff (see

figure 7.1) and E(κ) is a Kolmogorov spectrum. Then ksgs = ktot − kres.
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Second, the spatial structure of the acceleration field used to force the turbulence must be

specified. In [99], an “artificial turbulence-like vortex field is defined based on the structure

of a Taylor-Green vortex field with variable length scale”, i.e.,

hi(x, t) =





A cos(κ1x
p
1) sin(κ2x

p
2) sin(κ3x

p
3)

B sin(κ1x
p
1) cos(κ2x

p
2) sin(κ3x

p
3)

C sin(κ1x
p
1) sin(κ2x

p
2) cos(κ3x

p
3)

(7.2)

where the magnitudes are chosen arbitrarily as A = 1, B = −1/3, and C = −2/3. The

vortex scale is taken to mimic the local length scale where extra turbulence fluctuations

are needed, i.e., κi ∼ π/LSGS (with proportionality constant empirically set to 8). The

Taylor-Green vortices are specified to translate with the mean flow as xpi (x, t) = xi − Uit.

Lastly, the magnitude of the forcing acceleration must be specified, which is related

to the timescale that added turbulent fluctuations are “healed” into realistic turbulence.

Dimensional analysis based on the eddy turnover time of the smallest resolved scales gives

Fmag = CF
√
ksgs/Tsgs where Tsgs = ksgs/ε. Gradual attenuation of the forcing is prescribed

through the resolution indicator via Fρ = − tanh(1 − min(ρ, 1)−1/2) so that the forcing is

activated when ρ < 1 and Fρ goes to zero near ρ ≈ 1. Finally, a clipping procedure is used

so that the forcing always adds energy to the system so that the forcing field is generally

FAMS
i =





FmagFρhi hiui ≥ 0

0 otherwise

. (7.3)

The AMS formulation for the forcing described here was motivated by several desirable

properties for a forcing field Fi. First, the forcing should add energy to the system, at least

on average. This is enforced in the AMS formulation by clipping points with negative energy

injection rate. Second, for incompressible turbulence, the forcing should be divergence free.
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This was the motivation for using a forcing structure based on divergence free Taylor-Green

vortices. Third, the energy injection rate Fiui should be specifiable. And fourth, the forcing

should ideally only force turbulence at scales near a specified length scale (Lsgs for example),

as to not corrupt any meaningful resolved turbulence in the process.

All four of these considerations were appreciated in formulating the AMS forcing; how-

ever, its current form is rather rudimentary leading to several drawbacks. The most obvious

issue is that the forcing field Fi is not in fact divergence free. The Taylor-Green structure

is only divergence free when constructed using a uniform overall scaling and vortex length

scale. The energy injection rate is therefore uncontrollable, as the divergence free projection

will distort the properties of the forcing. Additionally, the forcing structure is not actually

localized in wavespace in any sense, so it may effect the entire range of resolved scales. The

clipping procedure worsens both of these issues as it introduces discontinuities in the forcing

field.

7.2 A divergence-free wavelet construction for the forcing field

As Haering et al. [99] note, developing a better forcing formulation should allow one to force

the turbulence more strongly, better preserve the well-resolved turbulence, and allow for

sharper grid transitions to finer resolved LES regions. The most fundamental issue with the

AMS forcing formulation lies in its structure. The forcing must be divergence free and also

provide a degree of localization in both realspace and wavespace. Without satisfying these

criteria, one cannot hope to control the energy injection rate or maintain the well-resolved

turbulence. To provide a degree of localization in both realspace and wavespace, we propose

the use of a divergence free wavelet basis for the construction of the forcing field.

Wavelets are functions ψ that are localized in both realspace and wavespace that satisfy
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Figure 7.2: Example of a real morlet wavelet, a Mexican hat wavelet, a Battle-Lemarie
wavelet constructed with second order B-splines, and a Daubechies wavelet of order 2.

the admissibility condition

Cψ =

∫
|κ|−1|ψ̂(κ)|2dκ <∞. (7.4)

Common wavelet functions include: Mexican hat wavelets, which are related to the second

derivative of a Gaussian function; Morlet wavelets, which are simply a complex exponential

function multiplied by a Gaussian window; Battle-Lemarie wavelets, which are constructed

from varying orders of B-spline functions; and Daubechies wavelets, which are defined in terms

of functions with a maximal number of vanishing moments for a given support (see figure 7.2).

The choice of wavelet function is often dependent on the particulars of an application, as they
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Figure 7.3: (a) The original signal in wavespace given by f(x) = sin(45x)e(−5(x−2)2) +
sin(5x)e(−5x2) + sin(20x)e(−5(x+2)2). (b) The Fourier-transform of the signal. (c) The power
spectrum of the wavelet transform of f(x) generated with complex morlet wavelets.

each have different properties that may be more or less desirable. The continuous wavelet

transform (CWT) represents a function f(x) at scale a ∈ R+ and translational value b ∈ R

by

Wf (a, b) = C
−1/2
ψ a−1/2

∫ ∞

−∞
f(x)ψ∗

(
x− b
a

)
dx. (7.5)

For example, consider the function f(x) = sin(45x)e(−5(x−2)2)+sin(5x)e(−5x2)+sin(20x)e(−5(x+2)2)

(see figure 7.3a). This function is clearly localized around three wavenumbers (κ = 45, 5, 20)

at three spatial locations (x = 2, 0,−2). A Fourier-transform is able to identify each of these

three wavenumber components (see figure 7.3b), however, all spatial information is lost. On

the other hand, the wavelet transform of the signal captures both the wavenumber and spa-

tial information about the signal (see figure 7.3c). Similarly, a general function f can also

be represented through the superposition of wavelets as

f(x) = C
−1/2
ψ

∫ ∞

0

∫ ∞

−∞
a−1/2ψ

(
x− b
a

)
Wf (a, b)

db da

a2
. (7.6)
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There is a discrete analog of equation (7.6) that represents a discretely-sampled function as

discrete translations and scalings of wavelets, as well as procedures for efficiently generating

orthonormal wavelet bases (see [202] for a review).

However, for the forcing field we interested in forcing at a particular scale and spatial lo-

cation. Thus, there is considerable freedom in constructing the divergence-free wavelet func-

tions to represent the forcing field. For instance, given any wavelet ψ(x), multi-dimensional

divergence free wavelets can be constructed as tensor products of the one-dimensional wavelet

ψ, e.g., in two-dimensions

Ψ2D
div(x1, x2) =





ψ(x1)ψ′(x2)

−ψ′(x1)ψ(x2)

. (7.7)

For example, consider the simple case of a real morlet

ψ(κ(x− w)) = e−σ(κ(x−w))2

cos(κ(x− w)) (7.8)

centered around the point w = 0 and wavenumber κ = 5 with σ = 0.05 (see figure 7.4a).

Then equation (7.7) clearly generates a localized divergence-free vector field around the point

(0, 0) (see figure 7.4b). The parameters σ and κ control the number and magnitude of the

vortices in figure 7.4b.

This example extends naturally to three-dimension and can be used to improve several

of the drawbacks with the AMS forcing. We consider the forcing field

F AMS-DIV

i (x) = FmagFρ

N∑

n=1

hdivi (κn(x−wn)) (7.9)
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Figure 7.4: (a) A one dimensional real morlet wavelet with σ = 0.05, centered around
the point w = 0 and wavenumber κ = 2 (see equation (7.8)). (b) The two-dimensional
divergence free wavelet vector field generated from tensor products of the morlet wavelet
(see equation (7.7)).

where the vector field hdivi (x) evaluated at κ(x−w) is

hdivi (κ(x−w)) =





ψ(κ(x1 − w1))ψ′(κ(x2 − w2))ψ′(κ(x3 − w3))

−1/3ψ′(κ(x1 − w1))ψ(κ(x2 − w2))ψ′(κ(x3 − w3))

−2/3ψ′(κ(x1 − w1))ψ′(κ(x2 − w2))ψ(κ(x3 − w3))

(7.10)

and the summation in equation (7.9) is over N divergence free wavelet vector fields centered

around the point wn and scale κn.

In the following section we pursue a direct comparison between F AMS
i and F AMS-DIV

i to

highlight the importance of the structure of the forcing field. Therefore, all the same esti-

mates from the AMS forcing are used to evaluate the wavelet-based forcing field including

the forcing magnitude, forcing wavenumber, the resolution indicator function, and the es-

timates of ksgs (see section 7.1). However, to preserve the divergence-free and localization
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properties of F AMS-DIV
i , no clipping procedure is used for the wavelet-based forcing.

7.2.1 A numerical experiment

The two forcing fields F AMS
i and F AMS-DIV

i are examined in a refining LES of homogeneous

isotropic turbulence. Specifically, a coarse LES of infinite Reynolds number turbulence is

first computed with Fourier spectral numerics on a cubical domain of size L = 2π with

resolution scale ∆c = 2π/8. A negative viscosity forcing is active in the wavenumber range

0 < |κ| ≤ 2 and injects energy at a constant rate of ε = 1. A Kolmogorov SGS model

is used with constant tuned to provide a mean rate of kinetic energy dissipation of ε (see

section 3.5). An instantaneous sample from the statistically stationary solution is then used

as an initial condition in a finer LES with the same setup except now with a resolution

scale of ∆f = 2π/32 (see figure 7.5a). The energy spectrum of this initial condition is

representative of an equivalently filtered five-third spectrum up to κc = 4 (see figure 7.5d),

however, the fine LES is capable of resolving scales up to κc = 16. The energy spectrum

of the solution is then tracked in time as the scales populated from κc = 4 to κc = 16 (see

figures 7.5b and 7.5c). Without any active forcing, the energy spectrum populates in roughly

two large eddy turnover times, based on the value TL ≈ 0.9 as reported by Yalla et al. [126]

(see figures 7.5e and 7.5f).

The ability of the forcing fields F AMS
i and F AMS-DIV

i to more quickly populate scales 4 ≤

|κ| < 16 is tested in this setting. Three different values of Fmag are used in both cases,

which control the energy injection rate. For F AMS
i , we take CF = 8, 16, and 32, and for

F AMS-DIV
i , we take CF = 1, 2, and 4. Note that because the wavelets in the formulation of

F AMS-DIV
i overlap, the values of CF should not be compared directly, and lead to very different

energy characteristics between the two formulations. For instance, the max energy injection

over time for F AMS
i is roughly half that of F AMS-DIV

i for each value of CF respectively (see

table 7.1). The forcing field F AMS-DIV
i is computed with a real morlet wavelet centered at
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Figure 7.5: Time snapshots of the coarse-to-fine LES used to explore the forcing formulations.
(a), (b), and (c) show a two-dimensional slice of the velocity field, u, at times t = 0, t = 0.6,
and t = 1.78, respectively. The corresponding one-dimensional energy spectra are shown
in (d), (e), and (f), respectively ( ). The equivalently filtered five-thirds spectra for a
resolution of ∆c = 2π/8 and ∆f = 2π/32 are also shown ( ). All figures here are for the
LES without active forcing.
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Figure 7.6: One dimensional energy spectra for the coarse-to-fine LES at four different times
with the AMS forcing field F AMS

i and values CF = 8 ( ), CF = 16 ( ), CF = 32
( ), and CF = 0 ( ). The equivalently filtered five-thirds spectra for a resolution of
∆c = 2π/8 and ∆f = 2π/32 are also shown ( ).
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each grid point (see equation (7.8)) with a value of σ chosen so that the support of the

wavelets span five grid cells in each coordinate direction. This value of σ was set empirically

to provide a reasonable trade-off between the support in realspace and wavespace, although

similar results were obtained for nearby values of σ. A more thorough discussion of the σ

parameter is given in section 7.2.2.

The AMS forcing leads to a more rapid production of the turbulence across the entire

range of resolved scales, which generally corrupts the energy characteristics throughout the

2TL time period (see figure 7.6). By one eddy turnover time there is a clear excess of energy

in the low wavenumbers for all cases (see figure 7.6c), which is noticeable even around

t = 1/3TL (see figure 7.6b). Although the scales 4 ≤ |κ| < 16 populate faster than the

LES without active forcing, the excess energy in the low wavenumbers cascades down to

these high wavenumbers leading to an energy pile-up in the entire spectrum by t = 2TL (see

figure 7.6d). Note, the active forcing shuts off by t = TL for all CF values (since ρ > 1), so

the excess energy in these higher modes observed at t = 2TL is indeed a results of nonlinear

turbulent processes.

The behavior of AMS forcing formulation is not particularly surprising. The Taylor-

Green-like vortex field is generally not localized in wavespace. In fact, hi may be interpreted

as a wavelet with zero support in physical space, i.e., infinite support in wavespace. Addi-

tionally, the clipping procedure introduces sharp discontinuities into the forcing field, further

affecting all wavenumbers. The field F AMS-DIV
i is free of these issues and thus leads to a better

evolution of the energy spectrum in this test (see figure 7.7). The wavelet based forcing

roughly halves the time it takes for the wavenumbers 4 ≤ |κ| < 16 to reach a five-thirds

spectra from the LES without active forcing (see figure 7.7). Moreover, it does so without

affecting the low wavenumber band 0 ≤ |κ| < 4.

The forcing field F AMS-DIV
i supports quite a large energy injection rate. For the CF = 4

case, 〈F AMS-DIV
i ui〉 is nearly fifteen times larger than dissipation rate in the early stages of
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Cf = 8 Cf = 16 Cf = 32

max
t
〈F AMS

i ui〉 1.4 3.3 7.2

Cf = 1 Cf = 2 Cf = 4

max
t
〈F AMS-DIV

i ui〉 3.3 6.7 15.5

Table 7.1: The maximum average energy injection rate from the forcing fields F AMS
i and

F AMS-DIV
i over time from the LES in

the LES (see table 7.1), which decreases to around ε by the time t = 0.11. If we view

this simulation as turbulence convecting through a sharp grid change, then the spectral

characteristics of the inhomogeneous commutator suggest an infinite energy injection rate is

required instantaneously over the wavenumbers 4 ≤ |κ| < 16 (see equation (5.42)), which

supports the behavior of the forcing seen here. However, because of the way the forcing-

wavenumber is formulated (κi = π/Lsgs), when 〈Fiui〉 � ε higher wavenumbers may be

targeted by the forcing before lower wavenumbers have been properly ‘healed’ into resolved

turbulence and there is no way to retroactively force intermediate scales. This is apparent

in the CF = 4 simulation — wavenumbers |κ| ≥ 7 follow a five-third spectrum by t = 0.11

(see figure 7.7a), while wavenumbers 4 ≤ |κ| < 7 match the theoretical case after t = 0.9

(see figure 7.7c). This behavior is not particularly problematic here, but may inform ways

the estimate for the forcing-wavenumber could be improved.

The experiment here clearly indicates better forcing formulations allows one to force the

turbulence more strongly, better preserve the well-resolved turbulence, and allows for sharper

grid transitions to finer resolved LES regions.

7.2.2 Potential improvements to the wavelet-based forcing formulation

The results in the previous section suggest that the wavelet-based approach may be useful

for developing a more robust forcing formulation. Possible improvements to this approach

are discussed here.

Increasing the representation power of the underlying wavelet-basis may allow for more

control over the properties of the forcing, such as the energy injection rate. For instance, sup-
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Figure 7.7: One dimensional energy spectra for the coarse-to-fine LES at four different times
with the wavelet-based AMS forcing field F AMS-DIV

i and values CF = 1 ( ), CF = 2
( ), CF = 4 ( ), and CF = 0 ( ). The equivalently filtered five-thirds spectra
for a resolution of ∆c = 2π/8 and ∆f = 2π/32 are also shown ( ).
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pose the wavelets are isotropic in scale and consider the following two orthogonal divergence-

free wavelet basis functions evaluated at the point κ(x−w):

Ψ1
div(κ(x−w)) =





ψ(κ(x1 − w1))ψ′(κ(x2 − w2))ψ′(κ(x3 − w3))

0

−ψ′(κ(x1 − w1))ψ′(κ(x2 − w2))ψ(κ(x3 − w3))

, (7.11)

Ψ2
div(κ(x−w)) =





ψ(κ(x1 − w1))ψ′(κ(x2 − w2))ψ′(κ(x3 − w3))

−2ψ′(κ(x1 − w1))ψ(κ(x2 − w2))ψ′(κ(x3 − w3))

ψ′(κ(x1 − w1))ψ′(κ(x2 − w2))ψ(κ(x3 − w3))

. (7.12)

The forcing field F(x) could then be represented as

F(x) =
N∑

n=1

Cn,1Ψ1
div(κn(x−wn)) + Cn,2Ψ2

div(κn(x−wn)), (7.13)

where Cn,1 and Cn,2 are general constants and the sum is over N wavelets centered at

the point wn and scale κn. This basis is representative of any divergence-free function at

a particular scale, unlike that in equation (7.10). The constants Cn,1 and Cn,2 could be

determined through a target energy injection rate Einj, which may be based on the energy

characteristics of the inhomogeneous commutator (see equation (5.41)) for instance. If a

wavelet is centered at each point in the domain, then equation (7.13) leads to an under-

determined system when solving for Cn,1 and Cn,2. The minimal norm solution can be

determined via an SVD, however, this is an expensive calculation, especially for the forcing

field which is by necessity ad hoc. The authors attempted to reduce this computational

cost through a low-rank approximation to the solution via a randomized SVD method [203],

however, this proved infeasible. Instead, preliminary results suggest it may be reasonable to

approximate this computation locally based solely on the value of the nth wavelet at the point
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wn. This may be reasonable since the wavelets are localized around wn. The representation

power of the basis could be improved even further by considering a divergence-free wavelet

multi-resolution analysis [202]. Such a basis was constructed by Lemarié-Rieusset [204]

and has been used as a computational technique to simulate turbulence in two- and three-

dimensions [205, 206]. This basis and its associated wavelets may therefore be a natural

candidate for the forcing field.

Turbulence has also been a popular application for wavelet-based analyses, because of

its inherent multiscale and spatially varying nature. As Farge [207] notes, we generally have

two different pictures of turbulence depending on the side of the Fourier transform from

which we perceive it. On one hand, turbulence theory predicts the existence of an energy

cascade between triad-interacting wavenumbers that lie within the inertial range. On the

other hand, experimental and numerical results suggest the presence of coherent structures

in turbulent flows that correspond to organized patterns in the vorticity field, which seem

to play an important role in the underlying dynamics of the flow. Wavelet analyses have

helped unify these two descriptions, and these insights may be useful for developing a more

realistic forcing field.

For instance, the coherent vortex extraction (CVE) method [208] allows the flow to be

split into two parts: active coherent vortices represented by a few wavelet coefficients, and

incoherent vortices of the background flow, which largely resemble noise. Okamoto et al. [209]

applied this to DNS of isotropic turbulence and found that the spectrum of coherent vortices

is identical to the one of the total flow in the inertial range, implying that vortex turbulence

leads to a five-thirds energy spectrum. The incoherent part of the flows led to a κ2 energy

spectrum which corresponds to an equipartitioning of the energy between wavenumbers

and suggests that incoherent vortices are spatially decorrelated and indeed structureless

[209, 210, 211]. Thus, with just a few wavelet coefficient one may be able to construct a

more realistic forcing field similar to these coherent vortices, which should reduce the time
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for added turbulent fluctuations to be “healed” into realistic turbulence. Further, Meneveau

[212] derived the wavelet-transformed Navier-Stokes equations and defined quantities such

as the local kinetic energy spectrum, energy transfer spectrum, and energy flux to provide

spatial information to the usual energy spectrum dynamics. This may also be useful for

informing the properties of the forcing field.

Each wavelet used to construct the forcing field has unique parameter σ controlling the

support of the wavelet, which may depend on the local properties of the flow as well as

the discretization. For instance, smaller values of σ allow the forcing to target particular

wavenumbers more precisely. However, the wavelets should ideally not extend into coarser

resolution regions where the forcing-wavenumber may not be representable. The compu-

tational cost of the wavelet approach should also be considered here. Equation (7.13) is

not a pointwise computation like the AMS forcing field hi, so it may introduce a significant

computational expense depending on the number and support of the wavelets (especially

when considering parallelized computations). Larger σn values aid in reducing this compu-

tational cost. It may therefore be reasonable to center the wavelets around the wavenumber

κforce = 1
2
(π/∆ + π/LSGS), allowing for a maximal support in wavespace that does not af-

fect the well-resolved scales and thus a minimal support in realspace. It also may not be

necessary to have a wavelet centered at every grid point to take advantage of the support in

realspace. This would reduce the cost of forming F as well. The existence of a fast algorithm

with near linear complexity for computing wavelet decompositions [213] is encouraging that

a forcing field of this form may be constructed without introducing significant computation

cost.

Several of the complications in formulating F stems from the wavelets support in physical

space. However, if the forcing field is to be divergence free and localized in wavespace, then

these issues may be unavoidable. A possible alternative is to base the forcing field on a high

pass filter of the velocity field. For instance, De Laage de Meux et al. [152] use a second-
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order differential filter (see section 3.7) applied to the velocity field as a basis for the forcing

field. However, this requires the velocity field to already have turbulent fluctuations at the

scales where the forcing is needed. In a coarse-to-fine LES, this may be reasonable, however,

in cases such as the RANS-to-LES regions of a hybrid RANS/LES simulation, it is not.

It may therefore be possible to combine these approaches by using a wavelet-based forcing

scheme near RANS-to-LES transitions and a velocity field-based forcing for coarse-to-fine

LES regions. Note that the velocity field-based forcing requires access to an appropriate high

pass filter, which may be difficult to construct and may also have a wide support around any

given point in physical space. Further, multi-resolution analysis essentially views wavelet

constructions as a band-pass filter, which could suggest a natural connection to the filtered

velocity field-based forcing approach.
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Chapter 8

Conclusions

The largest scales of turbulence in many complex flows of interest have a wide range of scales

themselves (e.g., the wake behind a wind turbine [138], turbulent boundary layers [137]). For

LES to become a widely applicable engineering tool, it must therefore accommodate a wide

range of large scales. This requires that LES and corresponding subgrid models tolerate

very coarse and often highly inhomogeneous and anisotropic resolutions. The overarching

challenge of current LES progress is therefore to move past the “well-resolved” barrier where

the majority of the turbulent energy is resolved. In this case, subgrid models must do more

than dissipate energy, which has been the primary focus of LES modeling since its inception

(see chapter 2). In particular, the effects of numerical discretization cannot be ignored since

the smallest resolved scales will be important energy-containing scales.

The dispersion error introduced by the numerical approximation of the convection term

has a profound impact on the turbulence represented in an LES. These errors can be par-

ticularly problematic in convecting flows where the mean velocity is large compared to the

turbulence fluctuations. By analyzing LES of isotropic turbulence convecting through a uni-

form grid with a mean velocity U � urms, we determined that linear dispersion error causes

a decoherence of the phase relationship among interacting Fourier modes, which results in

a reduction of the energy transfer rate from large to small scales (see section 3.3). This can

corrupt LES statistics throughout the entire range of resolved scales. Nonlinear dispersion

error from turbulence convecting through a uniform grid due to turbulent fluctuations was

194



also explored through the development of an EDQNM-type analysis that is applicable to

the filtered turbulence in an LES. EDQNM is a particularly useful tool for exploring dis-

persion effects because it exposes the relaxation rate of the third-order velocity correlations.

Numerical dispersion error effectively decreases this relaxation timescale, reducing veloc-

ity correlations at a faster rate than that introduced by the standard dissipation rate, and

must therefore be account for by the eddy-damping modeling in the EDQNM analysis (see

section 4.3.2).

The convection of turbulence through inhomogeneous resolution introduces additional

challenges in LES due to so-called commutation-error, or neglect of the commutator of the

filtering and differentiation operators. If this commutator is ignored as turbulence convects

through coarsening grids, the energy in newly unresolvable scales is transferred to higher

wavenumbers in the fine resolution region, instead of to the subgrid scales in the coarse

region. The result is a non-physical reflection of unresolvable scales back into the fine region

of the grid at higher wavenumbers with negative group velocities (see section 6.2). These

nonlocal energy exchanges between wavenumbers introduced by resolution inhomogeneity

are especially problematic in LES of turbulence where the energy cascade occurs primarily

between local wavenumbers [169]. Both nonlinear commutation error (due to the convection

of turbulence through a nonuniform grid by turbulent fluctuations), and linear commutation

error (due to turbulence convecting through a nonuniform grid in the regime of Taylor’s

hypothesis) were shown to be particularly damaging to the energy spectrum in LES of

isotropic turbulence (see section 6.4).

LES models must take the characteristics of the underlying numerics into account and,

ideally, the resolved scales in an LES should be defined to exclude the highly dispersive

modes. One approach to doing so is to define the large scales to be simulated through an

explicit filter, acting in addition to the implicit filter defined by the numerical discretization,

to ensure that the scales with significant dispersion error are not energized. However, an
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explicit filter can introduce the same type of dispersive errors as numerics if not properly

constructed (see section 3.6). An operator that is useful for this purpose was developed in

section 3.8 and is based on the difference between the numerical second derivative operator

and repeated application of the numerical first derivative operator. This operator naturally

acts on scales with significant dispersion error and can therefore be used to design explicit

filters or model terms that remove energy in the dispersive modes. Further, whether an

explicit filter is used or not, the subgrid stress model must be formulated to account for the

underlying numerics and filters. The EDQNMLES theory developed in section 4.3 was used

to determine the properties of the subgrid stress needed to recover an inertial range spectrum

in the presence of non-spectral numerics and non-cutoff explicit filters. The behavior of the

wavenumber-dependent eddy viscosity varied significantly for lower-order numerics or graded

filters from the ‘spectral-cusp’ behavior of the eddy viscosity found for spectral methods and

truncations (see section 4.3.3).

Modeling of the inhomogeneous commutator CI was also explored. A statistical analysis

CI yielded a quantitative measure of the magnitude of CI and therefore how important it is

to the energy balance as a function of the resolution gradient and the convection velocity (see

section 5.2). The statistical characteristics of the commutator are important because a priori

consistency of certain statistical characteristics of an LES model is a necessary condition for

accurate a posteriori statistics of an LES solution [187, 1]. Further, a series approximation

of CI was developed in section 5.1, which was not only useful for informing commutation

models, but also for interpreting previous work on commutation error in the literature [22,

146, 147, 145, 151]. A framework for modeling the inhomogeneous commutator was proposed

in section 6.3, and was shown to perform well for correcting both nonlinear commutation error

and commutation error in the regime of Taylor’s hypothesis (see sections 6.3.1 and 6.4.3).

However, further model developments are still required, especially for turbulence convecting

through rapid grid changes with a large mean velocity.
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Lastly, the forcing of newly resolvable scales as turbulence convects through refining

grids was explored in chapter 7. Such a forcing scheme is needed to maintain consistency

with the definition of the filter in an LES and for accurately represented flow statistics

[99]. An improvement to the forcing scheme of Haering et al. [99] was proposed based on

divergence-free wavelets. This formulation of the forcing provides a degree of localization in

both wavespace and realspace and ensures the forcing field is divergence-free. More work is

needed to make this formulation robust, however, a simple test of the forcing in isotropic

turbulence suggests it may be effective at energizing newly resolvable scales faster than the

natural turbulent energy cascade while maintaining the existing scales. It also appears to

provide more efficient control of the energy injection rate (see section 7.2.1). Moreover, these

results suggest that an improved forcing formulation should allow one to force the turbulence

more strongly, allowing for sharper grid transitions to finer resolved regions.

In this thesis we have developed several computational and analytical tools for exploring

the effects of numerical discretization in large eddy simulation. These techniques have been

used to identify several a priori statistical characteristics that are important for subgrid

models to satisfy in complex scenarios and have informed the development of LES models

that directly account for the properties of the underlying numerics. We have successfully

moved beyond analyzing LES in term of isotropic turbulence represented on a uniform grid

with Fourier-spectral numerics and cutoff filters. By incorporating the practical requirements

of LES into analytical and computational techniques and probing isotropic turbulence in a

variety of different computational regimes, we have greatly enhanced our understanding of

the flow physics represented in an LES and the requirements of practical LES model for

complex scenarios. There are several additional challenges to formulating more broadly

applicable subgrid models for LES, some of which were discussed in section 2.2, and we

expect that the techniques developed here will also be useful for addressing these wide range

of issues in LES.
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Appendix A

Numerical representation of the vorticity-velocity formulation

The vorticity-velocity formulation introduced by Kim et al. [128] (referred to as KMM below)

is a convenient way to solve the filtered or unfiltered Navier-Stokes equations when boundary

conditions in two spatial directions (say x1 and x3) are periodic, and the numerical resolution

in those directions is uniform. However, there is a subtlety to the formulation that arises

when the discrete second derivative operator is not equivalent to the discrete first derivative

applied twice.

In the KMM formulation, the curl and the double curl operators are applied to the

momentum equations, to obtain equations for the vorticity and the Laplacian of the velocity.

The 2-component is then solved for, and a complete representation of the velocity is obtained

from continuity. This formulation relies on three identities from vector calculus, which must

also be satisfied by the discrete operators. Let ∇̃·, ∇̃, ∇̃× and ∆̃ be the discrete divergence,

gradient, curl and Laplacian operators, respectively. To recover the property of the KMM

formulation that the pressure is eliminated, we must have

∇̃ × ∇̃ψ = 0 (A.1)

for any scalar field ψ. Further, to obtain the simple form used in KMM for the double curl
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of the momentum equation, and to reconstruct the full velocity,

∇̃ × ∇̃ ×A = −∇̃ · ∇̃A + ∇̃∇̃ ·A (A.2)

must hold for any vector field A, which ensures that the second term on the right will be

zero when ∇̃ ·A = 0. Both these discrete identities hold provided the same one-dimensional

discrete derivatives are used to define the discrete divergence, gradient and curl operators.

Finally, in KMM the 2-component of the double curl of the momentum equation yields an

equation for φ, defined as the Laplacian of u2, which requires that the discrete Laplacian

obey ∆̃u2 = ∇̃ · ∇̃u2, which is not generally true. So, instead, we define φ = ∇̃ · ∇̃u2.

Consider the discrete momentum and continuity equations:

∂u

∂t
= −∇̃p+ H (A.3)

∇̃ · u = 0 (A.4)

which could be the Navier-Stokes equations (e.g. for a DNS) or the filtered Navier-Stokes

equations (for an LES), in which case u is the filtered velocity. The H term includes the

nonlinear, viscous and model (for LES) terms. Let ∇̃p· and ∇̃p be the divergence and gradient

operators restricted to the (1,3) plane, and let ω2 = (∇̃ × u)2. Then the discrete version of
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the KMM formulation is given by

∂φ

∂t
= −∇̃ × ∇̃ ×H (A.5)

∂ω2

∂t
= ∇̃ ×H (A.6)

∇̃ · ∇̃u2 = φ (A.7)

∇̃p · ∇̃pu1 =

(
δω2

δx3

− δ

δx1

δu2

δy

)
(A.8)

∇̃p · ∇̃pu3 =

(
δω2

δx1

− δ

δx3

δu2

δy

)
. (A.9)

With periodic boundary conditions and uniform resolution in the x1 and x3 directions, the

discrete derivative operators in those directions are circulant matrices, so that given φ and

ω2, (A.7-A.9) can be easily solved using discrete Fourier transforms, which is what makes

the KMM formulation efficient. This also allows one to show that the solution for u does

indeed satisfy ∇̃ ·u = 0. The operators ∇̃ · ∇̃ and ∇̃p · ∇̃p that must be solved to recover the

velocities using (A.7-A.9) are in general rank deficient because eigenvalues associated with

the Nyquist modes are zero. This is the property that leads to checkerboard instabilities

in projection methods [214]. Here, the resulting singularity of the equations is resolved

by insisting that all the Nyquist modes are zero, consistent with the Fourier cutoff filters

used in the LES. Finally, note that for spatial directions with periodic boundary conditions

and uniform resolution, there is generally no motivation to use other than Fourier spectral

representations. Non-spectral methods are used here only to allow the impacts of dispersion

errors to be assessed, since often an LES must be conducted for boundary conditions and

resolutions for which Fourier spectral methods are not practical.

The modified KMM formulation described here is designed to ensure that the solutions

obtained satisfy the discrete filtered or unfiltered Navier-Stokes equations (A.3)-(A.4). This

is important in the current study because we are interested in the effects of dispersion error in
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these equations, which are usually solved in practical simulations. However, it is also possible

to derive the φ and ω2 equations from the momentum and mass conservation equations

before discretization, and then discretize them [128, 124]. In this case, the results are still

numerical approximations to solutions of the conservation equations, but the numerical errors

are different from those obtained by solving the discrete conservation equations.
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plan. La Recherche Aérospatiale, pages 37–52, 1989.

[178] Vadim Borue and Steven A Orszag. Self-similar decay of three-dimensional homoge-
neous turbulence with hyperviscosity. Physical Review E, 51(2):R856, 1995.

[179] Vadim Borue and Steven A Orszag. Numerical study of three-dimensional kolmogorov
flow at high reynolds numbers. Journal of Fluid Mechanics, 306:293–323, 1996.

214



[180] Jean-Pierre Bertoglio. A stochastic subgrid model for sheared turbulence. In Macro-
scopic modelling of turbulent flows, pages 100–119. Springer, 1985.

[181] CE Leith. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer.
Physics of Fluids A: Fluid Dynamics, 2(3):297–299, 1990.

[182] Michele Iovieno and Daniela Tordella. Variable scale filtered navier–stokes equations:
a new procedure to deal with the associated commutation error. Physics of Fluids, 15
(7):1926–1936, 2003.

[183] Sharath S Girimaji and Stefan Wallin. Closure modeling in bridging regions of variable-
resolution (vr) turbulence computations. Journal of Turbulence, 14(1):72–98, 2013.

[184] C Fureby and G Tabor. Mathematical and physical constraints on large-eddy simula-
tions. Theoretical and Computational Fluid Dynamics, 9(2):85–102, 1997.

[185] Fujihiro Hamba. Analysis of filtered navier–stokes equation for hybrid rans/les simu-
lation. Physics of Fluids, 23(1):015108, 2011.
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