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Hotelling trace criterion as a figure of merit for
the optimization of chromatogram alignment

Edward J. Soaresa*, Gopal R. Yallaa, John B. O’Connora,b, Kevin A. Walsha

and Amber M. Huppb

We present a methodology for optimization of chromatogram alignment using a class separability measure called
the Hotelling trace criterion (HTC). This metric is a multi-class distance measure that accounts for within-class
and between-class variation. We chose the correlation optimized warping algorithm as our alignment method and
used the HTC to judge the effectiveness of the alignment based on algorithm parameters called segment length
and max warp.
Biodiesel feedstock samples representing classes of soy, canola, tallow, waste grease, and hybrid were used in our
experiments. Fatty acid methyl esters in each biodiesel were separated using gas chromatography-mass spectroscopy.
The entire data set was baseline corrected, aligned, normalized, and mean-centered prior to principal components
(PCs) analysis. The aligned, baseline corrected data sets were used to compute a figure of merit called warping effect,
while the PC-transformed data sets were used to evaluate the HTC. The segment length and max warp parameters
that maximized the warping effect and/or HTC were then determined. Scores plots of pairs of PCs, along with 95%
confidence ellipses, were created and analyzed.
The results demonstrated that the parameters derived from maximizing the HTC more effectively aligned the data,
as evidenced by better clustering of the biodiesels in the scores plots. This behavior was robust to the number of PCs
used in the computation of the HTC. We conclude that the HTC is an objective measure of alignment quality that allows
for optimal class separability and can be applied to optimize other methods of chromatogram alignment. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Complex chromatographic data can be challenging to analyze
based on the sheer number of chemical components in a sam-
ple. Chemometric methods such as principal component analysis
have been widely used to determine interesting trends from com-
plex data sets [1–13]. Researchers have used several methods
including extracting peak areas [1,4,5] as well as using the full,
raw data set [8,14,15]. Extracting retention time peak areas can
be straightforward. However, typically, a judgment of the num-
ber and type of chemical components must be made by the user.
Using the raw data set does not require such a judgment, as every
data point in the sample is investigated. However, this method
requires more sophisticated data processing as every sample in
the set must be aligned prior to any subsequent chemometric
analysis [16,17]. With gas chromatography (GC), normal fluctu-
ations occur in both peak height (because of variation in the
manually injected volume) and retention time (because of slight
differences in oven temperature, analyte interaction on column,
etc.). Thus, without retention time alignment, the trends that are
determined using chemometric methods of analysis could be
skewed or meaningless.

Several authors have proposed alignment algorithms for GC
measurements that operate on the entire chromatogram. Wang
and Isenhour [18] presented a dynamic programming approach

to time warp data derived from gas chromatography/Fourier
transform infrared/mass spectroscopy experiments using a dis-
tance measure to produce an optimal match. This dynamic time
warping (DTW) algorithm requires setting a window constraint
and local constraint on the number of one-direction consecu-
tive moves that can be made. Vest Nielsen et al. [14] introduced
a correlation optimized warping (COW) method that uses piece-
wise stretching and compression of segments of the data, as well
as the linear correlation between matching segments, to opti-
mally align two chromatographic profiles. This algorithm requires
the setting of two parameters: segment length, which is the
fixed length used to divide up each chromatogram and max-
imum warp, which is the largest amount of stretching and/or
compression a particular segment may undergo. Pierce et al.
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[19] presented a variant of local retention time alignment called
piece-wise alignment. Like COW, piece-wise alignment uses a
segment length parameter to divide up the chromatogram and
then shifts segments of the data to find the optimal correlation
between the segments. However, it does not incorporate stretch-
ing and/or compression thus saving computation time. Several
authors [20–22] have tested and compared the effectiveness of
alignment algorithms including COW and DTW using experimen-
tal data, although none have incorporated objective measures of
alignment quality assessment into their analysis.

Most algorithms that align the entire chromatogram require
the selection of one or more input parameters and so a nat-
ural question arises regarding the selection of a "best" set of
parameters that will produce an optimal alignment of the data.
To perform such an optimization, one needs to define a per-
formance metric that objectively quantifies the quality of the
alignment. Pierce et al. [19] define a measure of alignment quality
called degree of class separation, which is the ratio of the Euclidean
distance between two principal component (PC) class means with
the square root of their average variances. However, this quan-
tity is only based on data from two of the classes, and it does
not account for the linear correlation that may exist between
the PCs for a particular class. Sinkov and Harynuk [23] use clus-
ter resolution as their criterion for class separability, which is the
maximum confidence limit for which confidence ellipses from
two different classes do not overlap. For applications in which
more than two classes are present, a value for cluster resolu-
tion is obtained from each possible pair of classes, and then, the
product of these is computed. While this measure may account
for separation between all of the classes, it does not measure
their separability simultaneously. Skov et al. [15] define a mea-
sure called warping effect, which measures both the degree of
similarity in the aligned data set and the amount of distortion
the alignment has introduced. Because the data set may contain
different types of samples, we may want to preserve these differ-
ences post-alignment. But, the warping effect measure may not
serve to value difference preservation.

In this work, we investigate the use of the Hotelling trace cri-
terion (HTC) [24] as a metric to determine the parameters that
serve to optimally align GC data. The HTC is an omnibus mea-
sure of class separability [25] that incorporates both within-class
and between-class variations and is the multi-class extension of
the Mahalanobis distance [26]. Researchers have previously used
the HTC as a quality metric for feature enhancement in image
processing [27] and imaging system optimization [28].

We evaluated the suitability of the HTC using data from several
biodiesels derived from various feedstocks (soybean oil, canola
oil, waste cooking grease, and animal tallow) and analyzed using
gas chromatography with mass spectrometry. The COW algo-
rithm is employed as an alignment tool for the data; however, any
method that requires input parameters may be employed. We
compare the effectiveness of the HTC as a figure of merit to the
warping effect metric of Skov et al. [15].

2. THEORY

2.1. Nomenclature and terminology

A measurement vector is used to represent a sample chro-
matogram. The time axis refers to the direction over which chem-
ical components elute and along which warping and alignment
occur. We use italics for scalars (i.e., a), lowercase bold for col-

umn vectors (i.e., a), uppercase bold for matrices (i.e., A), and
superscript t to denote matrix/vector transpose. Data matrices are
also denoted by uppercase bold (i.e., X), where the row index n
corresponds to sample chromatogram, and the column index m
corresponds to retention time.

We assume a sample chromatogram has M elements (reten-
tion times), and that there are a total of N sample chromatograms
in a data set. Furthermore, we assume that each sample chro-
matogram belongs to one of K distinct classes, where there are
Nk sample chromatograms in the kth class, with N1 + N2 + � � � +
NK = N. Thus, the quantity xknm represents the measurement
of peak height at retention time index m in the nth sample
chromatogram that belongs to the kth class, while the vector
xkn is vector of measurements of the nth chromatogram from
the kth class.

Raw sample chromatograms that undergo some kind of pro-
cessing or correction will have the processing method denoted
by a superscript in parentheses. Thus, a chromatogram that has

processed with correction method Q will be denoted by x(Q)
kn .

2.2. Baseline correction

Before a sample chromatogram can be aligned and transformed
using principal components, baseline correction (BC) should be
performed, as baseline shifts can introduce artificial variability
in peak height. In our study, the baseline shape of each chro-
matogram exhibited a non-linear increase as a function of reten-
tion time. We employed a variation of the baseline correction
method of Eilers and Boelens [29] to correct for this curvature.

The method uses asymmetric least squares smoothing to
determine a baseline vector b0 that minimizes

f (b0) = kwt(b0 – xkn)k2 + �kDb0k2 (1)

where k � k is the Euclidean norm, w is a vector of weights, � is a
relaxation parameter, and D is a second-difference matrix (i.e., a
tridiagonal matrix with value 2 on the main diagonal, value –1 on
the first sub-diagonals above and below the main diagonal, and
the rest of the elements zero). The first term of f ensures b0 is a
good fit to xkn, while the second term ensures that b0 is smooth.
The parameter � controls the relative importance of these two
properties: larger � results in a smoother baseline and smaller �
results in a better fit to xkn. The weights w are used to prioritize
fitting certain points in xkn or to selectively ignore points in xkn.

Eilers and Boelens give an iterative algorithm for choosing suit-
able weights. For our purposes, a non-iterative approach sufficed,
as follows. Intuitively, we should assign zero weight to points in
xkn near peaks in the chromatogram, because peaks have large
deviations from the baseline. To identify peaks, let us assume

xkn = s + b + � (2)

where s is the non-random true peak height, b is the true non-
random baseline to be estimated, and � denotes the random
error. Furthermore, we assume that s is sparse (i.e., usually 0) with
narrow, large deviation peaks of a fixed maximum width, b is
smooth, and each component of � is normally distributed with a
small standard deviation �� .

Let mi be the median vector of elements in xkn over some
appropriately-sized window of size T centered at time index i.
Then, m � b, because the median is a robust measure of central
tendency and xkn � b + �, except for some outliers due to peaks
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in s. Furthermore, the median absolute deviation is a consistent
estimator of �� , with �� � 1.4826 �median(jxkn – mj).

We consider each xkni that lies outside an envelope defined by
mi ˙ 2�� as an outlier due to peaks in s. So, we choose weight
wi = 0 if xkni falls outside this envelope and choose weight
wi = 1 otherwise. An asymmetric least squares fitting using these
weights is then performed to obtain b0, an estimate for the true
baseline b. Subtracting the baseline yields a baseline-corrected

chromatogram x(BC)
kn

x(BC)
kn = xkn – b0 � s + � (3)

2.3. Correlation optimized warping

Prior to chemometric analysis, the full chromatograms need to be
aligned, as small shifts in chromatographic profiles with respect
to retention time can cause severe variations in chemometric
analyses [16]. The COW algorithm [14] was chosen to align our
data. This method is based on aligning a sample chromatogram
to a target chromatogram (i.e., a reference sample) by piece-wise
stretching and/or compression of segments of the data, in com-
bination with linear interpolation and optimization with regard
to the linear correlation coefficients between corresponding seg-
ments in the sample and target chromatograms. The details
of the implementation of COW can be found in Vest Nielsen
et al. [14]. Tomasi et al. [21] provide a conceptual example of
the underlying algorithm. The COW algorithm uses two input
parameters that specify the fixed size of each segment, and the
maximum amount of warping each segment may undergo. We
will refer to them as segment length and max warp, respectively.
The quality of the alignment depends heavily on the selection of
these parameters.

The choice of the reference sample is important, as it serves as
the basis of alignment for all of the other samples. In their work,
Skov et al. [15] discuss a number of approaches that can be taken
to choose this target chromatogram. In particular, they refer to
a quantity called the similarity index (SI) as a figure of merit for
determining the best reference sample. To compute SI for the

jth baseline-corrected chromatogram in the k0th class, x(BC)
k0j , we

take the product of the absolute values of the sample correla-
tion coefficients between this chromatogram and all of the other
chromatograms in all of the classes

SIj =
NY

n = 1 , n¤j

|r
�

x(BC)
k0j , x(BC)

kn

�
| (4)

The chromatogram that possesses the highest SI is regarded as
being the most similar to all of the other chromatograms. Thus, it
is chosen as the target for alignment. One then applies the COW

algorithm to each baseline-corrected chromatogram x(BC)
kn using

this reference sample to produce an aligned, baseline-corrected

chromatogram x(BC, COW)
kn .

2.4. Data transformation

After baseline correction and alignment, each chromatogram

x(BC, COW)
kn should be normalized to account for variations in injec-

tion volume. To accomplish this, the intensity at each retention
time was summed to define a total area under the nth chro-

matogram in the kth class

Akn =
MX

m = 1

x(BC, COW)
knm (5)

and the average total area of all of the chromatograms in the data
set was also computed

NA =
1

N

KX
k = 1

NkX
n = 1

Akn (6)

Each component of a given chromatogram was subsequently
divided by its total area Akn so that each normalized chro-
matogram had a unit area. To return the data to the same order of
magnitude before normalization, each chromatogram was scaled
by the average total area previously computed. These steps can
be accomplished via

x(BC, COW, NORM)
kn =

NA

Akn
� x(BC, COW)

kn (7)

Mean-centering (MC) of each chromatogram is often done
prior to chemometric analysis in order to shift the relative location
of the data to the origin. Centering the data preserves the relative
inter-sample relationships and allows one to more easily consider
relationships between samples [30]. After area normalization and
scaling, the sample grand mean chromatogram is computed

Nx(BC, COW, NORM) =
1

N

KX
k = 1

NkX
n = 1

x(BC, COW, NORM)
kn (8)

and then subtracted from each sample chromatogram to com-
pute a mean-centered, aligned, and baseline-corrected chro-

matogram x(BC, COW, NORM, MC)
kn

x(BC, COW, NORM, MC)
kn = x(BC, COW, NORM)

kn – Nx(BC, COW, NORM) (9)

In order to more easily identify differences in the chromato-
graphic profiles of the samples, the dimensionality of the chro-
matograms must be reduced while not eliminating important
information contained in the data. The principal components
transformation [26] is used for this purpose. It is a multivariate
statistical technique that reorders the large numbers of possibly
correlated measurements into a smaller set of uncorrelated fea-
tures, called PCs. More importantly, these PCs still retain most
of the variation in the original data set [30,31]. Ideally, only the
important discriminating characteristics of the original data are
retained within a small set of features, from which natural clusters
of similar samples can be identified.

Let S represents the sample covariance matrix of the entire set
of processed sample chromatograms with eigen decomposition
[26,32,33] given by

S = UƒUt (10)

where U is the orthogonal matrix whose columns are the
eigenvectors (loadings) of S, and ƒ is the diagonal matrix of
eigenvalues that represent the variances related to each PC
variable. Then, ykn, the vector of PCs for sample chromatogram

x(BC, COW, NORM, MC)
kn is computed via the matrix transformation
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ykn = Utx(BC, COW, NORM, MC)
kn (11)

Each PC is a linear combination of the original measurements.
Furthermore, only the first few elements of ykn will likely con-
tain useful information for the purpose of discrimination between
sample classes.

2.5. Optimization criteria

As previously stated, the COW algorithm requires two user-
defined input parameters: segment length and max warp. The
selection of these parameters affects how well the alignment is
performed. In order to identify the best parameter values, we
have to decide on a figure of merit for judging the effectiveness
(or quality) of the alignment.

2.5.1. Warping effect

Some authors have conjectured that making the entire set of
chromatograms as similar as possible while retaining peak shape
and area should be the goal of alignment. Skov et al. [15] have
defined a figure of merit to quantify this similarity called warp-
ing effect, which is the sum of two quantities: simplicity and peak
factor. Simplicity is related to the rank of the data matrix for the
aligned, baseline-corrected chromatograms. A data matrix with
rank 1 means that there is only one linearly independent sam-
ple chromatogram, and that all of the other chromatograms are
scalar multiples of the first. Thus, higher values for simplicity
means that the chromatograms are more similar, thus reflecting
that they are better aligned.

If X is the data matrix for the aligned, baseline-corrected chro-
matogram profiles, then simplicity is defined to be [15]

simplicity =
RX

r = 1

0
B@SVD

0
B@X/

vuuut
KX

k = 1

NkX
n = 1

MX
m = 1

x2
knm

1
CA

1
CA

4

(12)

where r is the singular value index and division by the total sum
of the elements in X scales the singular values so that they sum to
1. Values of simplicity closer to 1 indicate that the chromatograms
are better aligned, while values closer to 0 correspond to devia-
tions from ideal alignment.

The second quantity, peak factor, is intended to measure how
much the shape and peak area of chromatograms have been
changed by the warping. If we define

ckn = |
k x(BC, COW)

kn k – k x(BC)
kn k

k x(BC)
kn k

(13)

as the relative error between a baseline-corrected chromatogram
before alignment and after alignment, then peak factor can be
computed as [15]

peak factor =
1

N

KX
k = 1

NkX
n = 1

�
1 – min

�
ckn, 1

�2
�

(14)

When alignment distorts a sample, ckn will be large, and so its
contribution to peak factor will be zero. However, when the sam-
ple stays relatively unchanged, ckn will be small and thus will
contribute a 1/N to the sum. Thus, better alignment corresponds

Figure 1. Representative total ion chromatograms from each fuel class
showing separation of FAME components for m/z = 20 to 400 for biodiesel
fuels produced from different feedstock types.
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Figure 2. A plot of median cumulative percent total variation versus
eigenvalue index, along with 95% confidence bounds.

to larger values for simplicity and peak factor and consequently
for warping effect.

2.5.2. Hotelling trace criterion

For a set of chromatograms that contains samples from different
classes, we would like to identify those differences. Therefore, it is
desirable to remove variation in peak location along the time axis
but retains variation in peak height. Simplicity is a global measure
of similarity between all of the samples that does not quantify
class separability, and so maximizing it might not serve to identify
the segment length and max warp parameters that best retain
these differences. Ideally, we would like to use a measure that
reflects our ability to discriminate between the different classes
of biodiesels.

When there are two multivariate populations present, the sam-
ple Mahalanobis distance [26] gives a numerical measure of the
distance between the distributions. However, we have K > 2
multivariate populations to consider. In this scenario, the HTC
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[24,27,28], which is the multi-class extension of the Mahalanobis
distance, provides us with this same numerical measure of dis-
tribution separability. Like the Mahalanobis distance, the HTC
incorporates both within-class and between-class variations in
the data set. We evaluated the HTC based on the PCs of our
transformed sample chromatograms.

Let zkn = (ykn1, ykn2, � � � , yknL)t denotes the L � 1 vector cor-
responding to the first L PCs of ykn, where ykn is the nth PC
vector belonging to the kth class. The sample mean vector Nzk
and sample covariance matrix Sk for the kth class are given
respectively by

Nzk =
1

Nk

NkX
n = 1

zkn (15)

and

Sk =
1

Nk – 1

NkX
n = 1

�
zkn – Nzk

� �
zkn – Nzk

�t (16)

Furthermore, we define the grand mean vector of all of the
classes as

NNz =
KX

k = 1

Pk Nzk (17)

where Pk = Nk/N is the probability of occurrence for class k. Using
these quantities, we define the within-class scatter matrix Swc as

Swc =
KX

k = 1

PkSk (18)

and the between-class scatter matrix Sbc as

Sbc =
KX

k = 1

Pk
�
Nzk – NNz

� �
Nzk – NNz

�t
(19)

The matrix Swc quantifies the average multi-dimensional disper-
sion within each class about the class mean, while Sbc quantifies
the average multi-dimensional dispersion between each class
mean and the grand mean. The HTC is then defined to be

J = tr
�

S–1
wcSbc

�
(20)

where tr(�) denotes the trace of the matrix argument. Large
values of J correspond to better class separability. Smaller
within-class variation increases the value of J, as does larger
between-class variation.

Thus, we seek to use the HTC as our optimization metric, in
order to identify the values of segment length and max warp

needed for COW alignment that will maximize the separability of
the different classes of biodiesels. It is important for the reader to
note that our computation of the HTC is dependent on the num-
ber of PCs (L) that we include in zkn. In fact, as L increases, the
value of the HTC will also increase.

3. EXPERIMENTAL METHODS

3.1. Chemicals

Biodiesel fuel samples were obtained from various manufactur-
ers throughout the USA (Minnesota Soybean Processors (soybean
biodiesel, Minn Soy 2010, 2011), Western Dubuque Biodiesel
(soybean biodiesel, Iowa Soy 2010), Iowa Renewable Energy
(soybean biodiesel, canola biodiesel, tallow biodiesel, IRE Soy,
canola, Tallow 2012), National Institute of Standards and Tech-
nology (Standard Reference Material (SRM) 2772, soy SRM, soy-
bean biodiesel from Ag Processing Inc. and SRM 2773, animal
SRM, tallow/soybean biodiesel mixture from Smithfield BioEn-
ergy LLC), ADM Company (canola biodiesel, ADM Canola 2010,
2011), TMT Biofuels (waste grease biodiesel, Waste Grease 2010,
2011), Texas Green Manufacturing (beef tallow biodiesel, Texas
Tallow 2010, 2012), and Keystone Biofuels (unknown biodiesel,
Keystone 2010)) and were stored in their original shipping con-
tainer at 4 ıC. Prior to dilution, each biodiesel was gradually
warmed to room temperature and was inverted multiple times to
ensure homogeneity. An amount of 1 mL of each biodiesel sam-
ple was diluted to 100 mL total volume with methylene chloride
(BDH chemicals distributed by VWR, West Chester, PA, USA), and
1 mL of 0.30 M tridecanoic acid methyl ester (Fluka) was added
to a 50-mL volumetric flask and was diluted to volume with the
100:1 biodiesel. Tridecanoic acid methyl ester (C13) was cho-
sen as an internal standard as it was not present in any of the
biodiesel samples originally. All diluted biodiesel solutions were
stored in amber bottles at 4 ıC and were gradually warmed to
room temperature prior to analysis.

3.2. Instrumentation

Separations were performed using an Agilent 6890 gas
chromatograph coupled with an Agilent 5937 mass spec-
trometer (Agilent Technologies, Santa Clara, CA, USA) and
have been presented in detail previously [34]. The gas chro-
matography with mass spectrometry was equipped with a
polyethylene glycol fused-silica capillary column of dimensions
30 m� 0.25 mm� 0.25�m (ZB-WAXplus, Phenomenex). The
oven temperature was optimized to ensure baseline resolution of
all Fatty acid methyl esters (FAME) in a 37-component FAME stan-
dard (Supelco) and was as follows: 60 ıC (hold 2 min) to 150 ıC
at 13 ıC/min to 230 ıC at 2 ıC/min. High purity helium was used

Table I. Segment length and max warp at the maximum Hotelling trace
criterion (HTC) value as a function of the number of principal components
(PCs) used in the calculation of the HTC. The value of warping effect for these
segment length-max warp combinations was also included for comparison
purposes

Number of PCs (L) Segment length Max warp Max HTC Warp effect

1 64 3 143.5 1.65
2 55 8 244.2 1.69
3 70 6 298.6 1.692
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Figure 3. Two-dimensional (2D) density plots of simplicity, peak factor, and warping effect. Maximum values for both simplicity and warping effect
occurred for segment length-max warp of (26,15).

as a carrier gas at a nominal flow rate of 1.5 mL/min. Each sample
was injected via syringe (1�L injected from 10�L syringe, Hamil-
ton Company) with a split ratio of 50:1. The inlet and transfer line
temperatures were held at 250 ıC and 280 ıC, respectively. An
electron-impact ionization source was utilized with a quadrupole
mass analyzer operated in full-scan mode (m/z 20,300) with a
sampling rate of 4.94 scans/s. The mass spectrometer source
and quadrupole were held at 230 ıC and 150 ıC, respectively.

FAME identification was performed using the mass spectra
library (National Institute of Standards and Technology mass
spectral search program version 2.0a, Gaithersburg, MD, USA) as
well as retention time comparison to the FAME standard. Repre-
sentative total ion chromatograms from each fuel class showing
separation of FAME components for m/z = 20 to 400 for biodiesel
fuels produced from different feedstock types are shown
in Figure 1.
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Figure 4. Two-dimensional (2D) density plots of Hotelling trace criterion (HTC). Maximum values occurred for segment length-max warp combinations
of (64,3) using one principal component (PC), (top), (55,8) using two PCs (middle), and (70,6) using three PCs (bottom).

3.3. Data processing

Total ion chromatograms were extracted from Chemstation using

a macro developed by Infometrix (Bothell, WA, USA). All chro-
matograms were first baseline corrected using a python imple-
mentation of the method previously described with window size
T = 1000, a maximum peak detection width of 20, and relaxation
parameter � = 107. In addition, portions of the chromatogram

that did not contain chemical information (0–5 min and 40.37–
48.92 min) were removed prior to further chemometric analysis,
resulting in 10,500 sample values in each chromatogram.

Next, the chromatograms were aligned using a MATLAB imple-
mentation of the COW algorithm (http://www.models.life.ku.dk/
algorithms) under the same combinations of segment length-
max warp as seen in Skov et al. [15]. Segment lengths ranged
from 10 through 70. For segment lengths between 10 and 19
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(inclusive), max warp was equal to segment length minus 4.
For segment lengths greater than or equal to 20, max warp was
fixed at 15. This produced 870 total aligned, baseline-corrected
data sets. The reference sample, a waste grease, was determined
as the sample chromatogram that produced the largest SI.

The 870 aligned, baseline-corrected data sets were then nor-
malized and scaled as previously described using MATLAB scripts
written in-house. The PC transform was then computed for each
data set and was applied to each chromatogram to gener-
ate the corresponding PC scores using MATLAB’s statistics tool-
box. Only PC information regarding the 10 largest eigenvalues
was retained.

After all of the data had been fully processed, the figures
of merit were tabulated. For each of the 870 aligned, baseline-
corrected data sets, the value of warping effect was com-
puted. Because each data file correspondeds to COW processing
with a particular combination of segment length-max warp, we
arranged the values of warping effect into a two-dimensional
(2D) density plot, with segment length along the horizontal axis
and max warp along the vertical axis. Furthermore, for each of

the 870 PC-transformed data files, the HTC was computed as
a function of the number of PCs L. There were five classes of
biodiesels: soy (six different samples), canola (three different sam-
ples), tallow (three different samples), waste grease (two different
samples), and hybrid (one sample – 15% soy and 85% tallow) with
each sample measured in three different runs. The HTC values
also corresponded to COW processing with a particular segment
length-max warp, so the HTC values were similarly arranged into
2D density plots. MATLAB scripts to perform these computa-
tions were written in-house and are available from the authors
upon request.

The maximum warping effect was found to be 1.74, obtained
using a segment length-max warp pair of (26,15). The reader
should also note that processing with this parameter combina-
tion produced the following values for the HTC: 31.3 (L = 1), 55.9
(L = 2), and 104.6 (L = 3). We chose L = 3 as the maximum num-
ber of PCs to include in the calculation of HTC, as over 90% of the
cumulative percent total variation is accounted for when L = 3, as
can be seen in Figure 2. We also found the maximum HTC value
as a function of L and determined the combinations of segment

Figure 5. Scatter plots of principal component (PC)2 versus PC1 for combinations of segment length-max warp (26,15) (top left), (64,3) (top right), (55,8)
(bottom left), and (70,6) (bottom right). Classes displayed are as follows: soy (ı), canola (˘), tallow (�), waste grease (*), and hybrid (+).
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length-max warp that produced them. It should be noted that
these combinations changed with L. These results can be seen
in Table I.

Two-dimensional scores plots of combinations of the first,
second, and third PCs of the data sets corresponding to seg-
ment length-max warp combinations of (26,15), (64,3), (55,8),
and (70,6), were then created. Confidence ellipses were also
determined using a method similar to that described in [35]
and implemented by Schwarz [36]. These were included on the
scores plots.

4. RESULTS AND DISCUSSION

The results of our investigation into the optimization of the
COW algorithm parameters can be seen in Figures 3–7 and
Tables II–III. Figure 3 displays 2D density plots of simplicity, peak
factor, and warping effect, as functions of segment length-max
warp. The analogous 2D density plots of the HTC, using one, two,
or three PCs in its computation are given in Figure 4. 2D scores
plots of pair-combinations of the PCs, along with corresponding
95% confidence ellipses are displayed in Figure 5 (PC2 vs PC1), in
Figure 6 (PC3 vs PC1), and in Figure 7 (PC3 vs PC2), for the four

groupings of segment length-max warp discussed in the Exper-
imental Methods section. Table II lists the Euclidean distances
between each pair of class means, while Table III lists the ratios
of the standard deviations along the principal axes of each class,
where the numerator is the class standard deviation of the data
derived from maximizing the HTC, while the denominator is the
class standard deviation of the data derived from maximizing the
warping effect.

Considering Figure 3, the density plot for peak factor (middle)
is fairly uniform. In fact, peak factor values ranged from 0.9934
to 1.0. Because of this narrow range, the density plot for warping
effect was approximately the same as the density plot for sim-
plicity plus a constant factor. We note that maximum values of
both simplicity and warping effect occurred at segment length-
max warp combination (26,15). However, the range of values of
both of these figures of merit is small. Therefore, based only on
these density plots, it is difficult to determine if the segment
length-max warp parameters corresponding to the maximum will
result in any meaningful differences in discriminability between
the classes.

This limited range in values is not seen for the HTC figure
of merit. In Figure 4, the corresponding 2D density plots for

Figure 6. Scatter plots of principal component (PC)3 versus PC1 for combinations of segment length-max warp (26,15) (top left), (64,3) (top right), (55,8)
(bottom left), and (70,6) (bottom right). Classes displayed are as follows: soy (ı), canola (˘), tallow (�), waste grease (*), and hybrid (+).
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the HTC, as a function of the segment length-max warp com-
bination, are given. The broader range in values can be seen
visually and by examining the color bars in each plot. As previ-
ously noted, maximum values occurred for segment length-max
warp combinations of (64,3) using one PC, (55,8) using two PCs,
and (70,6) using three PCs. Two important observations can be
noted. First, the HTC values exhibit greater variation in magni-
tude as compared with the measures of simplicity and warping
effect. Thus, there should be substantive differences in class sep-
arability when using different combinations of segment length-
max warp. Second, the magnitude of the HTC increases as the
number of PCs used in the calculation increases. Thus, the user
must decide to either use a specific number of PCs in the cal-
culation of the HTC or to evaluate the results for a variety of
numbers of PCs.

We now turn our discussion to the PC scores plots. Recall-
ing Figure 2, the first three PCs account for approximately 90%
of the total variation, on average. Thus, scores plots of pair-
combinations of the first three PCs should indicate optimal clus-
tering of the different types of biodiesels.

Examining Figure 5 (top left), when the data are aligned using
a segment length-max warp combination of (26,15), parameters

found to maximize the warping effect; canola and tallow classes
are well separated. However, the soy and waste grease classes
overlap. Moreover, the samples from the hybrid class lie outside of
the 95% confidence ellipses of the other classes but are spatially
close to the tallow class. This makes sense because the hybrid
samples contain 85% tallow. Selecting alignment parameters that
maximize the HTC (top right and bottom left and right) figure of
merit leads to stronger separation for all classes with no over-
lapping. Again, the hybrid samples remain spatially close to the
tallow class.

The reader will note that confidence ellipses were not calcu-
lated for the hybrid class. This is because of the fact that there
were only three observations in this class. This sample size was
not sufficient to derive an accurate estimate for the covariance
matrix of that class [37]. The eigenvectors derived from the diag-
onalization of this covariance matrix are used to determine a
confidence ellipse.

Considering the scores plots of PC3 versus PC1 in Figure 6, all
of the combinations of segment length-max warp result in an
overlap of the canola and tallow classes. However, only those
combinations that correspond to a maximized HTC kept the soy
and waste grease classes separated. None of the combinations

Figure 7. Scatter plots of principal component (PC)3 versus PC2 for combinations of segment length-max warp (26,15) (top left), (64,3) and (55,8) (top
right), (55,8) (bottom left), and (70,6) (bottom right). Classes displayed are as follows: soy (ı), canola (˘), tallow (�), waste grease (*), and hybrid (+).

J. Chemometrics 2015; 29: 200–212 Copyright © 2015 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Table II. Euclidean distances between pairs of class means
for data in scores plots comparing principal component
(PC)2 versus PC1. All values should be scaled by 106

Segment length/max warp (26,15)

Class Soy Canola Tallow Waste grease

Soy 0 – – –
Canola 9.49 0 – –
Tallow 10.74 8.91 0 –
Waste grease 2.76 6.88 8.64 0

Segment length/max warp (64,3)

Class Soy Canola Tallow Waste grease

Soy 0 – – –
Canola 11.66 0 – –
Tallow 11.87 9.95 0 –
Waste grease 3.08 8.69 9.58 0

Segment length/max warp (55,8)

Class Soy Canola Tallow Waste grease
Soy 0 – – –
Canola 11.24 0 – –
Tallow 12.11 9.69 0 –
Waste grease 3.35 7.98 9.68 0

Segment length/max warp (70,6)

Class Soy Canola Tallow Waste grease

Soy 0 – – –
Canola 11.40 0 – –
Tallow 11.80 9.71 0 –
Waste grease 3.16 8.33 9.44 0

obscure the hybrid class; however, it appears less isolated from
the other classes in the plot for the (26,15) combination.

For completeness, we also wanted to determine how well the
second and third PCs together separate the classes. This can be
seen in Figure 7. Examining this plot, all combinations separate
the canola class well. However, none of the combinations allow
for easy discrimination between the soy, tallow, waste grease, and
hybrid classes. PC3 only accounts for about 5% of the total varia-
tion in the data, while PC2 accounts for around 25% of the total
variability. We conclude that these two PCs alone do not account
for enough of the variation in the data to separate the classes.

At this point, it is clear that comparison of the first two PCs
best allows for discrimination between the classes. Between-class
variability seems larger for the combinations where the HTC is
maximized, as opposed to the combination where the warp-
ing effect is maximized. Also, within-class variability seems to be
reduced, at least for some of the classes.

To quantify these observations, we computed the Euclidean
distances between each pair of class means, for each combination
of segment length-max warp that we analyzed. We also com-
puted the ratios of the standard deviations between the classes
where the HTC was maximized versus those where the warping
effect was maximum. This was accomplished by finding the eigen

Table III. Ratios of standard deviations between
corresponding principal axes for data derived from
maximizing Hotelling trace criterion (HTC) versus
data derived from maximizing warping effect

Ratios for segment length/max warp (64,3) to (26,15)

Class first major axis second major axis

Soy 1.36 1.02
Canola 2.46 0.97
Tallow 1.03 2.15
Waste grease 0.74 0.47

Ratios for segment length/max warp (55,8) to (26,15)

Class first major axis second major axis

Soy 0.94 0.92
Canola 1.06 0.80
Tallow 0.86 1.30
Waste grease 0.68 0.68

Ratios for segment length/max warp (70,6) to (26,15)

Class first major axis second major axis

Soy 1.14 0.71
Canola 1.10 0.69
Tallow 0.86 1.30
Waste grease 0.49 0.69

decomposition of the covariance matrix for each class separately
and by using the square root of each eigenvalue to measure the
length of each principal axis. The ratios of the standard devia-
tions of the corresponding principal axes were then tabulated.
A ratio of 1.0 would mean that the two methods produced the
same amount of within-class variability in that class for that prin-
cipal direction of the distribution, while a ratio less than one
means that the data derived from maximizing the HTC has less
within-class variation in that class for that principal direction of
the distribution. The reader should note that the orientation of
the axes are not incorporated into this quantity. The results can
be seen in Tables II and III.

Examining Table II, the Euclidean distance between each pair
of class means is greater for the data produced from the seg-
ment length-max warp combinations derived by maximizing the
HTC, as compared to that combination derived by maximizing
the warping effect. This is expected because of the fact that the
HTC does incorporate between-class variation into its estimate of
class separability. Also, this result is consistent regardless of the
number of PCs that are used in the calculation of the HTC.

Considering Table III, there is no discernible pattern to whether
one method consistently reduces within-class variability over
another method. For some classes, within-class variability is
smaller using the segment length-max warp derived from maxi-
mizing the HTC, while for others, it is smaller using the combina-
tion derived from maximizing warping effect. However, it is worth
noting that when using two PCs to compute the HTC, within-class
variability is reduced in all of the classes with respect to both prin-
cipal axes, except for canola along its first major axis and tallow
along its second major axis.
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We remind the reader that within-class variation is not mini-
mized, and between-class variation is not maximized simultane-
ously when the HTC is maximized. The HTC is a summary measure
that incorporates estimates of both within-class and between-
class variations. Thus, we would not expect within-class variation
to be systematically smaller when the HTC is at a maximum.

5. CONCLUSIONS

We have presented a method for optimization of chromatogram
alignment using a class separability criterion. The optimal seg-
ment length and max warp for the COW algorithm were found
by evaluating a figure of merit called the HTC. In addition, we
compared our results with those derived from maximizing the
warping effect figure of merit of Skov et al. [15]. These met-
rics were tested on data derived from biodiesel feedstock sam-
ples representing classes of soy, canola, tallow, waste grease,
and hybrid.

The results demonstrated that the combination of segment
length and max warp derived from maximizing the HTC produced
scores plots in which different classes of biodiesels were optimally
separated, while the parameters derived from maximizing warp-
ing effect did not separate the classes as well. This behavior was
robust to the number of PCs used in the computation of the HTC.
Thus, the HTC can be used to find the optimal parameter values
for the COW algorithm.

One limitation in using the HTC is that the classes to which each
biodiesel belongs must be known. Thus, the HTC is appropriate
to use to optimize a particular known multi-class data set or to
aid in the construction of an optimal linear discriminant [25,38]
for classification of unknown biodiesels, as long as the unknown
samples share similar chemical properties with the known train-
ing set. We conclude that the HTC is an objective measure of the
quality of chromatogram alignment that allows for optimal class
separability and which can be applied to optimize other methods
of chromatogram alignment.
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