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I. Introduction and Motivation

9th Annual Meeting of SIAM Central States
Section, October 5-6, 2024, Kansas City, Missouri



Advection-Diffusion-Reaction Equations

ut +∇ · [f(u)−D(u)∇u] = q(u)

Models in science and engineering often embody conservation laws for

1. Advection, ut +∇ · f(u) = 0

• conservative transport of a substance
• mathematically hyperbolic

2. Diffusion, ut −∇ ·D(u)∇u = 0

• spreading or mixing of a substance to the average of its
surroundings
• mathematically parabolic (or elliptic)

3. Reactions, ut = q(u) [Omit for this talk]

• substances transform to other substances or phases
• mathematically an ordinary differential equation

These are systems of advection-diffusion-reaction equations.

• The equations may be advection dominated
• The diffusion may degenerate to zero
• The solution to the equations can develop steep fronts or shocks
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Hyperbolic Equations

ut +∇ · f(u) = 0

• Mass conservative
• Linear transport in 1D is simple translation

ut + aux = 0, u(x,0) = u0(x) =⇒ u(x, t) = u0(x− at)
A discontinuity in u0 propagates as a contact discontinuity.
• Nonlinear transport in 1D has variable speed

ut + f ′(u)ux = 0, u(x,0) = u0(x)

If f(u) grows with u, a shock discontinuity can form.

• Solutions do not become smoother in time (the solution operator is
not compact), but solutions are total variation diminishing

TV(u)(t) =
∫
|ux(x, t)| dx ≤ TV(u0) =

∫
|u′0(x)| dx

The solution does not oscillate.
• Hyperbolic scaling: Space and time scale as t ∼ x

u(x, t) = U(ξ(x, t)) =⇒ ut = U ′ξt ∼ ux = U ′ξx =⇒ dt ∼ dx
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Parabolic Equations

ut −∇ · [D(u)∇u] = 0

• Mass conservative

• Solutions smooth in time (the solution operator is compact on

Sobolev spaces)

• Solutions are continuous. Initial discontinuities disappear immediately.

• The maximum principle: u is the average of nearby values.

The solution does not oscillate.

• Parabolic scaling: Space and time scale as t ∼ x2

u(x, t) = U(ξ(x, t)) =⇒ ut = U ′ξt ∼ uxx = U ′ξxx + U ′′(ξx)2

=⇒ dt ∼ dx2
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Some Implications for Numerical Methods

Solve the physical problem accurately

1. Conserve mass locally.
2. Support discontinuous solutions, to handle shocks or steep fronts.
3. Satisfy the maximum principle, or at least non-oscillatory solutions.

Compute efficiently

4. Use high order methods in space. More efficient use of the DoFs.
5. Use high order, implicit methods in time. Improves stability.
6. Use a minimal number of degrees of freedom (DoFs). Reduces

memory bandwidth.

Handle medium heterogeneity (specific to porous media)

7. General computational meshes. Follow rock strata and allow local
refinement.

8. Maximize the mesh resolution. Better resolve the heterogeneity in
the permeability and porosity.

Main Difficulty: These objectives are in opposition to each other!
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II. Conforming Finite Element
Approximations

Challenges:

• Not many conforming finite elements on polygons are available.

• We want finite elements with the minimal number of DoFs.
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Minimal DoF Elements on Rectangles

Related by de Rham complex. (Arnold, Falk & Winther 2006)

R ↪−→H1(E4)
curl−−−→ H(div, E4))

div−−−→ L2(E4) −→ 0

R ↪−→Sr+1(E4)
curl−−−→ BDMr(E4)

div−−−→ Pr−1(E4) −→ 0

Serendipity finite elements. Sr on rectangle E4

• Sr = Pr(E4)⊕ span{xry, xyr}
• H1-conforming

• Approximate scalars to O(hr+1)

S3 ⊃ P3

(S3 6= P3,3)

BDM mixed finite elements. BDMr on rectangle E4

• BDMr = P2
r ⊕ span{curl(xry), curl(xyr)}

• H(div)-conforming

• Approximate vectors to O(hr+1)

→
→
→

→
→
→

v1

→ → →

→ → →

v2

BDM2

⊃ P2
2

Finite elements for the divergence Pr on rectangle E4

• Pr(E4)

• L2-conforming (no continuity)

• Approximate scalars to O(hr+1)

P1
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Objective

Extend the theory of serendipity and mixed

finite elements on rectangles to polygons

Challenge. Quadrilaterals are not affine equivalent to squares.

Ê
F
−−−→ E

The map F : Ê → E is bilinear, so we lose accuracy in the approximation.

Solution. We define direct finite element spaces that

• include polynomials Pr directly in the space (for approximation)

• use minimal number of DoFs subject to Sobolev space conformity

Strategy. For a convex polygon EN with N sides,

1. first define direct serendipity elements DSr(EN)

2. then use de Rham theory to define direct mixed elements Vr(EN)
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1. Direct Serendipity
Finite Elements DSr(EN)

for Approximation of Scalars
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DoF Count for H1-Conformity

Require DSr(EN) ⊃ Pr(R2)
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Pr−N(R2)

Pr−2(R)

� if r ≥ N

-if r ≥ 2

DoFs required for H1-Conformity (N ≥ 3, r ≥ 1)

Object Object DoFs per Total
Count Object DoFs

vertex N 1 N

interior edge N dimPr−2(R) N(r − 1)

interior cell 1 dimPr−N(R2)
1

2
(r −N + 2)(r −N + 1)︸ ︷︷ ︸

provided r ≥ N − 2
Minimal DoFs.

dimDSr(En) = dimPr(E) +

1
2N(N − 3), r ≥ N − 2

Nr − 1
2(r + 2)(r + 1), r < N − 2
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Require a Supplemental Space SDSr (EN)

The DoF count implies

DSr(EN) = Pr(EN)⊕ SDSr (EN)
(
so Pr(EN) ∩ SDSr (EN) = {0}

)
where

dim SDSr (EN) =


1
2N(N − 3), r ≥ N − 2

Nr − 1
2(r + 2)(r + 1) < 1

2N(N − 3), r < N − 2

Case r ≥ N − 2. For each of the N edges, there are N − 3 nonadjacent

edges. That is, the number of nonadjacent edge pairs is

1

2
N(N − 3) = dim SDSr (EN)

Supplemental basis functions arise from nonadjacent pairs of edges!

Case r < N − 2: Counterintuitive observation. Case r ≥ N − 2 is easier!

Cannot build higher order spaces from r = 1 (barycentric coordinates).

We will define DSr(EN) ⊂ SDSN−2(EN).
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Special Linear Polynomials

Use CCW Ordering

(and mod N as needed).
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Linear polynomial λi for edge ei. Define

λi(x) = −(x− xi) · νi ∝
distance of x to the

line through edge ei

=⇒ λi
∣∣∣
ei

= 0 (zero line contains ei)

λi > 0 on the interior of EN

Not barycentric coordinates!

Linear polynomial λi,j for edges ei and ej. Choose any linear polynomial

λi,j with zero line joining ei and ej. (Connect the midpoints?)
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Special “Rational” Functions

For ei and ej not adjacent and i < j (mod N), take any Ri,j(x) such that

{
Ri,j(x)|ei = −1

Ri,j(x)|ej = 1
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• A rational function (but can be hard to integrate)

Ri,j(x) =
λi(x)− λj(x)

λi(x) + λj(x)

• A piecewise continuous function so that quadrature rules are exact.
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The Space DSr(EN), r ≥ N − 2

Theorem. The finite element

DSr(EN) = Pr(EN)⊕ SDSr (EN)

SDSr (EN) = {ϕi,j : i, j = 1, . . . , N, i, j nonadjacent}

ϕi,j =
( ∏
m 6=i,j

λm

)
︸ ︷︷ ︸

λr−N+2
i,j︸ ︷︷ ︸

Ri,j︸︷︷︸
= 0 except variation opposite signs

on edges i, j on edges i, j on edges i, j︸ ︷︷ ︸
polynomial of degree r
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is well defined (i.e., unisolvent with nodal DoFs).

Moreover, it has the minimal number of DoFs needed

• to contain Pr
• for H1 conformity
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Examples of Basis Functions

Edge node for DS3 on a pentagon

Vertex node for DS3 on a pentagon
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Direct Serendipity Elements DSr(EN) for r < N − 2

Lack of symmetry makes it difficult to define supplemental functions!

Examples. DSr(E5)

r = 1 =⇒ 2 supplemental functions
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Definition. Take DSr(EN) ⊂ DSN−2(EN), i.e.,

DSr(EN) =
{
ϕ ∈ DSN−2(EN) : ϕ|ei ∈ Pr(ei) for all edges ei of EN

}

Theorem. The finite element DSr(EN) is well defined (i.e., unisolvent
with nodal DoFs) when r < N − 2. Moreover,

DSr(EN) = Pr(EN)⊕ SDSr (EN) ⊂ DSN−2(EN)

for some supplemental space of minimal dimension needed for
H1-conformity.
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Basis Functions of DS1(E5)
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Remark. These appear to be barycentric coordinates (but we do not

prove they are nonnegative).
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2. Direct Mixed Elements Vs
r(EN)

for Approximation of Vectors
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De Rham Theory

The de Rham complex of interest

R ↪−→ H1 curl−−−→ H(div)
div−−−→ L2 −→ 0

• The curl (or rot) of a scalar function is

curlφ =

(
∂φ

∂x2
,−

∂φ

∂x1

)
• The image of one linear map is the kernel of the next

We have the decompositions

R i
↪−→ i(R)⊕

(
H1/R

) curl−−−→ curl
(
H1/R

)
⊕G

div−−−→ divG
0−→ 0

= H1 = H(div) = L2

curl i(R) = 0 curl div = 0

Thus

div : G
1 to 1, onto
−−−−−−→ L2 =⇒ G = div−1L2

Helmholtz decomposition

H(div) = curl
(
H1/R

)
⊕G, G = {∇ϕ : ϕ ∈ H1}
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Direct Mixed Finite Element Vs
r(EN)

R ↪−→ H1 curl−−−→ H(div)
div−−−→ L2 −→ 0

Finite Element Exterior Calculus (Arnold, Falk & Winther 2006)

R ↪−→ DSr+1(EN)
curl−−−→ Vs

r(EN)
div−−−→ Ps(EN) −→ 0

Fact: ∇· : xPs → Ps is one-to-one and onto

1. Reduced H(div)-approximating direct finite elements (s = r− 1, r ≥ 1)

Vr−1
r (EN) = curlDSr+1(EN)⊕ xPr−1 (DSr+1 = Pr+1 ⊕ SDSr+1(EN))

= curlPr+1(EN)⊕ curl SDSr+1(EN)⊕ xPr−1

= P2
r (EN)⊕ SVr (EN) (P2

r = curlPr+1 ⊕ xPr−1)

The supplemental (vector valued) functions are

SVr (EN) = curl SDSr+1(EN)

2. Full H(div)-approximating direct finite elements (s = r ≥ 0)

Vr
r(EN) = curlDSr+1(EN)⊕ xPr

= curlPr+1(EN)⊕ xPr ⊕ curl SDSr+1(EN)

= P2
r (EN)⊕ x P̃r︸︷︷︸⊕ SVr (EN) (P2

r = curlPr+1 ⊕ xPr−1)

homogeneous polynomials
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Direct Mixed Elements are Well Defined

1. Edge DoFs:
∫
ei
ψψψ · νi p dσ ∀p ∈ Pr(ei), i = 1,2, . . . , N

Control normal components

2. Divergence DoFs:
∫
EN

ψψψ · ∇q dx ∀q ∈ Ps(EN), q not constant

Control divergence

3. Curl DoFs:
∫
EN

ψψψ · v dx ∀v ∈ BVr (EN) = curlBr+1(EN)

Control the curl (if r ≥ N − 1)

Br+1(EN) = λ1λ2 . . . λN Pr−N+1(EN)

Theorem. Let r = 0,1, . . . and s = r or s = r − 1 ≥ 0.

The finite element Vs
r(EN) is well defined (i.e., unisolvent).

Moreover, it has the minimal number of DoFs needed so that

• Vs
r(EN) ⊃ P2

r

• Vs
r(EN) is H(div) conforming

• ∇ ·Vs
r(EN) = Ps
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3. Approximation Properties
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Quasi-Optimal Approximation

Let Th be a uniformly shape regular partition of Ω into convex polygons.

Interpolation operators. We can define operators

• Scott-Zhang interpolation Irh into DSr (cf. Scott & Zhang 1990)

• Raviart-Thomas projection π
r,s
h into Vs

r (cf. Raviart & Thomas 1977)

• L2 projection PWs into Wh = ∇ ·Vs
r

Theorem. For scalar p and m = 0,1,

inf
wh∈DSr(Ω)

‖p− wh‖Hm(Ω) ≤ ‖p− Irh p‖Hm(Ω) ≤ C hr+1−m ‖v‖Hr+1(Ω)

Theorem. For vector u and scalar p, with s = r − 1, r (s ≥ 0),

‖u− πr,sh u‖L2 ≤ C ‖u‖Hr+1 h
r+1

‖∇ · (u− πr,sh u)‖L2 ≤ C ‖∇ · u‖Hs+1 h
s+1

‖p− PWsp‖L2 ≤ C ‖p‖Hs+1 h
s+1

Moreover, the discrete inf-sup condition holds for some γ > 0:

sup
vh∈Vs

r

(wh,∇ · vh)

‖vh‖H(div)
≥ γ ‖wh‖L2, ∀wh ∈Ws

Convergence tests: Use a manufactured solution

p(x, y) = sin(πx) sin(πy) solving −∆p = f, 0 < x < 1, 0 < y < 1
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Convergence for Pr,r, Sr, and DSr on Trapezoids—1

L2-errors and convergence rates on trapezoidal meshes

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

mapped Pr,r, dim = O(r2)
8 3.329e-04 2.99 9.740e-06 3.99 2.382e-07 4.99 5.076e-09 5.99

12 9.888e-05 2.99 1.928e-06 3.99 3.142e-08 5.00 4.462e-10 6.00
16 4.176e-05 3.00 6.107e-07 4.00 7.459e-09 5.00 7.946e-11 6.00
24 1.238e-05 3.00 1.207e-07 4.00 9.827e-10 5.00 6.979e-12 6.00

O(h3) O(h4) O(h5) O(h6)

mapped Sr, dim = O(r2/2)
8 5.714e-04 2.92 4.844e-04 2.89 2.612e-05 3.72 2.005e-06 4.13

12 1.731e-04 2.94 1.482e-04 2.92 6.084e-06 3.59 3.884e-07 4.05
16 7.409e-05 2.95 6.383e-05 2.93 2.265e-06 3.43 1.234e-07 3.99
24 2.254e-05 2.94 1.963e-05 2.91 5.984e-07 3.28 2.516e-08 3.92
48 3.127e-06 2.82 2.825e-06 2.76 6.875e-08 3.09 1.850e-09 3.71
64 1.440e-06 2.70 1.332e-06 2.61 2.862e-08 3.05 6.644e-10 3.56

O(h?) O(h?) O(h?) O(h?)

direct DSr, dim = O(r2/2)
8 3.492e-04 3.00 3.897e-05 4.07 2.187e-06 5.00 8.896e-08 5.96

12 1.036e-04 3.00 7.457e-06 4.08 2.889e-07 4.99 7.870e-09 5.98
16 4.373e-05 3.00 2.313e-06 4.07 6.868e-08 4.99 1.404e-09 5.99
24 1.296e-05 3.00 4.469e-07 4.05 9.058e-09 5.00 1.235e-10 6.00

O(h3) O(h4) O(h5) O(h6)
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Convergence for Pr,r, Sr, and DSr on Trapezoids—2

H1-seminorm errors & convergence rates on trapezoidal meshes

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

Pr,r, dim = O(r2)
8 1.734e-02 2.00 7.206e-04 2.99 2.310e-05 3.99 6.083e-07 4.99

12 7.710e-03 2.00 2.139e-04 3.00 4.570e-06 4.00 8.021e-08 5.00
16 4.337e-03 2.00 9.027e-05 3.00 1.447e-06 4.00 1.904e-08 5.00
24 1.928e-03 2.00 2.676e-05 3.00 2.859e-07 4.00 2.509e-09 5.00

O(h2) O(h3) O(h4) O(h5)

Sr, dim = O(r2/2)
8 2.413e-02 1.94 1.834e-02 1.90 1.818e-03 2.65 1.537e-04 3.18

12 1.105e-02 1.93 8.572e-03 1.88 6.582e-04 2.51 4.483e-05 3.04
16 6.432e-03 1.88 5.091e-03 1.81 3.345e-04 2.35 1.945e-05 2.90
24 3.104e-03 1.80 2.560e-03 1.70 1.360e-04 2.22 6.370e-06 2.75
48 1.043e-03 1.50 9.409e-04 1.37 3.190e-05 2.07 1.140e-06 2.41
64 7.097e-04 1.34 6.602e-04 1.23 1.776e-05 2.03 5.953e-07 2.26

O(h?) O(h?) O(h?) O(h?)

DSr, dim = O(r2/2)
8 1.836e-02 2.01 2.517e-03 3.02 1.625e-04 3.99 7.384e-06 4.99

12 8.143e-03 2.00 7.400e-04 3.02 3.216e-05 4.00 9.757e-07 4.99
16 4.577e-03 2.00 3.109e-04 3.01 1.018e-05 4.00 2.318e-07 5.00
24 2.033e-03 2.00 9.170e-05 3.01 2.012e-06 4.00 3.056e-08 5.00

O(h2) O(h3) O(h4) O(h5)
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Convergence Study for DSr Polygons

Meshes. PolyMesher (Talischi et al. 2012) using n× n random initial seeds.
N = 6 mostly, but some N = 4,5

6× 6 = 36 elements 18× 18 = 324 elements

Errors and convergence rates for direct serendipity spaces

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

L2-norm
10 2.160e-04 3.45 8.859e-06 4.34 3.467e-07 5.69 1.133e-08 6.97
14 7.329e-05 3.16 2.175e-06 4.11 5.644e-08 5.31 1.202e-09 6.57
18 3.454e-05 3.30 8.172e-07 4.29 1.544e-08 5.68 3.080e-10 5.97
22 1.881e-05 3.26 3.605e-07 4.39 5.476e-09 5.56 8.151e-11 7.13

O(h3) O(h4) O(h5) O(h6)

H1-seminorm
10 3.561e-03 2.32 1.933e-04 3.13 8.530e-06 4.55 3.103e-07 5.73
14 1.683e-03 2.19 6.724e-05 3.09 1.973e-06 4.29 4.625e-08 5.57
18 1.018e-03 2.20 3.194e-05 3.26 6.992e-07 4.55 1.553e-08 4.78
22 6.762e-04 2.19 1.743e-05 3.25 3.035e-07 4.48 4.995e-09 6.09

O(h2) O(h3) O(h4) O(h5)
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Convergence Study for Vr−1
r on Polygons

Errors and convergence rates for

reduced H(div)-approximation direct mixed spaces

||p− ph|| ‖u− uh‖ ‖∇ · (u− uh)‖
n error rate error rate error rate

r = 1
10 1.290e-01 1.24 1.770e-02 2.29 1.260e-01 1.15
14 9.109e-02 1.02 8.997e-03 1.98 9.001e-02 0.98
18 7.039e-02 1.13 5.429e-03 2.21 6.988e-02 1.11
22 5.734e-02 1.10 3.619e-03 2.18 5.707e-02 1.09

O(h) O(h2) O(h)
r = 2

10 8.635e-03 2.23 5.013e-04 3.24 8.634e-03 2.23
14 4.308e-03 2.04 1.785e-04 3.02 4.308e-03 2.03
18 2.616e-03 2.19 8.487e-05 3.26 2.616e-03 2.19
22 1.719e-03 2.25 4.649e-05 3.23 1.719e-03 2.25

O(h2) O(h3) O(h2)
r = 3

10 3.878e-04 3.38 1.992e-05 4.37 3.878e-04 3.38
14 1.384e-04 3.02 5.102e-06 3.99 1.384e-04 3.02
18 6.516e-05 3.30 1.889e-06 4.36 6.516e-05 3.30
22 3.514e-05 3.31 8.363e-07 4.37 3.514e-05 3.31

O(h3) O(h4) O(h3)
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Convergence Study for Vr
r on Polygons

Errors and convergence rates for full H(div)-approximation

||p− ph|| ‖u− uh‖ ‖∇ · (u− uh)‖
n error rate error rate error rate

r = 0
10 1.282e-01 1.20 5.915e-02 1.59 1.260e-01 1.15
14 9.089e-02 1.01 3.577e-02 1.47 9.001e-02 0.98
18 7.030e-02 1.13 2.701e-02 1.23 6.988e-02 1.11
22 5.730e-02 1.10 2.005e-02 1.60 5.707e-02 1.09

O(h) O(h) O(h)
r = 1

10 8.635e-03 2.23 1.892e-03 2.67 8.634e-03 2.23
14 4.308e-03 2.04 8.562e-04 2.32 4.308e-03 2.03
18 2.616e-03 2.19 4.903e-04 2.44 2.616e-03 2.19
22 1.719e-03 2.25 3.142e-04 2.39 1.719e-03 2.25

O(h2) O(h2) O(h2)
r = 2

10 3.881e-04 3.38 6.546e-05 3.69 3.881e-04 3.38
14 1.384e-04 3.02 1.945e-05 3.55 1.384e-04 3.02
18 6.516e-05 3.30 8.982e-06 3.39 6.516e-05 3.30
22 3.514e-05 3.31 4.448e-06 3.77 3.514e-05 3.31

O(h3) O(h3) O(h3)
r = 3

10 1.299e-05 4.59 2.473e-06 5.15 1.299e-05 4.59
14 3.270e-06 4.04 5.434e-07 4.44 3.270e-06 4.04
18 1.188e-06 4.44 2.220e-07 3.92 1.188e-06 4.44
22 5.259e-07 4.37 1.021e-07 4.17 5.259e-07 4.37

O(h4) O(h4) O(h4)
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Comparison of the Number of Polygon Sides for DSr
Consider mesh sequences with n = 6,10,14,18,22 and r = 5 of mostly

• N = 3, triangles (regular and random)

• N = 4, squares, regular quadrilaterals, random quadrilaterals

• N = 6, hexagons (regular and random)

Log-log plot of errors versus half the number of DoFs
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Remark. We see for greater accuracy for meshes with more sides!
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4. Application to Tracer Transport
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Application: Tracer Transport—1

Governing equations.

Flow:

{
u = −∇p

∇ · u = 0
Direct Mixed FE V1

1

Transport:
∂c

∂t
+∇ · (cu−∇c) = 0 Enriched Galerkan (EG)

DG0 enriched with DS2 (Sun & Liu 2009)

plus Entropy Viscosity (Guermond, Pasquetti & Popov 2011)

Flow solution.

Coarse mesh

128 elements

Pressure Velocity
8192 elements
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Application: Tracer Transport—2

Concentration. (8192 elements, ∆t = 0.1hmin)

n = 200 n = 500

n = 800 n = 1000

Similar to Sun and Liu 2009 (but we use many fewer DoFs)
and Lee, Lee & Wheeler 2016 (but we follow a round hole)
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III. Discontinuous Finite Volume
WENO Approximations

The solution may have a shock or steep front

(conforming finite elements are less effective in this case)
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Advantages of Finite Volume WENO Methods

Discontinuous Galerkin places many DoFs

inside each mesh element E to understand

solution behavior on ∂E.
× ×× ×

E

Finite Volume places one DoF inside each mesh

element, and looks outside E to find solution

behavior on ∂E.

× × × ×
E

1. Uses one degree of freedom per element:
• in any space dimension,
• for any degree of approximation.

2. Maximizes the mesh resolution of the heterogeneity.
For porous media, permeability and porosity are constant on an
element but vary greatly between elements.

3. The mesh needs no special properties.
4. WENO is essentially non-oscillatory. (Use flux corrected transport?)

We address certain practical issues that reduce the popularity of

finite volume methods for solving advection-diffusion problems.
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The Gibbs Phenomenon

Approximation of a jump discontinuity by Fourier Series leads to

oscillation, with overshoot and undershoot of about a 9%.

True also for other approximations: polynomials, splines, wavelets, etc.
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Our reconstruction should not cross a shock
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The Equation in Finite Volume Form

ut +∇ · [f(u)−D(u)∇u] = q(u)

Finite volumes. Average over mesh elements E ⊂ R2

ūE(t) =
1

|E|

∫
E
u(x, t) dx (|E| is the area of E)

The averaged equation. Mass conservation over E is

ūE,t +
1

|E|

∫
E
∇ · [f(u)−D(u)∇u] dx =

1

|E|

∫
E
q(u) dx

Apply the Divergence Theorem to find

ūE,t +
1

|E|

∫
∂E

(
f(u)−D∇u

)
· νE ds(x) =

1

|E|

∫
E
q(u) dx
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Introduce a Numerical Flux

A numerical flux function for the advective term is needed

• to stabilize the computations (by adding numerical diffusion)

• to account for potential discontinuities in the solution

Lax-Friedrichs numerical flux

f̂E(u−, u+) =
1

2

[
(f(u−) + f(u+)) · νE − αLF(u+ − u−)

]
• u− and u+ are left and right limits of the solution at the interface ∂E

• αLF = max
u

∣∣∣∂f/∂u∣∣∣ (maximum wave speed)

u− < u+

←−
u− > u+

−→

• if u is continuous, we have consistency with the original flux

f̂E(u, u) = f(u) · νE
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Semidiscrete Approximation

The finite volume equation. Thus

ūE,t +
1

|E|

∫
∂E

[
f̂E(u−, u+)−D(u)∇u · νE

]
ds(x) =

1

|E|

∫
E
q(u) dx

Approximate time evolution.

• Use a Runge-Kutta time integrator

Approximate spatial variation.

• Approximate u from its element averages ūnE.

Use stencil polynomials defined on stencils of mesh cells.

• Combine the stencil polynomials.

Use a (new) weighted essentially non-oscillatory (WENO)

reconstruction to avoid shocks and steep fronts.

• Approximate u±(x) and D(u)∇u · νE(x) using the reconstruction.
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1. Stencil Polynomial
Approximations

Can we guarantee good accuracy?
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Construction of Stencil Polynomials
(Harten & Chakravarthy 1991, Abgrall 1994)

1. Select a stencil S = {Ej, some j} of mesh elements

2. Find P (x) =
∑
α<r

cα

(
x− xS
hS

)α
, polynomial of degree r − 1.

• Match averages

1

|Ej|

∫
Ej
P (x) dx = ūEj ⇐⇒ Ac = u

• Requires least-squares fitting (usually)

N = number of polynomial coefficients

6= M = number of stencil elements
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-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Large Stencil Polyn Degree = 4

3. Find the SVD decomposition and the singular values

A = UΣV T , s1 ≥ s2 ≥ · · · ≥ sM

4. c = (ATA)−1ATu = VΣ−1UTu

(actually constrained least-squares: match averages of target cell)

We have defined a linear projection operator π : u 7→ πu = P
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Accuracy and Bad Stencils

We expect accuracy |u(x)− P (x)| ≤ Chr

Bramble-Hilbert Lemma (Bramble & Hilbert 1970, Dupont & Scott 1980)

P will accurately approximate u(x) and its derivatives provided

• u is smooth on the stencil (if there is no shock!)

• π preserves polynomials (it clearly does)

• π is a bounded operator (it will be as long as the matrix ATA is

well conditioned and the mesh is quasiuniform)

Continuing the algorithm (A., Huang, Tian 2024)

5. Reject the polynomial if the condition number (s1/sM)2 � 1.

Decrease r and try again. Terminate at r ≥ 1 (P = constant).

Results in the best polynomial approximation for the given stencil

Efficiency. Reuse the stencils each time step.

• Determine r and precompute A = UΣV T once before the time loop.

• Each time step set the coefficients c = (ATA)−1ATu = VΣ−1UTu.
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Examples of Bad Stencils

Singular stencil. 6 elements, dimP2 = 6 A good stencil.

A badly conditioned stencil. 15 elements

• dimP4 = 15, s1=3.8809, s15= 7.6840e-11

Condition number = 5.05e+10

• dimP3 = 10, s1=3.8808, s10=9.4274e-03

Condition number = 4.12e+2

2(1 + cos(2πx)) exp(xy − y) P4 polynomial P3 polynomial
refinement level L1-error Rate L1-error Rate

0 4.124e+07 —— 5.697e-06 ——
1 1.291e+06 5.00 3.550e-07 4.00
2 4.036e+04 5.00 2.218e-08 4.00
3 1.261e+03 5.00 1.386e-09 4.00
4 3.947e+01 5.00 8.658e-11 4.00
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2. New ML-WENO Reconstruction
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WENO Reconstruction

Use many stencils with the same target element E
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• For P` ∈ Pr`−1

R(x) ∼
∑
`

ω`P`(x) (linearly weighted average)

• Measure the smoothness σ` of P`
• Use σ` to bias away from stencil polynomials that cross shocks

R(x) =
∑
`

ω̃`P`(x) (nonlinearly weighted average)

Challenges. Current techniques require:

• Polynomials of only two degrees, or stencils arranged hierarchically

• non-constant polynomials

We need to be able to use any set of stencils and polynomials
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ML-WENO Reconstruction—1

Reconstruction of u:

R(x) =
∑
`

ω̃`P`(x) (weighted average)

Smoothness Indicator. (Jiang & Shu 1996, Friedrichs 1998)

For P (x) ∈ Pr−1 (h0 = diam(E0))

σP =
∑

1≤|α|≤r−1

h
2|α|
0

|E0|

∫
E0

(
DαP (x)

)2
dx

A scaled L2-Sobolev seminorm squared

Lemma. As h→ 0+, there is D ≥ 0 such that

σP =

Dh2
0 +O(h3) if u is smooth on the stencil

O(1) if u has a jump discontinuity
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ML-WENO Reconstruction—2

New ML-WENO (Multi-Level Weighting)

For linear weights ω` > 0, use nonlinear weights

ω̃` =
ω̂`∑

k≥0

ω̂k
where ω̂` =

ω`
(σP` + ε0h2)r`

in R(x) =
∑
`

ω̃`P`(x)

Theorem. For all x ∈ E (the target element)

|u(x)−R(x)| ≤ Chrmax

where rmax = max`{r` : u is smooth on the `th stencil}

rmax = highest order of accuracy of stencils without a shock

Advantages.

• Handles smooth and discontinuous solutions

• Uses any stencils (chosen to capture shocks)

• Uses any order stencil polynomials (including constants)

• Gives the best approximation while avoiding shocks
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Sketch of the Proof

• Smoothness indicator σP =

Dh2
0 +O(h3) if u smooth

Θ(1) if u jumps

• Weight scaling ω̂` =
ω`

(σP` + ε0h2)r`
=

O(h−2r`) if u smooth

Θ(1) if u jumps

• Nonlinear weights ω̃` =
ω̂`∑

k≥0

ω̂k
=

Θ(h2(rmax−r`)) if u smooth

Θ(h2rmax) if u jumps

• Error estimation

|u(x)−R(x)| =
∣∣∣∣∣∑
`

ω̃`
(
u(x)− P`(x)

)∣∣∣∣∣
≤
∑
`

ω̃`|u(x)− P`(x)
∣∣∣

=
∑
`

Θ(h2(rmax−r`))hr`

︸ ︷︷ ︸
+
∑
`

Θ(h2rmax)O(1)

︸ ︷︷ ︸
= Θ(hrmax)

u smooth on stencil ` u discontinuous on stencil `
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Tests of the ML-WENO(5,3,2,1) Reconstruction—1

Stencil polynomial of degree 4 and 0 (19 elements and 1 target element)
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Stencil polynomials of degree 2 (9, 7, 7, 6 elements)
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Stencil polynomials of degree 1 (3, 3, 3 elements)
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Tests of the ML-WENO(5,3,2,1) Reconstruction—2

Four tests with u(x, y) = 2(1 + cos(2πx)) exp(xy − y) + jump
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• O(h1), green & blue jump lines cut all but constant

• O(h2), blue jump cuts all degree 2, not all degree 1

• O(h3), red jump does not cut one stencil of degree 2

• O(h5), no jump
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Approximation of Normal Derivatives

For edge e of the mesh, we need to compute (by quadrature)∫
e
D(u)∇u · ν dx

Kirchhoff Transformation. D(u) may be degenerate, so if possible, define

b(u) =
∫ u

0
D(v) dv =⇒ ∇b(u) = D(u)∇u

Procedure. At a quadrature point of e = E1 ∩ E2

×
x1 ×

x2 ×
x3

×
x4

E1

E2

e

Line normal to e

s×
s1 ×

s2 ×
s3 ×

s40

RE1
(x1) RE1

(x2) RE2
(x3) RE2

(x4)7→ 7→ 7→ 7→

b(RE1
(x1)) b(RE1

(x2)) b(RE2
(x3)) b(RE2

(x4))

P (s)7→

P ′(0) ≈ ∇b · ν

Reconstruct

Evaluate b

Interpolate

Differentiate

Remarks.

• If no Kirchhoff: b(u) = u and D(u)∇u · ν ≈ D(R(x))P ′(0)
• The computations are in 1D for any spatial dimension.

9th Annual Meeting of SIAM Central States
Section, October 5-6, 2024, Kansas City, Missouri

43 of 54



3. Some Numerical Results
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Random 2D Mesh

• About 50× 50

• Mostly quadrilaterals, some triangles

• Large stencil polynomials of degree 5 or 4 (order drops automatically)

• Small stencil polynomials of degree 2

Remark. Minimal DoFs of FV allows a fine mesh.

FEM and DG would use a mesh with elements the size of the stencil,

which would be about 10× 10 (for the same number of DoFs).
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Burgers Equation

ut + (u2/2)x + (u2/2)y = 0

Shock formation. u(x, y,0) = (sin(πx) sin(πy))2, (x, y) ∈ [0,1]2

Periodic BCs, ∆t = 0.002 (CFL ≈ 0.1)

Graphs of the reconstructed solution
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Linear Flux, Rotating Flow

f(u) = (0.5− y, x− 0.5)u

A polygonal mesh of 10,000 cells

One revolution (10,000 timesteps)

WENO(5,4,3,2) reconstructions
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Porous Medium Equation in 2D

ut = ∆um (degenerate diffusion)

Initial condition is two round bumps.

u(x, y,0) =


exp

(
− 1/[6− (x− 2)2 − (y + 2)2]), if (x− 2)2 + (y + 2)2 < 6

exp
(
− 1/[6− (x+ 2)2 − (y − 2)2]), if (x+ 2)2 + (y − 2)2 < 6

0, otherwise

PME at t = 1 with m = 2 using M = 40 elements and ∆t = h/2
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Free outflow Boundary Condition

Wave traveling diagonally under linear transport

• Cut Stencils: Stencils near the boundary are cut off.

• Extra Stencils: Add stencils near the outflow boundary.
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Error distribution

ML-WENO(5,4,3,2)
Cut stencils Extra Stencils

mesh size L∞(L1)-error rate L∞(L1)-error rate
20× 20 4.41e-03 — 4.26e-03 —
40× 40 1.19e-04 5.21 1.05e-04 5.34
80× 80 5.05e-06 4.67 3.82e-06 4.78

160× 160 2.17e-07 4.54 1.25e-07 4.93
250× 250 2.99e-08 4.44 1.36e-08 4.97
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Inflow Dirichlet Boundary Condition

Incoming shock wave for ut + u3ux = 0

ML-WENO(5,4,3,2).

No special treatment of the boundary.

• Linear reconstruction near the inflow

boundary causes overshoot.

• Unstable after time 0.075

ML-WENO(5,4,3,2,1). Add constant polynomials near inflow boundary.

• Constant reconstruction near inflow gives almost no overshoot.

• Shock wave is clean, sharp, and stable.
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4. Preliminary Application to
Two-Phase Flow

(Richards Equation)
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Richards Equation

Air-water system assuming infinitely mobile air connected to the surface

φst +∇ · vw = q(s)

vw = −λw(s)K (∇pw − ρw g)

pc(s) = −pw ≤ 0 (pn = 0 by assumption)

Unknown solution

s water saturation

pw water pressure

vw water velocity

Data

φ porosity

K permeability

λw relative mobility

ρw water density

g gravity vector

pc capillary pressure

q external wells

Kirchhoff Transformation.

D(s) = −
∫ s

0
λw(S)p′c(S) dS =⇒ ∇D(s) = −λw(s)∇pc(s) = λw(s)∇pw

Eliminate: pw = −pc(s) and vw = −K∇D(s) + ρw λw(s)K g

φst−∇ ·
(
K∇D(s)

)
︸ ︷︷ ︸+∇ ·

(
ρw λw(s)K g

)
︸ ︷︷ ︸ = q(s)

diffusion advection
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Preliminary Numerical Implementation

Algorithm. Advance time by a Runge-Kutta method.

• s̄n,0 = s̄n

• For each Runge-Kutta stage

s̄n,`
ML-WENO

Rn,`
Point evaluation

(sn,`, pn,`w ,vn,`w )
Transport

s̄n,`+1

• s̄n+1 = s̄n,`max

Remarks.

• We use a single rock type and constant porosity, so s is smooth

except for steep fronts.

• The scheme is not well-balanced with respect to gravitational

equilibrium on general meshes.

• We should solve for the smoother variable pw. But then

p̄
n,`
w

ML-WENO
Rn,`

Point evaluation
(sn,`, pn,`w ,vn,`w )

Transport
s̄n,`+1 Transform

p̄
n,`+1
w

• Only explicit Runge-Kutta at this time.
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Preliminary Numerical Result
• 100 m× 10 m
• 100× 50 quadrilateral mesh
• 6000 steps using explicit Euler (similar results for SSP3)
• ∆t = 0.001 days
• van Genuchten capillary and water mobility curves
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• Heterogeneous permeability (about 0.1 to 1 Darcy)

• Continuous infiltration of water at the surface
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Infiltration of Water at the Surface—0.2 days

Permeability ML-WENO(1)

ML-WENO(2,1) ML-WENO(3,1)

ML-WENO(3,2) ML-WENO(3,2,1)

Day 0.2
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Infiltration of Water at the Surface—1 day

Permeability ML-WENO(1)

ML-WENO(2,1) ML-WENO(3,1)

ML-WENO(3,2) ML-WENO(3,2,1)

Day 1
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Infiltration of Water at the Surface—2 days

Permeability ML-WENO(1)

ML-WENO(2,1) ML-WENO(3,1)

ML-WENO(3,2) ML-WENO(3,2,1)

Day 2
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Infiltration of Water at the Surface—4 days

Permeability ML-WENO(1)

ML-WENO(2,1) ML-WENO(3,1)

ML-WENO(3,2) ML-WENO(3,2,1)

Day 4
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Infiltration of Water at the Surface—6 days

Permeability ML-WENO(1)

ML-WENO(2,1) ML-WENO(3,1)

ML-WENO(3,2) ML-WENO(3,2,1)

Day 6
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IV. Summary and Conclusions
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Summary and Conclusions

1. We solved advection-diffusion problems on polygonal meshes that

• Conserve mass locally
• Support discontinuous solutions or steep fronts
• Are high order but (essentially) non-oscillatory
• Use a minimal number of degrees of freedom (DoFs)

2. Direct serendipity and mixed finite elements on convex polygons

DSr = Pr ⊕ Sr and Vr−1
r = (Pr)2 ⊕ curl Sr+1, Vr

r = Vr−1
r ⊕ xP̃r

• H1 and H(div) conforming, respectively
• optimal order of approximation
• Use serendipity in enriched Galerkin methods for transport
• Use direct mixed methods for flow problems

3. Finite volume ML-WENO reconstruction for 2D problems

R(x) =
∑
` ω̃`P`(x)

• Gives the highest order of accuracy of stencils without a shock
• Only one degree of freedom per element
• Use directly for advection-diffusion problems

4. Extension to 3D polytopes

• We have defined serendipity and mixed spaces on hexahedra
• Finite volume methods naturally extend to 3D
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