Implicit Finite Volume Approximation of Nonlinear Advection-Diffusion Equations

Todd Arbogast

Center for Subsurface Modeling,
Oden Institute for Computational Engineering and Sciences
and Department of Mathematics
The University of Texas at Austin

Chieh-Sen Huang, National Sun Yat-sen Univ., Kaohsiung, Taiwan
Xikai Zhao, Mathematics, UT-Austin (now Schlumberger)
Danielle King, Mathematics, UT-Austin

This work was supported by the U.S. National Science Foundation and the Taiwan Ministry of Science and Technology
Advection-Diffusion-Reaction Equations

\[u_t + \nabla \cdot [f(u) - D(u) \nabla u] = g(u) \]

Within science and engineering, researchers often use models involving

1. **Advection**, \(u_t + \nabla \cdot f(u) = 0 \)
 - the *transport* of a substance
 - mathematically *hyperbolic*

2. **Diffusion**, \(u_t - \nabla \cdot D(u) \nabla u = 0 \)
 - the *spreading* of a substance to the average of its surroundings
 - mathematically *parabolic* (or elliptic)

3. **Reactions**, \(u_t = g(u) \) [Omit for this talk]
 - substances transform to other substances
 - mathematically an ordinary differential equation

These are systems of *advection-diffusion-reaction equations*.

Main Difficulty: The equations are often *advection dominated*.

The solution to the equations can develop steep fronts or even shock discontinuities.
Hyperbolic Equations

\[u_t + \nabla \cdot f(u) = 0 \]

- **Mass conservative**
- **Linear transport in 1D is simple translation**
 \[u_t + au_x = 0, \quad u(x,0) = u_0(x) \quad \implies \quad u(x,t) = u_0(x - at) \]
 A discontinuity in \(u_0 \) propagates as a **contact discontinuity**.
- **Nonlinear transport in 1D has variable speed**
 \[u_t + f'(u)u_x = 0, \quad u(x,0) = u_0(x) \]
 If \(f(u) \) grows with \(u \), a **shock discontinuity** can form.

- **Solutions do not become smoother in time** (the operator is *not* compact), but solutions are **total variation diminishing**
 \[
 \text{TV}(u)(t) = \int |u_x(x,t)| \, dx \leq \text{TV}(u_0) = \int |u'_0(x)| \, dx
 \]
 The solution does not **oscillate**.
- **Hyperbolic scaling**: Space and time scale as \(t \sim x \)
 \[u(x,t) = U(\xi(x,t)) \quad \implies \quad u_t = U' \xi_t \sim u_x = U' \xi_x \quad \implies \quad dt \sim dx \]
Parabolic Equations

\[u_t - \nabla \cdot [D(u)\nabla u] = 0 \]

- Mass conservative
- Solutions smooth in time (the operator is compact on Sobolev spaces)
- Solutions are continuous. Initial discontinuities disappear immediately.
- The maximum principle: u is the average of nearby values. The solution does not oscillate.
- Parabolic scaling: Space and time scale as $t \sim x^2$

\[
\begin{align*}
 u(x, t) &= U(\xi(x, t)) \\
 \implies u_t &= U'(\xi_t) \sim u_{xx} = U'\xi_{xx} + U''(\xi_x)^2 \\
 \implies dt &\sim dx^2
\end{align*}
\]
1. The finite volume framework. Approximation requires
 • Reconstruction of the solution at points from average values
 • A time stepping method
2. Reconstruction: WENO with adaptive order (WENO-AO)
 • High order accurate when the solution is smooth
 • Reduce accuracy near shocks/steep fronts to suppress oscillations
3. Time stepping: method of lines
 • Implicit L-stable Runge-Kutta to handle stiffness (i.e., diffusion)
 • A new adaptive Runge-Kutta (high order Runge-Kutta combined with backward Euler) to further suppress oscillations
4. Numerical performance of iWENO-AO
5. Self-Adaptive Theta (SATh) scheme (a “better backward Euler”)
 • Discontinuity Aware Quadrature (DAQ)
 • Theoretical Properties
6. Numerical performance of SATh-LF
7. Summary and conclusions
1. The Finite Volume Framework
Derivation of the Governing Equations

Mass Conservation

- \(u \) is mass of a substance per unit volume (i.e., its density)
- \(v \) is the velocity of the substance
- \(E \) is a volume element
- \(\int_E u(x, t) \, dx \) is the total mass in \(E \)

The change in mass is

\[
\frac{d}{dt} \int_E u(x, t) \, dx \quad \overset{?}{=} \quad \int_E u_t(x, t) \, dx
\]

Changes are due to flow through \(\partial E \):

\[
- \int_{\partial E} v(x, t) \cdot \nu \, d\sigma(x) = - \int_E \nabla \cdot v(x, t) \, dx
\]

by the Divergence Theorem. Equating, we have

\[
\int_E [u_t(x, t) + \nabla \cdot v(x, t)] \, dx = 0 \quad \iff \quad u_t + \nabla \cdot v = 0
\]

since this is true for every measurable \(E \)

Empirical Constitutive Relation. How are \(u \) and \(v \) related? Assume

\[
v = f(u) - D(u) \nabla u
\]

- Transport: motion due to the amount of material present \(u \)
- Diffusion: motion due to gradients in \(u \)
The Equation in Finite Volume Form

Finite volumes (mesh elements)

- Fix a computational mesh of polytopal elements E in \mathbb{R}^d
- The average of u over element E is

$$\bar{u}_E(t) = \frac{1}{|E|} \int_E u(x,t) \, dx$$

where $|E|$ is the d dimensional volume of E

The finite volume equation. Mass conservation over mesh element E:

$$\bar{u}_{E,t} + \frac{1}{|E|} \int_{\partial E} \left(f(u) - D\nabla u \right) \cdot \nu_E \, d\sigma(x) = 0$$
A numerical flux function for the advective term is needed

- to stabilize the computations (by adding numerical diffusion)
- to account for potential discontinuities in the solution

Lax-Friedrichs numerical flux

\[
\hat{f}_E(u^-, u^+) = \frac{1}{2} \left[(f(u^-) + f(u^+)) \cdot \nu_E - \alpha_{LF}(u^+ - u^-) \right]
\]

- \(u^-\) and \(u^+\) are left and right limits of the solution at the interface \(\partial E\)
- \(\alpha_{LF} = \max_u \left| \frac{\partial f}{\partial u} \right|\)
- if \(u\) is continuous, we have consistency with the original flux

\[
\hat{f}_E(u^-, u^+) = f(u) \cdot \nu_E
\]

The averaged equation. Thus the advection-diffusion equation is

\[
\bar{u}_{E,t} + \frac{1}{|E|} \int_{\partial E} \hat{F}(u^-, u^+, \nabla u \cdot \nu_E) \, d\sigma(x) = 0
\]

where \(\hat{F}_E(u^-, u^+, \nabla u \cdot \nu_E) = \hat{f}_E(u^-, u^+) - D \nabla u \cdot \nu_E\)
Semidiscrete Approximation

Approximate integration.

- Let the facets of \(\partial E \) be denoted \(e_1, e_2, \ldots \)
- On each \(e_j \), use a quadrature rule with points \(x_{j,k} \) and weights \(|e_j| \omega_{j,k} \)
- Denote

\[
u_{j,k}^\pm(t) = u_{j,k}(x_{j,k}, t) \approx u(x_{j,k}, t) \\
u_{j,k}(t) \approx u(x_{j,k}, t)
\]

The semidiscrete finite volume approximation.

\[
\bar{u}_{E,t} + \sum_j \frac{|e_j|}{|E|} \sum_k \omega_{j,k} \hat{F}_E(u_{j,k}^-, u_{j,k}^+, \nabla u \cdot \nu_E)_{j,k} = 0
\]

- Fix time levels \(0 = t^0 < t^1 < t^2 < \ldots \)
- We approximate \(\bar{u}_E^n \approx \bar{u}_E(t^n) \) for each \(n > 0 \)

Remaining Issues.

- **Reconstruct** \(u_{j,k}^\pm \) and \((\nabla u \cdot \nu_E)_{j,k} \) from the discrete averages \(\bar{u}_E^n \)
- Define a fully discrete time evolution scheme
2. Reconstruction: Weighted Essentially Non-Oscillatory with Adaptive Order (WENO-AO)

For simplicity, reconstruct in 1D and assume uniform meshes of spacing $\Delta x = h$
Classic ENO3 Reconstructions in 1D

(Harten, Engquist, Osher & Chakravarthy 1987)

Idea: Find a polynomial that reconstructs $u(x)$ from its average values. Shocks are isolated, so compute using several stencils.

Find $P_i^3(x)$ of degree 2 so mass is conserved on each 3 element stencil

$$\frac{1}{h} \int_{E_j} P_i^3(x) \, dx = \bar{u}^n_{E_j} \quad (E_j \text{ in the stencil}) \quad \Rightarrow \quad u(x) = P_i^3(x) + O(h^3)$$

Use the “essentially non-oscillatory” polynomial not crossing the shock.

$$u(x) \approx R(x) = P_i^3(x)$$

for some chosen i, $O(h^3)$

Problems

- Wasted stencil computations.
- Get a wide stencil.
Idea: Take a weighted average of smaller stencil polynomials that give the larger stencil polynomial.

$$u(x^*) \approx R(x^*) = \tilde{\alpha}P_{-1}^2(x^*) + \tilde{\beta}P_1^2(x^*) \approx \begin{cases} P_{-1}^2(x^*) & \text{if shock right, } O(h^2) \\ P_0^3(x^*) & \text{if no shock, } O(h^3) \\ P_1^2(x^*) & \text{if shock left, } O(h^2) \end{cases}$$

Problems
- The weights are difficult to find (not exist?!) and may be negative.
- Requires rectangular meshes in 2D/3D.
WENO with Adaptive Order in 1D, WENO-AO(3,2)

(Levy, Puppo & Russo 2000; Balsara, Garain & Shu 2016; Arbogast, Huang & Zhao 2018)

Idea: Use large and small stencil polynomials of different degrees.

For any x, take arbitrary (positive) α, β, γ so that $\alpha + \beta + \gamma = 1$

\[u(x) \approx R(x) = \frac{\tilde{\gamma}}{\gamma} \left[P_0^3(x) - \alpha P_{-1}^2(x) - \beta P_1^2(x) \right] + \tilde{\alpha} P_{-1}^2(x) + \tilde{\beta} P_1^2(x) \]

\[\approx \begin{cases} P_{-1}^2(x) & \text{if shock right, } \tilde{\alpha} \approx 1, \tilde{\beta} \approx 0, \tilde{\gamma} \approx 0, \mathcal{O}(h^2) \\ P_0^3(x) & \text{if no shock, } \tilde{\alpha} \approx \alpha, \tilde{\beta} \approx \beta, \tilde{\gamma} \approx \gamma, \mathcal{O}(h^3) \\ P_1^2(x) & \text{if shock left, } \tilde{\alpha} \approx 0, \tilde{\beta} \approx 1, \tilde{\gamma} \approx 0, \mathcal{O}(h^2) \end{cases} \]

Advantage

- Freedom from rectangular geometry (so extension to 2-D/3-D).
Weighting Procedure — Smoothness Indicator

Smoothness indicator (Jiang & Shu 1996)

The smoothness (roughness) of $P^s(x)$ on E is measured as

$$\sigma_{P^s} = \sum_{\ell=1}^{s-1} \int_E h^{2\ell-1} \left(\frac{d^\ell}{dx^\ell} P^s(x) \right)^2 dx$$

- If u is smooth, $\sigma_{P^s} = Dh^2 + \mathcal{O}(h^3)$ ($D \approx u'$)
- If u has a discontinuity, $\sigma_{P^s} = \mathcal{O}(1)$

Folklore. If u has a discontinuity, $\sigma_{P^s} = \Theta(1)$ as $h \to 0$ (i.e., $0 < c_* \leq \sigma_{P^s} \leq c_* < \infty$).

Theorem (Arbogast, Huang & Zhao 2018)

If u has a discontinuity, σ_{P^s} may tend to zero as $h \to 0$. If the discontinuity is bounded away from the grid points, then $\sigma_{P^s} = \Theta(1)$.

Assumption. We will henceforth assume that the discontinuity is bounded away from the grid points, so $\sigma_{P^s} = \Theta(1)$.
Weighting Procedure — Nonlinear Weights

(Jiang & Shu 1996)

Scaled nonlinear weights. For weight \(\delta \) for polynomial \(P(x) \)

\[
\tilde{\delta} = \frac{\delta}{(\epsilon_h + \sigma_P)^\eta}
\]

Classically, \(\epsilon_h \approx 10^{-6} \), but \(\epsilon_h = \epsilon_0 h^2 \) should be taken.

(Normalized) Nonlinear weights. So that \(\sum_i \tilde{\delta}_i = 1 \),

\[
\tilde{\delta}_i = \frac{\tilde{\delta}_i}{\sum_j \tilde{\delta}_j} = \frac{\delta_i}{\delta_i + \sum_{j \neq i} \delta_j \left(\frac{\epsilon_h + \sigma_{P_j}}{\epsilon_h + \sigma_{P_i}} \right)^\eta}
\]

Lemma. (Aràndiga, Baeza, Belda & Mulet 2011)

\[
\tilde{\delta} = \begin{cases}
\delta + \mathcal{O}(h^{s-1}) & \text{if } u \text{ is smooth (} s \text{ is size of smaller stencil)} \\
\Theta(h^{2\eta}) & \text{if } u \text{ is discontinuous and } \epsilon_h = \epsilon_0 h^2
\end{cases}
\]
General WENO-AO(r, s)
(Levy, Puppo & Russo 2000; Balsara, Garain & Shu 2016)

Idea: Use small stencils of s elements and the union (large stencil) of size r, with corresponding polynomials.

Take *arbitrary* (positive) γ and α_i, $\gamma + \sum_i \alpha_i = 1$

\[
u(x) \approx R(x) = \frac{\tilde{\gamma}}{\gamma} \left[P^r_0(x) - \sum_i \alpha_i P^s_i(x) \right] + \sum_i \tilde{\alpha}_i P^s_i(x)
\]

where

\[
\tilde{\gamma} = \frac{\gamma}{(\epsilon_h + \sigma P^r_0) \eta} \quad \tilde{\alpha}_i = \frac{\alpha_i}{(\epsilon_h + \sigma P^s_i) \eta}
\]

\[
\hat{\gamma} = \frac{\tilde{\gamma}}{\gamma + \sum_i \tilde{\alpha}_i} \quad \hat{\alpha}_i = \frac{\tilde{\alpha}_i}{\gamma + \sum_i \tilde{\alpha}_i}
\]

Question. Does it really work?

- When ν is smooth, is R accurate to $O(h^r)$?
- When ν has a discontinuity on some (but not all) stencils, is $R \, O(h^s)$?
Convergence Results for WENO-AO\((r, s)\)
(Cravero, Puppo, Semplice & Visconti 2018; Arbogast, Huang & Zhao 2018)

\[
u(x) \approx R(x) = \frac{\tilde{\gamma}}{\gamma} [P_0^r(x) - \sum_i \alpha_i P_i^s(x)] + \sum_i \tilde{\alpha}_i P_i^s(x)
\]

Recall \(\epsilon_0\) and \(\eta\):

\[
\tilde{\delta} = \frac{\delta}{(\epsilon_0 h^2 + \sigma) \eta}
\]

Theorem. Let \(\eta \geq 1\), \(\epsilon_0 > 0\), and \(r > s \geq 2\). Then WENO-AO\((r, s)\) has order of accuracy

- \(O(h^r)\) if \(u\) is smooth on the larger stencil \(S^r\) and
 \[r \leq 2s - 1\]
- \(O(h^s)\) if \(u\) is smooth except for a jump discontinuity in some (but not all) stencils, the grids are bounded away from the discontinuity, and
 \[\eta \geq s/2\]
There is a recursive, multilevel version WENO-AO($r_\ell, r_{\ell-1}, \ldots, r_0 = s$).

- $h = 0.1 \times 2^{-n}$
- $u(x) = x^3 + \sin(x) + H(x_\ast - x)$ (H is the Heaviside function)
- Shock location $x_\ast = -4h, -3h, -2h, -h$
- u is smooth only on stencils S^9, S^7, S^5, S^3, respectively
- set η based on the Theorem and $\epsilon_0 = 1$

Error and convergence rate of WENO-AO($9, 7, 5, 3$) at $x = 0$

The convergence rate is indeed from the largest smooth stencil

<table>
<thead>
<tr>
<th>n</th>
<th>$x_\ast = -4h$</th>
<th>$x_\ast = -3h$</th>
<th>$x_\ast = -2h$</th>
<th>$x_\ast = -h$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>error</td>
<td>order</td>
<td>error</td>
<td>order</td>
</tr>
<tr>
<td>3</td>
<td>4.80E-19</td>
<td>9.01</td>
<td>6.03E-15</td>
<td>7.00</td>
</tr>
<tr>
<td>4</td>
<td>9.36E-22</td>
<td>9.00</td>
<td>4.72E-17</td>
<td>7.00</td>
</tr>
<tr>
<td>5</td>
<td>1.83E-24</td>
<td>9.00</td>
<td>3.69E-19</td>
<td>7.00</td>
</tr>
<tr>
<td>6</td>
<td>3.57E-27</td>
<td>9.00</td>
<td>2.89E-21</td>
<td>7.00</td>
</tr>
<tr>
<td>7</td>
<td>6.97E-30</td>
<td>9.00</td>
<td>2.26E-23</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Expected order: 9, 7, 5, 3
Numerical Test — Choice of Parameter η

- $h = 2^{-n}$
- $u(x) = H(-x)$ (H is the Heaviside function)
- $S^5 = \{[-\frac{3h}{2}, -\frac{h}{2}], [-\frac{h}{2}, \frac{h}{2}], [\frac{h}{2}, 3h], [\frac{3h}{2}, \frac{5h}{2}], [\frac{5h}{2}, 7h]\}$
- $\bar{u}_i = 1, 1/2, 0, 0, 0$, respectively

WENO-AO(5,3) error and convergence rate at $x = h/2$

The convergence rates are indeed $\Theta(h^{2\eta})$

<table>
<thead>
<tr>
<th>n</th>
<th>$\eta = 1$</th>
<th>$\eta = 1.5$</th>
<th>$\eta = 2$</th>
<th>$\eta = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>error</td>
<td>order</td>
<td>error</td>
<td>order</td>
</tr>
<tr>
<td>6</td>
<td>8.58E-4</td>
<td>1.98</td>
<td>1.72E-5</td>
<td>3.00</td>
</tr>
<tr>
<td>7</td>
<td>2.15E-4</td>
<td>1.99</td>
<td>2.15E-6</td>
<td>3.00</td>
</tr>
<tr>
<td>8</td>
<td>5.39E-5</td>
<td>2.00</td>
<td>2.69E-7</td>
<td>3.00</td>
</tr>
<tr>
<td>9</td>
<td>1.35E-5</td>
<td>2.00</td>
<td>3.36E-8</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Expected order 2 3 4 6

Remark: The good stencil polynomials are exact, so the rate is not limited to $O(h^3)$.
\[
\bar{u}_{i,t} + \frac{1}{h} \left[\hat{F}(u_{i+1/2}^-, u_{i+1/2}^+, u'_{i+1/2}) - \hat{F}(u_{i-1/2}^-, u_{i-1/2}^+, u'_{i-1/2}) \right] = 0
\]

WENO-AO(3,2) for point values

\[
\begin{align*}
\bar{u}_{i-1} & & u_{i-1/2} & & u_{i} & & u_{i+1/2} & & \bar{u}_{i+1} \\
x_{i-3/2} & & x_{i-1} & & x_{i} & & x_{i+1/2} & & x_{i+3/2} \\
S_{L}^{2} & & S_{C}^{3} & & S_{R}^{2}
\end{align*}
\]

\[
u(x) \approx R(x) = \frac{\bar{\gamma}}{\gamma} \left[P_{C}^{3}(x) - \alpha P_{L}^{2}(x) - \beta P_{R}^{2}(x) \right] + \tilde{\alpha} P_{L}^{2}(x) + \tilde{\beta} P_{R}^{2}(x)
\]

\[
u_{i-1/2}^{+} = R(x_{i-1/2}) \quad \text{and} \quad \nu_{i+1/2}^{-} = R(x_{i+1/2})
\]

WENO-AO(4,3) for derivatives

\[
\begin{align*}
\bar{u}_{i-1} & & u_{i-1/2} & & u_{i} & & u_{i+1/2} & & u_{i+1} & & \bar{u}_{i+2} \\
x_{i-3/2} & & x_{i-1} & & x_{i} & & x_{i+1/2} & & x_{i+3/2} & & x_{i+5/2} \\
S_{L}^{3} & & S_{C}^{4} & & S_{R}^{3}
\end{align*}
\]

\[
u'(x) \approx R'(x) = \frac{\bar{\gamma}}{\gamma} \left[P_{C}^{4'}(x) - \alpha P_{L}^{3'}(x) - \beta P_{R}^{3'}(x) \right] + \tilde{\alpha} P_{L}^{3'}(x) + \tilde{\beta} P_{R}^{3'}(x)
\]

(maintains symmetry of the diffusion operator)
3. Time Stepping: Method of Lines

Use implicit Runge-Kutta methods
so $\Delta t \sim \Delta x$
The Courant-Fredrichs-Lewy (CFL) Timestep

- Δt_{CFL} is the time for fluid to move a distance Δx

\[
\max |f'(u)| \Delta t_{\text{CFL}} = \Delta x
\]

- The CFL number is

\[
\text{CFL} = \frac{\Delta t}{\Delta t_{\text{CFL}}} \begin{cases}
\leq 1 & \text{fluid moves one cell per time step} \\
> 1 & \text{fluid moves many cells per time step}
\end{cases}
\]

- For explicit methods, stability requires
 - CFL ≤ 1
 - With diffusion, $\Delta t \sim \Delta x^2$ (parabolic scaling, i.e., stiffness)

Conclusion. We must do something!

- Operator splitting: split diffusion from advection (IMEX methods)
- Monolithic: Use fully implicit methods [we use this]

Choose $\Delta t \sim \Delta x$ for accuracy, not stability
Choice of Runge-Kutta Method

\[\frac{du}{dt} = G(u) \]

Strong-Stability Preserving (SSP) Runge-Kutta
- Preserves stability of backward Euler
- Requires CFL-like constraint for stability \((\Delta t \lesssim \Delta t_{CFL}) \)
- Becomes unstable for large \(\Delta t \)

L-Stable Runge-Kutta
- Not SSP, but unconditionally stable
- Robust for stiff problems (e.g., with diffusion)
 - Stable: For \(u' = au \ (a < 0) \), \(u^{n+1} = Q(\Delta t)u^n \) and \(|Q(\Delta t)| \leq 1 \).
 - L-Stable: Also \(|Q(\Delta t)| \to 0 \) as \(\Delta t \to \infty \) (i.e., stable if \(\Delta t \) too large)

Radau IIA Runge-Kutta: 3rd order method:

\[
\begin{align*}
 u^{n+1/3} &= u^n + \frac{\Delta t}{12} \left[5G(u^{n+1/3}) - G(u^{n+1}) \right] \\
 u^{n+1} &= u^n + \frac{\Delta t}{4} \left[3G(u^{n+1/3}) + G(u^{n+1}) \right]
\end{align*}
\]

Only two unknowns per mesh element (at times \(t^{n+1/3} \) and \(t^{n+1} \))
Numerical Test — Burgers’ and Buckley-Leverett Equations

Small Δt Radau IIA and SSP-RK perform similarly

$\Delta t = 2\Delta x$

Large Δt Radau IIA overshoots a bit, SSP-RK is unstable

$\Delta t = 0.5\Delta x$

$\Delta t = 5\Delta x$

$\Delta t = 2\Delta x$
Idea: Suppress the small oscillations near discontinuities by using

- Radau IIA Runge-Kutta when u is smooth
- composite backward Euler (BE) when u is discontinuous

Basically, we want

$$u^{n+1} \overset{?}{=} \tilde{w}^{\text{Radau}} u^{n+1, \text{Radau}} + \tilde{w}^{\text{BE}} u^{n+1, \text{BE}}$$

for some nonlinear weights $\tilde{w}^{\text{Radau}} + \tilde{w}^{\text{BE}} = 1$

Butcher Tableau: Gives the Runge-Kutta coefficients and time levels

<table>
<thead>
<tr>
<th>$1/3$</th>
<th>$5/12$</th>
<th>$-1/12$</th>
<th>$1/3$</th>
<th>$1/3$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3/4$</td>
<td>$1/4$</td>
<td>1</td>
<td>$1/3$</td>
<td>$2/3$</td>
</tr>
<tr>
<td>$3/4$</td>
<td>$1/4$</td>
<td></td>
<td>$1/3$</td>
<td>$2/3$</td>
<td></td>
</tr>
</tbody>
</table>

Radau IIA

<table>
<thead>
<tr>
<th>$1/3$</th>
<th>$5/12\tilde{w}^{\text{Radau}} + 1/3\tilde{w}^{\text{BE}}$</th>
<th>$-1/12\tilde{w}^{\text{Radau}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3/4\tilde{w}^{\text{Radau}} + 1/3\tilde{w}^{\text{BE}}$</td>
<td>$1/4\tilde{w}^{\text{Radau}} + 2/3\tilde{w}^{\text{BE}}$</td>
</tr>
<tr>
<td>$3/4$</td>
<td>$\tilde{w}^{\text{Radau}} + 1/3\tilde{w}^{\text{BE}}$</td>
<td>$1/4\tilde{w}^{\text{Radau}} + 2/3\tilde{w}^{\text{BE}}$</td>
</tr>
</tbody>
</table>

adaptive Runge-Kutta
Application to Advection-Diffusion Equation in 1D

\[
\bar{u}_{i,t} + \frac{1}{h} \left[\hat{F}_{i+1/2} - \hat{F}_{i-1/2} \right] = 0
\]

- A conservative scheme requires unique fluxes at each grid point
- Apply the time-stepping to the flux at each grid point separately

\[
\bar{u}_{i}^{n+1/3} = \bar{u}_{i}^{n} - \frac{\Delta t_{n}}{\Delta x_{i}} \left[\tilde{a}_{1}^{1/2} \hat{F}_{i+1/2}^{n+1/3} - \tilde{a}_{1}^{1/2} \hat{F}_{i-1/2}^{n+1/3} \right]
\]

\[
\bar{u}_{i}^{n+1} = \bar{u}_{i}^{n} - \frac{\Delta t_{n}}{\Delta x_{i}} \left[\tilde{b}_{1}^{1/2} \hat{F}_{i+1/2}^{n+1/3} - \tilde{b}_{1}^{1/2} \hat{F}_{i-1/2}^{n+1/3} \right]
\]

where

\[
\hat{F}_{i}^{n+\theta} = \hat{F}(u_{i+1/2}^{n+\theta}, u_{i-1/2}^{n+\theta}, u_{i}^{n+\theta}), \quad \theta = 1/3, 1
\]

\[
\tilde{a}_{1}^{1/2} = \frac{5}{12} \tilde{w}_{i+1/2}^{\text{Radau}} + \frac{1}{3} \tilde{w}_{i+1/2}^{\text{BE}}
\]

\[
\tilde{a}_{2}^{1/2} = -\frac{1}{12} \tilde{w}_{i+1/2}^{\text{Radau}}
\]

\[
\tilde{b}_{1}^{1/2} = \frac{3}{4} \tilde{w}_{i+1/2}^{\text{Radau}} + \frac{1}{3} \tilde{w}_{i+1/2}^{\text{BE}}
\]

\[
\tilde{b}_{2}^{1/2} = \frac{1}{4} \tilde{w}_{i+1/2}^{\text{Radau}} + \frac{2}{3} \tilde{w}_{i+1/2}^{\text{BE}}
\]
Weighting Procedure

Linear weighting
- BE is locally $O(h^2)$ accurate, globally $O(h)$ (for a smooth problem!)
- BE weight is $w^{BE} = w_0^{BE} h^2$ (or $w_0^{BE} \Delta t^2$, since $\Delta t \sim h$)
- Radau weight is $w^{Radau} = 1 - w^{BE}$.

Nonlinear weighting ($\eta \geq 1$ and $\epsilon_h = \epsilon_0 h^2$)

\[
\hat{w}_{i \pm 1/2}^{Radau} = \frac{w^{Radau}_{i \pm 1/2}}{(\epsilon_h + \sigma_{Radau}^{i \pm 1/2})^\eta}, \quad \hat{w}_{i \pm 1/2}^{BE} = \frac{w^{BE}_{i \pm 1/2}}{(\epsilon_h + \sigma^{BE})^\eta},
\]

\[
\tilde{w}_{i \pm 1/2}^{Radau} = \frac{\hat{w}_{i \pm 1/2}^{Radau}}{\hat{w}_{i \pm 1/2}^{BE} + \hat{w}_{i \pm 1/2}^{Radau}}, \quad \tilde{w}_{i \pm 1/2}^{BE} = 1 - \tilde{w}_{i \pm 1/2}^{Radau}.
\]

Smoothness indicators (i.e., roughness)
- BE: $\sigma^{BE} = 0$ (BE can always be used)
- Radau: detect a shock in space

\[
\sigma_{i \pm 1/2}^{Radau} = (\bar{u}_{i \pm 1}^n - \bar{u}_i^n)^2 + (\bar{u}_{i \pm 1}^{n+1} - \bar{u}_i^{n+1})^2 + (\bar{u}_{i \pm 1}^{n+1/3} - \bar{u}_i^{n+1/3})^2.
\]
Consider the local time truncation error as a perturbation of Radau IIA.

Perturbed Radau weights

\[
\begin{align*}
\tilde{a}_{i\pm 1/2}^1 &= \frac{5}{12} - \frac{1}{12} \tilde{w}_{i\pm 1/2} \\
\tilde{b}_{i\pm 1/2}^1 &= \frac{3}{4} - \frac{5}{12} \tilde{w}_{i\pm 1/2} \\
\tilde{a}_{i\pm 1/2}^2 &= -\frac{1}{12} + \frac{1}{12} \tilde{w}_{i\pm 1/2} \\
\tilde{b}_{i\pm 1/2}^2 &= \frac{1}{4} + \frac{5}{12} \tilde{w}_{i\pm 1/2}
\end{align*}
\]

Theorem. The adaptive Runge-Kutta scheme remains globally $O(h^3)$ accurate when ω is smooth. [Because $\omega^{BE} = O(h^2)$]
Numerical Test — Smooth Burgers’ Equation

\[u_t + \left(\frac{u^2}{2} \right)_x = 0, \quad x \in (0, 2) \]

\[u(x, 0) = \frac{1}{2} \left(1 - \frac{1}{2} \sin(\pi x) \right) \]

Error and convergence order at \(T = 1 \) (no shocks)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(L^1_h) error</th>
<th>(L^1_h) order</th>
<th>(L^\infty_h) error</th>
<th>(L^\infty_h) order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta t = h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>3.21E-06</td>
<td>2.93</td>
<td>4.28E-05</td>
<td>2.87</td>
</tr>
<tr>
<td>1280</td>
<td>4.05E-07</td>
<td>2.99</td>
<td>5.47E-06</td>
<td>2.97</td>
</tr>
<tr>
<td>2560</td>
<td>5.07E-08</td>
<td>3.00</td>
<td>6.87E-07</td>
<td>2.99</td>
</tr>
<tr>
<td>(\Delta t = 10h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1280</td>
<td>1.86E-04</td>
<td>2.29</td>
<td>2.81E-03</td>
<td>1.92</td>
</tr>
<tr>
<td>2560</td>
<td>2.86E-05</td>
<td>2.70</td>
<td>4.84E-04</td>
<td>2.54</td>
</tr>
<tr>
<td>5120</td>
<td>3.78E-06</td>
<td>2.92</td>
<td>6.57E-05</td>
<td>2.88</td>
</tr>
<tr>
<td>(\Delta t = 50h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5120</td>
<td>3.09E-04</td>
<td>2.06</td>
<td>4.39E-03</td>
<td>1.67</td>
</tr>
<tr>
<td>10240</td>
<td>5.12E-05</td>
<td>2.59</td>
<td>8.45E-04</td>
<td>2.38</td>
</tr>
<tr>
<td>20480</td>
<td>7.13E-06</td>
<td>2.85</td>
<td>1.23E-04</td>
<td>2.78</td>
</tr>
<tr>
<td>Expected</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Errors in Time — Discontinuous Case

Consider the local time truncation error (LTE) as a perturbation of BE.

Perturbed BE weights

\[
\begin{align*}
\tilde{a}^1_{i\pm 1/2} &= \frac{1}{3} + \frac{1}{12} \tilde{w}_{i\pm 1/2} \\
\tilde{b}^1_{i\pm 1/2} &= \frac{1}{3} + \frac{5}{12} \tilde{w}_{i\pm 1/2} \\
\tilde{a}^2_{i\pm 1/2} &= -\frac{1}{12} \tilde{w}_{i\pm 1/2} \\
\tilde{b}^2_{i\pm 1/2} &= \frac{2}{3} - \frac{5}{12} \tilde{w}_{i\pm 1/2}
\end{align*}
\]

Conclusion. The LTE is formally the same as BE (i.e., \(O(h)\)). However:

- BE should be \(O(h^{1/2})\) accurate with a discontinuity (LTE = \(O(h^{3/2})\)).
- In practice, BE is \(O(h)\) accurate (LTE = \(O(h^2)\)).

Numerical results show \(O(h)\) accuracy. Further investigation is underway.
Remarks.

- The Radau overshoot is stable and does not grow.
- The adaptive scheme removes the oscillation and improves on BE.
- Away from the shock, the adaptive scheme is $O(h^3)$ accurate.
- The SSP Runge-Kutta method is unstable at $\Delta t = 5h$.
Numerical Test — Burgers’ Equation with Shock

$$u_t + \left(\frac{u^2}{2}\right)_x = 0, \quad x \in (0, 2)$$

$$u(x, 0) = 1 - H(x - 1/2) \quad (H \text{ is the Heaviside function})$$

Error and convergence order at $T = 1$ (initial shock)

<table>
<thead>
<tr>
<th>m</th>
<th>$\Delta t = 2h$ L^1_h error</th>
<th>$\Delta t = 10h$ L^1_h error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>order</td>
<td>order</td>
</tr>
<tr>
<td>BE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>1.04E-02 0.98</td>
<td>2.73E-02 0.98</td>
</tr>
<tr>
<td>320</td>
<td>5.22E-03 0.99</td>
<td>1.37E-02 0.99</td>
</tr>
<tr>
<td>640</td>
<td>2.62E-03 1.00</td>
<td>6.86E-03 1.00</td>
</tr>
<tr>
<td>Radau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>7.27E-03 1.00</td>
<td>1.70E-02 1.00</td>
</tr>
<tr>
<td>320</td>
<td>3.64E-03 1.00</td>
<td>8.47E-03 1.00</td>
</tr>
<tr>
<td>640</td>
<td>1.82E-03 1.00</td>
<td>4.23E-03 1.00</td>
</tr>
<tr>
<td>Radau + BE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>1.03E-02 0.98</td>
<td>2.71E-02 0.97</td>
</tr>
<tr>
<td>320</td>
<td>5.19E-03 0.99</td>
<td>1.36E-02 0.99</td>
</tr>
<tr>
<td>640</td>
<td>2.60E-03 0.99</td>
<td>6.83E-03 1.00</td>
</tr>
</tbody>
</table>

Expected? 1

The Babuška Forum, May 29, 2020

CSM: Center for Subsurface Modeling
Numerical Test — Smooth Burgers’ with Diffusion

Error and convergence order at $T = 1$ **with** $\Delta t = 10.5h$

<table>
<thead>
<tr>
<th>m</th>
<th>L_h^1 Error</th>
<th>Order</th>
<th>L_h^∞ Error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$D = 1E-01$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>1.36E-04</td>
<td>2.56</td>
<td>1.19E-04</td>
<td>2.56</td>
</tr>
<tr>
<td>640</td>
<td>1.93E-05</td>
<td>2.82</td>
<td>1.67E-05</td>
<td>2.82</td>
</tr>
<tr>
<td>1280</td>
<td>2.50E-06</td>
<td>2.95</td>
<td>2.17E-06</td>
<td>2.95</td>
</tr>
<tr>
<td></td>
<td>$D = 1E-02$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>5.36E-08</td>
<td>2.97</td>
<td>6.15E-08</td>
<td>2.97</td>
</tr>
<tr>
<td>640</td>
<td>6.72E-09</td>
<td>2.99</td>
<td>7.72E-09</td>
<td>2.99</td>
</tr>
<tr>
<td>1280</td>
<td>8.47E-10</td>
<td>2.99</td>
<td>9.73E-10</td>
<td>2.99</td>
</tr>
<tr>
<td></td>
<td>$D = 1E-04$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>1.86E-12</td>
<td>2.96</td>
<td>4.20E-12</td>
<td>2.95</td>
</tr>
<tr>
<td>640</td>
<td>2.36E-13</td>
<td>2.98</td>
<td>5.33E-13</td>
<td>2.98</td>
</tr>
<tr>
<td>1280</td>
<td>2.96E-14</td>
<td>2.99</td>
<td>6.71E-14</td>
<td>2.99</td>
</tr>
</tbody>
</table>

Expected 3

Remarks.

- Convergence is maintained as $D \to 0$
4. Numerical Performance of iWENO-AO
Numerical Test — Convergence for Burgers’ equation in 2D

\[\frac{\partial u}{\partial t} + \frac{u^2}{2} \frac{\partial}{\partial x} \frac{\partial}{\partial y} - D \frac{\partial^2 u}{\partial x^2} = 0 \]

We use randomly perturbed meshes of quadrilaterals in 2D.

Error and convergence order for smooth solution at \(t = 1 \) using \(\Delta t = 5h \) and quadrilateral meshes

<table>
<thead>
<tr>
<th>(m)</th>
<th>(L^1_{\Delta x}) error order</th>
<th>(L^\infty_{\Delta x}) error order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D = 0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.254E-03 — —</td>
<td>1.570E-03 — —</td>
</tr>
<tr>
<td>40</td>
<td>4.908E-04 2.73</td>
<td>2.172E-04 2.85</td>
</tr>
<tr>
<td>80</td>
<td>6.687E-05 2.88</td>
<td>2.910E-05 2.90</td>
</tr>
<tr>
<td>160</td>
<td>8.742E-06 2.94</td>
<td>3.764E-06 2.95</td>
</tr>
<tr>
<td>(D = 0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.023E-08 — —</td>
<td>5.617E-08 — —</td>
</tr>
<tr>
<td>40</td>
<td>5.705E-09 1.83</td>
<td>2.487E-08 1.18</td>
</tr>
<tr>
<td>80</td>
<td>1.058E-09 2.43</td>
<td>5.766E-09 2.11</td>
</tr>
<tr>
<td>160</td>
<td>1.330E-10 2.99</td>
<td>6.748E-10 3.10</td>
</tr>
<tr>
<td>Expected</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Numerical Test — Porous Medium Equation in 1D

\[u_t = (u^m)_{xx} = ((mu^{m-1})u_x)_x \]

Barenblatt solution

\[B_m(x, t) = t^{-k} \left[\max \left(0, 1 - \frac{k(m-1)}{2m} \frac{|x|^2}{t^{2k}} \right) \right]^{1/(m-1)} \quad k = \frac{1}{m + 1}, \quad m > 1 \]

This solution has compact support \([-\alpha_m(t), \alpha_m(t)]\), where

\[\alpha_m(t) = \sqrt{\frac{2m}{k(m-1)}} t^k \]

Non-uniform mesh of 120 elements at \(t = 2 \) (from \(t = 1 \)), \(\Delta t = h \)
Quarter 5 spot pattern of petroleum wells

Permeability on Quadrilateral Mesh

Undershoot wave: $-3.14E-4$

$t = 5$ days $t = 50$ days $t = 455$ days
$t = 1$ day $t = 10$ days $t = 15$ days

Some small undershoots, but essentially non-oscillatory
General Remarks on iWENO-AO

Extensions. Easily extends to:
- higher order schemes;
- 3D on general computational meshes;
- systems of equations.

Efficiency.
- Uses 2 unknowns per mesh element per system component, independent of the space dimension! (For third order Radau IIA)
- Can use very long time steps, and $\Delta t \sim h$, not h^2.
- Reconstruction boosts parallel computing (less data transfer, more local computation)

Numerical Accuracy.
- Formal accuracy is $O(h^3 + \Delta t^3)$ for smooth solutions.
- Essentially non oscillatory.
- The scheme is unconditionally von Neumann (Fourier) L-stable for smooth solutions to the linear problem.

Physical Accuracy.
- Locally mass conservative at $t^{n+1/3}$ and t^{n+1}.
- Handles both advection and diffusion (even $D = 0$).
5. A Self-Adaptive Theta Scheme (SATh)

Replace backward Euler in the adaptive time stepping
Notation:

\[
\begin{align*}
\Delta t & \quad t^n \quad t^{n+1} \\
\Delta x_i & \quad x_{i-3/2} \quad x_{i-1} \quad x_{i-1/2} \quad x_i \quad x_{i+1/2} \quad x_{i+1} \quad x_{i+3/2}
\end{align*}
\]

Basic equation 1. The governing equation directly controls \(\bar{u}_{i+}^{n+1} \).

\[
\bar{u}_{i+1}^{n+1} = \bar{u}_i^n - \frac{1}{\Delta x_i} \int_{t^n}^{t^{n+1}} \left[f(u_{i+1/2}(t)) - f(u_{i-1/2}(t)) \right] dt
\]

Problem. A shock in space is also a shock in time! Using only \(\bar{u}_i^n \) and \(\bar{u}_{i+1}^{n+1} \) (and nearest neighbors), we cannot tell where the shock is in time.

Requirement. We need information over the entire time interval!
The space-time cell average of u is

$$\bar{u}_i^{n+1} = \frac{1}{\Delta t \Delta x_i} \int_{t^n}^{t^{n+1}} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x, t) \, dx \, dt$$

Fact. The governing equation directly controls \bar{u}_i^{n+1}!
Basic equation 2. We use a test function \(w(t) = \left(t^{n+1} - t \right) / \Delta t \) to see

\[
\int_{t^n}^{t^{n+1}} \bar{u}_i(t) w(t) \, dt = \bar{u}_i(t) w(t) \bigg|_{t^n}^{t^{n+1}} - \int_{t^n}^{t^{n+1}} \bar{u}_i(t) w'(t) \, dt
\]

\[
= -\bar{u}_i^n + \bar{u}_i^{n+1}
\]

Then

\[
\int_{t^n}^{t^{n+1}} \int_{x_{i-1/2}}^{x_{i+1/2}} \left(u_t + f(u) x \right) w(t) \, dx \, dt = 0
\]

\[\Rightarrow\]

\[
\bar{u}_i^{n+1} = \bar{u}_i^n - \frac{1}{\Delta t \Delta x_i} \int_{t^n}^{t^{n+1}} \left(f(u_{i+1/2}) - f(u_{i-1/2}) \right) (t^{n+1} - t) \, dt
\]
5.1. Discontinuity Aware Quadrature (DAQ)
Problem description. Accurately approximate

\[\int_0^{\Delta t} g(v(t)) \, w(t) \, dt \]

- \(g \) and \(w \) are smooth
- \(v(t) \) is smooth except for a discontinuity at \(0 \leq \tau \leq \Delta t \)

Use only the data

\[v^0 = v(0) \quad v^1 = v(\Delta t) \quad \tilde{v} = \frac{1}{\Delta t} \int_0^{\Delta t} v(t) \, dt \]
Idealize the picture.

\[\tilde{v} = \frac{1}{\Delta t} \left[\tau v^0 + (1 - \tau)v^1 \right] \implies \tau = \frac{v^1 - \tilde{v}}{v^1 - v^0} \Delta t \]

DAQ approximation.

\[
\int_0^{\Delta t} g(v(t)) w(t) \, dt \approx g(v^0) \int_0^{\tau} w(t) \, dt + g(v^1) \int_{\tau}^{\Delta t} w(t) \, dt
\]

Application. Let \(\theta = 1 - \frac{\tau}{\Delta t} = \frac{\tilde{v} - v^0}{v^1 - v^0} \)

\[
w = 1 \quad \int_0^{\Delta t} g(v(t)) \, dt \approx \left[g(v^0) + \theta \left((g(v^1) - g(v^0)) \right) \right] \Delta t
\]

\[
w = \frac{t^1 - t}{\Delta t} \quad \int_0^{\Delta t} g(v(t)) w(t) \, dt \approx \frac{1}{2} \left[g(v^0) + \theta^2 \left((g(v^1) - g(v^0)) \right) \right] \Delta t
\]
5.2. Application to Finite Volume Schemes
An Upstream-Weighted Scheme SATh-up

Monotone flux. Suppose that \(f'(u) > 0 \).

- Use one-point upstream weighting to stabilize the scheme
- Let \(\bar{f}_i^n = f(\bar{u}_i^n) \)

The upstream-weighted scheme. (SATh-up)

\[
\bar{u}_i^{n+1} = \bar{u}_i^n - \frac{\Delta t}{\Delta x_i} \left[\bar{f}_i^n + \theta_i (\bar{f}_i^{n+1} - \bar{f}_i^n) - \bar{f}_{i-1}^n - \theta_{i-1} (\bar{f}_{i-1}^{n+1} - \bar{f}_{i-1}^n) \right]
\]

\[
\tilde{u}_i^{n+1} = \bar{u}_i^n - \frac{\Delta t}{2\Delta x_i} \left[\bar{f}_i^n + \theta_i^2 (\bar{f}_i^{n+1} - \bar{f}_i^n) - \bar{f}_{i-1}^n - \theta_{i-1}^2 (\bar{f}_{i-1}^{n+1} - \bar{f}_{i-1}^n) \right]
\]

where

\[
\theta_i = \begin{cases}
\max \left(\frac{1}{2}, \frac{\tilde{u}_i^{n+1} - \bar{u}_i^n}{\bar{u}_i^{n+1} - \bar{u}_i^n} \right) & \text{if } |\bar{u}_i^{n+1} - \bar{u}_i^n| > \epsilon \\
\theta^* & \text{if } |\bar{u}_i^{n+1} - \bar{u}_i^n| \leq \epsilon
\end{cases}
\]

- \(\epsilon \geq 0 \) is very small (even zero)
- \(\theta^* = 1 \) (backward Euler) or possibly \(\theta^* = 1/2 \) (Crank-Nicolson)

This is a **self-adaptive** theta method!

Remark. A Lax-Friedrichs stabilized SATh-LF scheme is similar.
Test Example: Propagation of a Contact Discontinuity

\[u_t + u_x = 0 \quad \text{for} \ 0 < x < 1 \]

\[\Delta x = 1/100, \ \Delta t = 1/20 \ (\text{CFL} = 5), \ t = 0.5 \ (10 \ \text{steps}) \]

<table>
<thead>
<tr>
<th>(m)</th>
<th>(L^1_{\Delta x}) error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.95E-1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.53E-1</td>
<td>0.35</td>
</tr>
<tr>
<td>40</td>
<td>1.10E-1</td>
<td>0.48</td>
</tr>
<tr>
<td>80</td>
<td>7.56E-2</td>
<td>0.54</td>
</tr>
<tr>
<td>160</td>
<td>5.17E-2</td>
<td>0.55</td>
</tr>
<tr>
<td>320</td>
<td>3.54E-2</td>
<td>0.55</td>
</tr>
</tbody>
</table>

- Crank-Nicholson
- backward Euler, CFL/2
- SATh-LF scheme \(\bar{u} \)
- SATh-LF scheme \(\tilde{u} \)
- SATh-LF scheme \(\theta \)
5.3. Theoretical Properties of SATh
Accuracy of DAQ

Theorem. Let $g(v)$ be a smooth function and $v(t)$ satisfy the conditions for an isolated discontinuity at $\tau \in (0, \Delta t)$. If τ^* is the approximation to τ, then

$$|\tau - \tau^*| \leq C \Delta t^2$$

$$\left| \int_0^{\Delta t} g(v(t)) w(t) \, dt - \text{DAQ}(gw) \right| \leq C \Delta t^2$$

where C depends only on the L^∞ norms of g', w, v'_L, and v'_R.

Consequence. The local truncation error is $O(\Delta t^2)$.

The scheme should be $O(\Delta x + \Delta t)$.
Stability of the Upstream-Weighted Scheme

Theorem. Assume that

- $f(0) = 0$ and $f'(u) > 0$ for $u \neq 0$
- the problem has a boundary condition imposed on the left

The upstream weighted scheme (SATh-up) is unconditionally stable for the nonlinear problem if

$$\theta_i \geq \frac{1}{2}$$
Theorem. For the upstream weighted scheme (SATh-up), assume
- \(f = f(u) \) only, \(f'(u) > 0 \) and \(\epsilon = 0 \) (in defining \(\theta_i \))
- the problem has a boundary condition on the left (so \(\bar{u}^n_0 \) is given)

If the IC and BC of the flow is monotonically decreasing,

\[
\bar{u}^n_{i-1} \geq \bar{u}^n_i \quad \text{and} \quad \bar{u}^n_0 \leq \bar{u}^n_0 + 1 \quad \text{then} \quad \bar{u}^n_i \leq \bar{u}^n_i + 1 \leq \bar{u}^n_i - 1
\]

If the IC and BC of the flow is monotonically increasing,

\[
\bar{u}^n_{i-1} \leq \bar{u}^n_i \quad \text{and} \quad \bar{u}^n_0 \geq \bar{u}^n_0 + 1 \quad \text{then} \quad \bar{u}^n_i \geq \bar{u}^n_i + 1 \geq \bar{u}^n_i - 1
\]

Moreover,
- If \(\tilde{u}^{n+1}_0 \) lies between \(\bar{u}^n_0 \) and \(\bar{u}^n_0 + 1 \), then \(1/2 \leq \theta_i \leq 1 \)
- If \(\theta^* = 1 \) (in defining \(\theta_i \)), then \(\tilde{u}^{n+1}_i \) lies between \(\bar{u}^n_i \) and \(\bar{u}^{n+1}_i \)

Corollary. The Total Variation

\[
\text{TV}(\bar{u}^n) = \sum_{i=1}^{\infty} |\bar{u}^n_{i-1} - \bar{u}^n_i|
\]

is bounded (TVB) and diminishes (TVD) under appropriate hypotheses.
6. Numerical Performance of SATh-LF
Burgers Equation, Riemann Shock

\[u_t + \left(\frac{u^2}{2}\right)_x = 0 \quad \text{for} \ 0 < x < 1 \]

\[\Delta x = 1/80, \ \Delta t = 1/16 \ (\text{CFL} = 5), \ t = 1.0 \]

\begin{array}{|c|c|c|}
\hline
m & L^1_{\Delta x} \text{ error} & \text{order} \\
\hline
10 & 1.76E-1 & - \\
20 & 9.74E-2 & 0.86 \\
40 & 4.97E-2 & 0.97 \\
80 & 2.49E-2 & 1.00 \\
160 & 1.24E-2 & 1.00 \\
320 & 6.22E-3 & 1.00 \\
\hline
\end{array}

- Crank-Nicholson
- backward Euler, CFL/2
- SATh-LF scheme \(\bar{u} \)
- SATh-LF scheme \(\tilde{u} \)
- SATh-LF scheme \(\theta \)
Burgers Equation, Riemann Rarefaction

\[u_t + \left(\frac{u^2}{2} \right)_x = 0 \quad \text{for } 0 < x < 1 \]

\[\Delta x = 1/80, \ \Delta t = 1/16 \ (\text{CFL } = 5), \ t = 0.25 \]

- Crank-Nicholson
- backward Euler, CFL/2
- SATh-LF scheme \(\bar{u} \)
- SATh-LF scheme \(\tilde{u} \)
- SATh-LF scheme \(\theta \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(L^1_{\Delta x}) error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>7.88E-2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.66E-2</td>
<td>0.76</td>
</tr>
<tr>
<td>80</td>
<td>2.72E-2</td>
<td>0.78</td>
</tr>
<tr>
<td>160</td>
<td>1.56E-2</td>
<td>0.80</td>
</tr>
<tr>
<td>320</td>
<td>8.86E-3</td>
<td>0.82</td>
</tr>
<tr>
<td>640</td>
<td>4.96E-3</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Burgers Equation, Shock formation

\[u_t + \left(\frac{u^2}{2} \right)_x = 0 \quad \text{for } 0 < x < 1 \]

\[\Delta x = 1/160, \Delta t = 1/24 \quad (\text{CFL} = 4) \]

\[t = 0 \]

\[t = 0.6 \]

\[t = 1.2 \]

\[TV \]

- \text{Crank-Nicholson}
- \text{backward Euler, CFL/2}
- SATh-LF scheme \(\bar{u} \)
- SATh-LF scheme \(\hat{u} \)
- SATh-LF scheme \(\theta \)
Buckley-Leverett Equation, Rarefaction and Shock

\[u_t + \left(\frac{u^2}{u^2 + (1-u)^2} \right)_x = 0 \quad \text{for } 0 < x < 1 \]

\[\alpha_{LF} = 2, \quad t = 0.5 \]

\[\Delta x = 1/40, \text{CFL} = 2 \]

\[\Delta x = 1/80, \text{CFL} = 5 \]

- Crank-Nicholson
- backward Euler, CFL/2
- SATh-LF scheme \(\bar{u} \)
- SATh-LF scheme \(\tilde{u} \)
- SATh-LF scheme \(\theta \)
A Non Monotone Flux Function, Step Down

\[u_t + f(u)_x = 0 \quad \text{for } 0 < x < 1 \]

\[\alpha_{LF} = 1 \]

\[t = 0.75, \Delta x = 1/160, \text{CFL } = 1 \]

\[t = 0.75, \Delta x = 1/160, \text{CFL } = 8 \]

\[\Delta x = 1/80, \text{CFL } = 8 \]

Crank-Nicholson
backward Euler, CFL/2
forward Euler

SATh-LF scheme \(\bar{u} \)
SATh-LF scheme \(\tilde{u} \)
SATh-LF scheme \(\theta \)
Burgers Equation in 2D

\[u_t + \left(\frac{u^2}{2} \right)_x + \left(\frac{u^2}{2} \right)_y = 0 \quad \text{for } 0 < x < 1, 0 < y < 1 \]

\[\Delta x = \Delta y = 1/40, \Delta t = 1/10 \ (\text{CFL} = 4), \ \alpha_{LF} = 1 \]

\[t = 0.2 \]

\[t = 0.5 \]

\[t = 1.0 \]

\[t = 1.0, \text{ profile} \]

backward Euler, CFL/2

SATh-LF scheme \(\bar{u} \)
Buckley-Leverett Equation in 2D

\[u_t + \left(\frac{u^2}{u^2 + (1-u)^2} \right)_x + \left(\frac{u^2}{u^2 + (1-u)^2} \right)_y = 0 \quad \text{for } 0 < x, y < 1 \]

\[\Delta x = \Delta y = 1/40, \ \Delta t = 1/10 \ (CFL = 8), \ \alpha_{LF} = 2 \]

\[t = 0.2 \]

\[t = 0.5 \]

\[t = 1.0 \]

\[t = 1.0, \ \text{profile} \]

backward Euler, CFL/2
SATh-LF scheme \(\bar{u} \)
7. Summary and Conclusions
\[u_t + \nabla \cdot [f(u) - D(u)\nabla u] = 0 \]

Finite volume framework

- **Space:** use (implicit) WENO-AO reconstructions
- **Time:** use an adaptive, L-stable implicit, Runge-Kutta method

1. Locally conservative and captures the physics (advection, diffusion)
2. Only a few unknowns per mesh element per component (in n-D)

WENO-AO spatial reconstruction

1. High order accuracy when \(u \) is smooth, low order when discontinuous
2. Captures steep fronts ("essentially" non oscillatory)
3. Easy to extend to general 2D and 3D meshes

Adaptive Runge-Kutta time stepping

1. L-stable implicit Runge-Kutta (SSP not suitable)
2. \(\Delta t \sim \Delta x \), chosen for accuracy, not stability
3. Adapt between Radau IIA and composite backward Euler
4. Radau accuracy when \(u \) is smooth, BE when discontinuous
Self Adaptive Theta scheme. A “better backward Euler”

1. The differential equation controls both \tilde{u}_i^{n+1} and \bar{u}_i^{n+1}
2. These are used to define Discontinuity Aware Quadrature (DAQ)
 - Accurate locally to $O(\Delta t^2)$, even with discontinuities
3. DAQ gives SATh schemes for conservation laws
 \[
 \theta_i = \max \left(\frac{1}{2}, \frac{\tilde{u}_i^{n+1} - \bar{u}_i^n}{\bar{u}_i^{n+1} - \bar{u}_i^n} \right)
 \]

The upstream scheme:
- is stable for monotone fluxes
- satisfies maximum principle for monotone flows and is TVB/TVD
4. Early stage of development:
- less diffusive than backward Euler
- the general SATh-LF seems to have all the good properties of BE
- shows promise!

