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Advection-Diffusion-Reaction Equations

ut +∇ · [f(u)−D(u)∇u] = g(u)

Within science and engineering, researchers often use models involving

1. Advection, ut +∇ · f(u) = 0

• the transport of a substance
• mathematically hyperbolic

2. Diffusion, ut −∇ ·D(u)∇u = 0

• the spreading of a substance to the average of its surroundings
• mathematically parabolic (or elliptic)

3. Reactions, ut = g(u) [Omit for this talk]

• substances transform to other substances
• mathematically an ordinary differential equation

These are systems of advection-diffusion-reaction equations.

Main Difficulty: The equations are often advection dominated.

The solution to the equations can develop

steep fronts or even shock discontinuities.
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Hyperbolic Equations

ut +∇ · f(u) = 0

• Mass conservative
• Linear transport in 1D is simple translation

ut + aux = 0, u(x,0) = u0(x) =⇒ u(x, t) = u0(x− at)
A discontinuity in u0 propagates as a contact discontinuity.
• Nonlinear transport in 1D has variable speed

ut + f ′(u)ux = 0, u(x,0) = u0(x)

If f(u) grows with u, a shock discontinuity can form.

• Solutions do not become smoother in time (the operator is not
compact), but solutions are total variation diminishing

TV(u)(t) =
∫
|ux(x, t)| dx ≤ TV(u0) =

∫
|u′0(x)| dx

The solution does not oscillate.
• Hyperbolic scaling: Space and time scale as t ∼ x

u(x, t) = U(ξ(x, t)) =⇒ ut = U ′ξt ∼ ux = U ′ξx =⇒ dt ∼ dx
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Parabolic Equations

ut −∇ · [D(u)∇u] = 0

• Mass conservative

• Solutions smooth in time (the operator is compact on Sobolev spaces)

• Solutions are continuous. Initial discontinuities disappear immediately.

• The maximum principle: u is the average of nearby values.

The solution does not oscillate.

• Parabolic scaling: Space and time scale as t ∼ x2

u(x, t) = U(ξ(x, t)) =⇒ ut = U ′ξt ∼ uxx = U ′ξxx + U ′′(ξx)2

=⇒ dt ∼ dx2
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Outline

1. The finite volume framework. Approximation requires

• Reconstruction of the solution at points from average values

• A time stepping method

2. Reconstruction: WENO with adaptive order (WENO-AO)

• High order accurate when the solution is smooth

• Reduce accuracy near shocks/steep fronts to suppress oscillations

3. Time stepping: method of lines

• Implicit L-stable Runge-Kutta to handle stiffness (i.e., diffusion)

• A new adaptive Runge-Kutta (high order Runge-Kutta combined

with backward Euler) to further suppress oscillations

4. Numerical performance of iWENO-AO

5. Self-Adaptive Theta (SATh) scheme (a “better backward Euler”)

• Discontinuity Aware Quadrature (DAQ)

• Theoretical Properties

6. Numerical performance of SATh-LF

7. Summary and conclusions
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1. The Finite Volume
Framework
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Derivation of the Governing Equations

Mass Conservation
• u is mass of a substance per unit volume (i.e., its density)
• v is the velocity of the substance
• E is a volume element

•
∫
E
u(x, t) dx is the total mass in E

The change in mass is

d

dt

∫
E
u(x, t) dx

?
=
∫
E
ut(x, t) dx

Changes are due to flow through ∂E:

−
∫
∂E

v(x, t) · ν dσ(x) = −
∫
E
∇ · v(x, t) dx

by the Divergence Theorem. Equating, we have

E

−→

−→

−→−→

−→

−→

−→

−→

∫
E

[
ut(x, t) +∇ · v(x, t)

]
dx = 0 ⇐⇒ ut +∇ · v = 0

since this is true for every measurable E

Empirical Constitutive Relation. How are u and v related? Assume

v = f(u)−D(u)∇u
• Transport: motion due to the amount of material present u
• Diffusion: motion due to gradients in u
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The Equation in Finite Volume Form

Finite volumes (mesh elements)

• Fix a computational mesh of polytopal elements E in Rd

• The average of u over element E is

ūE(t) =
1

|E|

∫
E
u(x, t) dx

where |E| is the d dimensional volume of E

The finite volume equation. Mass conservation over mesh element E:

ūE,t +
1

|E|

∫
∂E

(
f(u)−D∇u

)
· νE dσ(x) = 0
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Introduce a Numerical Flux

A numerical flux function for the advective term is needed

• to stabilize the computations (by adding numerical diffusion)

• to account for potential discontinuities in the solution

Lax-Friedrichs numerical flux

f̂E(u−, u+) =
1

2

[
(f(u−) + f(u+)) · νE − αLF(u+ − u−)

]
• u− and u+ are left and right limits of the solution at the interface ∂E

• αLF = max
u

∣∣∣∂f/∂u∣∣∣
• if u is continuous, we have consistency

with the original flux

f̂E(u−, u+) = f(u) · νE

u− < u+

←−
u− > u+

−→

The averaged equation. Thus the advection-diffusion equation is

ūE,t +
1

|E|

∫
∂E

F̂ (u−, u+,∇u · νE) dσ(x) = 0

where F̂E(u−, u+,∇u · νE) = f̂E(u−, u+)−D∇u · νE
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Semidiscrete Approximation

Approximate integration.

• Let the facets of ∂E be denoted e1, e2, . . .

• On each ej, use a quadrature rule with points xj,k and weights |ej|ωj,k
• Denote

u±j,k(t) = u±(xj,k, t) ≈ u(xj,k, t)

uj,k(t) ≈ u(xj,k, t) E

e1

e2

e3

e4

The semidiscrete finite volume approximation.

ūE,t +
∑
j

|ej|
|E|

∑
k

ωj,kF̂E(u−j,k, u
+
j,k,∇u · νE)j,k = 0

• Fix time levels 0 = t0 < t1 < t2 < · · ·
• We approximate ūnE ≈ ūE(tn) for each n > 0

Remaining Issues.

• Reconstruct u±j,k and (∇u · νE)j,k from the discrete averages ūnE
• Define a fully discrete time evolution scheme
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2. Reconstruction:
Weighted Essentially Non-Oscillatory

with Adaptive Order (WENO-AO)

For simplicity, reconstruct in 1D and

assume uniform meshes of spacing ∆x = h
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Classic ENO3 Reconstructions in 1D
(Harten, Engquist, Osher & Chakravarthy 1987)

Idea: Find a polynomial that reconstructs u(x) from its average values.
Shocks are isolated, so compute using several stencils.

use any

E−2 E−1 E0 E1 E2

- x

6

u

︸ ︷︷ ︸S3
−1

P 3
−1

︸ ︷︷ ︸
S3

0

P 3
0

︸ ︷︷ ︸S3
1

P 3
1

use green

E−2 E−1 E0 E1 E2

- x

6

u

shock

Find P3
i (x) of degree 2 so mass is conserved on each 3 element stencil

1

h

∫
Ej
P3
i (x) dx = ūnEj (Ej in the stencil) =⇒ u(x) = P3

i (x) +O(h3)

Use the “essentially non-oscillatory” polynomial not crossing the shock.

u(x) ≈ R(x) = P3
i (x) for some chosen i, O(h3)

Problems
• Wasted stencil computations.
• Get a wide stencil.
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Classic WENO3 Reconstructions in 1D
(Liu, Osher & Chan 1994; Jiang & Shu 1996)

Idea: Take a weighted average of smaller stencil polynomials that give
the larger stencil polynomial.

bias to red

E−1 E0 E1

- x

6

u

!!
!!

!!
!!

!!
!

︸ ︷︷ ︸S2
−1

P 2
−1

︸ ︷︷ ︸
S3

0

P 3
0HHH
HHHH

HHH
H

︸ ︷︷ ︸S2
1

P 2
1

bias to green

E−1 E0 E1

- x

6

u

   
   

   
  

@
@
@
@
@
@
@
@
@
@
@

shock

Find P2
i (x) of degree 1 so mass is conserved on small stencils (O(h2))

For fixed x∗, define α, β = 1− α so that

P3
0 (x∗) = αP2

−1(x∗) + βP2
1 (x∗) (O(h3) accurate)

and then modify the weights so

u(x∗) ≈ R(x∗) = α̃P2
−1(x∗) + β̃P2

1 (x∗) ≈


P2
−1(x∗) if shock right,O(h2)

P3
0 (x∗) if no shock,O(h3)

P2
1 (x∗) if shock left,O(h2)

Problems
• The weights are difficult to find (not exist?!) and may be negative.
• Requires rectangular meshes in 2D/3D.
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WENO with Adaptive Order in 1D, WENO-AO(3,2)
(Levy, Puppo & Russo 2000; Balsara, Garain & Shu 2016; Arbogast, Huang & Zhao 2018)

Idea: Use large and small stencil polynomials of different degrees.

bias to red

E−1 E0 E1

- x

6

u

!!
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!!
!!

!!
!
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−1

P 2
−1
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0
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0HH
HHH

HHH
HHH
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1

bias to green
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@
@
@
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@
@
@
@
@

shock

For any x, take arbitrary (positive) α, β, γ so that α+ β + γ = 1

u(x) ≈ R(x) =
γ̃

γ

[
P3

0 (x)− αP2
−1(x)− βP2

1 (x)
]

+ α̃P2
−1(x) + β̃P2

1 (x)

≈


P2
−1(x) if shock right, α̃ ≈ 1, β̃ ≈ 0, γ̃ ≈ 0, O(h2)

P3
0 (x) if no shock, α̃ ≈ α, β̃ ≈ β, γ̃ ≈ γ, O(h3)

P2
1 (x) if shock left, α̃ ≈ 0, β̃ ≈ 1, γ̃ ≈ 0, O(h2)

Advantage

• Freedom from rectangular geometry (so extension to 2-D/3-D).
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Weighting Procedure — Smoothness Indicator

Smoothness indicator (Jiang & Shu 1996)

The smoothness (roughness) of P s(x) on E is measured as

σP s =
s−1∑
`=1

∫
E
h2`−1

(
d`

dx`
P s(x)

)2
dx

• If u is smooth, σP s = Dh2 +O(h3) (D ≈ u′)
• If u has a discontinuity, σP s = O(1)

Folklore. If u has a discontinuity, σP s = Θ(1) as h→ 0 (i.e.,

0 < c∗ ≤ σP s ≤ c∗ <∞).

Theorem (Arbogast, Huang & Zhao 2018)

If u has a discontinuity, σP s may tend to zero as h→ 0. If the

discontinuity is bounded away from the grid points, then σP s = Θ(1).

Assumption. We will henceforth assume that the discontinuity is

bounded away from the grid points, so σP s = Θ(1).
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Weighting Procedure — Nonlinear Weights
(Jiang & Shu 1996)

Scaled nonlinear weights. For weight δ for polynomial P (x)

δ̂ =
δ

(εh + σP )η

Classically, εh ≈ 10−6, but εh = ε0h
2 should be taken.

(Normalized) Nonlinear weights. So that
∑
i δ̃i = 1,

δ̃i =
δ̂i∑
j δ̂j

=
δi

δi +
∑
j 6=i

δj

(εh + σPi
εh + σPj

)η

Lemma. (Aràndiga, Baeza, Belda & Mulet 2011)

δ̃ =

δ +O(hs−1) if u is smooth (s is size of smaller stencil)

Θ(h2η) if u is discontinuous and εh = ε0h
2
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General WENO-AO(r, s)
(Levy, Puppo & Russo 2000; Balsara, Garain & Shu 2016)

Idea: Use small stencils of s elements and the union (large stencil) of

size r, with corresponding polynomials.

Take arbitrary (positive) γ and αi, γ +
∑
iαi = 1

u(x) ≈ R(x) =
γ̃

γ

[
P r0(x)−

∑
i

αiP
s
i (x)

]
+
∑
i

α̃iP
s
i (x)

where

γ̂ =
γ

(εh + σP r0
)η

α̂i =
αi

(εh + σP si
)η

γ̃ =
γ̂

γ̂ +
∑
i α̂i

α̃i =
α̂i

γ̂ +
∑
i α̂i

Question. Does it really work?

• When u is smooth, is R accurate to O(hr)?

• When u has a discontinuity on some (but not all) stencils, is R O(hs)?
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Convergence Results for WENO-AO(r, s)
(Cravero, Puppo, Semplice & Visconti 2018; Arbogast, Huang & Zhao 2018)

u(x) ≈ R(x) =
γ̃

γ

[
P r0(x)−

∑
i

αiP
s
i (x)

]
+
∑
i

α̃iP
s
i (x)

Recall ε0 and η: δ̂ =
δ

(ε0h2 + σ)η

Theorem. Let η ≥ 1, ε0 > 0, and r > s ≥ 2.

Then WENO-AO(r, s) has order of accuracy

• O(hr) if u is smooth on the larger stencil Sr and

r ≤ 2s− 1

• O(hs) if u is smooth except for a jump discontinuity in some (but not

all) stencils, the grids are bounded away from the discontinuity, and

η ≥ s/2
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Numerical Test — Multilevel Convergence of WENO-AO
(Arbogast, Huang & Zhao 2018)

There is a recursive, multilevel version WENO-AO(r`, r`−1, . . . , r0 = s).

• h = 0.1× 2−n

• u(x) = x3 + sin(x) +H(x∗ − x) (H is the Heaviside function)

• Shock location x∗ = −4h,−3h,−2h,−h
• u is smooth only on stencils S9, S7, S5, S3, respectively

• set η based on the Theorem and ε0 = 1

Error and convergence rate of WENO-AO(9,7,5,3) at x = 0

The convergence rate is indeed from the largest smooth stencil

x∗ = −4h x∗ = −3h x∗ = −2h x∗ = −h
n error order error order error order error order
3 4.80E-19 9.01 6.03E-15 7.00 1.01E-10 5.01 7.88E-7 2.96
4 9.36E-22 9.00 4.72E-17 7.00 3.15E-12 5.00 1.00E-7 2.98
5 1.83E-24 9.00 3.69E-19 7.00 9.83E-14 5.00 1.26E-8 2.99
6 3.57E-27 9.00 2.89E-21 7.00 3.07E-15 5.00 1.58E-9 2.99
7 6.97E-30 9.00 2.26E-23 7.00 9.58E-17 5.00 1.98E-10 3.00
Expected order 9 7 5 3

The Babuška Forum, May 29, 2020 17 of 54 CSM: Center for 
Subsurface Modeling



Numerical Test — Choice of Parameter η

• h = 2−n

• u(x) = H(−x) (H is the Heaviside function)

• S5 =
{

[−3h
2 , −h2 ], [−h2 ,

h
2], [h2,

3h
2 ], [3h

2 ,
5h
2 ], [5h

2 ,
7h
2 ]
}

• ūi = 1,1/2,0,0,0, respectively

WENO-AO(5,3) error and convergence rate at x = h/2

The convergence rates are indeed Θ(h2η)

η = 1 η = 1.5 η = 2 η = 3
n error order error order error order error order
6 8.58E-4 1.98 1.72E-5 3.00 4.07E-7 3.99 3.10E-10 5.99
7 2.15E-4 1.99 2.15E-6 3.00 2.55E-8 4.00 4.86E-12 6.00
8 5.39E-5 2.00 2.69E-7 3.00 1.59E-9 4.00 7.60E-14 6.00
9 1.35E-5 2.00 3.36E-8 3.00 9.95E-11 4.00 1.19E-15 6.00
Expected order 2 3 4 6

Remark: The good stencil polynomials are exact, so the rate is not

limited to O(h3).
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Semidiscrete Third Order Advection-Diffusion in 1D

ūi,t +
1

h

[
F̂ (u−

i+1/2, u
+
i+1/2, u

′
i+1/2)− F̂ (u−

i−1/2, u
+
i−1/2, u

′
i−1/2)

]
= 0

WENO-AO(3,2) for point values

xi−3/2 xi−1/2 xi+1/2 xi+3/2
xi−1 xi xi+1

ūi−1 ūi ūi+1
u+
i−1/2 u−

i+1/2

x

S2
L S2

R

S3
C

u(x) ≈ R(x) =
γ̃

γ

[
P3

C(x)− αP2
L(x)− βP2

R(x)
]

+ α̃P2
L(x) + β̃P2

R(x)

u+
i−1/2 = R(xi−1/2) and u−

i+1/2 = R(xi+1/2)

WENO-AO(4,3) for derivatives

xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2
xi−1 xi xi+1 xi+2

ūi−1 ūi ūi+1 ūi+2

x

S3
L S3

R

S4
C

u′(x) ≈ R′(x) =
γ̃

γ

[
P4′

C (x)− αP3′
L (x)− βP3′

R (x)
]

+ α̃P3′
L (x) + β̃P3′

R (x)

(maintains symmetry of the diffusion operator)
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3. Time Stepping:
Method of Lines

Use implicit Runge-Kutta methods

so ∆t ∼∆x
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The Courant-Fredrichs-Lewy (CFL) Timestep

• ∆tCFL is the time for fluid to move a distance ∆x

max |f ′(u)|∆tCFL = ∆x

• The CFL number is

CFL =
∆t

∆tCFL

≤ 1 fluid moves one cell per time step

> 1 fluid moves many cells per time step

• For explicit methods, stability requires

• CFL ≤ 1

• With diffusion, ∆t ∼∆x2 (parabolic scaling, i.e., stiffness)

Conclusion. We must do something!

• Operator splitting: split diffusion from advection (IMEX methods)

• Monolithic: Use fully implicit methods [we use this]

Choose ∆t ∼∆x for accuracy, not stability
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Choice of Runge-Kutta Method
du

dt
= G(u)

Strong-Stability Preserving (SSP) Runge-Kutta

• Preserves stability of backward Euler
• Requires CFL-like constraint for stability (∆t / ∆tCFL)
• Becomes unstable for large ∆t

L-Stable Runge-Kutta

• Not SSP, but unconditionally stable
• Robust for stiff problems (e.g., with diffusion)

• Stable: For u′ = au (a < 0), un+1 = Q(∆t)un and |Q(∆t)| ≤ 1.
• L-Stable: Also |Q(∆t)| → 0 as ∆t→∞ (i.e., stable if ∆t too large)

Radau IIA Runge-Kutta: 3rd order method:

un+1/3 = un +
∆t

12

[
5G(un+1/3)−G(un+1)

]
un+1 = un +

∆t

4

[
3G(un+1/3) +G(un+1)

]
Only two unknowns per mesh element (at times tn+1/3 and tn+1)
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Numerical Test — Burgers’ and Buckley-Leverett Equations

Small ∆t Radau IIA and SSP-RK perform similarly

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8 reference

SSP

RadauIIA

∆t = 2∆x

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

IC

SSP

RadauIIA

∆t = 0.5∆x

Large ∆t Radau IIA overshoots a bit, SSP-RK is unstable

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8 reference

SSP

RadauIIA

∆t = 5∆x

0 0.2 0.4 0.6 0.8 1

0
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0.2
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0.5

0.6

IC

SSP

RadauIIA

∆t = 2∆x
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Adaptive Runge-Kutta
(Duraisamy, Baeder, Liu 2003; Ketcheson, MacDonald, Ruuth 2013;

Arbogast, Huang, Zhao, King 2019)

Idea: Suppress the small oscillations near discontinuities by using

• Radau IIA Runge-Kutta when u is smooth
• composite backward Euler (BE) when u is discontinuous

Basically, we want

un+1 ?
= w̃Radauun+1,Radau + w̃BEun+1,BE

for some nonlinear weights w̃Radau + w̃BE = 1

Butcher Tableau: Gives the Runge-Kutta coefficients and time levels

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

Radau IIA

1/3 1/3 0
1 1/3 2/3

1/3 2/3

composite BE

1/3 5/12w̃Radau+1/3w̃BE −1/12w̃Radau

1 3/4w̃Radau+1/3w̃BE 1/4w̃Radau+2/3w̃BE

3/4w̃Radau+1/3w̃BE 1/4w̃Radau+2/3w̃BE

adaptive Runge-Kutta

The Babuška Forum, May 29, 2020 23 of 54 CSM: Center for 
Subsurface Modeling



Application to Advection-Diffusion Equation in 1D

ūi,t +
1

h

[
F̂i+1/2 − F̂i−1/2

]
= 0

• A conservative scheme requires unique fluxes at each grid point
• Apply the time-stepping to the flux at each grid point separately

ū
n+1/3
i = ūni −

∆tn

∆xi

[
ã1
i+1/2F̂

n+1/3
i+1/2 − ã

1
i−1/2F̂

n+1/3
i−1/2

+ ã2
i+1/2F̂

n+1
i+1/2 − ã

2
i−1/2F̂

n+1
i−1/2

]
ūn+1
i = ūni −

∆tn

∆xi

[̃
b1i+1/2F̂

n+1/3
i+1/2 − b̃

1
i−1/2F̂

n+1/3
i−1/2

+ b̃2i+1/2F̂
n+1
i+1/2 − b̃

2
i−1/2F̂

n+1
i−1/2

]
where

F̂n+θ
i±1/2 = F̂ (un+θ,−

i±1/2 , u
n+θ,+
i±1/2 , u

′,n+θ
i±1/2), θ = 1/3,1

ã1
i±1/2 =

5

12
w̃Radau
i±1/2 +

1

3
w̃BE
i±1/2 ã2

i±1/2 = −
1

12
w̃Radau
i±1/2

b̃1i±1/2 =
3

4
w̃Radau
i±1/2 +

1

3
w̃BE
i±1/2 b̃2i±1/2 =

1

4
w̃Radau
i±1/2 +

2

3
w̃BE
i±1/2
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Weighting Procedure

Linear weighting

• BE is locally O(h2) accurate, globally O(h) (for a smooth problem!)

• BE weight is wBE = wBE
0 h2 (or wBE

0 ∆t2, since ∆t ∼ h)

• Radau weight is wRadau = 1− wBE.

Nonlinear weighting (η ≥ 1 and εh = ε0h
2)

ŵRadau
i±1/2 =

wRadau

(εh + σRadau
i±1/2 )η

, ŵBE
i±1/2 =

wBE

(εh + σBE)η
,

w̃Radau
i±1/2 =

ŵRadau
i±1/2

ŵBE
i±1/2 + ŵRadau

i±1/2

, w̃BE
i±1/2 = 1− w̃Radau

i±1/2 .

Smoothness indicators (i.e., roughness)

• BE: σBE = 0 (BE can always be used)

• Radau: detect a shock in space

σRadau
i±1/2 =

(
ūni±1 − ū

n
i

)2
+
(
ūn+1
i±1 − ū

n+1
i

)2

+
(
ū
n+1/3
i±1 − ūn+1/3

i

)2

t

x

tn+1

tn+1/3

tn
xi+1/2

ūni ūni+1

ū
n+1/3
i

ū
n+1/3
i+1

ūn+1
i

ūn+1
i+1
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Analysis of Errors in Time — Smooth Case

Consider the local time truncation error as a perturbation of Radau IIA.

Perturbed Radau weights

ã1
i±1/2 =

5

12
−

1

12
w̃BE
i±1/2 ã2

i±1/2 = −
1

12
+

1

12
w̃BE
i±1/2

b̃1i±1/2 =
3

4
−

5

12
w̃BE
i±1/2 b̃2i±1/2 =

1

4
+

5

12
w̃BE
i±1/2

Theorem. The adaptive Runge-Kutta scheme remains globally O(h3)

accurate when u is smooth. [Because ωBE = O(h2)]
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Numerical Test — Smooth Burgers’ Equation

ut + (u2/2)x = 0, x ∈ (0,2)

u(x,0) =
1

2

(
1−

1

2
sin(πx)

)
Error and convergence order at T = 1 (no shocks)

L1
h L∞h

m error order error order
∆t = h

640 3.21E-06 2.93 4.28E-05 2.87
1280 4.05E-07 2.99 5.47E-06 2.97
2560 5.07E-08 3.00 6.87E-07 2.99

∆t = 10h
1280 1.86E-04 2.29 2.81E-03 1.92
2560 2.86E-05 2.70 4.84E-04 2.54
5120 3.78E-06 2.92 6.57E-05 2.88

∆t = 50h
5120 3.09E-04 2.06 4.39E-03 1.67

10240 5.12E-05 2.59 8.45E-04 2.38
20480 7.13E-06 2.85 1.23E-04 2.78

Expected 3 3
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Analysis of Errors in Time — Discontinuous Case

Consider the local time truncation error (LTE) as a perturbation of BE.

Perturbed BE weights

ã1
i±1/2 =

1

3
+

1

12
w̃Radau
i±1/2 ã2

i±1/2 = −
1

12
w̃Radau
i±1/2

b̃1i±1/2 =
1

3
+

5

12
w̃Radau
i±1/2 b̃2i±1/2 =

2

3
−

5

12
w̃Radau
i±1/2

Conclusion. The LTE is formally the same as BE (i.e., O(h)). However:

• BE should be O(h1/2) accurate with a discontinuity (LTE = O(h3/2)).

• In practice, BE is O(h) accurate (LTE = O(h2)).

Numerical results show O(h) accuracy. Further investigation is underway.
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Numerical Test — Burgers’ After Shock Develops

Radau IIA and BE, t = 2, m = 256

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8
reference

Radau

BE

Radau + BE

∆t = 3h

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8
reference

Radau

BE

Radau + BE

∆t = 5h
Remarks.

• The Radau overshoot is stable and does not grow.
• The adaptive scheme removes the oscillation and improves on BE.
• Away from the shock, the adaptive scheme is O(h3) accurate.
• The SSP Runge-Kutta method is unstable at ∆t = 5h.
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Numerical Test — Burgers’ Equation with Shock

ut + (u2/2)x = 0, x ∈ (0,2)

u(x,0) = 1−H(x− 1/2) (H is the Heaviside function)

Error and convergence order at T = 1 (initial shock)

∆t = 2h ∆t = 10h
L1
h L1

h
m error order error order

BE
160 1.04E-02 0.98 2.73E-02 0.98
320 5.22E-03 0.99 1.37E-02 0.99
640 2.62E-03 1.00 6.86E-03 1.00

Radau
160 7.27E-03 1.00 1.70E-02 1.00
320 3.64E-03 1.00 8.47E-03 1.00
640 1.82E-03 1.00 4.23E-03 1.00

Radau + BE
160 1.03E-02 0.98 2.71E-02 0.97
320 5.19E-03 0.99 1.36E-02 0.99
640 2.60E-03 0.99 6.83E-03 1.00

Expected? 1 1
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Numerical Test — Smooth Burgers’ with Diffusion

Error and convergence order at T = 1 with ∆t = 10.5h

L1
h L∞h

m error order error order
D = 1E-01

320 1.36E-04 2.56 1.19E-04 2.56
640 1.93E-05 2.82 1.67E-05 2.82

1280 2.50E-06 2.95 2.17E-06 2.95
D = 1E-02

320 5.36E-08 2.97 6.15E-08 2.97
640 6.72E-09 2.99 7.72E-09 2.99

1280 8.47E-10 2.99 9.73E-10 2.99
D = 1E-04

320 1.86E-12 2.96 4.20E-12 2.95
640 2.36E-13 2.98 5.33E-13 2.98

1280 2.96E-14 2.99 6.71E-14 2.99
Expected 3 3

Remarks.

• Convergence is maintained as D → 0
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4. Numerical Performance
of iWENO-AO
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Numerical Test — Convergence for Burgers’ equation in 2D

∂u

∂t
+
∂u2/2

∂x
+
∂u2/2

∂y
−D

∂2u

∂x2
= 0

We use randomly perturbed

meshes of quadrilaterals in 2D
0 0.5 1 1.5 2

0

0.5

1

1.5

2

Error and convergence order for smooth solution at t = 1
using ∆t = 5h and quadrilateral meshes

m L1
∆x -error order L∞∆x-error order

D = 0.1
20 3.254E-03 —— 1.570E-03 ——
40 4.908E-04 2.73 2.172E-04 2.85
80 6.687E-05 2.88 2.910E-05 2.90

160 8.742E-06 2.94 3.764E-06 2.95
D = 0.0001

20 2.023E-08 —— 5.617E-08 ——
40 5.705E-09 1.83 2.487E-08 1.18
80 1.058E-09 2.43 5.766E-09 2.11

160 1.330E-10 2.99 6.748E-10 3.10
Expected 3 3
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Numerical Test — Porous Medium Equation in 1D

ut = (um)xx =
(
(mum−1)ux

)
x

Barenblatt solution

Bm(x, t) = t−k
[
max

(
0,1−

k(m− 1)

2m

|x|2

t2k

)]1/(m−1)

k =
1

m+ 1
, m > 1

This solution has compact support [−αm(t), αm(t)], where

αm(t) =

√
2m

k(m− 1)
tk

Non-uniform mesh of 120 elements at t = 2 (from t = 1), ∆t = h
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m = 4
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0.8

1

m = 8
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Numerical Test — Two-Phase Flow — 16× 16 Mesh

Quarter 5 spot pattern of petroleum wells

Permeability

on Quadrilateral

Mesh

t = 5 days t = 50 days t = 455 days

Undershoot wave: -3.14E-4

t = 1 day t = 10 days t = 15 days

Some small undershoots, but essentially non-oscillatory
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General Remarks on iWENO-AO

Extensions. Easily extends to:

• higher order schemes;
• 3D on general computational meshes;
• systems of equations.

Efficiency.

• Uses 2 unknowns per mesh element per system component,
independent of the space dimension! (For third order Radau IIA)
• Can use very long time steps, and ∆t ∼ h, not h2.
• Reconstruction boosts parallel computing (less data transfer, more

local computation)

Numerical Accuracy.

• Formal accuracy is O(h3 + ∆t3) for smooth solutions.
• Essentially non oscillatory.
• The scheme is unconditionally von Neumann (Fourier) L-stable for

smooth solutions to the linear problem.

Physical Accuracy.

• Locally mass conservative at tn+1/3 and tn+1.
• Handles both advection and diffusion (even D = 0).
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5. A Self-Adaptive
Theta Scheme (SATh)

Replace backward Euler

in the adaptive time stepping
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Finite Volumes — 1

Notation:

x

t

tn

tn+1

∆t

xi−3/2 xi−1/2 xi+1/2 xi+3/2

∆xi

xi−1

ūni−1

xi

ūni

xi+1

ūni+1

ūn+1
i−1 ūn+1

i
ūn+1
i+1

Shock?

Shock?

Basic equation 1. The governing equation directly controls ūn+1
i .

ūn+1
i = ūni −

1

∆xi

∫ tn+1

tn

[
f(ui+1/2(t))− f(ui−1/2(t))

]
dt

Problem. A shock in space is also a shock in time!

Using only ūni and ūn+1
i (and nearest neighbors), we cannot tell where

the shock is in time.

Requirement. We need information over the entire time interval!
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Finite Volumes — 2

Notation:

x

t

tn

tn+1

∆t

xi−3/2 xi−1/2 xi+1/2 xi+3/2

∆xi

xi−1

ūni−1

xi

ūni

xi+1

ūni+1

ūn+1
i−1 ūn+1

i
ūn+1
i+1

˜̄un+1
i−1 ˜̄un+1

i
˜̄un+1
i+1

The space-time cell average of u is

˜̄un+1
i =

1

∆t∆xi

∫ tn+1

tn

∫ xi+1/2

xi−1/2

u(x, t) dx dt

Fact. The governing equation directly controls ˜̄un+1
i !
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Finite Volumes — 3

Basic equation 2. We use a test function w(t) = (tn+1 − t)/∆t to see

∫ tn+1

tn
ū′i(t)w(t) dt = ūi(t)w(t)

∣∣∣∣∣
tn+1

tn
−
∫ tn+1

tn
ūi(t)w

′(t) dt

= −ūni + ˜̄un+1
i

Then ∫ tn+1

tn

∫ xi+1/2

xi−1/2

(
ut + f(u)x

)
w(t) dx dt = 0

=⇒

˜̄un+1
i = ūni −

1

∆t∆xi

∫ tn+1

tn

(
f(ui+1/2)− f(ui−1/2)

)
(tn+1 − t) dt
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5.1. Discontinuity Aware Quadrature (DAQ)
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DAQ — 1

Problem description. Accurately approximate∫ ∆t

0
g(v(t))w(t) dt

• g and w are smooth

• v(t) is smooth except for a discontinuity at 0 ≤ τ ≤∆t

t

v

v0

v1

0 τ ∆t

Use only the data

v0 = v(0) v1 = v(∆t) ṽ =
1

∆t

∫ ∆t

0
v(t) dt
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DAQ — 2

Idealize the picture.

t

v

v0

v1

0 τ ∆t

v0

v1

ṽ =
1

∆t

[
τv0 + (1− τ)v1

]
=⇒ τ =

v1 − ṽ
v1 − v0

∆t

DAQ approximation.

∫ ∆t

0
g(v(t))w(t) dt ≈ g(v0)

∫ τ
0
w(t) dt+ g(v1)

∫ ∆t

τ
w(t) dt

Application. Let θ = 1−
τ

∆t
=

ṽ − v0

v1 − v0

w = 1
∫ ∆t

0
g(v(t)) dt ≈

[
g(v0) + θ

(
(g(v1)− g(v0)

)]
∆t

w =
t1 − t

∆t

∫ ∆t

0
g(v(t))w(t) dt ≈

1

2

[
g(v0) + θ2

(
(g(v1)− g(v0)

)]
∆t
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5.2. Application to Finite Volume Schemes
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An Upstream-Weighted Scheme SATh-up

Monotone flux. Suppose that f ′(u) > 0.

• Use one-point upstream weighting to stabilize the scheme

• Let f̄ni = f(ūni )

The upstream-weighted scheme. (SATh-up)

ūn+1
i = ūni −

∆t

∆xi

[
f̄ni + θi(f̄

n+1
i − f̄ni )− f̄ni−1 − θi−1(f̄n+1

i−1 − f̄
n
i−1)

]
˜̄un+1
i = ūni −

∆t

2∆xi

[
f̄ni + θ2

i (f̄n+1
i − f̄ni )− f̄ni−1 − θ

2
i−1(f̄n+1

i−1 − f̄
n
i−1)

]
where

θi =


max

(
1

2
,

˜̄un+1
i − ūni
ūn+1
i − ūni

)
if |ūn+1

i − ūni | > ε

θ∗ if |ūn+1
i − ūni | ≤ ε

• ε ≥ 0 is very small (even zero)

• θ∗ = 1 (backward Euler) or possibly θ∗ = 1/2 (Crank-Nicolson)

This is a self-adaptive theta method!

Remark. A Lax-Friedrichs stabilized SATh-LF scheme is similar.
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Test Example: Propagation of a Contact Discontinuity

ut + ux = 0 for 0 < x < 1

∆x = 1/100, ∆t = 1/20 (CFL = 5), t = 0.5 (10 steps)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

— Crank-Nicholson
— backward Euler, CFL/2

— SATh-LF scheme ū
. . . SATh-LF scheme ˜̄u
— SATh-LF scheme θ

m L1
∆x error order

10 1.95E-1 ——
20 1.53E-1 0.35
40 1.10E-1 0.48
80 7.56E-2 0.54

160 5.17E-2 0.55
320 3.54E-2 0.55

The Babuška Forum, May 29, 2020 42 of 54 CSM: Center for 
Subsurface Modeling



5.3. Theoretical Properties of SATh
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Accuracy of DAQ

Theorem. Let g(v) be a smooth function and v(t) satisfy the conditions

for an isolated discontinuity at τ ∈ (0,∆t). If τ∗ is the approximation to

τ , then

|τ − τ∗| ≤ C∆t2∣∣∣∣∣
∫ ∆t

0
g(v(t))w(t) dt−DAQ(gw)

∣∣∣∣∣ ≤ C∆t2

where C depends only on the L∞ norms of g′, w, v′L, and v′R

t

v

v0

v1

0 τ ∆t

vL + v0

vR + v1

t

v

v0

v1

0 τ∗ ∆t

v0

v1

Consequence. The local truncation error is O(∆t2).

The scheme should be O(∆x+ ∆t)
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Stability of the Upstream-Weighted Scheme

Theorem. Assume that

• f(0) = 0 and f ′(u) > 0 for u 6= 0

• the problem has a boundary condition imposed on the left

The upstream weighted scheme (SATh-up) is unconditionally stable for

the nonlinear problem if

θi ≥
1

2
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Maximum Principle for the Upstream-Weighted Scheme

Theorem. For the upstream weighted scheme (SATh-up), assume

• f = f(u) only, f ′(u) > 0 and ε = 0 (in defining θi)

• the problem has a boundary condition on the left (so ūn0 is given)

If the IC and BC of the flow is monotonically decreasing,

ū0
i−1 ≥ ū

0
i and ūn0 ≤ ū

n+1
0 then ūni ≤ ū

n+1
i ≤ ūn+1

i−1

If the IC and BC of the flow is monotonically increasing,

ū0
i−1 ≤ ū

0
i and ūn0 ≥ ū

n+1
0 then ūni ≥ ū

n+1
i ≥ ūn+1

i−1

Moreover,

• If ˜̄un+1
0 lies between ūn0 and ūn+1

0 , then 1/2 ≤ θi ≤ 1

• If θ∗ = 1 (in defining θi), then ˜̄un+1
i lies between ūni and ūn+1

i

Corollary. The Total Variation

TV(ūn) =
∞∑
i=1

|ūni−1 − ū
n
i |

is bounded (TVB) and diminishes (TVD) under appropriate hypotheses
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6. Numerical Performance
of SATh-LF
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Burgers Equation, Riemann Shock

ut + (u2/2)x = 0 for 0 < x < 1

∆x = 1/80, ∆t = 1/16 (CFL = 5), t = 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

— Crank-Nicholson
— backward Euler, CFL/2

— SATh-LF scheme ū
. . . SATh-LF scheme ˜̄u
— SATh-LF scheme θ

m L1
∆x error order

10 1.76E-1 ——
20 9.74E-2 0.86
40 4.97E-2 0.97
80 2.49E-2 1.00

160 1.24E-2 1.00
320 6.22E-3 1.00
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Burgers Equation, Riemann Rarefaction

ut + (u2/2)x = 0 for 0 < x < 1

∆x = 1/80, ∆t = 1/16 (CFL = 5), t = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

— Crank-Nicholson
— backward Euler, CFL/2

— SATh-LF scheme ū
. . . SATh-LF scheme ˜̄u
— SATh-LF scheme θ

m L1
∆x error order

20 7.88E-2 ——
40 4.66E-2 0.76
80 2.72E-2 0.78

160 1.56E-2 0.80
320 8.86E-3 0.82
640 4.96E-3 0.84
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Burgers Equation, Shock formation

ut + (u2/2)x = 0 for 0 < x < 1

∆x = 1/160, ∆t = 1/24 (CFL = 4)
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1.95

2

TV

— Crank-Nicholson
— backward Euler, CFL/2

— SATh-LF scheme ū
. . . SATh-LF scheme ˜̄u
— SATh-LF scheme θ
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Buckley-Leverett Equation, Rarefaction and Shock

ut +
(
u2/(u2 + (1− u)2)

)
x

= 0 for 0 < x < 1

αLF = 2, t = 0.5
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∆x = 1/40,CFL = 2
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0.8
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1.2

∆x = 1/80,CFL = 5

— Crank-Nicholson
— backward Euler, CFL/2

— SATh-LF scheme ū
. . . SATh-LF scheme ˜̄u
— SATh-LF scheme θ
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A Non Monotone Flux Function, Step Down

ut + f(u)x = 0 for 0 < x < 1

αLF = 1
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Burgers Equation in 2D

ut + (u2/2)x + (u2/2)y = 0 for 0 < x < 1,0 < y < 1

∆x = ∆y = 1/40, ∆t = 1/10 (CFL = 4), αLF = 1

t = 0.2
t = 0.5

t = 1.0

t = 1.0, profile

— backward Euler, CFL/2 — SATh-LF scheme ū
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Buckley-Leverett Equation in 2D

ut +
(

u2

u2+(1−u)2

)
x

+
(

u2

u2+(1−u)2

)
y

= 0 for 0 < x, y < 1

∆x = ∆y = 1/40, ∆t = 1/10 (CFL = 8), αLF = 2

t = 0.2 t = 0.5

t = 1.0 t = 1.0,
profile

— backward Euler, CFL/2 — SATh-LF scheme ū

The Babuška Forum, May 29, 2020 52 of 54 CSM: Center for 
Subsurface Modeling



7. Summary and Conclusions
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Summary and Conclusions — 1

ut +∇ · [f(u)−D(u)∇u] = 0

Finite volume framework

• Space: use (implicit) WENO-AO reconstructions

• Time: use an adaptive, L-stable implicit, Runge-Kutta method

1. Locally conservative and captures the physics (advection, diffusion)

2. Only a few unknowns per mesh element per component (in n-D)

WENO-AO spatial reconstruction

1. High order accuracy when u is smooth, low order when discontinuous

2. Captures steep fronts (“essentially” non oscillatory)

3. Easy to extend to general 2D and 3D meshes

Adaptive Runge-Kutta time stepping

1. L-stable implicit Runge-Kutta (SSP not suitable)

2. ∆t ∼∆x, chosen for accuracy, not stability

3. Adapt between Radau IIA and composite backward Euler

4. Radau accuracy when u is smooth, BE when discontinuous
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Summary and Conclusions — 2

Self Adaptive Theta scheme. A “better backward Euler”

1. The differential equation controls both ūn+1
i and ˜̄un+1

i

2. These are used to define Discontinuity Aware Quadrature (DAQ)

• Accurate locally to O(∆t2), even with discontinuities

3. DAQ gives SATh schemes for conservation laws

θi = max

(
1

2
,

˜̄un+1
i − ūni
ūn+1
i − ūni

)

The upstream scheme:

• is stable for monotone fluxes

• satisfies maximum principle for monotone flows and is TVB/TVD

4. Early stage of development:

• less diffusive than backward Euler

• the general SATh-LF seems to have all the good properties of BE

• shows promise!
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