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Abstract

Flow accompanied by chemical and nuclear reaction and mass transfer plays a cen-
tral role in many environmental applications. The complexity of coupled flow, trans-
port, and reaction phenomena imposes stringent performance criteria on numerical
simulators. This article describes some recent developments that address these cri-
teria. Particular emphasis is placed on robustness and parallel computation. Two
practical examples illustrate briefly the role of numerical simulation in subsurface
contaminant remediation and assessment.

1 Introduction

Groundwater contaminant transport typically involves flow of one or more phases
through highly heterogeneous porous media, mass transfer between phases including
the solid phases, advection with dispersion and reaction of chemical and biological
species. These phenomena, augmented by others such as heat transfer, local injec-
tion and/or extraction of fluid, and imposed barriers to subsurface flow, play an
important role in many site remediation techniques.

Flow, transport, and chemical reaction are complex phenomena individually,
as the extensive literature on each subject attests. Chemical reactions common
to groundwater /soil systems include complexation, oxidation-reduction, adsorption,
ion exchange and precipitation-dissolution. These are ultimately limited by thermo-
dynamic equilibrium, but on the time scale of many applications, they often proceed
at finite rates by means of nonlinear reaction mechanisms occurring on widely dis-
parate time scales. Add to this the movement of the species over meter to kilometer
length scales and their phase changes, the biological, thermal and other processes,
and it is necessary to resort to numerical solutions of the governing equations.

!'Department of Aerospace Engineering and Engineering Mechanics, University of Texas at
Austin

?Department of Petroleum and Geosystems Engineering, University of Texas at Austin

*Department of Mathematics, University of Texas at Austin

*Department of Computational and Applied Mathematics, Rice University, Houston, Texas



A sophisticated simulator of the subsurface can be a powerful tool for assessing
the current state of and possible sources of pollution at a contaminated site. Sim-
ulations can also predict the fate of contaminants under various scenarios, thereby
giving aid in designing and monitoring the progress of site amelioration strategies.

A well designed simulator must accurately, efficiently, and robustly solve the
governing equations. To design such a simulator requires an interdisciplinary mix
of geological, physical, chemical, mathematical, and computational expertise.

On the discrete level, accuracy demands locally conservative schemes to maintain
mass balances. Spurious oscillations must be suppressed so that negative concen-
trations do not appear. Relatively sharp concentration fronts must be captured.
Subsurface heterogeneities and tensor permeabilities and dispersivities must be ac-
curately handled. Grids must be able to follow geometrical features such as strata.

The computational complexity of these problems demands a highly efficient ap-
proach. In general, it is not possible to solve the entire system of governing equations
on the scale of the fastest reactions. Efficient time-stepping is critical to the han-
dling of phenomena that occur on widely disparate time scales. Linear and nonlinear
solvers generally consume a large fraction of the overall computational time, so they
deserve special attention. Grid spacing is often relatively coarse; it is desirable to
use finer grids to obtain adequate resolution.

Without a robust algorithm the entire simulation can be jeopardized at any point
in the simulation. Tt can be particularly difficult to solve the nonlinearities arising
in the flow and chemistry subproblems.

The complexity of the physical and chemical phenomena is compounded by the
difficulty of describing the boundary and initial conditions accurately. Geologic
strata can be remarkably heterogeneous, and only limited sampling is possible in
most situations. The nature of contamination events is often very poorly defined,
e.g., leaks of unknown frequency, duration and volume from fuel storage tanks over
many years. Thus the ability to handle multiple detailed realizations in a reasonable
amount of time is a significant advantage in a simulator.

Parallel processing is one way to obtain increased computational power at rel-
atively low cost. Parallel computation has, however, overhead associated with the
communication of data between processors, their need to be synchronized before
certain computations can proceed, and load imbalance. The best possible scenario
is linear speed-up, in which runtime is inversely proportional to the number of pro-
cessors used. Generally, the more that a calculation requires only local information
(so that little or no parallel communication is required), the better the parallel
efficiency.

In this article we describe briefly several computational techniques that address
some of the difficulties of solving reactive flow and transport problems. First the
equations for the flowing phases are set out, then for the transport of the chemical
species, and finally for the chemical reaction subproblem. An overriding concern is
to take maximum advantage of the increased computing power offered by parallel



processing. The paper closes with two practical applications of these computational
techniques and some concluding remarks.

2 Solving for Flow

In this section, we present a model based on two flowing phases, an aqueous (water)
phase and a gas (air) phase. The flow equations are similar to the well known
black oil model from petroleum engineering as described by Peaceman [1] and to
the formulation presented by Parker [2]. The coupled equations are:

Aqueous (Water) Phase: W + V- (puuy) = Qu + Yu- (1)

Gas (Air) Phase: W + V- (piuy) = Q4+ 7Ya- (2)
Irkrw w

Darcy’s Law: u, = _xi(s)(va — puwgVz), (3)
Kk, o(sy

u, = —%(Vpa — pagVz). (4)

Fquations of State: puw = poerPr p, = pleaba, (5)

Capillary Pressure: Pe(Sw) = Pa — Pu- (6)

Volume Balance: Sw+ 8, = 1. (7)

Here ¢ is porosity, K absolute permeability tensor, g gravitational constant, z depth,
and, for each phase, u is the Darcy velocity, p pressure, p. capillary pressure, p
density, p¥ reference density, k, relative permeability, p viscosity, s saturation, ¢
compressibility, ¢) an external source or sink, and the 4 are source or sink terms due
to mass transfer between phases (subscripts have been omitted). On these equations
we impose appropriate initial and boundary conditions.

2.1 Single Phase

In the special case of saturated flow, the model is given by equations (1), (3), and the
water phase part of the equation (5), with s,, = 1 and 7, = 0. Time is discretized
by using backward Euler, implicit time-stepping.

The spatial discretization of this system uses a locally conservative scheme so
that mass balance is maintained cell-by-cell rather than merely over the entire do-
main. The scheme is based on an expanded mixed finite element method with
the Raviart-Thomas lowest order approximating spaces [3] on rectangular grids;
however, we are able to implement the method in a way that is able to handle
non-rectangular domains easily and efficiently. We first map the true domain to a
rectangular reference domain. A rectangular grid on the reference domain induces



a logically rectangular, curved grid on our true domain. Next, we apply the mixed
method to the mapped equations on the rectangular reference grid. We approximate
certain of the integrals in the mixed finite element method using the trapezoidal
quadrature rule. The method then reduces to a locally conservative, cell-centered
finite difference scheme that can handle tensor permeabilities [4, 5, 6]. Theoreti-
cal and computational convergence results show that the resulting scheme is highly
accurate. If h denotes the maximal grid spacing, then the Darcy velocity is approx-
imated spatially to order h globally, and to order h? at certain super-convergent
points. Moreover, the finite difference stencil is compact, using only 19 points. This
makes the scheme particularly well suited to parallel computation.

To solve the linear system that arises in the discretization, especially on a par-
allel computer, a substructuring or domain decomposition algorithm introduced by
Glowinski and Wheeler [7] is employed. The domain is divided into a number of
smaller subdomains (normally one per computer processor). The method requires
solving only local flow problems on these smaller subdomains, and iterating until
convergence is reached. The domain decomposition method introduces pressure un-
knowns (Lagrange multipliers) along the subdomain interface (this is equivalent to
a partial hybridization of the original method [8, 9]). Convergence is reached when
the pressures and mass fluxes match across the subdomain interfaces. To solve this
interface problem efficiently on a distributed parallel system, a conjugate gradient
iteration has been employed with the balancing preconditioner defined by Cowsar,
Mandel, and Wheeler [10]. Unlike many other preconditioners, this one achieves
almost linear speed-up on parallel machines.

2.2 Two Phases

The numerical scheme for two-phase flow uses implicit time-stepping with fully cou-
pled wells. Capillary pressure and relative permeability are functions of water satu-
ration that may vary with rock type. Functional forms can be defined by tables or
by definition as piecewise C? splines. Equations (1)—(4) are discretized in a way sim-
ilar to the single phase case. Constitutive laws (5)—(7) are used to close the system.
The resulting nonlinear equations are treated by a Newtonian iteration. In the case
of two full phases, Newton’s method converges much faster and more reliably than,
say, a Picard iteration. We have used p, and s, as primary variables. Conjugate
gradient iteration cannot be applied to solve the resulting linear system, since it is
non-symmetric; thus, we have developed a preconditioned, domain decomposition,
generalized minimum residual (GMRES) procedure [11].

3 Solving for Transport

We consider the transport and reaction of an arbitrary number N of chemical species
which are present in an arbitrary number of phases including the solid phase. The



distribution of mass in the fluid phases is assumed to follow the linear Raoult’s
or Henry’s Law. The reactions can be at equilibrium or may follow biological,
geochemical and radio-nuclear decay kinetics, as discussed in the next section.

The equation describing transport of an aqueous chemical species of concentra-
tion ¢; takes the general form

d(c;)
ot

+ V- (uwci - Di(uw)vci) = ¢Ri(617 ooy CN)? (8)

with appropriate initial and boundary conditions, where D;(u,,) is the diffusion and
dispersion tensor and R; is the rate of appearance or disappearance of species 7 due
to chemical reaction, decay, and/or mass transfer.

To solve these equations numerically, we use a time splitting scheme that allows
us to take different time step sizes for advection, diffusion, and reactions as appro-
priate for the time scale on which each occurs. The flow module first approximates
(1)~(7). Given the saturations, phase velocities, and approximate solutions at time
", the transport module advances to time "' as follows.

First consider the advection-diffusion problem in the absence of reactions

doci)
ot

+ V- (uye; — Di(u,)Ve;) = 0. (9)

We have developed the characteristics-mixed method to solve this problem [12, 13,
14]. Tt approximates advection, that is,

d(oci)
ot

+ V- (uyue) =0, (10)

by explicitly tracing characteristics using a series of small sub-time-steps. This is
followed by the diffusion/dispersion step, which solves

d(oci)
ot

- V-(D;(u,)Ve)=0 (11)

over the full time-step by a mixed finite element method. (The mixed method is
again approximated as a cell-centered finite difference scheme as we did for the
flow equations.) The scheme allows large overall time steps to be used, since no
Courant-Friedrich-Lewy (CFL) restriction is needed for stability.

When reactions are present, we interpose the reaction step, as described in the
next section, between the advection and diffusion/dispersion steps. That is, the
advected concentrations, ¢"t!, are reacted locally in space, and then diffused. We
have found that when the reaction time steps are on the order of a CFL time
step, it is better to use the Godunov mixed finite element scheme of Dawson [15,
16]. Tt approximates advection by an explicit higher order Godunov method, and
diffusion /dispersion again by a mixed finite element method.



Both advection-diffusion schemes are conservative and accurate, and both incor-
porate a slope limiting technique to prevent oscillatory behavior. Thus, for example,
negative concentrations do not arise. This is quite important for the reaction step.

Because the two advection schemes are explicit, each computation requires only
spatially local information, and very little parallel overhead is seen. Moreover,
diffusion and dispersion are small effects, so they can be solved efficiently with simply
the Jacobi preconditioned conjugate gradient algorithm. In fact, both advection-
diffusion schemes achieve almost linear parallel speed-up [14, 17]. (Applications to
contaminant transport in single phase groundwater flow can be found in [12] and
[14], and to two-phase flow in [18].)

4 Solving for Local Chemical Compositions

To carry out a reaction step we take advantage of the fact that the mass of each (sta-
ble) chemical element is conserved. From the stoichiometry of the chemical species,
their radioactivity, and their advected concentrations é"*! as initial conditions to
the time-step, the elemental masses at time #"*1 can be calculated. The task is then
to re-distribute the elemental totals among the species in a manner consistent with
the reaction expressions.

Let us assume that a set of M < N components has been identified. Components
form “a set of chemical entities that permits a complete description of the stoichiom-
etry of a system” [19]. The local, governing equations for the reactive system are a
mixed problem of differential and algebraic equations of the form

de; o .
d_ct = Ri(¢1,...,cn) for the kinetic species or, (12)
Fi(eq,...,eny) =0 for the equilibrium species, (13)

where the R; are known kinetic reaction rate expressions and the F; are nonlin-
ear equilibrium expressions. The F); arise when some reactions occur at effectively
infinite rates, thereby creating an algebraic rather than a differential relationship
among the concentrations. The F}; are generally of the form

N,
Fj=a; - K; T ap", (14)
k=1

where the a; are the activities, which are either known functions of composition
in the non-ideal case, or equal to the concentrations in the ideal case, and the
q;,; are stoichiometric coefficients. This description allows us to handle aqueous
complexation and interactions between aqueous solution and solid phases, including
the formation of pure condensed phases, i.e., minerals.

Equations (12)-(13) are subject to elemental mass-balances, or stoichiometry, of
the form

Qec=h, (15)



where Q € RM*N is the stoichiometric matrix and the vectors ¢ € RN and b € RM
represent total concentrations of the species and components, respectively, resulting
from the transport step.

Not necessarily all the concentrations are linearly independent, so the transport
equations (8) corresponding to the dependent ones are replaced by (13) or (15).

The system (12)—(15) can be difficult to solve. One reason is that the species
concentrations and rate parameters can differ by many orders of magnitude [20].
Another is the physical requirement that species concentrations be nonnegative. The
non-differentiable character of the equilibria for precipitation-dissolution reactions
adds a particular complication: the possibility that a mineral can be present imposes
an inequality constraint on the species concentrations, which becomes an equality
only when the mineral is actually present. To handle such constraints requires
iteration through different combinations of minerals. This iteration introduces a
variety of problems regarding convergence, efficiency, robustness and stability. The
lack of a robust algorithm, i.e., one which converges for (almost) any set of elemental
totals and for (almost) any initial guess for the composition, is a serious drawback
for a reactive flow simulator, which must solve (12)-(15) at each time step in every
grid block of the spatial domain.

Some of the difficulties in solving (12)—~(15) can be avoided by rewriting the
equilibrium conditions as an equivalent free-energy minimization problem:

min Giot(€1, ..., CN)
subject to Qe =b (element mass-balance)
and, for each i, ¢; > 0 (concentrations are nonnegative)

where Got is the total free energy written to include all the possible mineral phases.
The problem of identifying the correct set of mineral phases remains, however, un-
less the non-negativity constraints are rigorously incorporated into the formulation.
Other workers have considered various ways of including such constraints [21]; our
approach will be based on a the Interior Point method [22], a new non-linear pro-
gramming algorithm particularly suitable for dealing with a large number of inequal-
ity constraints.

In this Interior Point framework, iterative tests for the appearance or disappear-
ance of mineral phases or, more generally, for any phase, are no longer required.
Instead, an a priori specification of possible minerals is made, and the algorithm
attempts to find the correct assemblage. Although this strategy increases the size
of the problem to be solved, we have found it to be more robust and expect it
ultimately to be more efficient. Furthermore, this approach should provide simi-
lar benefits in phase equilibrium calculations (“flash calculations”) that arise when
species are soluble in multiple phases.

We close this section by noting that the reaction subproblems can be solved
efficiently in parallel. Because our time splitting approach handles reactions locally
(independently of spatial movement), the reaction subproblems in the grid cells are
independent of each other, and so they are naturally suited to parallel computation.



5 Applications

5.1 Multiple Well Bioremediation Results

In a collaborative effort with the Pacific Northwest National Laboratory (PNNL) we
simulated a field test of biodegradation, using microbial carbon-tetrachloride (CCly)
destructive kinetics developed by Skeen and Chan of PNNL [23]. The model has six
components: electron acceptors nitrate NO3 , nitrite NO3 ', and acetate CH3COO™,
and CCly, microbial mass CsHgO3N, and a non-reactive tracer. Four redox reactions
have been identified, resulting in a rate of biodegradation described by

d(CCl4) _ Oé(CCLl) (C5H903N)
dt 14 B[(NO7)+(NO3)]

for the two parameters a and S.

An unsaturated/saturated domain with 3 vertical wells was simulated. The
physical domain was [0, 123] x [0, 123] x [220, 305] feet. The wells were placed ap-
proximately 6 meters apart on a straight line (aerial view) near the center of the
domain. The inner well is an injector and the outer 2 wells are extractors. The
extraction wells had one screened interval from 240 to 279 feet, while the injection
well was screened at 3 intervals: 240 to 257 feet, 274 to 279 feet, and 294 to 299 feet.
The flow rates at the production wells were 0.3125 gpm/meter (gallons per minute
per meter) well screen and at the injection well 0.625 gpm/meter well screen. The
domain had heterogeneous layered permeabilities in the vertical direction dominated
by two tight streaks with low permeability (= 10 milliDarcy). A constant porosity
of 0.25 was assumed. The retardation factor for acetate was taken to be 1.8.

Background concentrations of 2000 ppb for carbon-tetrachloride and 300 ppm
for nitrate were assumed. A small background concentration for in situ, native
microbes were also assumed. Acetate was injected twice a day at 1000 ppm over
a 1 hour duration, with a 12 hour frequency, starting from time zero. Nitrate was
injected twice a day at 1400 ppm over a 1 hour duration with a 12 hour frequency,
starting at 1 hour.

The simulations showed steady microbial growth near the injection well, with
consequent reduction of CCly levels and increased nitrite (due to reaction of acetate
and nitrate). The acetate front movement is retarded relative to the nitrate front due
to adsorption. The simulations provide concentration profiles at various times which
can be compared with measurements in monitoring wells. This permits validation
of the physical and chemical models of the site, as well as a means for evaluating
the effectiveness of different remediation strategies. For more details, see [18, 14].

5.2 Radio-nuclide Transport

The effect of sorption is a critical factor determining the propagation of heavy metals
and radio-nuclide contaminants such as strontium and cobalt. Simulation can be



a useful tool in developing such an understanding, and in studying the effects of
various geological and chemical parameters. For example, heavy metals tend to be
very insoluble at high pH, and so one strategy for immobilizing them in waste pits
is to add a strong base to the pit.

We simulated the migration of such species from highly basic sources into neu-
tral pH groundwater/soil in various simple geometrical arrangements. The chem-
istry model in these simulations accounts for aquatic and surface complexation and
precipitation-dissolution. Even for a relatively simple case of strontium plus common
background aqueous species, a total of 74 species were involved in the calculations.
The adsorption model used accounts for the electrostatic interactions between the
surface and aqueous species (after Dzombak and Morel [24]). In the simulation the
assumption was made that all reactions reach thermodynamic equilibrium.

The simulations for migration of St generally showed significant retardation. A
remarkable result, however, was that when the source was above a certain pH, a
pulse of Sr formed and propagated very rapidly, nearly at tracer velocity. This
unexpected behavior is consistent with field observations of Sr migration. Further
studies are underway to determine the conditions for this bimodal propagation.

6 Conclusions

By using a variety of advanced computational techniques, one can simulate ac-
curately and effectively the complex set of physical, geochemical, and biological
phenomena that arise in groundwater contamination problems. We have described
methods that use parallel computers with nearly maximum efficiency, i.e., runtime
is inversely proportional to number of processors used. This permits significant in-
creases in problem size and resolution, and decreases in simulation turnaround time.
Preliminary results support the robustness of the interior point method for solving
the local chemistry problem. Such robustness is critical to obtaining a practical tool
for environmental applications. A computer code incorporating these concepts has
already proven useful in modeling and understanding field behavior.
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