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Abstract

For meshes of nondegenerate, convex quadrilaterals, we present a family of stable mixed finite element spaces for the

mixed formulation of planar linear elasticity. The problem is posed in terms of the stress tensor, the displacement

vector and the rotation scalar fields, with the symmetry of the stress tensor weakly imposed. The proposed spaces

are based on the Arnold-Boffi-Falk (ABFk, k ≥ 0) elements for the stress and piecewise polynomials for the

displacement and the rotation. We prove that these finite elements provide full H(div)−approximation of the stress

field, in the sense that it is approximated to order hk+1, where h is the mesh diameter, in the H(div)−norm. We

show that displacement and rotation are also approximated to order hk+1 in the L2−norm. The convergence is

optimal order for k ≥ 1, while the lowest order case, index k = 0, requires special treatment. The spaces also

apply to both compressible and incompressible isotropic problems, i.e., the Poisson ratio may be one-half. The

implementation as a hybrid method is discussed, and numerical results are given to illustrate the effectiveness of

these finite elements.

Keywords: Linear elasticity, Mixed finite element method, Quadrilateral element, Full H(div)-approximation,

Hybrid formulation

1. Introduction

Let Ω be a planar region occupied by a linear elastic body. The general form of the linear elasticity problem

consists of the linear constitutive equation, which relates the deformation suffered by an elastic body to its stress

state (Arnold, 1990),

Aσ = ε(u) in Ω, (1)

and the equilibrium equation, which states the conservation of linear momentum,5

divσ = g in Ω, (2)
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where u : Ω → R2 is the displacement field, ε(u) is the corresponding infinitesimal strain tensor, given by the

symmetric part of the gradient of u,

ε(u) = ∇su =
1

2

(
∇u+ (∇u)

t
)
,

g denotes the imposed volume load and σ : Ω → S, where S = R2×2
sym is the space of symmetric second order

real tensors, is the stress field. For simplicity, we only consider prescribed displacement u = uB on the boundary

Γ = ∂Ω, although other boundary conditions could be handled in the usual ways. The divergence operator div

applies to the matrix field σ row-by-row. The material properties are determined by the compliance tensor A,

which is a positive definite symmetric operator from S to itself, possibly depending on the point x ∈ Ω. In the10

isotropic case it is given by

Aσ =
1

2µ

(
σ − λ

2(λ+ µ)
tr(σ)I

)
, (3)

where λ ≥ 0 and µ > 0 are the Lamé constants and I denotes the identity tensor. The inverse of A is the elasticity

tensor C : S→ S, that in the isotropic case is given by

Cε = 2µε+ λ tr(ε)I = σ.

Although this problem has already been the focus of many studies, there are still numerous challenges in the

development of numerical and computational methods that are capable of providing stable and accurate solutions,

especially on quadrilaterals and hexahedra. The elliptic equation posed on displacements only,

div
(
Cε(u)

)
= g in Ω, (4)

found by inverting the compliance tensor in (1) and substituting the stress in (2), is the basis for the definition of the15

standard primal Galerkin method (Arnold, 1990). This standard method is suitable for compressible problems. For

incompressible problems, however, as the Poisson ratio ν = λ/2(λ+ µ) approaches 0.5 (i.e., λ→∞), the elasticity

tensor C becomes infinite, and a mixed formulation must be employed to solve (1)–(2).

1.1. Mixed Formulations

One of the great advantages of mixed formulations for the elasticity problem is the possibility of obtaining

conservative solutions with balanced convergence order for stress and displacement fields. Moreover, they are

robust in the incompressible limit, not being subject to the volumetric locking effect (Arnold, 1990; Loula et al.,

1987; Stein & Rolfes, 1990; Oyarzúa & Ruiz-Baier, 2016). In general, mixed formulations for the elasticity problem

seek for the simultaneous evaluation of the pair (σ,u) (Amara & Thomas, 1979; Mignot & Surry, 1981; Arnold

et al., 1984,; Stenberg, 1986, 1988,; Arnold & Winther, 2002; Adams & Cockburn, 2005; Arnold & Awanou, 2005;

Arnold et al., 2007; Gatica, 2007; Arnold et al., 2015). This pair can be characterized as the unique solution of

the Hellinger-Reissner functional or, equivalently, as the unique solution of the following weak formulation: Find

(σ,u) ∈ H(div,Ω,S)× L2(Ω,R2) such that

(Aσ, τ ) + (u,div τ ) = 〈uB, τν〉Γ ∀τ ∈ H(div,Ω,S), (5a)

(divσ,η) = (g,η) ∀η ∈ L2(Ω,R2), (5b)

where H(div,Ω,S) is the space of square-integrable symmetric matrix fields with square-integrable divergence,20

L2(Ω,R2) is the space of square-integrable vector fields, (·, ·) denotes the L2(Ω,R2) or L2(Ω,R2×2) inner product

and 〈·, ·〉Γ denotes the L2(Γ,R2) inner product (or duality pairing). Later we will restrict the domain of integration

to a measurable set K ⊂ Ω by writing (·, ·)K , or by changing Γ to another space of dimension one.
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To demonstrate the stability of a mixed formulation, one usually relies on the satisfaction of the two hypotheses

of Brezzi’s theorem (Brezzi, 1974): the coercivity of a bilinear form and an inf-sup compatibility condition between25

the function spaces. In the context of linear elasticity, these conditions come together with other requirements,

such as the conservation of angular momentum, characterized by the symmetry of the stress tensor. Indeed, the

construction of finite element approximation strategies for the Hellinger-Reissner formulation that simultaneously

satisfy the compatibility condition between the approximation spaces and the restriction of symmetry of the stress

tensor is not trivial (Arnold & Winther, 2002; Arnold & Awanou, 2005; Adams & Cockburn, 2005).30

The first strategies for approximating the elasticity problem in the mixed form were based on the exact enforce-

ment of the symmetry of the stress tensor in the construction of the approximation space. In this direction, are

the composite finite element methods (Watwood Jr & Hartz, 1968; Johnson & Mercier, 1978; Arnold et al., 1984;

Zienkiewicz, 2001). The first mixed finite element methods with polynomial approximation of the symmetric stress

tensor and of the displacement field were presented in the 2000’s (Arnold & Winther, 2002; Adams & Cockburn,35

2005; Arnold et al., 2008). These finite elements tend to have a high number of degrees of freedom. The lowest

order approximation is based on cubic polynomials for each component of the tensor and linear polynomials for

each component of the vector. The approximated stresses are continuous, while the displacements are discontinu-

ous. An alternative way of approximating the mixed formulation is to relax the H(div)−conformity of the stress

approximation and to preserve the symmetry (Arnold & Winther, 2003; Awanou, 2009; Hu & Shi, 2007; Man et al.,40

2009; Yi, 2005, 2006; Gopalakrishnan & Guzmán, 2011).

Another approach, which we take in this paper, is to use a modified variational formulation, aiming to ap-

proximate the stress tensor in H(div,Ω,M), where M = R2×2 is the space of second order real tensors (Amara

& Thomas, 1979; Mignot & Surry, 1981; Arnold et al., 1984; Stenberg, 1986, 1988,; Arnold & Falk, 1988; Morley,

1989; Stein & Rolfes, 1990; Farhloul & Fortin, 1997; Arnold et al., 2006, 2007; Boffi et al., 2009; Qiu & Demkowicz,45

2009; Cockburn et al., 2010; Guzmán, 2010; Gopalakrishnan & Guzmán, 2012; Gatica, 2014). In general, these

formulations maintain exact H(div)−conformity, but impose the symmetry condition only in a weak sense. This is

often done via the introduction of a Lagrange multiplier that is related to the rotation (see Section 2). This idea

was first suggested by Fraeijs de Veubeke (1975) and has been applied in various works (Amara & Thomas, 1979;

Arnold et al., 1984, 2006; Cockburn et al., 2010; Arnold et al., 2015).50

1.2. Approximation on Quadrilateral Meshes

Mixed finite element methods for the elasticity problem on rectangular quadrilaterals and hexahedra have been

proposed, e.g. in Yi (2005, 2006); Hu & Shi (2007); Man et al. (2009); Arnold et al. (2015). In this paper, we

focus our attention on meshes of convex quadrilaterals. When compared to simplicial elements, quadrilaterals and

hexahedra generate significantly fewer degrees of freedom (especially in the three-dimensional case or when the55

degrees of freedom associated with the rotation are local and can all be statically condensed). Also, a logically

rectangular indexing can be applied to fairly general quadrilateral meshes, or at least for patches of meshes, which

contributes to reduce the coding effort and run-time.

To the extent of our knowledge, there is currently no conforming mixed finite element method for the Hellinger-

Reissner formulation that provides an approximation on arbitrary convex quadrilateral meshes that simultaneously60

enforces the conservation of linear and angular momenta with O(hk+1) convergence for the stress field in the

H(div)−norm, i.e., that has full H(div)−approximation. We will provide such a full H(div)−approximating element

in this paper. Here we use the terminology of Arbogast & Correa (2016), where finite element subspaces of

H(div) × L2 for the Poisson problem are classified as having either full H(div)−approximation, where the flux,

the potential and the divergence of the flux are approximated to the same order (like the Raviart-Thomas, RT k,65

elements of index k ≥ 0 (Raviart & Thomas, 1977)) or reduced H(div)−approximation, where the potential and

the divergence of the flux are approximated to one less power (like the Brezzi-Douglas-Marini, BDMk, elements of
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index k ≥ 1 (Brezzi et al., 1985)).

Two mixed methods with weakly imposed symmetry on quadrilateral meshes were introduced by Arnold et al.

(2015). Their first choice of spaces uses a product of RT k spaces, k ≥ 1, on quadrilaterals to approximate the70

stress, mapped tensor product polynomials to approximate each component of the displacement and unmapped

polynomials (defined directly in the coordinates of the element K) to approximate the rotation. On meshes formed

by parallelograms, the approximations show full H(div)−approximation, i.e., O(hk+1) convergence rates for the

stress in the H(div,Ω,M) norm, for the displacement in the L2(Ω,R2) norm and for the rotation in the L2(Ω,R)

norm. However, on meshes with arbitrary quadrilaterals, this choice is unable to provide O(hk+1) convergence for75

the stress in the H(div,Ω,M) seminorm, i.e., of the divergence of the stress. The convergence is O(hk), so we should

consider these spaces as being a reduced H(div)−approximation family.

Their second choice of spaces is based on the BDMk spaces. The lowest order spaces in this family (k = 1)

require a piecewise constant approximation for each component of the displacement vector. In this case, the rotation

is also sought in a space of piecewise constant functions. When meshes of parallelograms are used, the convergence80

rates for the BDM1−based spaces are O(h) for all three variables. In the case of general quadrilateral meshes, the

approximation of the stress field does not converge in the H(div,Ω,M) seminorm.

The shortcoming of the above two spaces is due to the fact that both RT k and BDMk do not provide O(hk+1)

approximations of divergences on non-parallelogram meshes, as was studied by Arnold et al. (2005). In this same

work, the authors present necessary conditions for O(hk+1) approximations of vector fields on quadrilaterals, both in85

the L2 and H(div) norms. They also introduce a family of spaces satisfying these conditions: the Arnold-Boffi-Falk,

ABFk, spaces of index k ≥ 0.

As our main contribution, we introduce a family of approximation spaces with weakly imposed symmetry that

provides full H(div)−approximation for index k ≥ 0, and gives optimal order convergence for k ≥ 1, even on

arbitrary convex quadrilaterals. Moreover, our spaces preserve the continuity of the traction across interelement90

edges. The spaces for the stress-displacement pair are based on the ABFk elements. The Lagrange multiplier

associated with the symmetry of the stress tensor is approximated by a piecewise polynomial function with no

continuity restriction. Thus, the associated degrees of freedom can be condensed in a hybridization process, and the

introduction of the Lagrange multiplier to enforce the symmetry condition (and consequently the conservation of

angular momentum) does not affect the size of the global linear system of equations resulting from the discretization.95

Furthermore, the adoption of a hybrid strategy facilitates the construction of local bases for the approximation spaces

and allows for the elimination of all local degrees of freedom.

The text is organized as follows. We present the mixed formulation with weakly imposed symmetry in the next

section. Its finite element approximation is commented on in Section 3, where we review the theory of stability given

by Arnold et al. (2015). The ABF−based full H(div)−approximating spaces are defined in Section 4. The lowest100

order case k = 0 does not maintain stability, and so requires special treatment. We introduce two new low order

finite elements that remain stable and have local dimension smaller than the lowest known RT 1−based element.

The error in the approximation is analyzed in Section 5. We also introduce a stabilizing term into the formulation

to handle the lowest order case. Implementation using the hybrid form of the method is described in Section 6,

and numerical results are presented in Section 7. Conclusions are given in the last section of the paper, where the105

convergence order and the degrees of freedom of the spaces are summarized (see Table 6).

2. The Mixed Formulation with Weakly Imposed Symmetry

We denote by Hk(T,X) the Sobolev space consisting of functions with domain T ⊂ R2, taking values in the

finite-dimensional vector space X, and with all derivatives of order at most k square integrable. We similarly denote

by Pk(T,X) the space of polynomial functions on T of degree at most k taking values in X, and by Pk1,k2
(T,X)110
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the space of polynomial functions on T of degree at most k1 ≥ 0 in x = x1 and degree at most k2 ≥ 0 in y = x2,

taking values in X. The range space X will be either R, R2 or M = R2×2.

We seek approximations for the stress field in H(div,Ω,M) and introduce the symmetry condition in the varia-

tional sense (Fraeijs de Veubeke, 1975; Arnold et al., 1984, 2006, 2007). We add a third variable to the problem, a

Lagrange multiplier associated to the rotation and defined as

r(u) = asym(∇u)/2,

where

asym τ = τ12 − τ21

is a measure of the asymmetry of the matrix τ ∈M, and rewrite the constitutive equation (1) as

Aσ = ∇u−R, (6)

with

R = r

[
0 1

−1 0

]
.

Recall that A is defined in (3), and define

S = H(div,Ω,M), U = L2(Ω,R2), R = L2(Ω,R).

The modified mixed formulation for the elasticity problem is: Given uB ∈ H
1/2(Γ,R2) and g ∈ L2(Ω,R2), find

(σ,u, r) ∈ S× U× R satisfying

(Aσ, τ ) + (u,div τ ) + (r, asym τ ) = 〈uB, τν〉Γ ∀τ ∈ S, (7a)

(divσ,η) = (g,η) ∀η ∈ U, (7b)

(asymσ, s) = 0 ∀s ∈ R. (7c)

Note that τν ∈ H−1/2(Γ,R2). This variational form is constructed from the differential equations as follows. Taking

the inner product of each term in (6) with a tensor τ ∈ H(div,Ω,M), integrating in Ω and applying integration by115

parts to one of the terms, we have (7a). Similarly, taking the inner product of the equilibrium equation (2) with a

vector η ∈ L2(Ω,R2) and integrating in Ω, one arrives at (7b). Equation (7c) imposes the symmetry condition on

the stress tensor, in a variational sense.

The well-posedness of (7) is presented in Arnold et al. (2015) by using Brezzi’s theory (Brezzi, 1974). In

particular, the authors prove the following inf-sup condition.120

Lemma 2.1: There exists a constant β > 0 such that

inf
u∈U
r∈R

sup
τ∈S

(div τ ,u) + (asym τ , r)

‖τ‖S
(
‖u‖U +‖r‖R

) ≥ β > 0.

Note that

‖τ‖S =
(
‖τ‖2L2 +‖div τ‖2L2

)1/2
, ‖u‖U =‖u‖L2 , ‖r‖R =‖r‖L2 .

3. Finite Element Approximation and Stability

The discrete counterpart of the elasticity problem (7) is stated as follows.
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Discrete Elasticity Problem: Given uB ∈ H
1/2(Γ,R2) and g ∈ L2(Ω,R2), find the finite dimensional approxi-

mations (σh,uh, rh) ∈ Sh × Uh × Rh satisfying

(Aσh, τh) + (uh,div τh) + (rh, asym τh) = 〈uB, τhν〉Γ ∀τh ∈ Sh, (8a)

(divσh,ηh) = (g,ηh) ∀ηh ∈ Uh, (8b)

(asymσh, sh) = 0 ∀sh ∈ Rh, (8c)

with A as defined in (3). The finite dimensional spaces Sh, Uh and Rh are yet to be defined.

The theory of stability of the solution of the Discrete Elasticity Problem was also developed by Arnold et al.

(2015). It relies on the discrete counterpart of Brezzi’s theorem (Brezzi, 1974), which requires the existence of

positive constants αE , βE such that

(Aτh, τh) ≥ αE‖τh‖2S ∀τh ∈ kerBh, (9)

inf
uh∈Uh
rh∈Rh

sup
τh∈Sh

(div τh,uh) + (asym τh, rh)

‖τh‖S (‖uh‖U +‖rh‖R)
≥ βE > 0, (10)

where

kerBh =
{
τh ∈ Sh; (div τh,uh) + (asym τh, rh) = 0 ∀(uh, rh) ∈ Uh × Rh

}
.

If we can take τh = I in (8a), i.e., if I ∈ Sh, it is possible to show that the constant αE does not depend on λ125

(see Arnold et al. (1984) or Boffi et al. (2013)). This fact is crucial to the stability of the approximation in the

incompressible limit (when λ→∞).

If Brezzi’s conditions (9) and (10) are met (Arnold et al., 2015), there exists a positive constant γE (depending

on αE and βE , but independent of h and λ) such that, for each choice (σh,uh, rh) ∈ Sh × Uh × Rh, there exist

nonzero (τh,ηh, sh) ∈ Sh × Uh × Rh such that130

A((σh,uh, rh), (τh,ηh, sh)) ≥ γE
∥∥(σh,uh, rh)

∥∥
E

∥∥(τh,ηh, sh)
∥∥
E
, (11)

where A is the bilinear form defined on (S× U× R)× (S× U× R) by

A((σ̃, ũ, r̃), (τ ,η, s)) := (Aσ̃, τ ) + (ũ,div τ ) + (r̃, asym τ ) + (div σ̃,η) + (asym σ̃, s)

and ∥∥(σ̃, ũ, r̃)
∥∥
E

:=‖σ̃‖S +‖ũ‖U +‖r̃‖R .

In summary, the following Theorem holds.

Theorem 3.1: If (9) and (10) hold, then there is a unique solution to (8) and there is a constant C, independent

of h, such that ∥∥(σh,uh, rh)
∥∥
E
≤ C

{
‖uB‖H1/2(Γ,R2) + ‖g‖L2(Ω,R2)

}
. (12)

Moreover, if I ∈ Sh, then C is independent of λ, and so λ may be taken as infinite, and (11) holds, provided that

the globally constant mode for the trace of σ is removed.135

Arnold et al. (2015) also give a criterion for proving the inf-sup condition (10). It is based on the stability results

for two auxiliary problems: the dual mixed form of the Poisson problem and the classical mixed form of the Stokes

problem. We define curlw for a vector field w as the matrix field whose first row is curlw1 and the second row is

curlw2, where curl q = (∂2q,−∂1q) for a scalar function q.
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Lemma 3.2: Let Vh ⊂ H(div,Ω,R2) and Ph ⊂ L2(Ω,R) satisfy the inf-sup condition for the mixed Poisson140

problem, i.e., ∃βP > 0 such that

sup
vh∈Vh

(div vh, ph)

‖vh‖Vh

≥ βP ‖ph‖Ph
∀ph ∈ Ph. (13)

Let Wh ⊂ H1(Ω,R2) and Rh ⊂ L2(Ω,R) satisfy the inf-sup condition for the Stokes problem, i.e., ∃βS > 0 such

that

sup
wh∈Wh

(divwh, rh)

‖wh‖Wh

≥ βS‖rh‖Rh
∀rh ∈ Rh. (14)

Finally, let Sh := Vh × Vh be the space of matrices whose rows are composed by the transpose of vectors in Vh. If

curlWh ⊂ Sh, (15)

then Sh ⊂ H(div,Ω,M), Uh := Ph ×Ph ⊂ L2(Ω,R2) and Rh ⊂ L2(Ω,R) satisfy the discrete inf-sup condition (10).145

4. ABF−Based Full H(div)−Approximating Spaces

Let Th be a conforming finite element mesh of nondegenerate, convex quadrilaterals K over the domain Ω of

maximal diameter h. The ABF spaces (Arnold et al., 2005) are constructed by mapping polynomials defined on

the reference element K̂ = [−1, 1]2 to each element K of the mesh Th. We denote by FK : K̂ → K the invertible,

bilinear map of the two domains in R2. A scalar-valued or vector-valued function ϕ̂ on K̂ transforms to a function150

ϕ = P 0
K ϕ̂ on K by the composition

ϕ(x) = (P 0
K ϕ̂)(x) = ϕ̂(x̂), (16)

where x = FK(x̂). A vector-valued function ϕ̂ on K̂ transforms to a function ϕ = P 1
Kϕ̂ on K via the Piola

transform

ϕ(x) = (P 1
Kϕ̂)(x) =

1

JK(x̂)
[DFK(x̂)]ϕ̂(x̂), (17)

where DFK(x̂) is the Jacobian matrix of the mapping FK and JK(x̂) is its determinant. A matrix-valued function

on K̂ can be transformed onto K by applying the Piola transform (17) to each row. We also denote this operation155

by P 1
K .

The ABF space of index k ≥ 0, Vk
ABF × Pk

ABF , is defined to be

Vk
ABF = {uh ∈ H(div,Ω,R2); uh|K ∈ P

1
K(Pk+2,k(K̂,R)× Pk,k+2(K̂,R)) ∀K ∈ Th}, (18a)

Pk
ABF = {ph ∈ L2(Ω,R); ph|K ∈ P

0
K(Rk

ABF (K̂)) ∀K ∈ Th}, (18b)

where

Rk
ABF (K̂) = span{x̂i1x̂

j
2; i, j ≤ k + 1, i+ j < 2k + 2},

which is informally but incorrectly described as Pk+1,k+1(K̂,R) without span{x̂k+1
1 x̂k+1

2 }.

4.1. The New Spaces for Index k ≥ 0

For each k ≥ 0, our new spaces for planar elasticity are defined by160

Ek
h = Skh × Uk

h × Rk
h, (19)
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with

Skh = Vk
ABF × Vk

ABF ⊂ H(div,Ω,M), (20a)

Uk
h = Pk

ABF × Pk
ABF ⊂ L2(Ω,R2), (20b)

Rk
h =

{
r ∈ L2(Ω,R); r|K ∈ Pk(K,R) ∀K ∈ Th

}
. (20c)

Note that Rk
h is unmapped.

We cannot prove stability of E0
h. We present two other spaces for index k = 0, again based on ABF0, but

supplemented by additional functions. On the reference element K̂, let

S∗ = span


(

0

x̂

)
,

(
ŷ

0

)
,

(
x̂2

−2x̂ŷ

)
,

(
2x̂ŷ

−ŷ2

)
,

(
x̂2ŷ

−x̂ŷ2

) (21)

be a space of curl functions (so their divergences vanish) and define

V
0,∗
ABF (K̂) = V0

ABF (K̂)⊕ S∗

= P2,0(K̂,R)× P0,2(K̂,R)⊕ S∗ ( P2,1(K̂,R)× P1,2(K̂,R). (22)

Note that the normal component is a polynomial of degree 0 for V0
ABF (K̂) but degree 1 for V

0,∗
ABF (K̂). The degrees

of freedom can be defined to be the normal components and some internal degrees. The dimensions of these two165

spaces are 6 and 11, respectively, and they are contained in but smaller than RT 1(K̂) = P2,1(K̂,R) × P1,2(K̂,R).

The global space is

V
0,∗
ABF = {uh ∈ H(div,Ω,R2); uh|K ∈ P

1
K(V0,∗

ABF (K̂)) ∀K ∈ Th}. (23)

For k = 0, our new spaces for elasticity are defined as follows. For the stress tensor, let

S
0,∗
h = V

0,∗
ABF × V

0,∗
ABF ⊂ H(div,Ω,M). (24)

For the displacement and rotation, we use (20b)–(20c). The three spaces for index k = 0 are then defined as

E0
h = S0

h × U0
h × R0

h and

E0,∗
h = S

0,∗
h × U0

h × R0
h, (25a)

E0,∗,1
h = S

0,∗
h × U0

h × R1
h. (25b)

These low order spaces are all smaller than the smallest RT 1−based spaces of Arnold et al. (2015) (although the

spaces, except E0
h, have linear normal stresses, and so lead to a global hybridized problem of the same dimension).170

We can prove stability on general quadrilateral meshes only when one uses E0,∗
h and E0,∗,1

h .

We remark that we have defined S∗ in (21), but it is not clear that each of these functions is needed in general.

A simple numerical experiment, reported in Section 7.2, has shown that, even in the quasi-incompressible regime,

the same order of convergence and accuracy when that the last, cubic vector is not included. We call this space S#:

S# = span


(

0

x̂

)
,

(
ŷ

0

)
,

(
x̂2

−2x̂ŷ

)
,

(
2x̂ŷ

−ŷ2

). (26)

In this case, the global space is175

V
0,#
ABF = {uh ∈ H(div,Ω,R2); uh|K ∈ P

1
K(V0,#

ABF (K̂)) ∀K ∈ Th}, (27)
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where V
0,#
ABF (K̂) = V0

ABF (K̂)⊕ S#. We have no proof that the resulting element would work in general.

4.2. Stability of the New Spaces

Lemma 4.1: The spaces Ek
h for k ≥ 1 and the spaces E0,∗

h and E0,∗,1
h satisfy the coercivity condition (9) and the

inf-sup condition (10).

Proof. The coercivity condition (9) holds for Ek
h, k ≥ 0, since the divergences of functions in Skh lie in Uk

h (Arnold180

et al., 2005) (one can also see this fact directly using (28)). This also holds when using S
0,∗
h and S

0,∗,1
h , since the

supplemental functions are divergence free.

We prove the inf-sup results using Lemma 3.2. The spaces Vk
ABF × Pk

ABF , k ≥ 0, are inf-sup stable for the

Poisson problem, i.e., they satisfy (13) (Arnold et al., 2005). Since V0
ABF ⊂ V

0,∗
ABF , (13) holds for V

0,∗
ABF × P0

ABF as

well.185

We use the auxiliary spaces

Wk
h =

{
w ∈ H1(Ω,R2); w|K ∈ P

0
K(Pk+1,k+1(K̂,R2)) ∀K ∈ Th

}
, k ≥ 1,

W0
h = W1

h.

For each k ≥ 0, the pair (Wk
h,R

k
h) is Stokes-compatible, i.e., these spaces satisfy the inf-sup condition (14) (Girault

& Raviart, 1986, section II.3.2). Moreover, (W0
h,R

1
h) is Stokes-compatible. It remains to show that curlWk

h ⊂ Skh.

It is not difficult to show the relation

curlP 0
K(v̂) = P 1

K( ˆcurl v̂), (28)

so, on each element K ∈ Th, one has locally that for k ≥ 1,

curlWk
h(K) = curl(P 0

K(Pk+1,k+1(K̂,R2))) = P 1
K( ˆcurl(Pk+1,k+1(K̂,R2)))

⊂ Vk
ABF (K)× Vk

ABF (K) = Skh(K),

and the proof is complete for k ≥ 1. The result for E0,∗
h also holds, since ˆcurl(P2,2(K̂,R2)) ⊂ V

0,∗
ABF (K̂)×V

0,∗
ABF (K̂)

and a similar computation shows that

curlW0
h(K) = curl(P 0

K(P2,2(K̂,R2))) = P 1
K( ˆcurl(P2,2(K̂,R2))) ⊂ S

0,∗
h (K).

The proof is complete. �

We conclude from Theorem 3.1 that there is a unique solution to (8) using our new spaces when k ≥ 1 or when190

we use S
0,∗
h or S

0,∗,1
h . Moreover, the stability bound (12) holds in these cases. Since trivially I ∈ Skh, these spaces

will work well in the incompressible limit, and the inf-sup condition (11) holds.

The following result shows that the space E0
h is uniformly inf-sup stable, but only on sufficiently fine meshes.

In that case, Theorem 3.1 applies also to E0
h. We caution the reader, however, not to use E0

h in the formulation

(8), since the numerical results show that the meshes need to be very fine indeed to have the inf-sup condition on195

quadrilateral meshes.

Lemma 4.2: If ∂Ω is sufficiently regular that the Stokes problem on Ω is regular, and if the sequence of meshes is

shape regular (as defined in Section 5), then there are constants β0
E > 0 and C0

E > 0 such that

inf
uh∈U0

h

rh∈R0
h

sup
τh∈S0

h

(div τh,uh) + (asym τh, rh)

‖τh‖S (‖uh‖U +‖rh‖R)
≥ β0

E − C0
Eh. (29)
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If h is sufficiantly small, then, for example, β0
E − C0

Eh >
1
2β

0
E > 0.

We give the proof in the next section, since we need the operator π0 defined there.200

5. Error Analysis

In this section we provide bounds on the difference between the exact solution and the approximate solution

when using our new ABF−based elements. We must assume that the sequence of meshes Th remains shape-regular

as h→ 0. This ensures that the mesh does not degenerate to highly elongated or nearly triangular elements. Each

element K ∈ Th contains four (overlapping) triangles constructed from any choice of three vertices, and each such205

triangle has an inscribed circle, the minimal radius of which is ρK . If hK denotes the diameter of K, the requirement

is that the ratio ρK/hK ≥ σ∗ > 0, where σ∗ is independent of Th. In this notation, h = max
K∈Th

hK .

From the shape regularity, the Bramble-Hilbert (Bramble & Hilbert, 1970) or Dupont-Scott (Dupont & Scott,

1980) lemma, and the approximation results for mapped spaces in Ciarlet (1978) and Arnold et al. (2005), we

conclude local consistency for any of the spaces Eh = Sh × Uh × Rh defined in the previous section; that is, for all

Th and K ∈ Th, there is C > 0 such that

inf
σ̃h∈Sk

h|K
‖σ − σ̃h‖L2(K,M) ≤ Ch

s+1
K ‖σ‖Hs+1(K,M) , s = 0, 1, . . . , k, (30a)

inf
σ̃h∈Sk

h|K

∥∥div(σ − σ̃h)
∥∥
L2(K,R2)

≤ Chs+1
K ‖divσ‖Hs+1(K,R2) , s = −1, 0, . . . , k, (30b)

inf
ũh∈Uk

h|K
‖u− ũh‖L2(K,R2) ≤ Ch

s+1
K ‖u‖Hs+1(K,R2) , s = −1, 0, . . . , k, (30c)

inf
r̃h∈Rk

h|K
‖r − r̃h‖L2(K,R) ≤ Ch

s+1
K ‖r‖Hs+1(K,R) , s = −1, 0, . . . , k. (30d)

We remark that when k = 0, (30a) is improved by one power (s = 0, 1) if the infimum is taken over σ̃h ∈ S
0,∗
h

∣∣
K

(Arnold et al., 2005). Moreover, (30b) and (30c) are improved by one power on meshes of parallelograms, and also

on sequences of meshes that tend to parallelograms.210

To achieve global consistency, we use the Raviart-Thomas or Fortin projection operator πk
ABF defined in

Arnold et al. (2005). For ϕ ∈ H(div,Ω,R2) ∩ L2+ε(Ω,R2), ε > 0, πk
ABFϕ ∈ Vk

ABF is constructed locally,

PPk
ABF

divϕ = div(πk
ABFϕ), where PPk

ABF
is the L2−orthogonal projection operator onto Pk

ABF , and πk
ABF is

bounded in H1(Ω,R2). We construct the tensor version of this operator, πk, defined for σ ∈ H(div,Ω,M) ∩
L2+ε(Ω,M), ε > 0, with πkσ ∈ Skh by applying πk

ABF to each row. It satisfies the following properties:215

1) πk is constructed by the concatenation of locally defined operators;

2) πk satisfies the commuting diagram property, i.e., PUk
h

divσ = div(πkσ), where PUk
h

is the L2−orthogonal

projection operator onto Uk
h;

3) πk is bounded in H1(Ω,M), so that (30a) and (30b) hold for σ̃h = πkσ.

Later, we will also use the projection PRk
h
, the L2−orthogonal projection operator onto Rk

h.220

5.1. Error Estimates for the Uniformly Stable Elements

Theorem 5.1: Assume that the meshes are uniformly shape regular as h→ 0. For the ABFk−based elements, Ek
h

with k ≥ 1, E0,∗
h and E0,∗,1

h , there exists a constant C > 0 such that

‖σ − σh‖S +‖u− uh‖U +‖r − rh‖R ≤ Ch
k+1(‖σ‖k+1 +‖divσ‖k+1 +‖u‖k+1 +‖r‖k+1), (31)

‖divσ − divσh‖L2(Ω,R2) ≤ Ch
k+1‖divσ‖k+1 . (32)
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Proof. Introducing the projections σ̄h = πkσ, ūh = PUk
h
u and r̄h = PRk

h
r and using the triangle inequality, it

suffices to show that the errors in the finite dimensional spaces‖σ̄h − σh‖,‖ūh − uh‖ and‖r̄h − rh‖ are bounded by

the projection errors ‖σ − σ̄h‖, ‖u− ūh‖ and ‖r − r̄h‖. By the inf-sup condition (11) there exist (τ̃h, η̃h, s̃h) ∈ Ek
h

(or E0,∗
h or E0,∗,1

h ) such that

∥∥(σ̄h − σh, ūh − uh, r̄h − rh)
∥∥
E

∥∥(τ̃h, η̃h, s̃h)
∥∥
E
≤ γ−1

E A((σ̄h − σh, ūh − uh, r̄h − rh), (τ̃h, η̃h, s̃h)).

On the other hand, from (7) and (8), we have

A((σ,u, r), (τ̃h, η̃h, s̃h)) = A((σh,uh, rh), (τ̃h, η̃h, s̃h)),

and so

A((σ̄h − σh, ūh − uh, r̄h − rh), (τ̃h, η̃h, s̃h)) = −A((σ − σ̄h,u− ūh, r − r̄h), (τ̃h, η̃h, s̃h))

≤ C
∥∥(σ − σ̄h,u− ūh, r − r̄h)

∥∥
E

∥∥(τ̃h, η̃h, s̃h)
∥∥
E
,

which, combined with (30), shows (31).

Using that Uk
h ⊂ U, we can restrict (7b) to Uk

h and subtract from (8b):

(divσ − divσh,ηh) = 0 ∀ηh ∈ Uk
h.

By the commuting diagram property, this is

(divπkσ − divσh,ηh) = 0 ∀ηh ∈ Uk
h.

Taking ηh = divπkσ − divσh ∈ Uk
h shows that divπkσ − divσh = 0. Finally,

‖divσ − divσh‖ ≤‖divσ − divπkσ‖ ,

and the more refined result (32) follows from (30b). �

Recall that the coercivity condition (9) is independent of λ. This implies that the inf-sup condition (11) is valid

even for the incompressible limit, and so are the estimates (31), i.e., the method is locking-free with respect to the225

incompressibility constraint.

5.2. Error Estimates for E0
h

Theorem 5.1 will apply to E0
h for h sufficiently small once we establish Lemma 4.2. We now give its proof.

Proof (of Lemma 4.2). The proof is based on the proof of Lemma 3.2 appearing in Arnold et al. (2015). Let uh ∈ Uh

be given. The ABF0 spaces are inf-sup stable for the mixed Poisson problem, so using the inf-sup condition for

this problem on each component of uh, we deduce that there exists a tensor τ̄h ∈ Sh such that

(div τ̄h,uh) =‖uh‖2U and ‖τ̄h‖S ≤ β
−1
P ‖uh‖U .

Now for rh ∈ R0
h we solve for (w, φ) the Stokes problem on Ω,

−∆w +∇φ = 0,

divw = rh − PR0
h

asym τ̄h.
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By the regularity hypothesis,

‖w‖H2(Ω) ≤ C‖rh − PR0
h

asym τ̄h‖.

Let ¯̄τh = −π0 curlw ∈ S0
h (the curl operator is applied to each row of w), and let τ̃h = τ̄h + ¯̄τh.

Note that PU0
h

div ¯̄τh = 0 by the commuting diagram property and that divw = − asym(curlw). We compute,

for some constants Ci > 0, i = 1, 2, 3,

(div τ̃h,uh) + (asym τ̃h, rh)

= (div τ̄h,uh) + (asym τ̄h, rh)− (asym(π0 curlw), rh)

= ‖uh‖2U + (asym τ̄h, rh)− (asym(curlw), rh)− (asym((π0 − I) curlw), rh)

= ‖uh‖2U + ‖rh‖2R − (asym((π0 − I) curlw), rh)

≥ ‖uh‖2U + ‖rh‖2R − C1‖(π0 − I) curlw‖L2 ‖rh‖R
≥ ‖uh‖2U + ‖rh‖2R − C2‖w‖H2 h ‖rh‖R
≥ ‖uh‖2U + ‖rh‖2R − C3

(
‖uh‖U + ‖rh‖R

)
‖rh‖R h,

using the approximation property of π0. Then, for some constant C4 > 0,

sup
τh∈Sh

(div τh,uh) + (asym τh, rh)

‖τh‖S
≥ (div τ̃h,uh) + (asym τ̃h, rh)

‖τ̃h‖S

≥
‖uh‖2U + ‖rh‖2R − C3

(
‖uh‖U + ‖rh‖R

)
‖rh‖R h

C4

(
‖uh‖U + ‖rh‖R

)
≥ 1

2C4

(
‖uh‖U + ‖rh‖R

)
− C3

C4
‖rh‖R h,

and the proof is complete. �230

Numerical results suggest that the variable rh is not uniformly stable, but exhibits a checkerboard instability

on quadrilateral meshes that pollutes the results unless h is small enough. That is, the asymmetries of the discrete

tensors do not control rh in the one term (rh, asym τh) of (8) in which it appears within. It is natural to ask if the

inclusion of a type of local bubble function into S0
h would stabilize the rotations independently of the displacements.

That is, we want a function B defined to be zero on Ω except on an element K ∈ Th, and such that divB = 0

and B · ν = 0 on ∂K. Include the span of this function in the rows of each tensor of S0
h(K). Then if the

average asymmetry of these bubble tensors does not vanish, we can construct a τh with vanishing divergence and

any prescribed asym τh. However, all such bubbles have components with vanishing average. To see this, simply

compute

(Bi, 1)K = (B, ei)K = (B,∇xi)K = (divB, xi)K = 0.

We conclude that no local stabilization method can improve the formulation (8). Perhaps some stabilization strategy

can be designed for E0
h, but this is beyond the scope of the present paper. If we add instead a non-divergence-free

function, we must increase the order of the tractions on the edges of the elements, τhν, to higher order polynomials

than constants. This leads us to E0,∗
h , E0,∗,1

h and even E0,#
h .

5.3. Improved Error Estimates for E0,∗,1
h235

We observe rates of convergence (see Section 7) improved from those guaranteed by Theorem 5.1 when E0,∗,1
h is

used. Here we prove that these improved rates are to be expected.

Below, we introduce the projection π̂0,∗
ABF û ∈ V

0,∗
ABF (K̂), for û ∈ H(div, K̂,R2) ∩ L2+ε(K̂,R2), ε > 0. For

u ∈ H(div,Ω,R2)∩L2+ε(Ω,R2), ε > 0, we can then define the projection π0,∗
ABFu ∈ V

0,∗
ABF locally from π̂0,∗

ABF using

12



the Piola mapping, π0,∗
ABF

∣∣∣
K

= P 1
K ◦ π̂

0,∗
ABF ◦ (P 1

K)−1, and requiring that the edge degrees of freedom coincide on240

every internal edge in Th. Finally, a projection operator π0,∗ is defined for σ ∈ H(div,Ω,M) ∩ L2+ε(Ω,M), ε > 0,

with π0,∗σ ∈ S
0,∗
h , by applying π0,∗

ABF to each row.

The following degrees of freedom are taken for π̂0,∗
ABF on the reference element K̂ = [−1, 1]

2
:

〈û · ν̂, 1〉ê, for each edge ê of K̂, (33a)

(d̂ivû, q̂)K̂ , q̂ ∈ {x̂, ŷ}, (33b)

〈û2, x̂〉ê± , on ê± = {−1 < x̂ < 1, ŷ = ±1} (33c)

〈û1, ŷ〉ê± , on ê± = {x̂ = ±1,−1 < ŷ < 1}, (33d)

(û1ŷ − û2x̂, 1)K̂ . (33e)

Lemma 5.2: The degrees of freedom for π̂0,∗
ABF are unisolvent for any function û ∈ V

0,∗
ABF (K̂). Moreover, the

restriction of û · ν̂ to any edge is uniquely defined by the degrees of freedom on that edge. This ensures that the

assembled basis functions will be in H(div,Ω,R2).245

Proof. Let û ∈ V
0,∗
ABF (K̂). Then

û = ûABF0 + a

(
0

x̂

)
+ b

(
ŷ

0

)
+ c

(
x̂2 − 1

−2x̂ŷ

)
+ d

(
−2x̂ŷ

ŷ2 − 1

)
+ e

(
x̂2ŷ

−x̂ŷ2

)
,

with ûABF0 ∈ V0
ABF (K̂). Suppose the degrees of freedom (33) vanish. The degrees of freedom (33c)–(33e) for

ûABF0 vanish by orthogonality of x̂ and ŷ to 1 on [−1, 1]. From (33c) we get a − e ∓ 2c = 0, which implies c = 0

and a = e. From (33d) we get similarly b + e ∓ 2d = 0, which implies d = 0 and b = −e. Using (33e) we get

3b − 3a + 2e = 0, which implies a = b = e = 0; therefore, û = ûABF0 ∈ V0
ABF (K̂). Since (33a) and (33b) are

unisolvent degrees of freedom for V0
ABF (K̂) (Arnold et al., 2005, Sec. 4), it follows that û = 0 and the degrees of250

freedom (33) are unisolvent.

From (33a) and (33c)–(33d), note that if the degrees of freedom on an edge ê vanish, then û · ν̂ vanishes on ê,

since û · ν̂ ∈ P1(ê) on any edge ê of K̂. �

Lemma 5.3: For all Th and K ∈ Th a convex quadrilateral, there is a C > 0 such that∥∥∥σ − π0,∗σ
∥∥∥
L2(K,M)

≤ Ch2
K |σ|H2(K,M) ∀σ ∈ H2(K,M).

Proof. The result follows from the shape regularity of K and from (Arnold et al., 2005, Theorem 4.1), noting that

on the reference element V0,∗
ABF (K̂) = S1, where S1 is the smallest space capable of furnishing O(h2) approximation255

in the L2−norm on arbitrary convex quadrilaterals after being submitted to the Piola transform. �

Theorem 5.4: Assume that the meshes are uniformly shape regular as h→ 0. For E0,∗,1
h ,

‖σ − σh‖L2 +‖r − rh‖L2 ≤ Ch2(‖σ‖2 +‖r‖2). (34)

Proof. This result follows from the improved estimates by (Juntunen & Lee, 2014, Theorem 4.1) or (Lee, 2016,

Theorem 2), Lemma 5.3 and (30d). �
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6. Hybrid Formulation of the Elasticity Problem260

The set of all edges in Th is denoted by Eh and EΓ
h is the set of all edges on Γ = ∂Ω. Let E0

h = Eh \ EΓ
h denote

the set of interior edges in Th. The construction of finite dimensional spaces in H(div,Ω,M) traditionally resembles

that of subspaces of H(div,Ω,R2). First, a finite dimensional space Ŝh (usually based on polynomials) is defined

on a reference element K̂; then an approximation space S is built by the application of the Piola mapping to Ŝh

in each element K ∈ Th. The degrees of freedom are chosen in such a way that S ⊂ H(div,Ω,M), i.e., that the265

approximated traction is uniquely defined on each edge of E0
h. This last step can by simplified by the introduction

of a Lagrange multiplier and by the addition of an equation that allows for the continuity of the traction to be

imposed via a variational formulation. The Lagrange multiplier is defined in the space

L
ϕ
h := { û|e ∈ Pk(e,R2) ∀e ∈ Eh; û|e = PPk(e,R2)ϕ|e ∀e ∈ EΓ

h}, (35)

where PPk(e,R2) is the local L2−projection onto Pk(e,R2), and the approximation for the stress field is sought in the

larger, less restrictive space

S̄h := {σ ∈ L2(Ω,M); divσ|K ∈ Sh(K) ∀K ∈ Th},

which is Sh locally but without the constraint that the space lies in H(div,Ω,M), i.e., the normal continuity

constraint on the edges of the elements is relaxed.270

We then introduce a mixed hybrid formulation of the elasticity problem, which is equivalent to the Discrete

Elasticity Problem (8), as follows.

Hybrid Formulation of the Elasticity Problem: Given uB ∈ H
1/2(Γ,R2) and g ∈ L2(Ω,R2), find (σh,uh, rh, ûh) ∈

S̄h × Uh × Rh × LuB

h such that∑
K∈Th

[
(Aσh, τ )K + (uh,div τ )K + (rh, asym τ )K − 〈ûh, τν〉∂K∩E0

h

]
= 0 ∀τ ∈ S̄h, (36a)

∑
K∈Th

(divσh,η)K = (g,η) ∀η ∈ Uh, (36b)

∑
K∈Th

(asymσh, s)K = 0 ∀s ∈ Rh, (36c)

∑
K∈Th

〈σhν, η̂〉∂K∩E0
h

= 0 ∀η̂ ∈ L0
h. (36d)

The hybrid formulation shall be used in the actual implementation, aiming to facilitate the construction of local

restrictions of the finite dimensional spaces and, through a static condensation technique, to reduce the number

of degrees of freedom in the global problem only to those corresponding to the Lagrange multiplier ûh. Also, the

resulting algebraic system of equations for the Lagrange multiplier is positive-definite. The remaining variables are

the solution, on each element K ∈ Th, of the mixed formulation for elasticity with weakly imposed symmetry (8):

Given ûh ∈ LuB

h and g ∈ L2(Ω,R2), find (σh,uh, rh) ∈ S̄h × Uh × Rh such that, for each K ∈ Th,

(Aσh, τ )K + (uh,div τ )K + (rh, asym τ )K = 〈ûh, τν〉∂K ∀τ ∈ S̄h, (37a)

(divσh,η)K = (g,η)K ∀η ∈ Uh, (37b)

(asymσh, s)K = 0 ∀s ∈ Rh. (37c)

The incompressible case can be handled in this formulation, as long as one avoids the loss of coercivity in (9) due

to the globally constant mode in trσ. In our implementation, however, we simply keep λ finite and approximate

the incompressible case with a very large value for λ. Then, the local problems (37) can be solved uniquely without275
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Figure 1: Sequences of meshes: square (top), asymptotically parallelogram (center row), and trapezoidal (bottom) with n = 4 (left),
n = 8 (center column), and n = 16 (right).

the additional consideration on the trace of σ.

7. Numerical Experiments

In this section we present convergence studies for the proposed ABF−based spaces for linear elasticity and

the corresponding RT −based spaces of Arnold et al. (2015). Two test problems are considered: the first one is

based on the compressible test presented in Arnold et al. (2015) and the second one is introduced in order to check280

the behavior of the full-H(div) families, within the weakly imposed symmetry mixed formulation, on the quasi-

incompressible regime. In both tests the domain is the unit square Ω = (0, 1) × (0, 1), with a Dirichlet boundary

condition on Γ. Three sequences of meshes are used for the numerical experiments (see Figure 1): the first one is a

uniform mesh of n2 square elements; the second mesh is constructed by the regular subdivision of an initial mesh

with 8 trapezoids of base h and parallel vertical edges of size h/2 and 3h/2 and 8 parallelograms of vertical edges285

of size h, resulting in an asymptotically parallelogram sequence; the last mesh consists of n2 trapezoids of base h

and parallel vertical edges of size 2h/3 and 4h/3, as proposed by Arnold et al. (2002).

7.1. Compressible Case

This first experiment compares the approximation spaces suggested by Arnold et al. (2015) (indicated by RT 1)

to the E1
h spaces introduced in Section 4. As the test problem we take the analytical solution for displacement

u(x1, x2) =

[
cos(πx1) sin(2πx2)

sin(πx1) cos(πx2)

]
.

The body force g is computed from the exact solution and the Lamé parameters λ = 123 and µ = 79.3.

Approximation errors and convergence rates in the L2 norm for σ, div(σ), u and r on a sequence of meshes of290

squares are shown in Table 1. As expected, on this affine mesh there is no difficulty in obtaining approximations
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Table 1: Convergence results on meshes of squares – compressible regime.

‖σ − σh‖
∥∥div(σ − σh)

∥∥ ‖u− uh‖ ‖r − rh‖
n error order error order error order error order

RT 1−based

32 7.640 · 10−1 2.01 5.380 · 100 2.00 7.825 · 10−4 2.00 3.513 · 10−3 2.00

64 1.905 · 10−1 2.00 1.345 · 100 2.00 1.957 · 10−4 2.00 8.781 · 10−4 2.00

128 4.759 · 10−2 2.00 3.364 · 10−1 2.00 4.893 · 10−5 2.00 2.195 · 10−4 2.00

256 1.189 · 10−2 2.00 8.410 · 10−2 2.00 1.223 · 10−5 2.00 5.488 · 10−5 2.00

512 2.973 · 10−3 2.00 2.103 · 10−2 2.00 3.058 · 10−6 2.00 1.372 · 10−5 2.00

E1
h

32 7.640 · 10−1 2.01 8.610 · 10−2 3.00 2.196 · 10−5 2.99 3.513 · 10−3 2.00

64 1.905 · 10−1 2.00 1.076 · 10−2 3.00 2.751 · 10−6 3.00 8.781 · 10−4 2.00

128 4.759 · 10−2 2.00 1.346 · 10−3 3.00 3.442 · 10−7 3.00 2.195 · 10−4 2.00

256 1.189 · 10−2 2.00 1.682 · 10−4 3.00 4.304 · 10−8 3.00 5.488 · 10−5 2.00

512 2.973 · 10−3 2.00 2.103 · 10−5 3.00 5.381 · 10−9 3.00 1.372 · 10−5 2.00

with convergence rate O(h2): the finite dimensional spaces introduced by Arnold et al. (2015) satisfy the minimal

requirements for approximation with optimal order (Arnold et al., 2005). When the new ABF1−based element

introduced in Section 4 is used we observe one order higher convergence for ‖divσ − divσh‖ and ‖u− uh‖, as

expected from the polynomial approximation theory. The same comments can be made for the convergence rates295

on asymptotically parallelogram meshes, shown in Table 2.

The results for the sequence of trapezoidal meshes are presented in Table 3. In this case the RT 1−based element

is not capable of providing approximations for‖divσ − divσh‖ with convergence rate O(h2), which is in accordance

with the theory. The E1
h element, however, satisfies the necessary conditions for optimal order approximation on

arbitrary convex quadrilaterals.300

Next we verify the convergence rates for the lowest order spaces introduced in Section 4.1: the E0
h space, stable

for h sufficiently small, and the enriched spaces E0,∗
h and E0,∗,1

h . For brevity we only show results for meshes of

asymptotically parallelogram (Table 4) and trapezoidal (Table 5) elements; the behavior of these spaces on square

meshes is similar to that shown in Table 4. Comparing E0,∗
h and E0,∗,1

h we confirm that using R1
h instead of R0

h to

approximate the rotation allows for O(h2) convergence in the L2−norm of not just the error in the rotation, but305

also in the stress approximation, which is in accordance with the coupled error estimate shown by Stenberg (1988)

and used in Theorem 5.4.
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Table 2: Convergence results on meshes of asymptotically parallelogram elements – compressible regime.

‖σ − σh‖
∥∥div(σ − σh)

∥∥ ‖u− uh‖ ‖r − rh‖
n error order error order error order error order

RT 1−based

32 1.265 · 100 2.03 1.010 · 101 2.00 1.389 · 10−3 2.00 6.230 · 10−3 2.00

64 3.131 · 10−1 2.01 2.526 · 100 2.00 3.473 · 10−4 2.00 1.555 · 10−3 2.00

128 7.795 · 10−2 2.01 6.315 · 10−1 2.00 8.684 · 10−5 2.00 3.883 · 10−4 2.00

256 1.945 · 10−2 2.00 1.579 · 10−1 2.00 2.171 · 10−5 2.00 9.702 · 10−5 2.00

512 4.858 · 10−3 2.00 3.947 · 10−2 2.00 5.427 · 10−6 2.00 2.425 · 10−5 2.00

E1
h

32 1.264 · 100 2.03 2.300 · 10−1 3.01 5.220 · 10−5 2.98 6.228 · 10−3 2.00

64 3.131 · 10−1 2.01 2.868 · 10−2 3.00 6.581 · 10−6 2.99 1.555 · 10−3 2.00

128 7.795 · 10−2 2.01 3.582 · 10−3 3.00 8.263 · 10−7 2.99 3.883 · 10−4 2.00

256 1.945 · 10−2 2.00 4.477 · 10−4 3.00 1.035 · 10−7 3.00 9.702 · 10−5 2.00

512 4.858 · 10−3 2.00 5.596 · 10−5 3.00 1.296 · 10−8 3.00 2.425 · 10−5 2.00

Table 3: Convergence results on meshes of trapezoids – compressible regime.

‖σ − σh‖
∥∥div(σ − σh)

∥∥ ‖u− uh‖ ‖r − rh‖
n error order error order error order error order

RT 1−based

32 1.026 · 100 2.00 2.607 · 101 1.13 9.931 · 10−4 2.00 4.560 · 10−3 2.00

64 2.563 · 10−1 2.00 1.270 · 101 1.04 2.484 · 10−4 2.00 1.139 · 10−3 2.00

128 6.405 · 10−2 2.00 6.310 · 100 1.01 6.209 · 10−5 2.00 2.847 · 10−4 2.00

256 1.601 · 10−2 2.00 3.149 · 100 1.00 1.552 · 10−5 2.00 7.118 · 10−5 2.00

512 4.002 · 10−3 2.00 1.574 · 100 1.00 3.881 · 10−6 2.00 1.779 · 10−5 2.00

E1
h

32 1.035 · 100 2.00 7.652 · 10−1 2.07 4.604 · 10−5 2.81 4.598 · 10−3 2.00

64 2.586 · 10−1 2.00 1.889 · 10−1 2.02 7.841 · 10−6 2.55 1.150 · 10−3 2.00

128 6.465 · 10−2 2.00 4.707 · 10−2 2.00 1.651 · 10−6 2.25 2.874 · 10−4 2.00

256 1.616 · 10−2 2.00 1.176 · 10−2 2.00 3.908 · 10−7 2.08 7.185 · 10−5 2.00

512 4.040 · 10−3 2.00 2.939 · 10−3 2.00 9.630 · 10−8 2.02 1.796 · 10−5 2.00
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Table 4: Convergence results for the lowest order spaces on meshes of asymptotically parallelogram elements – compressible regime.

‖σ − σh‖
∥∥div(σ − σh)

∥∥ ‖u− uh‖ ‖r − rh‖
n error order error order error order error order

E0
h

32 4.332 · 101 1.00 1.848 · 101 1.99 2.874 · 10−3 1.99 1.378 · 10−1 1.01

64 2.167 · 101 1.00 4.631 · 100 2.00 7.197 · 10−4 2.00 6.875 · 10−2 1.00

128 1.083 · 101 1.00 1.158 · 100 2.00 1.800 · 10−4 2.00 3.435 · 10−2 1.00

256 5.417 · 100 1.00 2.896 · 10−1 2.00 4.500 · 10−5 2.00 1.717 · 10−2 1.00

512 2.708 · 100 1.00 7.240 · 10−2 2.00 1.125 · 10−5 2.00 8.586 · 10−3 1.00

E0,∗
h

32 2.175 · 101 1.00 1.848 · 101 1.99 2.494 · 10−3 1.99 1.372 · 10−1 1.00

64 1.088 · 101 1.00 4.631 · 100 2.00 6.251 · 10−4 2.00 6.867 · 10−2 1.00

128 5.445 · 100 1.00 1.158 · 100 2.00 1.564 · 10−4 2.00 3.434 · 10−2 1.00

256 2.723 · 100 1.00 2.896 · 10−1 2.00 3.911 · 10−5 2.00 1.717 · 10−2 1.00

512 1.362 · 100 1.00 7.240 · 10−2 2.00 9.778 · 10−6 2.00 8.586 · 10−3 1.00

E0,∗,1
h

32 1.267 · 100 2.04 1.848 · 101 1.99 2.309 · 10−3 1.99 6.231 · 10−3 2.00

64 3.133 · 10−1 2.02 4.631 · 100 2.00 5.785 · 10−4 2.00 1.555 · 10−3 2.00

128 7.796 · 10−2 2.01 1.158 · 100 2.00 1.447 · 10−4 2.00 3.883 · 10−4 2.00

256 1.945 · 10−2 2.00 2.896 · 10−1 2.00 3.618 · 10−5 2.00 9.702 · 10−5 2.00

512 4.858 · 10−3 2.00 7.240 · 10−2 2.00 9.045 · 10−6 2.00 2.425 · 10−5 2.00

Table 5: Convergence results for the lowest order spaces on meshes of trapezoids – compressible regime.

‖σ − σh‖
∥∥div(σ − σh)

∥∥ ‖u− uh‖ ‖r − rh‖
n error order error order error order error order

E0
h

32 5.232 · 101 0.85 8.665 · 101 1.02 8.683 · 10−3 1.30 4.740 · 10−1 0.47

64 2.769 · 101 0.92 4.318 · 101 1.00 3.546 · 10−3 1.29 2.798 · 10−1 0.76

128 1.419 · 101 0.96 2.158 · 101 1.00 1.599 · 10−3 1.15 1.494 · 10−1 0.91

256 7.167 · 100 0.98 1.079 · 101 1.00 7.722 · 10−4 1.05 7.668 · 10−2 0.96

512 3.600 · 100 0.99 5.392 · 100 1.00 3.824 · 10−4 1.01 3.878 · 10−2 0.98

E0,∗
h

32 1.775 · 101 1.01 8.665 · 101 1.02 6.270 · 10−3 1.11 1.124 · 10−1 1.00

64 8.862 · 100 1.00 4.318 · 101 1.00 3.071 · 10−3 1.03 5.623 · 10−2 1.00

128 4.428 · 100 1.00 2.158 · 101 1.00 1.527 · 10−3 1.01 2.812 · 10−2 1.00

256 2.213 · 100 1.00 1.079 · 101 1.00 7.626 · 10−4 1.00 1.406 · 10−2 1.00

512 1.107 · 100 1.00 5.392 · 100 1.00 3.812 · 10−4 1.00 7.029 · 10−3 1.00

E0,∗,1
h

32 1.280 · 100 1.98 8.665 · 101 1.02 6.251 · 10−3 1.10 5.531 · 10−3 1.97

64 3.222 · 10−1 1.99 4.318 · 101 1.00 3.068 · 10−3 1.03 1.393 · 10−3 1.99

128 8.078 · 10−2 2.00 2.158 · 101 1.00 1.527 · 10−3 1.01 3.493 · 10−4 2.00

256 2.022 · 10−2 2.00 1.079 · 101 1.00 7.625 · 10−4 1.00 8.745 · 10−5 2.00

512 5.059 · 10−3 2.00 5.392 · 100 1.00 3.812 · 10−4 1.00 2.188 · 10−5 2.00
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7.2. The Quasi-Incompressible Regime

The incompressible elasticity regime is characterized by λ → ∞, or, equivalently, ν → 0.5. In that case the

volumetric part of the stress field becomes non-constitutive. It is usually a difficult case to simulate using classical

Galerkin approximations (Arnold, 1990). In the stability analysis we proved that the coercivity of the bilinear form

A(·, ·) is independent of λ whenever we can take τ = I in (7a). A similar argument is valid for the finite dimensional

case and it is expected that both RT −based and ABF−based approximation spaces with k ≥ 1 behave well in

the quasi-incompressible regime. Therefore, we now show a convergence study based on an example problem by

Brenner (1993), where the shear modulus is µ = 1.0 and the function g = g(x1, x2) is taken to be as follows:

g = π2

(8 cos(2πx1)− 4) sin(2πx2)− cos[π(x1 + x2)] +
2 sin(πx1) sin(πx2)

1 + λ

(4− 8 cos(2πx2)) sin(2πx1)− cos[π(x1 + x2)] +
2 sin(πx1) sin(πx2)

1 + λ

.
The exact solution u = u(x1, x2) is given by

u =

(cos(2πx1)− 1) sin(2πx2) +
sin(πx1) sin(πx2)

1 + λ

(1− cos(2πx2)) sin(2πx1) +
sin(πx1) sin(πx2)

1 + λ

.
We use this example to test the behavior of the approximation spaces under both compressible (ν = νc = 0.3) and

quasi-incompressible (ν = νi = 0.5− 10−7) regimes.310

Convergence study In this study we only present the results for the trapezoidal mesh. The convergence rates

observed in the experiments reflect those obtained in the analysis, confirming that the mixed formulation for

the elasticity problem is locking-free with respect to the incompressibility constraint. The results for both the

compressible and quasi-incompressible regimes are similar, so we only show the latter (Figure 2). In this experiment,

we also show the results for the space

E0,#
h = (V0,#

ABF × V
0,#
ABF )× U0

h × R0
h,

with V
0,#
ABF as defined in (27).

Some observations can be made from these results:

• Elements based on the R1
h space for approximating the rotation show similar errors for ‖σ − σh‖;

• ABF0−based elements show similar errors for ‖divσ − divσh‖ and ‖u− uh‖; these elements share the same

space for the approximation of the displacements and the divergence of the stress;315

• The error‖divσ − divσh‖ for RT 1−based spaces is smaller than the one obtained with ABF0−based spaces,

although the convergence rates are similar. We explain this result using a dimension count: the divergence

of functions in ABF0−based spaces is in P0
ABF × P0

ABF , with each element mapped from P1(K̂,R2), has

dimension 6, while the divergence of RT 1−based is mapped from P1,1(K̂,R2), which has dimension 8.

• In this experiment, the E0,∗
h and E0,#

h spaces lead to similar errors.320

We highlight that, as expected from the theoretical results, the RT 1−based elements introduced by Arnold

et al. (2015) provide O(h) convergence for ‖divσ − divσh‖, while the E1
h elements proposed in this paper provide

O(h2) convergence for all variables.
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Some numerical issues were noted for the quasi-incompressible regime on finer meshes. We impute these issues

to errors arising from floating point representation and algebraic operations.325

7.3. Errors versus number of equations

We finish this section with the convergence study of the displacement and stress approximations for the test

case presented in Section 7.2, on trapezoidal meshes, in terms of the required number of equations to be solved for

the use of different compatible spaces. We include the results for the classical Primal Galerkin method, based on

finding an H1−conforming approximation for the displacement field such that the variational form of Equation (4)

is satisfied (Arnold, 1990). Such approximation is sought in the finite dimensional subspace

Qk =
{
w ∈ H1(Ω,R2); w|K ∈ P

0
K(Pk,k(K̂,R2)) ∀K ∈ Th

}
, k ≥ 1.

The stress approximation is then locally computed from (1), on each element K ∈ Th:

σh|K = A−1ε(uh|K).

Clearly, stress fields obtained in this fashion will not be H(div)−conforming. Component-wise bilinear (Q1) and

biquadratic (Q2) approximations are compared with the RT 1−based (Arnold et al., 2015) and ABF1−based (E1
h)

mixed approximations. When the Q2 space is used, two degrees of freedom (associated to the displacement of the

internal node) are statically condensed in each element. The implementation of the mixed formulation is based on330

the hybrid version described in Section 6, so the only degrees of freedom (DOFs) considered are those associated

to the Lagrange multipliers on the edges.

The results for the compressible case shown in Figure 3a indicate that the Primal method based on the Q2 space

leads to the smallest errors in the displacement approximation, for the same number of total degrees of freedom.

The approximations based on E1
h spaces are as accurate as those of the Primal-Q2, while the RT 1−based and335

Primal-Q1 methods furnish similar errors, considerably greater.

This scenario changes when we analyze the displacement approximation under the quasi-incompressible regime,

where the primal method is known for failing. As presented in Figure 3b, the Primal-Q1 method does not converge

while the mixed method with compatible RT 1−based and E1
h spaces works well. It is worth noting the high

accuracy of the E1
h method.340

The relevance of the mixed formulation becomes even more clear when we compare the approximation for the

stress field (Figure 4): while under the compressible regime the mixed approximations are more accurate than those

obtained via post-processing of the primal solution, when the quasi-incompressible regime is considered, the latter

strategy is not capable of providing an accurate approximation neither for the stress field nor for its divergence,

while the mixed approximation remains viable.345
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Figure 2: Incompressible case on trapezoidal meshes: convergence results for the approximation using RT 1−based elements, introduced

in Arnold et al. (2015), and ABF−based elements. All results for E0,#
h and E0,∗

h are similar, so their plots coincide. We can also

identify the following similar errors: in (a) and (d), RT 1−based, E1
h, and E0,∗,1

h ; in (b) and (c), E0
h, E0,#

h , E0,∗
h , and E0,∗,1

h .
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Figure 3: Convergence on trapezoidal meshes of the displacement approximation resulting from the Primal Galerkin method compared
with RT 1−based and E1

h elements. Compressible (a) and quasi-incompressible (b) regimes.

22



-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

3.0 4.0 5.0 6.0

lo
g
1
0

( ‖σ−
σ
h
‖)

log10(#DOF)

Q1

Q2

RT 1

E1
h

(a) ν = νc

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

3.0 4.0 5.0 6.0

lo
g
1
0

( ‖σ−
σ
h
‖)

log10(#DOF)

Q1

Q2

RT 1

E1
h

(b) ν = νi

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

3.0 4.0 5.0 6.0

lo
g
1
0

( ‖div
σ
−

d
iv
σ
h
‖)

log10(#DOF)

Q1

Q2

RT 1

E1
h

(c) ν = νc

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

3.0 4.0 5.0 6.0

lo
g
1
0

( ‖div
σ
−

d
iv
σ
h
‖)

log10(#DOF)

Q1

Q2

RT 1

E1
h

(d) ν = νi

Figure 4: Convergence on trapezoidal meshes of the stress in L2−norm (first row) and H(div)−seminorm (second row). The so-
lution of the Primal Galerkin method is post-processed in each element to obtain an approximation for the stress field that is not
H(div)−conforming. The error in this approximation is then compared with RT 1−based and E1

h elements. Compressible (left column)
and quasi-incompressible (right column) regimes. In (a) and (b) the results for RT 1−based and E1

h elements are similar.
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8. Conclusions

We developed inf-sup stable spaces for the mixed approximation of the linear elasticity problem with variational

symmetry of the stress tensor, on convex quadrilateral meshes. These finite elements provide fullH(div)−approximation

of the stress field and the convergence is optimal order for k ≥ 1. The resulting method is locking-free in the quasi-

incompressible regime.350

The construction of the elements is based on using ABFk spaces for the stress-displacement pair and polynomials

of degree k (defined directly on the geometric element) for the rotation. The lowest order case, k = 0, requires special

treatment: since we could show stability of the natural ABF0−based spaces only for sufficiently refined meshes,

two alternatives were presented, by supplementing the stress-approximating space with divergence-free functions.

These enriched spaces have linear normal stresses and are proven to be stable on general quadrilateral meshes. The355

convergence rates can be improved by approximating the rotation by linear-per-element polynomials. Numerical

results confirmed the convergence theory and indicated that a third set of low-order spaces is also possible, although

we have no proof that this last choice would be stable in general.

Table 6: Summary of the approximation spaces. The second column indicates whether the elements are affine-mapped from the reference
square or are general convex quadrilaterals. The third set of columns gives the expected convergence order (E0

h handles quadrilaterals
provided h is sufficiently, i.e., extremely, small). Local degrees of freedom are counted per element while the global are counted per
edge.

Space Elements
Convergence Order DoFs

σ divσ u r Local Global

ABF−based

Ek
h, k ≥ 1 Quads hk+1 hk+1 hk+1 hk+1 (13k2 + 51k)/2 + 19 2k + 2

E0,∗,1
h Quads h2 h h h2 31 4

E0,∗
h Quads h h h h 29 4

E0
h Quads → h → h → h → h 19 2

RT k−based, Affine hk+1 hk+1 hk+1 hk+1

(13k2 + 35k)/2 + 11 2k + 2
k ≥ 1 Quads hk+1 hk hk+1 hk+1

BDM1−based
Affine h h h h

19 4
Quads h 1 h h

In every case, the degrees of freedom in the global problem are those corresponding to the traction on edges; the

internal degrees of freedom can all be statically condensed and solved for in a set of local problems. This hybrid360

approach results in a positive-definite global problem and the local problems can be easily solved in parallel. As

we have shown in Section 5 the uniform convergence rates are independent of λ, so this result is valid both in

compressible and nearly-incompressible regimes.

The convergence order and degree of freedom counting for the proposed spaces are compared with theRT k−based

and BDM1−based spaces introduced by Arnold et al. (2015) in Table 6.365
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