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Abstract 
Naturally fractured reservoirs contain a significant amount of 
the world oil reserves. A number of these fields contain 
several billion barrels of oil. Accurate and efficient reservoir 
simulation of naturally fractured reservoirs is one of the most 
important, challenging, and computationally intensive 
problems in reservoir engineering. Parallel reservoir 
simulators developed for naturally fractured reservoirs can 
effectively address the computational problem. 

A new accurate parallel simulator for large-scale naturally 
fractured reservoirs, capable of modeling fluid flow in both 
rock matrix and fractures, has been developed. The simulator 
is a parallel, 3D, fully implicit, equation-of-state 
compositional model that uses numerical tools for solving very 
large, sparse linear systems arising from discretization of the 
governing partial differential equations. A generalized dual 
porosity model, the multiple-interacting-continua (MINC), has 
been implemented in this simulator. The matrix blocks are 
discretized into subgrids in both horizontal and vertical 
directions to offer a more accurate transient flow description 
in matrix blocks. We believe this implementation has led to a 
unique and powerful reservoir simulator that can be used by 
small and large oil producers to help them in design and 
prediction of complex gas and waterflooding processes on 
their desktops or a cluster of computers. Some features of this 
simulator, such as modeling both gas and water processes with 
the ability of two-dimensional matrix subgridding for naturally 
fractured reservoirs, to the best of our knowledge are not 
available in any commercial simulator. The development was 
performed on a cluster of processors, which has proven to be a 
very efficient and convenient resource for developing parallel 
programs. 

The results were successfully verified against analytical 
solutions and commercial simulators (ECLIPSE and GEM). 
Excellent agreement was achieved for a variety of reservoir 
case studies. Applications of this model for several IOR 
processes (including gas and water injection) are 
demonstrated. Simulation results using the simulator on a 
cluster of processors are also presented. Excellent speedups 
were obtained using the simulator in conjunction with solving 
a variety of problems. 

 
Introduction 
The so-called dual porosity model is one of the most widely 
used conceptual models for naturally fractured reservoirs. In 
the dual porosity model, two types of porosity are in a rock 
volume: fracture and matrix. Matrix blocks are surrounded by 
fractures and the system is visualized as a set of stacked cubes, 
representing matrix blocks separated by fractures (Fig.1). 
There is no communication between matrix blocks in this 
model, and the fracture network is continuous. Matrix blocks 
do communicate with the fractures that surround them. A mass 
balance for each of the media yields two continuity equations 
that are connected by so-called matrix-fracture transfer 
functions. The transfer functions characterize fluid flow 
between matrix blocks and fractures. The performance of dual 
porosity simulators is determined by the accuracy of this 
transfer function. 

The dual porosity continuum approach was first proposed 
by Barenblat et al.1 for a single-phase system. Later, Warren 
and Root2 used this approach to develop a pressure-transient 
analysis method for naturally fractured reservoirs. Kazemi et 
al.3 extended the Warran and Root method to multiphase flow 
using a two-dimensional, two-phase, black-oil formulation and 
derived two flow equations, one for the matrix and another for 
the fracture. The two equations were then linked by means of a 
matrix-fracture transfer function. Since the publication of 
Kazemi et al.3, the dual porosity approach has been widely 
used in the industry to develop field-scale reservoir simulation 
models for modeling fractured reservoir performance4-8. 

In simulating a fractured reservoir, we are faced with the 
following distinct problem: matrix blocks may contain over 90 
percent of the total oil reserve, and the problem of oil recovery 
from a fractured reservoir is essentially that of extracting oil 
from these matrix blocks and not necessarily from the 
fractures. Therefore, any effort to understand the mechanisms 
that take place in matrix blocks and to simulate these 
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processes within their container as accurately as possible is 
very crucial. The main aim should be to simulate the matrix-
block behavior as accurately as possible so the fracture 
pressure, which is used essentially as the boundary condition 
for matrix blocks, can be known accurately. Further 
discretizing the matrix blocks into subgrids or subdomains 
seems to be a very good solution to accurately take into 
account transient flow in the matrix blocks. The resulting 
finite-difference equations are solved along with the fracture 
equations to calculate matrix-fracture transfer flow. The way 
that matrix blocks are discretized varies in the proposed 
models, but the objective is to accurately model pressure and 
saturation gradients in the matrix blocks9,5,10-16. 

 

 
Fig. 1. Idealized representation of fractured reservoirs2. 

 
As a generalization of the dual porosity concept, Pruess 

and Narasimhan11 developed a “Multiple Interacting 
Continua” method (MINC), which treats the multiphase and 
multidimensional transient flow in both fractures and matrix 
blocks by a numerical approach. The transient interaction 
between matrix and fracture is treated in a realistic way. The 
main assumption in the MINC method is that thermodynamic 
conditions in the matrix depend primarily on the distance from 
the nearest fracture11. Therefore, one can partition the flow 
domain into compositional volume elements in such a way 
that all interfaces between volume elements in the matrix are 
parallel to the nearest fracture. Subgridding of matrix blocks 
on the basis of distance from the fractures gives rise to a 
pattern of nested volume elements. For the 2D case, it is 
shown in Fig. 2. Each volume element has a defined 
thermodynamic state assigned to it. The basic MINC concept 
of partitioning matrix blocks according to distance from the 
fracture faces can be extended readily to arbitrary irregular 
block shapes and sizes. 

Subgridding dramatically increases computer time and 
storage, especially since all the flow equations are solved 
implicitly. While the serial computing and simulation 
technology may be adequate for typical reservoirs, naturally 
fractured reservoirs need more gridblocks to adequately define 
the transient flow in matrix media. Parallel reservoir 
simulation technology places a powerful tool in the hands of 

reservoir engineers and geologists for determining accurate 
fluid in place, sweep, and reservoir performance. 

The primary objectives of this study are (1) to develop a 
new, parallel, equation-of-state compositional, fully implicit 
simulator to model three-phase fluid flow in naturally 
fractured oil reservoirs for IOR processes, (2) to verify and 
test the developed model against analytical solutions and 

commercial simulators, and (3) to investigate the parallel 
efficiency of the developed model. 
 
Fig. 2 Basic 2D computational mesh for fractured reservoir11. 
 
 
Mathematical Formulation 
In the dual porosity model, two overlapping continua, one 
corresponding to the fracture medium and one corresponding 
to the matrix medium, are considered. Thus two values of 
most variables and parameters are attributed to each point. The 
equations of motion and of component mole conservation are 
written independently for each medium and should hold at 
every point of the fracture and matrix medium and at all times. 
The four most important transport mechanisms occurring in 
permeable media are viscous forces, gravity forces, dispersion 
(diffusion), and capillary forces17. Transfer of fluids between 
the two media is taken into consideration by a source/sink 
(transfer) function. 

Isothermal multicomponent and multiphase flow in a 
porous medium can be described using three different types of 
equations: (1) Component conservation equations; (2) 
Equations constraining volume and component moles; and (3) 
Phase equilibrium equations dealing with equilibrium 
component mass transfer between phases, in which flash 
calculations using an EOS are performed to determine 
amounts and compositions of equilibrium phases. 

Neglecting dispersion term and mutual solubility between 
water and hydrocarbon phases, for a system consisting of nc 
hydrocarbon components and np fluid phases (excluding the 
aqueous phase), the above three types of equations are 
mathematically expressed for a control volume in the 
following sections. 

 

Reservoir  
Reservoir gridblock 

Idealized gridblock Single matrix 
block 

Fracture 

Matrix 
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Component Mole Conservation Equations. Darcy's law is a 
fundamental relationship describing the flow of fluids in 
permeable media. The differential form of Darcy's law can be 
used to treat multiphase unsteady-state flow, non-uniform 
permeability, and non-uniform pressure gradients. It is used to 
govern the transport of phases from one cell to another under 
the local pressure gradient, rock permeability, relative 
permeability, and viscosity. In terms of moles per unit time, 
the hydrocarbon component conservation equations, for both 
the fracture and matrix systems are the following: 

 
Fracture system (subscript f): 

 (1) 

 
Matrix system (subscript m): 

 (2) 

 
For  
 
These equations also hold for water by inserting the 

properties of the aqueous phase. 
 

Volume Constraint Equations. The volume constraint states 
that the pore volume in each cell must be filled completely by 
the total fluid volume. The volume constraint equations for 
both fracture and matrix media are the same and are as 
follows: 

 (fracture syatem) (3) 

 (matrix system) (4) 

 
Phase Equilibrium Equations. The equilibrium solution 
must satisfy three conditions18. First, the molar balance 
constraint must be preserved. Second, the chemical potentials 
for each component must be the same in all phases. Third, the 
Gibbs free energy at constant temperature and pressure must 
be a minimum. With the assumption of local thermodynamic 
equilibrium for the hydrocarbon phases, the criterion of phase 
equilibrium applies: 

 
 (fracture system) (5) 

 (matrix system) (6) 
 

Independent Variables. Equations 1 through 6 describe the 
fluid flow through porous media in naturally fractured 
reservoirs. There are 2(2nc+2) equations. Independent 
unknowns are chosen as lnKi, Ni, Pw, Nw (N = moles per unit 
pore volume) in each medium, fracture and matrix, which 

gives 2(2nc+2) primary variables. This set of independent 
variables is likely to be the best choice largely because it 
makes the fugacity equations nearly linear19. All the fluid-
related properties and variables in Eqs. 1 through 6 can be 
expressed as a function of the selected independent variables. 

 
Transfer Function and Boundary Conditions. The transfer 
function for each component (hydrocarbon components and 
water),  are evaluated at the boundary between the matrix 
and fracture media and have the following forms: 

 (7) 

where NM is the total number of matrix blocks within a 
fracture gridblock, and Nb is the number of matrix subgrids. 
No-flow boundary conditions for component mole consevation 
equations in the fracture system are considered. The boundary 
condition for matrix blocks is the continuity of all phase 
pressures. 

 
Solution Approach 
The material balance equations (Eqs. 1 and 2) need to be 
discretized using a proper scheme for a given grid system that 
represents the geometry of the reservoir. A fully implicit 
solution method is used to solve the governing equations. This 
method treats each term in Eqs. 1 and 2 implicitly. These 
equations are nonlinear and must be solved iteratively. A 
Newton procedure is used, in which the system of nonlinear 
equations is approximated by a system of linear equations. An 
analytical method is used to calculate the elements of the 
Jacobian matrix. The term Jacobian refers to the mathematical 
matrix that forms the system of linear equations and whose 
elements are the derivatives of the governing equations with 
respect to the independent variables. Using the Schur 
complement method (described in the next section), the matrix 
equations, in each fracture cell, are condensed and added to 
the diagonal elements of the fracture system. Finally, the non-
linear fracture equations are solved by one of the linear solvers 
of PETSc (Portable Extensible Toolkit for Scientific 
Computation). To solve the governing equations for the 
independent variables over a timestep, we take the following 
steps: 

1. Initialization of fluids at both fracture and matrix 
cells. The pressure, overall composition, and 
temperature are specified; 

2. Determination of phase properties and phase state. 
Flash calculations are performed for each cell to 
determine phase compositions and densities. The 
states of all the phases present are then labeled as gas, 
oil, or aqueous phase. Phase viscosities and relative 
permeabilities are then computed; 

3. Linearization of the governing equations for both 
fracture and matrix medium. All the governing 
equations are linearized in terms of the independent 
variables, and the Jacobian matrices for both fracture 
and matrix medium are formed. The elements of the 
Jacobian are computed; 

4. Decomposition of the matrix medium from the 
fracture medium and reduction of the linear system. 
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The Schur complement method is used to decouple 
the matrix system from the fracture system (for more 
details, see the next section). This will reduce the 
linear system to only the fracture system; 

5. Solution of the reduced system of the linear equations 
(fracture system) for the independent variables in the 
fracture medium; 

6. Solution of the decoupled equations for the 
independent variables in the matrix medium; 

7. Updating the physical properties; 
8. Check for convergence. The residuals of the linear 

system obtained in Step 3, which contain both 
fracture and matrix media, are used to determine 
convergence. If a tolerance is exceeded, the elements 
of the Jacobian and the residuals of the governing 
equations are then updated and another Newton 
iteration is performed by returning to Step 4. If the 
tolerance is met, a new timestep is then started by 
returning to Step 3. 

 
Schur Complement Method. Let the number of fracture 
unknowns be I, and denote them by F and associated to each 
gridblock i=1,2,...,I, we have a series of matrix unknowns M. 
After linearization by the Newton method, fracture and matrix 
equations can be summarized by 

 
 (fracture system) (8) 

 (matrix system) (9) 

 
By solving for M in the matrix equations (Eq. 9), we obtain 
 

 (10) 

 
By substitution of M (Eq. 10) into the fracture equations 

(Eq. 8), we obtain 
 

 (11) 

 
And by solving Eq. 11 for F we obtain 
 

 (12) 

 
In Eq. 12, there are no matrix unknowns (M), and they 

have been reduced to a system of fracture equations only (i.e., 
single porosity model). In Eq. 12, the challenge is to calculate 
terms (BfmD-1

mmCm) and (BfmD-1
mmBm). The most time- and 

memory- consuming part of the calculations is the solution of 
the inverse of the Jacobian matrix for the matrix media D-1

mm. 
By considering Eqs. 10 and 12, we actually need D-1

mmCmf and 
D-1

mmBm rather than D-1
mm alone. Suppose Xm=D-1

mmBm and 
Ymf=D-1

mmCmf. Then, to calculate these terms, we need to solve 
the following linear equations for Xm and Ymf: 

 
 (13) 

 (14) 

 
Bm is a vector of size (2nc+2)nHnv and Cmf is a matrix of 

size (2nc+2)nHnv by (2nc+2). Hence, by combining these two 
systems of linear equations, there will be only (2nc+3) right 
sides compared to (2nc+2)nHnv right sides in the first method. 

 
Fluid-Related Calculations Using EOS 
The phase equilibrium calculations play a critical role in both 
development of an EOS compositional simulator and its 
efficiency. One of the major convergence problems of EOS 
compositional simulators is caused by inefficient treatment of 
the fluid-related calculations. These calculations determine the 
number, amounts, and compositions of the phases in 
equilibrium. The sequence of phase equilibrium calculations in 
the simulator is as follows: 

• Using the phase stability analysis, the number of 
phases in each gridblock is determined. 

• Next, the compositions of each equilibrium phase are 
calculated. 

• The phases in each gridblock are saved for the next 
timestep calculations. 

The key equations used to calculate the fluid properties 
such as viscosities, relative permeability, capillary pressure, 
and phase molar density are described in Chang20. 
 
Parallel Implementation 
Increased oil and gas production from naturally fractured 
reservoirs using enhanced oil-recovery processes involves 
numerical modeling of such processes to minimize the risk 
involved in development decisions. The production from 
naturally fractured reservoirs requires much more detailed 
analyses with a greater demand for reservoir simulations with 
geological and physical models of much more detail than for 
conventional reservoirs. The computational work required to 
produce accurate simulations is very intensive for these 
problems, and thus there is a great need for parallel 
computing. 

To develop the compositional dual porosity model in a 
parallel processing platform, we used a framework approach 
to handle the complicated tasks associated with parallel 
processing. The goal was to separate the physical model 
development from parallel processing. To achieve this, we 
employed an Integrated Parallel Accurate Reservoir Simulator 
(IPARS) framework21,22. The IPARS framework includes a 
number of advanced features such as providing the entire 
necessary infrastructure for physical models, from message 
passing and input/output to solvers and well handling, run on a 
range of platforms from a single PC with Linux Operating 
System to massively parallel machines or clusters of 
workstations. The framework allows the representation of 
heterogeneous reservoirs with variable porosity and 
permeability and allows the reservoir to consist of one or more 
fault blocks. 

Spatial decomposition of the reservoir gridblocks is 
applied for parallel processing. The original reservoir 
simulation domain is divided vertically into several 
subdomains equal to the number of processors required by the 
run. The computations are decomposed on parallel machines 
to achieve computational efficiency. The gridblocks assigned 
to each processor are surrounded by one or more layers of grid 
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columns representing gridblocks of the neighboring 
processors. This is referred to as the boundary or ghost layer. 
The framework provides a routine that updates data in the 
communication layer. The message passing interface (MPI) is 
used in the framework to handle necessary message 
sending/receiving between processors. 

The fully implicit EOS compositional formulation has 
already been implemented into the IPARS framework and 
successfully tested on a variety of computer platforms such as 
IBM SP and a cluster of PCs19. The goal of this wok was to 
add a dual porosity module to the existing compositional 
Peng-Robinson cubic equation-of-state module. The simulator 
includes the IPARS framework and the compositional and 
dual porosity modules. The entire software which includes the 
framework and several modules for IOR processes is called 
General Purpuse Adaptive Simulator (GPAS) and is illustrated 
in Fig. 3. 
 

 
 
Fig. 3. General schematic of GPAS. 

 
Verification Studies 
Numerous verification case studies were performed to verify 
and test the newly developed dual porosity option of the 
GPAS simulator to model naturally fractured reservoirs. Here, 
we present only few of them. First, the single porosity option 
of the GPAS was tested after implementation of the dual 
porosity option using a series of waterflood processes in the 
fracture and matrix media. Then a modified version of 
Kazemi’s3 quarter-five-spot waterflood case (2D and 3D) was 
used to validate. Finally, the compositional option of the 
GPAS for naturally fractured reservoirs was verified using a 
3D gas-injection process. 

 
2D Waterflood. Modified Kazemi’s3 quarter-five-spot 
waterflood was used to verify the 2D option of the developed 
dual porosity option of GPAS simulator. The results were 
compared against the results of the UTCHEM simulator23. 
Aldejain16 showed “a very close match” between the results of 
UTCHEM compared against the ECLIPSE simulator24 for a 
similar case. In this case, water is injected into a quarter-five-
spot model at a rate of 200 STB/D and liquids are produced 
from the other end at a constant pressure of 3900 psia. The 
reservoir is 600 ft long, 600 ft wide, and 30 ft thick. The 
fracture media is discretized into 8x8 uniform gridblocks in 
the x and y directions, respectively, and has one 30-ft-thick 
gridblock in the z direction. The input parameters are given in 

Table 1. Zero capillary pressure is used for both fracture and 
matrix media, and the relative permeability curves in the 
fracture and matrix media are shown in Fig. 4. 

 
Table 1. Input parameters used for 2D waterflood. 

 

 
Fig. 4. Fracture and matrix relative permeabilities used in the 
quarter-five-spot waterflood 

 
Since ECLIPSE does not have an option to subgrid in the 

vertical direction, we used a 4x1 subgridding for the matrix 
media. The oil recovery and oil and water production rates are 
shown in Figs. 5 and 6, respectively, which represent an 
excellent agreement when we compare the results of GPAS, 
UTCHEM and ECLIPSE. Note that the oil recovery is very 
low (less than 6% after 1200 days, which equals 0.625 water-
injected pore volumes). Subgridding in the vertical direction 
was investigated in the next series of runs. Figures 7 and 8 
show the comparison between the results of GPAS, 
UTCHEM, and ECLIPSE for cases of 4x1 and 4x4 subgrids. 
Note that due to the lack of vertical subgridding option in the 
ECLIPSE, there are no results for ECLIPSE run of 4x4 case. 
A very interesting fact can be noticed by looking closely at 
these figures. The oil recovery has increased to about 20% 
from 6% with vertical subgridding. Also, the water 
breakthrough is delayed to about 50 days in the 4x4 subgrids 
case. These results show the importance of vertical 

Description Fracture Matrix 
Number of gridblocks 8 x 8 x 1 4x4 & 16x16 
Size of gridblocks 75x75x30 ft3 10x10x30 ft3 
Porosity 0.01 0.19 
Permeability 500 md 1.0 md 
Initial water saturation 0.0001 0.25 
Water viscosity 0.5 cp 0.5 cp 
Oil viscosity 2.0 cp 2.0 cp 
Residual oil saturation 0.0 0.3 
Oil endpoint relative perm 1.0 0.92 
Corey’s exponent for oil 2.15 1.8 
Residual water saturation 0.0 0.25 
Water endpoint relative perm 1.0 0.2 
Corey’s exponent for water 1.46 1.18 
Initial reservoir pressure 4000 psia 4000 psia 
Water injection rate 200 STB/D (constant) 
Production well pressure 3900 psia (constant) 

EOSCOMP 

CHEMICAL FRACTURE 

IPARS (FRAMEWORK) 
 
 
 

INPUT 
OUTPUT 
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(SOLVER) THERMAL 

ASPHALTENE 
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subgridding when gravity drainage is dominant in oil recovery 
from naturally fractured reservoirs. Hence, the results of the 
simulators without vertical subgridding could be very 
misleading.  

 

 
 
Fig. 5. Oil recovery vs. time for the quarter-five-spot waterflood 
(4x1 subgrids)  

 

 
 
Fig. 6. Oil and water production rates for the quarter-five-spot 
waterflood (4x1 subgrids)  

 

 
 
Fig. 7. Oil recovery for the quarter-five-spot waterflood (4x1 and 
4x4 subgrids)  

 
 
 

 
 
Fig. 8. Oil and water production rates for the quarter-five-spot 
waterflood (4x1 and 4x4 subgrids)  

 
To investigate the effect of capillary in the matrix media, 

we used the same input parameters of these cases and added 
the capillary pressure option of GPAS. Figure 9 shows the 
capillary pressure curve used in the matrix media. Again, zero 
capillary pressure is assumed for the fracture media. Figures 
10 and 11 show the oil recovery and the oil and water 
production rates for the 4x4 subgrids case, with and without 
the capillary pressure option. There are very interesting 
features in these figures. First, the oil recovery has increased 
by a factor of two from 20% to more than 40% after 1200 days 
(which equals 0.625 water-injected pore volumes) and second, 
the water breakthrough has been delayed from 50 days to 
almost 300 days. These behaviors show that in addition to 
gravity drainage, we have a very strong imbibition mechanism 
due to capillary pressure (Fig. 9) in this case. In other words, 
water is imbibed into the rock matrix from the fracture and oil 
comes out of the matrix and is produced through fracture 
channels. Hence, both gravity drainage and capillary pressure 
play very important mechanisms in oil recovery in naturally 
fractured reservoirs. 

 

 
Fig. 9. Capillary pressure curve used in the quarter-five-spot 
waterflood (4x4 subgrids) 

 
 
 
 
 
 
 
 



SPE 100079  7 

 
 
Fig. 10. Oil recovery for the quarter-five-spot waterflood (4x4 
subgrids, with and without capillary pressure option)  

 

 
 
Fig. 11. Oil and water production rates for the quarter-five-spot 
waterflood (4x4 subgrids, with and without capillary pressure 
option)  

 
 

3D Gas Injection. A six-component, constant-rate, gas-
injection process (a modified version of the SPE fifth 
comparative solution problem25) was used to verify the 
compositional option of the developed dual porosity module of 
GPAS. The simulation domain is 560x560x100 ft3 and is 
discretized in 7x7x3 fracture gridblocks with the matrix blocks 
size of 10x10x10 ft3 discretized in 2x1 subgrids. The three 
layers have 20, 30, and 50 ft thickness, respectively from the 
top of the reservoir. The initial reservoir pressure is 1500 psi. 
The only injection well is located at gridblocks (1,1,1) through 
(1,1,3) and injects at the constant rate of 1 Mscf/D, and the 
production well is located at gridblocks (7,7,1) through (7,7,3) 
and produces at a constant bottomhole pressure of 1300 psia. 
The reservoir description of this case is presented in Table 2. 
Straight lines three-phase relative permeabilities are used for 
the fracture network and the three-phase relative 
permeabilities used in matrix media are shown in Fig. 12. The 
hydrocarbon phase behavior is given using a six-component 
application of the Peng-Robinson equation of state. Table 3 
shows the initial composition and properties of the six 
components and binary interaction coefficients used in the 
fracture and matrix media, respectively. 

 
 
 
 

Table 2. Input parameters used for 3D gas injection. 
Description Fracture Matrix 
Number of gridblocks 7 x 7 x 3 2 x 1 
Size of gridblocks in layer 1 80 x 80 x 20 ft3 10x10x10 ft3 
Size of gridblocks in layer 2 80 x 80 x 30 ft3 10x10x10 ft3 
Size of gridblocks in layer 3 80 x 80 x 50 ft3 10x10x10 ft3 
Porosity 0.02 0.35 
Permeability (X,Y,Z) 50,50,5  md 1,1,1 md 
Initial water saturation 0.01 0.17 
Water viscosity 1.0 cp 1.0 cp 
Residual oil saturation 0.0 0.1 
Oil endpoint relative Perm 1.0 0.9 
Corey’s exponent for oil 1.0 2.0 
Residual gas saturation 0.0 0.0 
Gas endpoint relative Perm 1.0 0.9 
Corey’s exponent for gas 1.0 2.0 
Residual water saturation 0.0 0.30 
Water endpoint relative Perm 1.0 0.4 
Corey’s exponent for water 1.0 3. 
Initial reservoir pressure 1500 psia 1500 psia 
Gas injection rate 1.0 Mscf/D (constant) 
Production well pressure 1300 psia (constant) 

 
Table 3. Initial composition and properties of the 
components used for 3D gas injection. 

 

 
 
Fig. 12. Three-phase matrix relative permeabilities used in the gas 
injection.  

 
To test the results of the GPAS simulation runs, the dual 

porosity option of the GEM simulator26 (compositional mode) 
was used. Since the GEM simulator did not have an option to 
discretize the matrix media in compositional mode at the time 
of this study, we used Kazemi-Gilman’s shape factor to 
calculate the matrix-fracture transfer function. The results of 
the GPAS and GEM simulation runs for oil recovery and oil 
and gas production rates vs. time are shown in Figs. 13 
through 15, respectively. The results of the GPAS and GEM 

Properties C1 C3 C6 C10 C15 C20 
Tc (oR) 343.0 665.7 913.4 1111.8 1270.0 1380.0 
Pc (psia) 667.8 616.3 439.9 304.0 200.0 162.0 
Vc (ft3/lb-mole) 1.599 3.211 5.923 10.087 16.696 21.484 
Zc (no unit) 0.29 0.277 0.264 0.257 0.245 0.235 
MW 16.0 44.1 86.2 142.3 206.0 282.0 
Acentric factor 0.013 0.152 0.301 0.488 0.650 0.850 
Parachors 71.0 151.0 271.0 431.0 631.0 831.0 
Initial 
composition 0.50 0.03 0.07 0.20 0.15 0.05 

Injected gas 
composition 0.77 0.20 0.01 0.01 0.005 0.005 
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showed a good agreement with a slight difference at early time 
due to the difference in flash calculation between GPAS and 
GEM. 

 

 
 
Fig. 13. Oil recovery vs time for gas injection.  

 

 
 
Fig. 14. Oil production rate vs time for gas injection.  

 

 
 
Fig. 15. Gas production rate vs time for gas injection.  

 
 

Parallel Dual Porosity Reservoir Simulation 
The performance of the developed dual porosity option of 
GPAS simulations in a parallel processing platform is 
presented in this section. The speedup is one of the ways to 

measure parallel processing performance efficiency and is 
defined as: Speedup = t1 / tn. 

Where t1 is the execution time on a single processor and tn 
is the execution time on n processors. The ideal speedup of 
parallel simulation with n processors is n, which means the 
program runs n times faster. However, in reality, as the 
number of processors becomes larger, a speedup less than n is 
usually observed. This performance reduction is due to 
increasing inter-processor communication. Also, it can be due 
to an unfavorable programming style, in which a program does 
not decompose the application evenly (load-balance issue). A 
Dell PowerEdge 1750 cluster system (Lonestar) was used for 
these parallel processing cases. The Lonestar cluster system is 
a Cray-Dell Linux cluster located in the Texas Advanced 
Computing Center (TACC) of The University of Texas at 
Austin. The TACC Cray-Dell PowerEdge Xeon Cluster 
contains 768 Xeon processors at 3.06GHz speed and 256 Xeon 
processors at 3.2GHz speed. A Myrinet-2000 switch fabric, 
employing PCI-X interfaces, interconnects the nodes (I/O and 
compute) with a point-to-point bandwidth of 250MB/sec 
(500MB/sec bidirectional). 

 
2D Waterflood Case Study. The 2D quarter-five-spot 
waterflood problem was used and scaled up in size to 
investigate the performance of the developed dual porosity 
option of GPAS simulations in a parallel processing platform. 
The described model used consists of 16,384 gridblocks 
(4,096 fracture gridblocks and 2x2 matrix subgrids in each 
fracture gridblock) and two operating wells. 

This case was run in serial and parallel modes on the 
Lonestar cluster system using two, four, eight, and sixteen 
processors. Identical results for oil recovery and water 
production were obtained for the serial (single processor) and 
the parallel (multiprocessors) simulations. Table 4 lists the 
speedups and execution times on the Lonestar cluster, and Fig. 
16 shows plot of the speedups for different numbers of 
processors. As expected, by increasing the number of 
processors, the execution time for running the case is 
decreased. The speedups of 3.66 and 6.24 obtained for four 
and eight processors, respectively, are not too far from the 
ideal speedup line, whereas the speedup of 10.49 for 16 
processors is much farther from the ideal speedup line. The 
main reason for this is that up to eight processors, the system 
is large enough for each processor (from a computational point 
of view). However, the system becomes smaller for each 
processor using 16 processors, and most of the time is 
consumed in message passing among the processors. To better 
understand this issue, the CPU times for major sections of the 
code such as Linear Solver, Updating Jacobian and Residuals, 
and calculating Dependent Variables were recorded. These 
sections were timed individually during the simulation and 
reported at the end. Figures 17 shows the pie charts for one 
and 16 processors, respectively. Note that most of the inter-
processor communications are included in the solver 
calculation. By looking at Fig. 17, it can be seen that the 
solver takes a large amount of CPU time using 16 processors 
(28%) compared to one processor (13%), which confirms the 
increase in the inter-processor communications for the 16 
processors run. Also, the CPU time to update the Jacobian 
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matrix using 16 processors (54%) is much smaller than for one 
processor (67%). 

 
Table 4. Speedups and execution times for parallel 
simulations (2D waterflood). 

No. of Processors CPU Time (sec) Speedup 
1 22,647 1 
2 11,273 2.01 
4 6,192 3.66 
8 3,627 6.24 

16 2,159 10.49 
 

 
 
Fig. 16. Speedups for parallel simulations (2D waterflood).  

 
1 processor 

 
16 processors 

 
Fig. 17. Execution time breakdown for 2D waterflood (1 and 16 
processors).  

3D Waterflood Case Study. To illustrate the performance of 
the developed dual porosity option of GPAS in a parallel 
processing platform in 3D with more gridblocks and 
unknowns, simulation of a large 3D five-spot waterflood 
model with five operating wells was performed. In this case, 
the total number of gridblocks is 98,304 (64x64x6 fracture 
gridblocks and 2x2 matrix subgrids in each fracture 
gridblock). This leads to 393,216 unknowns in the fracture and 
matrix media solved at each timestep. There are four injection 
wells injecting at constant rates of 250 STB/D at the corners of 
the reservoir model and one production well producing at the 
constant bottomhole pressure of 3500 psia in the center. The 
initial reservoir pressure in both fracture and matrix media is 
4000 psia. 

Because the computational model is large, the simulation 
was run on the Lonestar cluster system in parallel mode using 
2, 4, 8, 16, and 32 processors. The results of simulation runs 
show the same oil recovery and oil and water production rates 
regardless of the number of processors used. Table 5 lists the 
speedups and execution times using the Lonestar cluster, and 
Fig. 18 shows the speedups for different numbers of 
processors. Again as expected, by increasing the number of 
processors, the execution time for running the case is 
decreased and the speedup is increased linearly. Figure 18 
shows that the speedup is fairly linear up to 16 processors. 
However, we have a super linear speedup of 33.4 for 32 
processors. One reason for this difference in speedup between 
the ideal line and 32 processors is probably because processors 
in the Lonestar cluster system are not homogeneous. As 
mentioned earlier, in the Lonestar cluster system, some of the 
processors have 3.06 GHz and some have 3.2 GHz speed, and 
we have no control on choosing the processors for the 
simulation runs. However, the chance for the single processor 
run to be directed to the processors with 3.06 GHz is more 
than three times than for the processors with 3.2 GHz, and this 
possibly could explain why for the 32 processors run, we 
exceed the ideal line. Figure 19 shows the breakdown of the 
CPU time for the two-processor run. The results of simulation 
runs show the same pie chart regardless of the number of 
processors used. In this case, for a two-processor simulation 
run, updating the Jacobian takes about 65% of the CPU time, 
while the parallel solver consumes about 15% of the computer 
time. 

 
Table 5. Speedups and execution times for parallel 
simulations (3D waterflood) 

No. of Processors CPU Time (sec) Speedup 
2 74,471 2 
4 36,911 4.03 
8 18,236 8.17 

16 9,323 15.98 
32 4,456 33.42 
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Fig. 18. Speedups for parallel simulations (3D waterflood).  

 

 
 
Fig. 19. Execution time breakdown for 3D waterflood (2 
processors).  

 
3D Gas Injection Case Study. The six-component, constant-
rate, gas-injection process (a modified version of the SPE fifth 
comparative solution problem23) was used to investigate the 
efficiency of the parallel processing simulation of the 
developed compositional dual porosity module of the GPAS 
simulator. The simulation domain is 1280x1280x100 ft3 
discretized in 64x64x2 fracture gridblocks with the matrix 
blocks size of 10x10x10 ft3 discretized in 2x2 subgrids. The 
two layers each have thickness of 50 ft. In this case, the total 
number of gridblocks is 32,768 (64x64x2 fracture gridblocks 
and 2x2 matrix subgrids in each fracture gridblock). This leads 
to 458,752 unknowns in the fracture and matrix media solved 
at each timestep. The initial reservoir pressure is 1500 psia. 
There are four gas injectors located at corners of the reservoir 
model that inject at the constant rate of 1 Mscf/D each, and the 
only production well is located at the fracture gridblocks 
(32,32,1) to (32,32,2) and produces at constant bottomhole 
pressure of 1200 psia. The hydrocarbon phase behavior is 
obtained using a six-component application of the Peng-
Robinson equation of state. 

Once again, because the computational model is large for 
this case, there are no results available for the single processor. 
The simulation case was run on the Lonestar cluster system in 
parallel mode using 2, 4, 8, 16, and 32 processors. The results 
of simulation runs show the same oil recovery and oil and gas 

production rates regardless of the number of processors used. 
Table 6 lists the speedups and execution times on the Lonestar 
cluster and Fig. 20 shows plot of the speedups for different 
number of processors and indicates a linear speedup for up to 
32 processors. 

 
Table 6. Speedups and execution times for parallel 
simulations (gas injection) 

No. of Processors CPU Time (sec) Speedup 
2 40,967 2 
4 19,382 4.23 
8 9,570 8.23 

16 5,188 15.79 
32 2,574 31.83 

 

 
 
Fig. 20. Speedups for parallel simulations (gas injection).  

 
In this large-scale simulation, the largest computational 

tasks were updating the Jacobian and the linear solver, which 
account for more than 90% of the total execution time, as seen 
in the pie chart for the 32-processors run (Fig. 21). Also, 
Uetani et al.27 reported about 75% and Dogru et al.28 reported 
about 76% of the CPU time is consumed in these two 
calculations for single porosity parallel simulators, which is 
very similar to the case reported in this study. However, there 
is a very important difference between this case and the other 
two. Based on Uetani’s report, from this 75%, the parallel 
solver consumes more than 44% while updating Jacobian 
consumes about 31%. Also, based on Dogru’s report, the 
parallel solver consumes 61% and updating Jacobian 15% of 
the computation time. Hence, the biggest chunk of CPU time 
consumption in single porosity parallel simulators is the 
parallel solver. By looking at Fig. 21, the parallel solver 
consumes only about 20% of the computer time while the 
updating Jacobian consumes more than 70%. The main reason 
for this difference is the nature of the solution approach in this 
developed dual porosity option of GPAS. As discussed in 
Solution Approach section of this paper, the entire calculation 
for the matrix unknowns is done locally within the processors 
while calculations for the fracture unknowns are done in the 
parallel solver. Hence, in our model, most of the calculations 
are done locally and we do not need to have a lot of inter-
processor communications. This fact confirms the suitability 
of the developed dual porosity option of GPAS in parallel 
processing platforms. The other reason is that this is a 
compositional run with six components, and flash calculations, 
which include updating the Jacobian and residuals are 
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calculated locally, and are very time consuming. This explains 
the increase of almost 10% in updating Jacobian in this case 
relative to the 3D waterflood Case. 

 

 
 
Fig. 21. Execution time breakdown for gas injection (32 
processors).  

 
Conclusions 
The following conclusions are drawn from this study. 

1. A new, parallel, equation-of-state compositional, 
fully implicit simulator to model naturally fractured 
oil reservoirs has been developed and verified 
successfully against the UTCHEM simulator as well 
as other commercial simulators. The methodology 
used to develop this reservoir simulator is based on a 
modified dual porosity model. 

2. The matrix blocks were discretized in the horizontal 
direction using a modified multiple interacting 
continua (MINC) method concept and in the vertical 
direction using a stacked grids concept to provide an 
accurate calculation for matrix-fracture transfer 
function in transient flow. Based on our knowledge at 
this time, there is no compositional reservoir 
simulator that has the capability of subgridding in 
both horizontal and vertical directions. This subgrid 
scheme was used to model three-dimensional flow in 
the matrix rock with two-dimensional subgrids with 
good accuracy. 

3. The efficiency of the parallel processing of the 
GPASv3.5 was verified using 2D and 3D waterflood 
as well as 3D compositional gas-injection processes. 
For the 2D waterflood process, a linear speedup up to 
eight processors was achieved. For the 3D waterflood 
process, a linear speedup was obtained using up to 32 
processors. In the 3D compositional gas injection 
with six hydrocarbon components cases, because of 
the large size of the problem, excellent speedup was 
achieved. In this case, the linear solver and updating 
the Jacobian accounted for the majority of the CPU 
time consumption. Flash and phase behavior 
calculations in the fracture gridblocks and matrix 
subgrids, which are performed locally, account for 
this increase of CPU time consumption in updating 
the Jacobian. 

4. The efficiency of the parallel processing of the 
developed dual porosity simulator was more 
satisfactory relative to the parallel efficiency of our 
single porosity simulator. The main reason is that 
based on the solution approach used in the developed 
dual porosity simulator, the unknowns in the matrix 
media are solved locally in each processor that 
contains the corresponding fracture gridblock. Hence, 
there would be much less time consumed in inter-
processor communication that arises in the linear 
solver, thereby increasing the parallel efficiency of 
the developed dual porosity simulator. 
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Nomenclature 
 D = depth measured positive downward, L 
 f = fugacity 
 Ki = equilibrium ratio, dimensionless 
 Lj = mole fraction of phase j 
 NM = number of matrix blocks within a fracture gridblock 
 Nb = number of matrix subgrids 
 Ni = Moles of component i per unit pore volume, mol/L3 

 nc = number of hydrocarbon components 
 np = number of phases 
 P = Pressure, m/Lt2 
 q = flow rate, L3/t 
 t = time, t 
 V = volume, L3 

 = molar volume of phase j 
 xij = mole fraction of component i in phase j 
 φ = porosity, fraction 
 γ = fluid specific gracity m/L2t 
 τ = matrix-fracture transfer function, L3/t 
 λ = effective mobility, L3/mt3 
 = molar density of phase j, mol/L3 
Subscripts 
 b = bulk 
 f = fracture 
 g = gas 
 i = component index 
 j = phase index 
 m = matrix 
 o = oil 
 w = water 
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