
Journal of Scientific Computing            (2023) 97:8 
https://doi.org/10.1007/s10915-023-02319-x

Multidimensional WENO-AO Reconstructions Using
a Simplified Smoothness Indicator and Applications to
Conservation Laws

Chieh-Sen Huang1 · Todd Arbogast2,3 · Chenyu Tian3

Received: 14 October 2022 / Revised: 29 July 2023 / Accepted: 1 August 2023
© The Author(s) 2023

Abstract
Finite volume, weighted essentially non-oscillatory (WENO) schemes require the computa-
tionof a smoothness indicator. This canbe expensive, especially inmultiple space dimensions.
We consider the use of the simple smoothness indicator σ S = 1

NS−1

∑
j (ū j − ūm)2, where

NS is the number of mesh elements in the stencil, ū j is the local function average over
mesh element j , and index m gives the target element. Reconstructions utilizing standard
WENOweighting fail with this smoothness indicator. We develop a modification of WENO-
Z weighting that gives a reliable and accurate reconstruction of adaptive order, which we
denote as SWENOZ-AO. We prove that it attains the order of accuracy of the large sten-
cil polynomial approximation when the solution is smooth, and drops to the order of the
small stencil polynomial approximations when there is a jump discontinuity in the solu-
tion. Numerical examples in one and two space dimensions on general meshes verify the
approximation properties of the reconstruction. They also show it to be about 10 times faster
in two space dimensions than reconstructions using the classic smoothness indicator. The
new reconstruction is applied to define finite volume schemes to approximate the solution of
hyperbolic conservation laws. Numerical tests show results of the same quality as standard
WENO schemes using the classic smoothness indicator, but with an overall speedup in the
computation time of about 3.5–5 times in 2D tests. Moreover, the computational efficiency
(CPU time versus error) is noticeably improved.
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1 Introduction

Weighted essentially non-oscillatory (WENO) reconstructions approximate a function u(x),
usually arising as the solution of a differential equation, by a linear combination of stencil
approximations. The weights are defined in a nonlinear way based on the smoothness of the
stencil approximations so as to bias the reconstruction to the smooth stencils, and thereby
make the approximation essentially non-oscillatory.

Classic WENO reconstructions [24] require an additional property, namely, that there be
linear weights associated with each stencil so that this linear combination of all the stencils
gives a higher order approximation. The essentially non-oscillatory property is achieved by
modifying the linear weights to create the nonlinear weights based on the smoothness of
the stencil approximations. The requirement for carefully defined linear weights effectively
restricts the definition of classic WENO to rectangular computational meshes.

Weighted essentially non-oscillatory reconstructions with adaptive order (WENO-AO) [4,
8, 20] overcome this difficulty by including stencil approximations of two or more orders
of accuracy. That is, the higher order approximation is included directly in the linear com-
bination, rather than having it arise from the weighting procedure. The advantage is that
now the linear weights can be chosen arbitrarily, which means that extensions to general
computational meshes in multiple dimensions is feasible. Of course, the disadvantage is that
the large stencil, high order approximation and its smoothness indicator must be computed.

In this paper, we will use finite volume polynomial approximations over the stencils,
although it is possible to use nonpolynomial stencil approximations (see, e.g., [1, 3, 9, 24,
26, 28]). We will also consider only two-level approximations.

For the stencil S� (for some set of indices �), let the polynomial approximation of the
function u(x) to be reconstructed be denoted p�(x). If ū j denotes the average of u over the
j th element E j , i.e.,

ū j = 1

|E j |
∫

E j

u(x) dx, (1)

then the stencil polynomial p�(x) is defined by requiring that its average over each E j in the
stencil S� equals ū j . (In case the number of polynomial coefficients is less than the number
of elements in the stencil, this requirement is imposed in a least-squares sense [21].)

The key to the nonlinear weighting is to define a smoothness indicator for p�. There are
many ways to do this, but the most popular and classic way is due to Jiang and Shu [16]. If
p� is of degree k, its smoothness indicator over a mesh element E is given by

σ JS
� =

∑

1≤|α|≤k

∫

E
|E ||α|−1(Dα p�(x)

)2
dx, (2)

where α is a multi-index, D is the derivative operator, and |E | is the d-dimensional volume
of E .
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This smoothness indicator works beautifully in one space dimension. It can be computed
in a simple way in terms of the finite volume averages of the solution [24], and so it is quite
efficient. However, in multiple space dimensions on general computational meshes, it is rela-
tively difficult to develop computer implementations, and they are computationally expensive,
especially as the degree of the polynomial k increases. For example, in d-dimensions, there

are

(
k + d
d

)

− 1 = O(kd) terms in the summation in (2). Each term requires the evaluation

of a derivative of a polynomial, and each derivative has O(kd) terms. Moreover, on a general
mesh, we need to use an accurate numerical integration over the element E , which requires
many quadrature points. The total computational effort is proportional to k2d . (We interject
that in this paper, we concentrate on implementations with k = 4 and d = 2, so the workload
is proportional to 256.)

Perhaps a more efficient approach to implementation of the stencil polynomials in mul-
tidimensions is to precompute the dual polynomial basis p�, j (x), where j ranges over the
elements in the stencil S� (see, e.g., [2, 5]). Then the stencil polynomial is simply p�(x) =∑

j ū j p�, j (x). Moreover, one can use this expansion to see that σ JS
� = ∑

j
∑

k ū j ūk σ�, j,k

for appropriately defined and precomputed “base smoothness indicators” σ�, j,k . However,
in d-dimensions, the number of terms in this expression is O(k2d), and so the computational
effort is of the same order as a direct implementation (not counting the pre-computation cost,
which is considerable).

The computational cost of the smoothness indicator (2) is very high for multidimensional
problems and WENO-AO reconstructions, which require the large stencil (high polynomial
degree) smoothness indicators. In this paper we seek to reduce the cost by using a much
simpler smoothness indicator. Some works in this direction include [15, 19]; however, the
approaches taken in these papers do not result in substantially simpler smoothness indicators.
Instead, we use the smoothness indicator suggested by Liu and Jiao [21]. For the stencil S�

on which p� is posed, we define the simplified smoothness indicator as

σ S
� = 1

NS − 1

∑

j

(ū j − ūm)2, (3)

where NS is the number of elements in the stencil, j ranges over the elements in the stencil,
and the target (“middle”) element is E = Em . The overall computational effort for σ S

� is only
O(kd) in d-dimensions. It is also very simple to implement in a computer code.

Unfortunately, this simple smoothness indicator is not very robust in general. If ū j = 1
except for a single element where the value is 0, σ S

� = 1
NS−1 . This is not large, particularly

when NS is large (as it will be in multidimensions), and so it incorrectly indicates that
there is not a lot of oscillation in the polynomial approximation. We must compensate for
this deficiency, and we will use an alternate weighting strategy similar to that proposed by
Castro, Costa, and Don [10, 11] known as WENO-Z weighting. We denote our newWENO-
AO reconstruction using the simplified smoothness indicator as SWENOZ-AO, where S
stands for simplified.

We also develop a finite volume scheme using SWENOZ-AO reconstructions to solve a
system of hyperbolic conservation laws

ut + ∇ · F(u) = 0, t > 0, (4)

where u = u(x, t) ∈ R
d . As we will see, our strategy allows σ S

� to give good results, with
improved overall speedup and computational efficiency (CPU time versus error).
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In the next section we develop the SWENOZ-AO reconstruction. We discuss its conver-
gence behavior in Sect. 3. We prove that it maintains the order of accuracy of the largest
stencil when the solution is smooth, and drops to the order of the small stencils otherwise.
In Sect. 4, we provide numerical tests of the reconstruction which verify our theoretical
results. In Sect. 5, we develop our SWENOZ-AO finite volume scheme for conservation
laws. Applications to problems posed in one and two space dimensions are given in Sects. 6,
7, respectively. We close with a section summarizing our results and conclusions.

2 Finite VolumeWENO-AO Reconstructions

Suppose that we have a domain Ω ⊂ R
d and a computational mesh of elements partitioning

the domain. We fix the large stencil S0 = {E1, . . . , EN0}, where each E j is an element of
the mesh, and we fix the target element Em ∈ S0 for some m. We fix small stencils S� ⊂ S0
of N� < N0 elements such that Em ∈ S� for all � = 1, 2, . . . , LS.

For � = 0, 1, . . . , LS, let p�(x) denote the stencil polynomial approximation of the solu-
tion u(x) on the stencil S�. Then the WENO-AO approximation of u(x) for x in the target
element Em is

Rm(x) = ω̃0

ω0

[

p0(x) −
LS∑

�=1

ω� p�(x)
]

+
LS∑

�=1

ω̃� p�(x), (5)

where ω� and ω̃� are the linear and the corresponding nonlinear weights, respectively. The
ω� can be chosen arbitrarily, such that they are positive and sum to one.

The classic definition of the nonlinear weights [16] says that

ω̃JS
� = ω̂JS

�
∑LS

k=0 ω̂JS
k

where ω̂JS
� = ω�

(σ JS
� + εh)η

, (6)

for some εh > 0 and η > 0, where εh = ε0h2 for some fixed ε0 > 0, or simply εh = ε0 [2,
4]. We call the reconstruction using this weighting WENO-AO.

A straightforward substitution of the simplified smoothness indicator σ S
� for the classic

one σ JS
� in (6) does not lead to the required convergence properties ofWENO schemes. To see

this fact, one can follow the proof of Theorem 4 in Sect. 3. Result (22) fails to hold when one
uses the simple smoothness indicator in (6). (That is, the perturbation of the linear weights
from the nonlinear ones is not accurate enough.) We therefore modify the definition of the
nonlinear weights. Motivated by the WENO-Z weighting procedure of Castro, Costa, and
Don [10, 11], we define the nonlinear weights in (5) as

ω̃
Z,S
� = ω̂

Z,S
�

∑LS
k=0 ω̂

Z,S
k

where ω̂
Z,S
� = ω�

(

1 + τη1

(σ S
� + εh)η2

)

, (7)

for some εh > 0, τ > 0, η1 > 0, and η2 > 0, where τ is defined below in (8). Here we take
εh = ε0h2 for some fixed ε0 > 0. Standard WENO-Z weighting uses η1 = η2, but for our
reconstructions, these parameters need to take on different values. We call the reconstruction
using (7) SWENOZ-AO.

The choice of τ is subtle. We take

τ =
LS∑

�=1

∣
∣σ S

� − σ S
0

∣
∣ , (8)
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although there are other choices.Our numerical tests suggest that (8)works the best among the
three choices that we tried, the others being τ1 = 1

LS

∑LS
�=1

∣
∣σ S

� − σ S
0

∣
∣ and τ2 = 1

LS

∑LS
�=0 σ S

� .
The question of what is the optimal choice of τ remains open.

Of course, we also have the weighting given byWENO-Z weighting (7) and (8) but using
the classic smoothness indicator σ JS

� . In this case, η1 = η2. The weights would be denoted

ω̃
Z,JS
� . We call this reconstruction WENOZ-AO.
The values one should take for η > 0 in (6) and ηi > 0, i = 1, 2, in (7) are determined

by the convergence theory discussed in the next section.

3 Convergence Behavior of SWENOZ-AO

It is known that WENO-AO and WENOZ-AO reconstructions have the appropriate conver-
gence properties for use in schemes approximating conservation laws [2, 4, 12, 18]. We show
in this section the same properties for SWENOZ-AO. Similar to [3], we will need to verify
three conditions to obtain the results given in [4]. The first condition is to require the proper
accuracy by each stencil polynomial approximation.

Condition 1 Let h = maxE∈S0 diam(E). For � = 0, 1, . . . , LS, when u is smooth on the
stencil S�, we require that for some constant C > 0, the approximation p� on the target
element Em satisfies

‖p0 − u‖L∞(Em ) ≤ Chr , � = 0, and ‖p� − u‖L∞(Em ) ≤ Chs, � ≥ 1, (9)

for some integers r > s ≥ 1.

In the context of Condition 1, we refer to our reconstruction as SWENOZ-AO(r , s). This
condition places reasonable restrictions on the computational mesh, such as requiring that it
be quasiuniform and shape regular.

Condition 2 In the case that u is smooth on the stencil S�, we require that for some constant
C > 0, the smoothness indicator σ S

� and τ satisfy

σ S
� = O(h2), (10)

τ = O(h2). (11)

The notation f (h) = Θ(ht ) means that there are lower and upper bounds C1 and C2 such
that

C1h
t ≤ | f (h)| ≤ C2h

t as h → 0+. (12)

Condition 3 In the case that u has a jump discontinuity on the stencil S�, we require that the
smoothness indicator σ S

� and τ satisfy

σ S
� = Θ(1), (13)

τ = Θ(1). (14)

Our SWENOZ-AO reconstructions using definitions (3) and (8) obviously satisfy Con-
dition 2. Condition 3, however, requires the discontinuities to be bounded away from the
gridpoints as the mesh spacing goes to 0 (see [4]).
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Theorem 4 LetConditions1–2 hold. Suppose that εh = ε0h2 for some ε0 > 0 in the definition
of the nonlinear weights (7). Assume that r > s ≥ 2 and η1 −η2 ≥ (r − s)/2. If the function
u is smooth on S0, then the SWENOZ-AO(r , s) approximation Rr ,s

m , defined in (5), on the
target element Em satisfies

‖Rr ,s
m − u‖L∞(Em ) ≤ Chr . (15)

Moreover, let Condition 3 hold and assume further that η2 ≥ s/2. If u is smooth except for
a jump discontinuity in the interior of S0 but not in some stencil S�, then

‖Rr ,s
m − u‖L∞(Em ) ≤ Chs . (16)

Proof Our proof follows and combines various arguments found in [4]. Assume first that u
is smooth on S0, i.e., on all the stencils. By Condition 2 and our choice of εh , τ = O(h2)
and σ S

� + εh = Θ(h2). For any �, let

ρ� = τη1

(σ S
� + εh)η2

= O(h2η1)

Θ(h2η2)
= O

(
h2(η1−η2)

)
. (17)

Now (7) gives that

ω̃
Z,S
� = ω̃� = ω�(1 + ρ�)

∑

k
ωk(1 + ρk)

= ω�(1 + ρ�)

1 + ∑

k
ωkρk

. (18)

Since we require that η1 − η2 ≥ (r − s)/2 > 0, ρ� → 0 as h → 0+, and we see from
elementary asymptotic theory that

ω̃� ∼ ω�(1 + ρ�)
(
1 −

∑

k

ωkρk

)

∼ ω�

(
1 + ρ� −

∑

k

ωkρk

)

= ω�

(
1 +

∑

k

ωk(ρ� − ρk)
)
.

(19)

The mean value theorem shows that

ρ� − ρk = τη1

(σ S
� + εh)η2

− τη1

(σ S
k + εh)η2

= τη1
(
(σ S

k + εh)
η2 − (σ S

� + εh)
η2

)

(σ S
� + εh)η2 (σ S

k + εh)η2

= τη1 η2 ξη2−1(σ S
k − σ S

� )

(σ S
� + εh)η2 (σ S

k + εh)η2

(20)

for some ξ between σ S
� + εh and σ S

k + εh . Note that by Condition 2, ξ = O(h2). Thus, for
all � and k,

ρ� − ρk = O(h2η1)O(h2(η2−1))O(h2)

Θ(h4η2)
= O

(
h2(η1−η2)

)
. (21)

We conclude from (19) and (21) that

ω̃� − ω� ∼ ω�

∑

k

ωk(ρ� − ρk) = O(h2(η1−η2)). (22)
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Because
∑LS

�=0 ω� = ∑LS
�=0 ω̃� = 1, we have on Em that

Rr ,s
m − u = ω̃0

ω0

[

(p0 − u) −
LS∑

�=1

ω�(p� − u)

]

+
LS∑

�=1

ω̃�(p� − u)

= ω̃0

ω0
(p0 − u) −

LS∑

�=1

[
ω̃0 − ω0

ω0
ω� − (ω̃� − ω�)

]

(p� − u).

(23)

Invoking Condition 1 and (22), we see that

∣
∣Rr ,s

m − u
∣
∣ = O(hr ) +

LS∑

�=1

[
O(ω̃0 − ω0) + O(ω̃� − ω�)

]
O(hs)

= O(hr ) + O(h2(η1−η2)+s), (24)

and we have our result (15) provided 2(η1 − η2) + s ≥ r , as we have assumed.
We now treat the case in which u has a discontinuity. First of all, Conditions 2, 3 give that

τ = Θ(1) and σ S
� + εh = O(h2) if u is smooth on S� and σ S

� + εh = Θ(1) otherwise. Thus,

ρ� = τη1

(σ S
� + εh)η2

=
{

Θ(h−2η2), if u is smooth on S�,

Θ(1), if u jumps on S�.
(25)

We conclude that the denominator in (18) is dominated by terms that are Θ(h−2η2), and so
we obtain

ω̃� =
{

Θ(1), if u is smooth on S�,

Θ(h2η2), if u jumps on S�.
(26)

Returning to (23), we see that

∣
∣Rr ,s

m − u
∣
∣ ≤

∣
∣
∣
∣
ω̃0

ω0

[

(p0 − u) −
LS∑

�=1

ω�(p� − u)

]∣
∣
∣
∣ +

LS∑

�=1

ω̃�

∣
∣p� − u

∣
∣

= O(ω̃0)O(1) +
{ ∑

u discontin-
uous on S�

O(ω̃�)O(1) +
∑

u smooth
on S�

O(hs)

}

= O(h2η2) + O(hs),

(27)

which implies the result (16), since we assumed 2η2 ≥ s. ��

4 Numerical Tests of the Reconstructions

In this section, we test the three reconstructions SWENOZ-AO, WENO-AO, and WENOZ-
AO, as described in Sect. 2, independent of their application to solving conservation laws.
For these tests, we use a computer code written in C++, compiled using the Gnu compiler
(version 11.3.0 with optimization -O2), and run on a Dell Precision 3650 Tower workstation
using an Intel Core i7-10700 CPU running at 2.90GHz.
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Table 1 Example 4.1. SWENOZ-AO(5,3) errors and convergence orders using various values for η1 and η2

x∗ = 0 x∗ = −h x∗ = −2h
Level L Error Order Error Order Error Order

η1 = 3, η2 = 2 1 3.80e−07 3.59 5.12e−08 3.28 3.43e−13 5.04

2 3.63e−08 3.39 5.84e−09 3.13 1.07e−14 5.01

3 3.86e−09 3.23 6.96e−10 3.07 3.33e−16 5.00

4 4.41e−10 3.13 8.50e−11 3.03 1.05e−17 4.99

η1 = 2, η2 = 1 1 5.40e−04 2.03 4.83e−05 2.05 2.50e−13 5.03

2 1.34e−04 2.02 1.18e−05 2.03 7.77e−15 5.01

3 3.31e−05 2.01 2.93e−06 2.02 2.43e−16 5.00

4 8.26e−06 2.01 7.28e−07 2.01 7.74e−18 4.97

η1 = 2, η2 = 2 1 5.37e−04 2.02 4.27e−05 2.04 3.80e−09 3.01

2 1.33e−04 2.01 1.05e−05 2.02 4.74e−10 3.00

3 3.31e−05 2.01 2.61e−06 2.01 5.92e−11 3.00

4 8.25e−06 2.00 6.51e−07 2.01 7.40e−12 3.00

4.1 Reconstruction Near Jump Discontinuities in 1D

We begin with the case in which the solution contains a jump (as in [2, 13, 18]). Let H denote
the Heaviside function. For some fixed point xjump, let the solution

u(x) = x3 + sin(x) + H(xjump − x).

For refinement level L = 0, 1, 2, . . ., let h = 2−L−6. Let the large mesh stencil be {−2h,
−h, 0, h, 2h, 3h} of five elements with target element E = [0, h], and the three small stencils
of three contiguous elements. We test the accuracy of only the new SWENOZ-AO(5,3)
reconstruction at x = 0 when xjump = 0, −h, −2h. The solution is smooth on the large
stencil for the latter case xjump = −2h, but in the other two cases there is a discontinuity in
the large stencil and either one or two of the small stencils.

Theorem4 predicts thatwe should see the accuracy of the stencil without a shock, provided
η1 and η2 are chosen properly. The theory implies that SWENOZ-AO(5,3) requires the
condition η1 − η2 ≥ 1, and also the condition η2 ≥ 3/2 when there is a jump in the solution.

Our numerical test results are shown in Table 1, using various values for η1 and η2. When
there is no jump in the solution, i.e., xjump = −2h, we see fifth order convergence when
η1 −η2 ≥ 1 (η1 = 3 and η2 = 2, or η1 = 2 and η2 = 1). However, when η1 = 2 and η2 = 2,
the condition is violated, and we see only third order convergence.

When there is a jump in the solution, i.e., xjump = 0,−h, we see third order convergence
when η2 ≥ 3/2 (η1 = 3 and η2 = 2), but the convergence drops to second order when either
of the two conditions is violated (η1 = 2 and η2 = 1, or η1 = 2 and η2 = 2).

All of our results are consistent with Theorem 4, and they suggest that our two conditions
are sharp.
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Fig. 1 Example 4.2. The initial mesh, which is the large stencil, and three small stencils

Table 2 Example 4.2. Discrete L1h and L∞
h errors and convergence orders for a smooth solution using the

stencils in Fig. 1

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3)
Average time 1484ns Average time 19,326ns Average time 19,449ns

Norm Level Error Order Error Order Error Order

L1h 1 1.46e−08 4.59 4.00e−08 4.85 1.12e−08 5.02

2 5.74e−10 4.67 1.27e−09 4.98 3.49e−10 5.01

3 2.09e−11 4.78 3.95e−11 5.01 1.09e−11 5.01

4 7.20e−13 4.86 1.20e−12 5.04 3.09e−13 5.13

L∞
h 1 2.92e−08 5.20 1.03e−07 4.92 2.88e−08 5.01

2 1.13e−09 4.69 3.27e−09 4.98 8.96e−10 5.01

3 4.42e−11 4.68 1.02e−10 5.00 2.79e−11 5.01

4 1.64e−12 4.75 3.08e−12 5.05 7.79e−13 5.16

4.2 WENO Reconstructions of Adaptive Order in 2D

In two dimensions, the test function to be reconstructed (the true solution) is u(x, y) = 2(1+
cos(2πx))exy−y , possibly with the addition of a jump term.We consider two reconstructions
of adaptive order (5,3).

We consider the large stencil of 15 elements and three small stencils of 6 elements each
as depicted in Fig. 1. The large and small stencils support polynomials of degree 4 and 2,
respectively. We refine the mesh by contracting the mesh vertices to a fixed point in the
central target element by a factor of 2−L , where the level L = 0, 1, . . .. The linear weights
in the reconstructions are all taken to be equal to each other.

With no jump in the true solution, we see good fifth order convergence of all three recon-
structions in Table 2, where we give the L1

h and L∞
h errors and convergence orders over

the target element. Moreover, the three sets of errors are comparable. The advantage of
SWENOZ-AO is that its (average) computation time is only 1484ns, compared to over
19,300ns for the other two reconstructions. That is, in this test the new reconstruction is
about 13 times faster, due mainly to the fact that SWENOZ-AO uses the new simplified
smoothness indicator (3), while WENO-AO, and WENOZ-AO use the classic smoothness
indicator computed as in (2).

We evaluate the inner-workings of the reconstructions by considering the values of the
smoothness indicators and effective nonlinear weights. The latter are denoted γ� and defined
by

γ0 = ω̃0

ω0
and γ� = ω̃� − ω̃0

ω0
ω�, � > 0, (28)
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so that

Rm(x) = γ0 p0(x) +
L∑

�=1

γ� p�(x). (29)

We see in Table 3 that the simple smoothness indicator agrees rather well with the classic
one. Moreover, the three reconstructions strongly bias the effective nonlinear weights to
emphasize the large stencil. We note that although some of the effective nonlinear weights
γ� are negative (and then only slightly), all of the actual nonlinear weights ω� are positive.

A jump discontinuity of size one is now added to the smooth solution. The discontinuity
is a line that cuts all the stencils except the third one. The line is adjusted on each refinement
level so that it appears stationary in the mesh (much like as is done in 1D). In Table 4, we see
third order convergence and comparable errors for all three reconstructions. For these runs,
the (average) computation time of SWENOZ-AO is 1646ns, compared to over 19,700ns for
the other two reconstructions. That is, for these runs we saw that the new reconstruction is
about 12 times faster.

The smoothness indicators and effective nonlinear weights are given in Table 5. We see
that the simple smoothness indicator agrees approximately with the classic one. Moreover,
the three reconstructions strongly bias the nonlinear weights to stencil number 3, as they
should.

The two tests suggest that the SWENOZ-AO(5,3) reconstruction is on the order of 10
times faster to compute than the classic WENO-AO(5,3) reconstruction. As noted in the
Introduction (§1), the computational cost of the classic reconstruction is O(k2d), while the
simple reconstruction is O(kd). Therefore in 2D the classic reconstruction workload for the
one polynomial of degree 4 and three polynomials of degree 2 is proportional to 44+3×24 =
304, whereas the simple reconstruction workload is only 42+3×22 = 28. Indeed, we should
have expected to see about a tenfold speedup.

5 Application to Conservation Laws

Let {E j } be the computational mesh of the domain of interest, where E j is a polytopal
element inRd and d > 1. Let ∂E j,i , i = 1, · · · , N j be the N j facets of E j , and let |∂E j,i | be
its volume in (d − 1)-dimensions. Let us also assume that the mesh is quasiuniform; that is,
with h = max j |E j |1/d , we have |E j | = Θ(hd) and |∂E j,i | = Θ(hd−1), where the bounds
are independent of j and i .

The integral form of the conservation law (4) over the element E j gives

dū j

dt
+ 1

|E j |
∮

∂E j

F · ν j ds = 0, (30)

where ν j stands for the outward unit normal vector to ∂E j . The boundary integral on each
facet is approximated by a sufficiently accurate quadrature rule, where x j,i,q and |∂E j |w j,i,q

are the quadrature points and weights on facet ∂E j,i , respectively. That is, we approximate
the boundary integral by

∮

∂E j

F · ν j ds ≈
N j∑

i=1

|∂E j,i |
∑

q

w j,i,q F̂j,i,q(t), (31)

where F̂j,i,m(t) = F̂
(
u(x j,i,m, t)

) · ν j is the numerical flux.
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Table 4 Example 4.2. Discrete L1h and L∞
h errors and convergence orders for a discontinuous solution using

the stencils in Fig. 1

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3)
Average time 1646ns Average time 19,742ns Average time 19,874ns

Norm Level Error Order Error Order Error Order

L1h 1 5.95e−05 3.03 9.08e−06 2.97 9.09e−06 2.97

2 5.20e−06 3.51 1.18e−06 2.95 1.18e−06 2.95

3 4.31e−07 3.59 1.50e−07 2.97 1.50e−07 2.97

4 3.75e−08 3.52 1.89e−08 2.99 1.89e−08 2.99

L∞
h 1 1.99e−04 3.02 3.45e−05 2.89 3.45e−05 2.89

2 1.80e−05 3.47 4.49e−06 2.94 4.49e−06 2.94

3 1.52e−06 3.56 5.71e−07 2.97 5.71e−07 2.97

4 1.35e−07 3.50 7.21e−08 2.99 7.21e−08 2.99

The Lax-Friedrichs numerical flux is used, which is given by

F̂j,i,q(t) = F̂
(
u−
j,i,q(t), u

+
j,i,q(t), ν j

)

= 1

2

[(
F

(
u−
j,i,q(t)

) + F
(
u+
j,i,q(t)

)) · ν j,i − α
(
u+
j,i,q(t) − u−

j,i,q(t)
)]

, (32)

where α is bounds the absolute value of the eigenvalues of the Jacobian of F in the direction
of ν j,i = ν j

∣
∣
∂E j,i

, and u−
j,i,q and u+

j,i,q are reconstructed values of u inside the element and

in the neighboring element at the quadrature point x j,i,q , respectively. We use one of the
reconstructions defined in Sect. 2, i.e., SWENOZ-AO, WENO-AO, or WENOZ-AO, using a
set of stencils and parameters to be discussed later when we give numerical results,

The time discretization of the SWENOZ-AO scheme is implemented by a high order
Runge–Kutta method. Although other time integrators could be used, the third order, three
stage total variation diminishing explicit Runge–Kutta method (TVD RK-3) [16] is used,
except for the various convergence tests, which use the standard fourth order, four stage
Runge–Kutta method (nonTVD RK-4).

All the numerical results appearing below in Sects. 6, 7 were obtained with a computer
program compiled using the intel Fortran compiler. The tests were run on an ASUS worksta-
tion ESC8000G4with 256 gigabytes of memory and dual Intel Xeon gold processors running
at 2.30GHz.

6 Numerical Results in One Space Dimension

In one space dimension, we describe our computational mesh as a set of points · · · < x−1/2 <

x1/2 < x3/2 < · · · which partition space into elements E j = [x j−1/2, x j+1/2] with length
Δx j = x j+1/2−x j−1/2 andmidpoint x j = (x j+1/2+x j−1/2)/2. Now h = maxi Δxi and our
assumption of a quasiuniform mesh says that there is some ρ > 0 such that ρh ≤ min j Δx j .

We use the SWENOZ-AO(5, 3) reconstruction in this section. It is defined for a target
element Em using the large stencil S0 = {Em−2, Em−1, Em, Em+1, Em+2} and the three small
stencils S1 = {Em−2, Em−1, Em}, S2 = {Em−1, Em, Em+1}, and S3 = {Em, Em+1, Em+2}.
Condition 1 holds for the stencil polynomial approximationswith r = 5 and s = 3. Following
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Table 6 Example 6.1, linear equation. Discrete L1h and L
∞
h errors and convergence orders at t = 2 on uniform

meshes using Δt = 0.1h, h = 2/m

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3) SWENO-AO(5,3)
Norm m Error Order Error Order Error Order Error Order

L1h 80 1.02e−06 5.58 1.48e−06 4.99 3.97e−07 4.99 1.02E-04 3.05

160 2.79e−08 5.19 4.63e−08 4.99 1.24e−08 4.99 1.27E-05 3.01

320 8.42e−10 5.05 1.44e−09 4.99 3.89e−10 4.99 1.58E-06 3.00

640 2.61e−11 5.01 4.52e−11 4.99 1.21e−11 4.99 1.98E-07 3.00

L∞
h 80 9.79e−07 5.81 1.30e−06 5.03 3.12e−07 4.99 1.00E-04 3.16

160 2.33e−08 5.39 3.91e−08 5.05 9.77e−09 4.99 1.13E-05 3.14

320 6.61e−10 5.13 1.20e−09 5.02 3.05e−10 4.99 1.39E-06 3.02

640 2.02e−11 5.02 3.73e−11 5.01 9.66e−12 4.98 1.73E-07 3.00

Theorem 4, we take η2 = 2 ≥ s/2 and then η1 = (r − s)/2+ η2 = 3. We arbitrarily choose
to use ω0 = 1/2, ω� = 1/6 for � = 1, 2, 3, and ε0 = 1.

Belowwe test the scheme described in Sect. 5 using SWENOZ-AO(5, 3). For comparison,
we also test the scheme using classicWENO-AO(5,3) andWENOZ-AO(5,3) reconstructions
(with η = 2 for both).

6.1 Linear Equation

To determine the rate of convergence, we start with a linear equation, i.e., the problem

ut + ux = 0 and u(x, 0) = 0.5 + sin(πx) for x ∈ (0, 2).

We ran tests over gradually refined, uniform meshes up to time t = 2 using Δt = 0.1h (i.e.,
CFL number = 0.1). We compare the SWENOZ-AO(5,3), WENO-AO(5,3), and WENOZ-
AO(5,3) schemes in terms of discrete L1

h errors (i.e., the L
1 errors of the element averages) and

convergence orders in Table 6. The discrete L∞
h errors and convergence orders are also given

in the table. All schemes are fifth order accurate. The errors are smallest for WENOZ-AO,
followed by SWENOZ-AO, and then WENO-AO. This is perhaps expected, since WENO-Z
weighting biases the nonlinear weights to the linear onesmore than classic weighting. Results
using the simple smoothness indicator (3) combined with the standard WENO weights (6)
(SWENO-AO(5,3)) are provided in the last two columns in Table 6. This scheme does not
lead to the required convergence properties.

6.2 Burgers Equation

We now solve the scalar Burgers equation with 2-periodic boundary conditions to evaluate
the convergence rates; that is, we solve the nonlinear problem

ut + (u2/2)x = 0 and u(x, 0) = 0.5 + sin(πx) for x ∈ (0, 2).

We ran the computation over gradually refined, uniform meshes using Δt = 0.1h (i.e.,
CFL number = 0.15) up to time t = 0.25. This is before the time t = 1/π ≈ 0.32 when
shocks develop. The discrete errors and convergence orders for the three schemes are given
in Table 7. We see that the schemes all approach a fifth order convergence rate.
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Table 7 Example 6.2, Burgers equation with no shocks. Error and convergence order at t = 0.25 using using
Δt = 0.1h, h = 2/m

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3)
Norm m Error Order Error Order Error Order

L1h 160 2.10e−05 3.57 2.40e−05 3.61 2.09e−05 3.70

320 9.62e−07 4.45 1.13e−06 4.40 9.46e−07 4.46

640 3.43e−08 4.80 4.03e−08 4.81 3.37e−08 4.81

L∞
h 160 3.68e−04 3.18 4.36e−04 3.21 3.66e−04 3.39

320 2.49e−05 3.88 3.04e−05 3.84 2.46e−05 3.89

640 9.10e−07 4.77 1.12e−06 4.75 8.97e−07 4.78

Fig. 2 Example 6.2, Burgers equation with a shock. Solutions using SWENOZ-AO(5,3) (circles), WENO-
AO(5,3) (crosses) and WENOZ-AO(5,3) (squares) at time t = 3/(2π) on uniform meshes using Δt = 0.1h,
h = 2/m. The solid line is the reference solution

The circles are SWENOZ-AO(5,3), the crosses are WENO-AO(5,3) and the squares are
WENOZ-AO(5,3) results at time t = 3/(2π) in Fig. 2. The shock is formed at time 1/π <

3/(2π) ≈ 0.48. We do not see oscillation in the shock transition zone.

6.3 Buckley–Leverett Equation

The next scalar equation is the Buckley–Leverett one which uses the flux function

f (u) = u2

u2 + (1 − u)2
. (33)

Shocks and rarefactions interact in this test, for which the initial condition is

u(x, 0) =

⎧
⎪⎨

⎪⎩

1 − 20x for 0 ≤ x ≤ 0.05,

0.5 for 0.25 ≤ x ≤ 0.4,

0 otherwise.

(34)

The problem is solved on [0, 1] using m = 100 mesh elements and Δt = 0.1h (i.e., CFL
number = 0.2). The results are shown in Fig. 3 for the SWENOZ-AO(5,3) (circles), WENO-
AO(5,3) (crosses) andWENOZ-AO(5,3) (squares) schemes. All schemes handle themerging
of the two pulses quite well and with comparable accuracy.
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Fig. 3 Example 6.3, Buckley–Leverett. The solid line is the reference solution. The circles are SWENOZ-
AO(5,3), the crosses are WENO-AO(5,3) and the squares are WENOZ-AO(5,3) results on a uniform mesh
using m = 100 and Δt = 0.1h

6.4 The Euler System

We solve the one-dimensional nonlinear system of Euler equations for gas dynamics
⎛

⎝
ρ

ρu
E

⎞

⎠

t

+
⎛

⎝
ρu

ρu2 + p
u(E + p)

⎞

⎠

x

= 0. (35)

Here ρ is the density, u is the velocity, E is the total energy, and p is the pressure related
to the total energy by E = p

γ−1 + 1
2ρ(u2), γ = 1.4. To avoid spurious oscillations, a

local characteristic decomposition over the conserved variables is perform before applying
SWENOZ-AO to the characteristic variables.We use Roe’s flux as an approximate Riemann
solver.

6.4.1 A Smooth Problem for the Euler Equations

In this example, the initial condition is ρ(x, 0) = 1+0.2 sin(πx), u(x, 0) = 1, and p(x, 0) =
1, with 2-periodic boundary conditions over the spatial domain (0, 2). The exact solution is
ρ(x, t) = 1+0.2 sin(π(x − t)), u = 1, and p = 1. We compute the numerical solution up to
time t = 2 using Δt with CFL number = 0.4 and h = 2/m. In Table 8, we report the discrete
errors and convergence orders for the density. We observe a clean fifth order accuracy using
uniform meshes.

From Fig. 4, we see that the computational efficiency (CPU time versus error) of WENO-
AO and WENOZ-AO are about the same, while SWENOZ-AO is a bit more efficient. The
speedup results of Table 8 confirm this observation aswell. It should be noted that in 1D (using
uniform meshes), there are explicit formulas for the classic low order smoothness indicators,
so the simple smoothness indicator is not expected to gain much speedup. Nevertheless,
SWENOZ-AO is the most efficient scheme among the three.

6.4.2 Riemann Problems for the Euler Equations

Next, we solve 1D shock tube test problems. The primitive variables specify a discontinuous
initial condition

(ρ, u, p) =
{

(ρl , ul , pl), for 0 < x < 1/2,

(ρr , ur , pr ), for 1/2 < x < 1.

The first test case is Sod’s problem, (ρl = 1, ul = 0, pl = 1) and (ρr = 1/8, ur = 0,
pr = 1/10), and the second test is proposed by Lax, (ρl = 0.445, ul = 0.698, pl = 3.528)
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Table 8 Example 6.4.1, Euler equations. Error and convergence order at t = 2, and computational speedup
compared to SWENOZ-AO(5,3)

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3)
norm m error order error order error order

L1h 80 1.59e−07 4.99 2.94e−07 4.99 1.59e−07 4.99

160 4.99e−09 4.99 9.20e−09 4.99 4.97e−09 4.99

320 1.56e−10 4.99 2.87e−10 4.99 1.55e−10 4.99

640 4.87e−12 4.99 8.99e−12 4.99 4.86e−12 4.99

L∞
h 80 1.24e−07 4.99 2.07e−07 4.99 1.24e−07 4.99

160 3.91e−09 4.99 6.47e−09 5.00 3.91e−09 4.99

320 1.22e−10 4.99 2.02e−10 4.99 1.22e−10 4.99

640 3.84e−12 4.97 6.36e−12 4.99 3.84e−12 4.97

speedup 80 1.00 1.23 1.45

160 1.00 1.23 1.49

320 1.00 1.24 1.51

640 1.00 1.22 1.46

Fig. 4 Example 6.4.1, Euler equations. Computational efficiency comparison of the schemes: L1h error (left)
and L∞

h error (right) versus CPU-time for the 1D Euler equations. Shown are results for SWENOZ-AO(5,3)
(circles), WENOZ-AO(5,3) (squares) and WENO-AO(5,3) (crosses)

and (ρr = 0.5, ur = 0, pr = 0.571). We show in Fig. 5 the density ρ at time t = 0.16. We
use Δt with CFL number = 0.3 and h = 1/100 i.e. a uniform mesh of m = 100. The three
schemes give very similar results.

6.4.3 Shu and Osher’s Shock Interaction with Entropy Waves

To show the advantage of a higher order schemes, we present a problem with a shock inter-
acting with entropy waves due to Shu and Osher [25]. The problem is scaled to the domain
(0, 1), and the initial condition is

(ρ, u, p) =
{

(ρl = 3.857143, ul = 2.629369, pl = 10.333333), for 0 < x < 1/10,

(ρr = 1 + 0.2 sin(5(10x − 5)), ur = 0, pr = 1), for 1/10 ≤ x < 1.

The results at time t = 0.18 are reported in Fig. 6, using Δt with CFL number = 0.4 and
h = 1/400 i.e. m = 400 uniform mesh elements. It can be seen that SWENOZ-AO(5,3)
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Fig. 5 Example 6.4.2, Sod and Lax 1D shock tube tests. The density profile at time t = 0.16 using a uniform
mesh of m = 100 elements (h = 1/m) and Δt with CFL number = 0.3. Shown are results for SWENOZ-
AO(5,3) (circles), WENOZ-AO(5,3) (squares) and WENO-AO(5,3) (crosses). The solid line is the reference
solution

Fig. 6 Example 6.4.3, Shu and Osher’s test. The density profile for SWENOZ-AO(5,3) (circles), WENOZ-
AO(5,3) (squares), andWENO-AO(5,3) (crosses) at time t = 0.18usingΔt withCFLnumber=0.4,h = 1/400
i.e. a uniform mesh of m = 400 elements, as well as the fine resolution reference solution (solid line)

(circles) performs better than WENO-AO(5,3) (crosses), and perhaps slightly better than
WENOZ-AO(5,3) (squares).

6.4.4 Woodward and Colella’s Double Blast Test

We end our 1D tests with the blast wave problem of Woodward and Colella, which uses the
initial condition

(ρ, u, p) =

⎧
⎪⎨

⎪⎩

(ρl = 1, ul = 0, pl = 1000), for 0 < x < 1/10,

(ρm = 1, um = 0, pm = 1/100), for 1/10 < x < 9/10,

(ρr = 1, ur = 0, pr = 100), for 9/10 < x < 1.

This problem involves the interaction of two blast waves. The density component of the
solution is shown in Fig. 7 for the time t = 0.038. A reference solution (the fine black line)
is obtained by using the MUSCL scheme with m = 4000. Unlike the other tests, here we
show convergence of our SWENOZ-AO(5,3) scheme using m = 400, 800, and 1600 mesh
elements and Δt with CFL number = 0.2, h = 1/m. For comparison, we also show the
result using m = 800 and classic WENO5 reconstructions (not using adaptive order), which
matches the SWENOZ-AO(5,3) scheme on that mesh quite well.
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Fig. 7 Example 6.4.4, Woodward and Colella’s double blast test. The density profile at time t = 0.038 on
uniform meshes using m = 400, 800, and 1600 for SWENOZ-AO(5,3), shown in black, blue, and red circles,
respectively. Also shown is the result usingm = 800 using classic WENO5 reconstructions (green plus signs)
and the reference solution (fine black line)

Fig. 8 Stencils forWENO-AO(5,3) reconstruction. Depicted (three times) is the large stencil S0 of 25 elements
centered around Em,n . On the left, we also see two of the small stencils of 9 elements centered about Em−1,n−1
(pink) and Em+1,n+1 (light blue). In the center, we see the two small stencils centered at Em−1,n+1 (orange)
and Em+1,n−1 (green). On the right is the small stencil centered at Em,n (gray) (Color figure online)

7 Numerical Results in Two Space Dimensions

We consider now the extension of our SWENOZ-AO reconstructions to the finite volume
scheme (30)–(32) for solving conservation laws in more than one space dimension. We
present only the case of two space dimensions, since extension to three (or more) dimensions
is straightforward. It is well known that implementingWENO schemes on general meshes in
multiple space dimensions has been problematic. Most importantly, one must either define a
set of “good stencils” [7, 14] or use least squares polynomial fitting [21]. Since these issues
have nothing to do with the use of SWENOZ-AO reconstructions, we avoid these unrelated
issues by testing only schemes on logically rectangular computational meshes.

A logically rectangular mesh of quadrilaterals has the advantages of being able to define
its index space as rectangular. The description and implementation of the reconstruction can
therefore be simplified significantly. We define our SWENOZ-AO(5,3) reconstruction on
such logically rectangular meshes. Detailed ideas are described in [6].

The computationalmesh consists of quadrilateral elements {Ei, j }, where i = 1, 2, . . . , N1

and j = 1, 2, . . . , N2. As shown in Fig. 8 for target element Em,n , the large stencil of 25
elements including it and its surrounding elements is

S0 = {Em+i,n+ j : i = −2,−1, 0, 1, 2, j = −2,−1, 0, 1, 2}.
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It is perhaps unclear what small stencils should be taken. We found good results using five
small stencils of 9 elements each, a center element and its surrounding elements. The center
elements are Em−1+i,n−1+ j , Em+1+i,n−1+ j , Em−1+i,n+1+ j , Em+1+i,n+1+ j , and Em+i,n+ j ,
respectively, and so

S1 = {Em−1+i,n−1+ j : i = −1, 0, 1; j = −1, 0, 1},
S2 = {Em+1+i,n−1+ j : i = −1, 0, 1; j = −1, 0, 1},
S3 = {Em−1+i,n+1+ j : i = −1, 0, 1; j = −1, 0, 1},
S4 = {Em+1+i,n+1+ j : i = −1, 0, 1; j = −1, 0, 1},
S5 = {Em+i,n+ j : i = −1, 0, 1; j = −1, 0, 1}.

In particular, inclusion of S5 improved the results for the Riemann problems of Sect. 7.3.2
below.

The SWENOZ-AO(5,3) reconstruction is then as described in Sect. 2, with one important
exception. We impose that the number of elements in the stencil matches the number of
coefficients in the polynomial by using tensor product polynomials Pk,k = span{xi y j :
i, j = 0, 1, . . . , k}. Thus the large stencil uses polynomials in P4,4 and the small stencils use
polynomials in P2,2.

Our choice of stencil polynomials implies that the SWENOZ-AO(5,3) reconstruction will
indeed be O(h5) when u is smooth and reduce to O(h3) when u has a discontinuity. We take
εh = |Ei, j |, η2 = 2, and η1 = 3. The linear weights are ω0 = 1/2, and ω j = 1/10 for
j = 1, 2, 3, 4, 5. When computed, we use the same parameters for the WENO-AO(5,3) and
WENOZ-AO(5,3) schemes, except that now we have simply η = 2.

Note that the one dimensional integrals on each edge in (31) need to be approximated
properly. In order to maintain the overall fifth order accuracy of our scheme, a locally sixth
order accurate 3-point Gauss-Legendre quadrature rule is applied.

Three types of meshes are used in the computational studies:

Type I. Uniform rectangular meshes.
Type II. Nonuniform, perturbed logically rectangular meshes. Starting from a uniform
rectangular mesh (Type I), we randomly perturb the points of the uniform mesh. The
random perturbation of each point is set to be within ±10% of the uniform mesh spacing
h. Also, in order to maintain periodicity on the mesh, the boundary points are perturbed
only in the tangential direction.
Type III. Nested logically rectangular meshes. Type III meshes are used for convergence
tests on nonuniform meshes. We start from a Type II (coarse) mesh (m × m, m = 40).
The next level (fine, 2m × 2m) mesh is obtained as follows. First of all, the fine mesh
inherits all points of the coarse mesh. Secondly, the fine mesh includes a perturbation of
the midpoint of two consecutive coarse mesh points. Finally, we perturb and include the
average of the four vertices of every coarse in the fine mesh. The random perturbation
is set to be within ±5% of one half of the coarse mesh spacing hcoarse and the resulting
meshes have to maintain periodicity.

7.1 Linear Equation in 2D

Our first 2D test is for ut + ux + uy = 0 on [0, 2]2, with the initial condition

u(x, y, 0) = sin2(πx) sin2(π y), (x, y) ∈ [0, 2]2. (36)
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Table 9 Example 7.1, Linear equation. Discrete error and convergence order at t = 2 on Type III meshes
using Δt = 0.1h

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3)
norm m error order error order error order

L1h 80 2.40e−04 4.61 1.31e−04 4.83 2.23e−05 4.97

160 9.11e−06 4.71 4.27e−06 4.94 7.16e−07 4.95

320 3.09e−07 4.87 1.37e−07 4.95 2.31e−08 4.95

640 1.04e−08 4.89 4.66e−09 4.88 8.09e−10 4.83

L∞
h 80 7.12e−04 3.60 1.12e−04 4.75 2.02e−05 4.95

160 3.94e−05 4.17 3.84e−06 4.87 6.51e−07 4.95

320 1.32e−06 4.89 1.32e−07 4.85 2.17e−08 4.90

640 4.64e−08 4.83 5.50e−09 4.59 9.03e−10 4.59

Fig. 9 Example 7.2, Burgers equation with initial condition (36) solved with the SWENOZ-AO(5,3) scheme
using Type II mesh with m = 160 and Δt = 0.1h, h = 1/80, at times t = 0, 0.75, and 1.5

Table 10 Example 7.2, timing results for the three schemes, and the speedup for SWENOZ-AO(5,3)

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3)

time (seconds) 182.7 950.2 941.8

speedup 1.00 5.20 5.15

We use Type III meshes. As shown in Table 9, the discrete error and convergence rates at
time t = 2, using Δt = 0.1h and, approximately, h = 2/m (so CFL number ≈ 0.1). A clean
fifth order of convergence for all three schemes is obtained.

7.2 Burgers Equation in 2D

We now test a two dimensional Burgers equation

ut + (u2/2)x + (u2/2)y = 0.

Wefirst impose the initial condition (36) on [0, 2]2. A 160×160 Type IImesh is used.We take
Δt = 0.1h (CFLnumber≈ 0.1), h = 1/80. Figure9 shows the results for SWENOZ-AO(5,3)
at t = 0, 0.75, and 1.5. The shocks are well resolved by the new scheme.

For this 2D test, we report the solution times in Table 10. Our computer program solved
the overall problem using the SWENOZ-AO scheme in about 182.7 s. This number includes
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Fig. 10 Example 7.2. Burgers equation with initial data (37) solved with the SWENOZ-AO(5,3) scheme using
Type II mesh with m = 160 and Δt = 0.2h to time t = 0.5. The contour plot has 21 level lines

all the time stepping computations, not just the time computing the reconstructions. We
contrast it to the time taken to compute the WENOZ-AO solution, 950.2 s, and the WENO-
AO solution, 941.8 s. We see that the entire computation is speeded up by a factor of about
5 using the simplified smoothness indicator.

Next, we consider a problem posed by Jiang and Tadmor [17] using the initial data

u(x, y, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5, x < 0.5, y < 0.5,

0.8, x > 0.5, y < 0.5,

−0.2, x < 0.5, y > 0.5,

−1.0, x > 0.5, y > 0.5.

(37)

In order to obtain a reliable solution on the domain of [0, 1]2 using periodic boundary
conditions, we use the larger region [−0.5, 1.5]2. Good results are shown in Fig. 10 on
[0, 1]2 at time 0.5 using Δt = 0.2h (with CFL number ≈ 0.2, h = 1/160 and 1/320)
on a 160 × 160 Type II mesh (320 × 320 on [−0.5, 1.5]2). Even though the mesh is not
rectangular, the solution shows no spurious oscillations on all four fronts. We remark that the
WENOZ-AO(5,3) and WENO-AO(5,3) schemes give results that are the same to the naked
eye.

7.3 The 2D Euler Equations

We solve the nonlinear system of Euler equations

ξt + f (ξ)x + g(ξ)y = 0, (38)

where

ξ = (ρ, ρu, ρv, E)T , f (ξ) = (ρu, ρu2 + p, ρuv, u(E + p))T

and g(ξ) = (ρv, ρuv, ρv2 + p, v(E + p))T .

Here ρ is the density, (u, v) is the velocity, and E is the total energy, with the pressure p
being related to the total energy by E = p

γ−1 + 1
2ρ(u2 + v2) (again γ = 1.4).

The extension of the finite volume scheme to the Euler System in two space dimensions
follows closely what is described in [14, Section 4.4]. The eigenvalue matrix for the two-
dimensional Euler system can be found in [22].
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Table 11 Example 7.3.1, 2D Euler convergence. Error and convergence order at t = 2 for the three schemes
on Type I and III meshes using Δt with CFL number = 0.6, h = 2/m. Also shown is the computational
speedup compared to SWENOZ-AO(5,3)

uniform mesh nonuniform mesh
L1h L∞

h L1h L∞
h

m error order error order error order error order

SWENOZ-AO(5,3)

80 1.22e−06 4.32 7.05e−07 4.11 1.22e−06 4.32 7.05e−07 4.11

160 4.19e−08 4.87 2.48e−08 4.82 4.19e−08 4.87 2.48e−08 4.82

320 1.34e−09 4.96 8.02e−10 4.95 1.34e−09 4.96 8.02e−10 4.95

640 4.21e−11 4.99 2.56e−11 4.97 4.21e−11 4.99 2.56e−11 4.96

WENO-AO(5,3)

80 1.86e−06 4.95 7.51e−07 4.95 1.88e−06 4.94 8.34e−07 4.83

160 5.85e−08 4.99 2.35e−08 4.99 6.09e−08 4.95 3.23e−08 4.68

320 1.83e−09 4.99 7.33e−10 5.00 1.97e−09 4.94 1.31e−09 4.61

640 5.72e−11 4.99 2.31e−11 4.98 6.30e−11 4.96 4.98e−11 4.72

WENOZ-AO(5,3)

80 5.37e−07 4.99 2.27e−07 4.99 5.44e−07 4.97 2.39e−07 4.93

160 1.68e−08 4.99 7.13e−09 4.99 1.79e−08 4.92 8.62e−09 4.79

320 5.26e−10 4.99 2.23e−10 4.99 6.00e−10 4.90 3.74e−10 4.52

640 1.65e−11 4.99 7.00e−12 4.99 1.95e−11 4.94 1.53e−11 4.61

Table 12 Example 7.3.1, 2D Euler convergence. Computational speedup compared to SWENOZ-AO(5,3) on
uniform and nonuniform meshes

SWENOZ-AO(5,3) WENO-AO(5,3) WENOZ-AO(5,3)
m uniform nonuniform uniform nonuniform uniform nonuniform

80 1.00 1.00 4.16 4.99 4.60 5.26

160 1.00 1.00 3.96 4.34 4.33 4.38

320 1.00 1.00 3.91 3.50 4.06 3.56

640 1.00 1.00 3.25 3.58 3.34 3.58

7.3.1 A Test of Convergence

Wefirst test the convergence of the scheme.Weconsider the solution of the 2DEuler equations
(38) in the domain [0, 2]2. The initial condition is set to be ρ(x, y, 0) = 1+0.2 sin(π(x+y)),
u(x, y, 0) = 0.7, v(x, y, 0) = 0.3, and p(x, y, 0) = 1, with 2-periodic boundary conditions.
The exact solution is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − (u + v)t)), u = 0.7, v = 0.3, and
p = 1.

The simulation is run to final time 2 using Δt with CFL number = 0.6, h = 2/m on a
Type Im×m mesh, as well as a Type III mesh. The discrete errors and orders of convergence
are reported in Table 11 for our new SWENOZ-AO(5,3) scheme and for theWENO-AO(5,3)
and WENOZ-AO(5,3) schemes. All three schemes show the same convergence behavior.
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Fig. 11 Example 7.3.1, Euler equations. Computational efficiency comparison of the schemes using Type I
(uniform) mesh: L1h error (left) and L∞

h error (right) versus CPU-time for the 2D Euler equations. Shown are
results for SWENOZ-AO(5,3) (circles), WENOZ-AO(5,3) (squares) and WENO-AO(5,3) (crosses)

Fig. 12 Example 7.3.1, Euler equations. Computational efficiency comparison of the schemes using Type III
(nonuniform) mesh: L1h error (left) and L∞

h error (right) versus CPU-time for the 2D Euler equations. Shown
are results for SWENOZ-AO(5,3) (circles), WENOZ-AO(5,3) (squares) and WENO-AO(5,3) (crosses)

We see a clean fifth order convergence using uniform meshes, and a less clean fifth order
convergence using nonuniform meshes, as we should expect.

Table 12 provides the speedup information. We see better speedup results than the 1D
results, as we should have expected. They are not as good as the speedup in Table 2 (pure
reconstruction) and Table 10 (scalar equation). This should also be expected, sincewe include
the entire CPU time for solving the system of Euler equations, which requires more com-
putation and therefore the portion of computing the nonlinear weights is reduced. We also
observe that the speedups for nonuniform meshes are better than those for uniform meshes,
since the latter needs only one computation of the dual basis [2]. Figures11 and 12 display
the CPU time versus error (the computational efficiency) of the three schemes using uniform
and nonuniformmeshes. SWENOZ-AO is clearly the most efficient scheme among the three.

7.3.2 A Riemann Problem

Our next test problem is the 2D Euler equation Riemann problem identified as Configura-
tion F from [23], which has four interacting elementary planar waves. On the computational
domain [0, 2]2, the initial condition is given in Table 13. The solution is symmetric about the
diagonal x = y.

The mesh size is taken to be 600 × 600 for Type II meshes. We compute the solutions
up to the final time 0.52 using Δt with CFL number = 0.4 and show the results in Fig. 13.
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Table 13 Example 7.3.2, initial
data for the 2D Riemann problem

(x, y) ρ0 u0 v0 p0

(1, 2) × (1, 2) 0.5313 0 0 0.4

(1, 2) × (0, 1) 1 0 0.7276 1

(0, 1) × (1, 2) 1 0.7276 0 1

(0, 1) × (0, 1) 0.8 0 0 1

Fig. 13 Example 7.3.2, The 2D Euler equation Riemann problem. Density using a 600× 600 Type II nonuni-
formmesh plotted as thirty equally spaced density contours from 0.56 to 1.67. Plots show SWENOZ-AO(5,3),
WENO-AO(5,3) and WENOZ-AO(5,3) using Δt with CFL number = 0.4, h = 2/600

We see nearly the same solutions for results from SWENOZ-AO(5,3), WENO-AO(5,3) and
WENOZ-AO(5,3), with only small differences between them. We remark that the results for
the uniform mesh appear to be nearly identical.

7.3.3 Mach-3 Wind Tunnel with a Step

This model problem is from [27]. The tunnel’s height and length is 1 unit by 3 units, and it
has within it a forward-facing step appearing at the bottom 0.6 length units from the left side
of the tunnel and being 0.2 length units high. The problem is initialized by a Mach 3 flow
moving to the right. The boundary conditions are taken to be reflective along the walls of the
tunnel, inflow on the left, and outflow on the right.

The corner of the step is a singular point and we treat it based on the assumption of
a nearly steady flow in the region near the corner suggested by Woodward and Colella
[27]. Square cells (greens cells in Fig. 14) are used locally near the corner of the step so
that additional boundary conditions suggested in [27] and ghost cells for setting reflective
boundary conditions could be easily prescribed. We reset the solution in the first four cells
starting from the right of the corner and two cells above this row (cells marked with a cross
in Fig. 14) based on the solution in the cell left and below the corner (marked with a circle in
Fig. 14) after every iteration. The density of each crossed cell is re-initialized so the entropy
has the same value as the circle cell while keeping the pressure unchanged. The velocity
magnitude of the crossed cell is also reset so that the enthalpy has the same value as the circle
cell using the corrected density and pressure.

The results are shown in Fig. 15 at t = 4 using CFL number 0.4 and a 960× 320 Type II
mesh. The three schemes give very comparable results.
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Fig. 14 Example 7.3.3, Mach-3
wind tunnel with a step. Local
mesh and special treatment of the
expansion corner

Fig. 15 Example 7.3.3, Mach-3
wind tunnel with a step at t = 4
using CFL number 0.4 and
960 × 320 Type II mesh. The
density is plotted as thirty equally
spaced density contours from
0.32 to 6.15

7.3.4 Double Mach Reflection

Finally, the double Mach reflection problem was proposed by Woodward and Colella [27].
The computational domain of the problem is [0, 4] × [0, 1]. A shock of Mach 10 is located
at (x, y) = (1/6, 0) and moves diagonally to the right, making a 60 degree angle with the
horizontal axis. See [27] for a detailed description of this problem.

Using a CFL number of 0.4 , the simulation is run on a 1600 × 400 mesh to a final time
of 0.2. We show results in Fig. 16 on [0, 3]× [0, 1] for the nonuniform mesh (Type II), since
we do not see significant differences between the uniform (Type I) and nonuniform meshes.
We also show in Fig. 17 a blow-up of the results on [2, 3] × [0, 0.5]. The results compare
favorably with those found in the scientific literature (e.g., in [14]).
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Fig. 16 Example 7.3.4, Double
Mach reflection at t = 0.2 using
CFL number 0.4 and 1600 × 400
Type II mesh. The density is
plotted as thirty equally spaced
density contours from 1.731 to
20.92

Fig. 17 Example 7.3.4, Double Mach reflection blow-up of results at t = 0.2 using CFL number 0.4 and
1600× 400 Type II mesh. The density is plotted as thirty equally spaced density contours from 1.731 to 20.92

8 Summary and Conclusions

Classic WENO reconstruction is basically restricted to rectangular computational meshes,
and so we concentrated on WENO reconstructions with adaptive order. These require the
computation of the large stencil polynomial. Computation of the classic smoothness indicator
(2), is quite expensive in d space dimensions, especially for a polynomial of high degree k
(such as the large stencil polynomial). In fact, the workload is proportional to k2d . To reduce
the computational work, we proposed using the simple smoothness indicator (3), which has
workload proportional to kd .

It turns out that the simple smoothness indicator is not as robust as the classical one.
Reconstructions based on the simple smoothness indicator combined with standard WENO
weighting do not work well in practice. We therefore developed a modification of WENO-Z
weighting (7)–(8) that, when combined with the simple smoothness indicator, gives a reliable
and accurate reconstruction. We called the reconstruction SWENOZ-AO, and it requires two
parameters η1 and η2.

We proved in Theorem 4 that SWENOZ-AO(r , s) attains O(hr ) accuracy when the solu-
tion is smooth, and drops toO(hs)when there is a jump discontinuity in the solution, provided
one takes η1 − η2 ≥ (r − s)/2 and η2 ≥ s/2. These results were verified in numerical tests.
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Moreover, the 2D tests showed that SWENOZ-AO(5,3) was more than ten times faster to
compute than the classic WENO-AO(5,3) reconstruction.

We defined finite volume schemes to approximate the solution of hyperbolic conservation
laws using the new reconstruction. Numerical tests in 1D and 2D showed results of the same
quality as standardWENOschemes using the classic smoothness indicator, butwith an overall
speedup in the computation time by a factor of about 3.5–5 in 2D tests. The computational
efficiency (CPU time versus error) was also noticeably improved.

Due to limitations of the computer programs used, the numerical results were conducted
in two space dimensions. The new smoothness indicator will clearly be much more efficient
in three and higher dimensions, but it is difficult to say exactly how well it will perform
without extensive numerical tests. Moreover, the two dimensional tests of the reconstruction
in isolation given in Section 4 used general meshes, but the numerical tests of conservation
laws given in Section 7 were conducted only on logically rectangular meshes. Testing of
the new smoothness indicator in more general settings would need to be reserved for future
work.
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