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Abstract We present a new, formally third order, implicit Weighted Essentially Non-
Oscillatory (iWENO3) finite volume scheme for solving systems of nonlinear conser-
vation laws. We then generalize it to define an implicit Eulerian-Lagrangian WENO
(iEL-WENO) scheme. Implicitness comes from the use of an implicit Runge-Kutta
(RK) time integrator. A specially chosen two-stage RK method allows us to drasti-
cally simplify the computation of the intermediate RK fluxes, leading to a compu-
tationally tractable scheme. The iEL-WENO3 scheme has two main steps. The first
accounts for particles being transported within a grid element in a Lagrangian sense
along the particle paths. Since this particle velocity is unknown (in a nonlinear prob-
lem), a fixed trace velocity v is used. The second step of the scheme accounts for
the inaccuracy of the trace velocity v by computing the flux of particles crossing
the incorrect tracelines. The CFL condition is relaxed when v is chosen to approx-
imate the characteristic velocity. A new Roe solver for the Euler system is devel-
oped to account for the Lagrangian tracings, which could be useful even for explicit
EL-WENO schemes. Numerical results show that iEL-WENO3 is both less numeri-
cally diffusive and can take on the order of about 2 to 3 times longer time steps than
standard WENO3 for challenging nonlinear problems. An extension is made to the
advection-diffusion equation. When advection dominates, the scheme retains its third
order accuracy.
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1 Introduction

Consider the scalar conservation law

ut +
(

f (u)
)

x = 0, x ∈ R, t > 0, (1)

u(x,0) = u0(x), x ∈ R, (2)

with the possibly nonlinear flux f (u) = f (u;x, t). Both essentially non-oscillatory
(ENO) and weighted ENO (WENO) schemes [10,11,16,18,20,23] have proven suc-
cessful for high-order accurate approximation of this equation, systems of such equa-
tions, and multi-dimensional problems. WENO is normally implemented as an ex-
plicit scheme. However, many authors have experimented with implicit and semi-
implicit WENO schemes, in order to improve the computation of challenging prob-
lems (see, e.g., [6,32,5,12,31]).

Apparently, Gottlieb, Mullen, and Ruuth [8,9] were the first to introduce a gen-
eral implicit WENO scheme. Because the nonlinear weighting required in a WENO
scheme is quite involved, they introduced in [9] several schemes in which the flux
is included implicitly, but the WENO weighting is done explicitly. They defined the
WENO weights using explicit, predictor-corrector, and multistep methods.

We develop a new, formally third order, implicit WENO (iWENO3) finite volume
scheme for solving (1)–(2) (and systems of such equations). By a special choice of a
two-stage Runge-Kutta time integrator, we can drastically simplify the computation
of the intermediate Runge-Kutta fluxes. This leads to a computationally tractable
scheme that treats the nonlinear weighting fully implicitly.

However, our real interest in this paper is in developing Eulerian-Lagrangian
or semi-Lagrangian schemes (see, e.g., [22,7,4,2]). Eulerian-Lagrangian schemes
have the significant advantage over purely Eulerian schemes in that CFL number re-
strictions are alleviated. The combination of Eulerian-Lagrangian and WENO ideas
appears in many schemes, including those of [24–26,15,14,13]. We develop a for-
mally third order, implicit, Eulerian-Lagrangian (finite volume) WENO scheme (iEL-
WENO3) to approximate the scalar conservation law. It is based on the new Eulerian
iWENO3 scheme, which has a reasonably simple structure that lends itself to modi-
fication by Eulerian-Lagrangian methods.

Similar to other nonlinear Eulerian-Lagrangian WENO schemes [14,13], the iEL-
WENO scheme consists of two main steps. The first accounts for particles being
transported within a grid element in a Lagrangian sense along the particle paths. Since
this particle velocity is unknown (in a nonlinear problem), a fixed trace velocity v≈
∂ f/∂u must be used, as in the Arbitrary Lagrangian-Eulerian (ALE) schemes. That
is, the equation is rewritten as

ut +(vu)x +
(

f (u)− vu
)

x = 0 ⇐⇒ ut +(vu)x +
(
g(u)

)
x = 0,
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where g(u) = f (u)−vu. The particles within a grid element E are traced back in time
within the velocity field v to Ě, where those particles originated from. Integrating
the mass leads to explicit Lagrangian mass transport from Ě to E. This part of the
computation is explicit, and it is essentially exact up to the accuracy of the WENO
reconstructions used.

The second step of the scheme, the flux correction, accounts for the inaccuracy of
the trace velocity v. We compute the flux of particles crossing the incorrect tracelines
bounding the space-time region connecting E to Ě. Although these tracelines change
with time, this computation is similar to what is done in an Eulerian scheme. By our
choice of implicit Runge-Kutta method, no higher order derivatives of the flux need
be computed. It is thus reasonable to compute the solution by Newton’s method, even
with nonlinear WENO reconstructions being involved.

Although we omit the details, a Strang splitting in space can be used to extend
the one dimensional scheme to higher dimension, as in, e.g., [15].

The method can be extended to systems of equations, but we only present exten-
sion to the Euler system for a polytropic gas. Unfortunately, the local characteristic
decomposition of the variables must be done explicitly. We develop a new Roe solver
to account for the Lagrangian tracings. It could be useful even for explicit EL-WENO
schemes.

Because of the Lagrangian tracing, the CFL condition for iEL-WENO is relaxed
when v is chosen to approximate the characteristic velocity. Numerical results will
show that very long time steps can be taken for linear problems, up to even 15 times
the Eulerian CFL limit. For nonlinear problems, compared to standard WENO3, the
iEL-WENO3 scheme is both less numerically diffusive and can take longer time
steps. We will see that time steps on the order of about 2 to 3 times longer than
WENO3 can be used for challenging nonlinear scalar problems and Euler systems.

While it is true that implicit schemes are computationally more demanding, ef-
ficiency is not our main concern in this work. Rather, we want the ability to han-
dle challenging nonlinear problems, and to see improved fidelity of the solution.
Moreover, we are interested in advection-diffusion problems, which must have an
implicit component. Our approach is suited to solving advection-diffusion equations,
as long as the problem is advection dominated. In that case, the extra computational
work is already required for the diffusive part of the computation, and our scheme
becomes computationally reasonable. We present three numerical results for an ad-
vection dominated problem, which will show third order accuracy and the ability to
capture sharp fronts extremely well.

Our new scheme has three main complications. It is implicit, it uses Lagrangian
ideas, and it extends to systems. Before presenting the full scheme, we first describe
the iWENO3 scheme in Section 2 for scalar equations completely in Eulerian terms.
This Eulerian scheme could be implemented; however, as noted, our interest is to
present the Eulerian-Lagrangian version iEL-WENO3, which we do in Section 3.
We present numerical results for scalar equations in Section 4, as well as our ex-
tension and application to advection-diffusion problems. In Section 5, we extend the
iEL-WENO3 scheme to the Euler system, and we present numerical results for it in
Section 6. Conclusions appear in the final section of the paper.
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2 The implicit finite volume WENO3 scheme

Partition time and space as 0 = t0 < t1 < t2 < · · · and · · · < x−1 < x0 < x1 < · · · ,
respectively, where ∆x = xi+1− xi is constant. The grid cell or element is Ei+1/2 =
[xi,xi+1]. We assume that we have as data (approximately) the cell average values of
the solution u(x), which are

ūn
i+1/2 =

1
∆x

∫ xi+1

xi

u(x, tn)dx, i = . . . ,−1,0,1, . . . . (3)

The standard Eulerian finite volume scheme is derived by integrating (1) over
[xi,xi+1]× [tn, tn+1] to obtain

ūn+1
i+1/2 = ūn

i+1/2 +
1

∆x

∫ tn+1

tn

(
f (u(xi, t)− f (u(xi+1, t)

)
dt. (4)

For a third order scheme, it is sufficient to replace the time integration by a locally
fourth order quadrature rule. We use a two point Gaussian quadrature rule, i.e.,∫ tn+1

tn
f (u(xi, t)dt ≈ ∆ t

[
ω

G1 f (u(xi, tG1))+ω
G2 f (u(xi, tG2))

]
, (5)

where {ωG1 ,ωG2} are the Gauss weights for the reference interval [0,1] and {tG1 , tG2}
are the Gauss points for the interval [tn, tn+1].

In order to accommodate solutions with shocks, we need a numerical flux func-
tion f̂ that takes into account right and left values of the solution at the grid points.
We use the standard Lax-Friedrichs flux, i.e.,

f̂ (a,b) =
1
2
[ f (a)+ f (b)−α(b−a)], (6)

where α = max
u,x,t
|∂ f (u)/∂u| is a constant. (We could also define α locally [21], which

generally results in sharper resolution of shocks.) Let us denote ui(t) := u(xi, t), and
denote reconstructed right and left point values by ui+(t) and ui−(t), respectively.
Then the scheme takes the general form

ūn+1
i+1/2 = ūn

i+1/2 +
∆ t
∆x

2

∑
`=1

ω
G`

[
f̂
(
ui−(tG`),ui+(tG`)

)
− f̂
(
u(i+1)−(t

G`),u(i+1)+(t
G`)
)]
. (7)

In order to find proper values for ui±(t) at the Gauss points in time, we fix x = xi
and apply an implicit Runge-Kutta method to the problem

∂ui±(t)
∂ t

= − f (ui±(t))x := F(t,ui±(t)), (8a)

ui±(tn) = Ri±(ūn
i−3/2, . . . , ū

n
i+3/2) (8b)

using right or left biased reconstructed values Ri± of u(xi, tn) for the initial condition,
as described below. A second order Runge-Kutta method is sufficient, since such a
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scheme is locally third order and the result is used inside a time integral. The solution
at the (n+ 1)st time step obtained by a general two-stage Runge-Kutta scheme can
be written as

un+1
i± = un

i±+∆ t
(

b1g(1)i± +b2g(2)i±

)
, (9)

where the Runge-Kutta fluxes are defined by

g(1)i± = F
(
tn + c1∆ t, un

i±+∆ t(a11g(1)i± +a12g(2)i± )
)
, (10a)

g(2)i± = F
(
tn + c2∆ t, un

i±+∆ t(a21g(1)i± +a22g(2)i± )
)
. (10b)

The matrix a and the vectors b and c define the Runge-Kutta method, and the method
is explicit precisely when a is lower triangular. For consistency, ci = ∑ j ai j.

To avoid solving (8) independently for each Gauss time, it is common to solve
it once and use the natural continuous extension (NCE) of Zennaro [33]. The NCE
provides a uniformly accurate solution of the differential equation over the entire
time interval. In fact, each ν-stage Runge-Kutta method of order p has an NCE.
To illustrate the idea, consider Ut = F(U). One simply computes the usual Runge-
Kutta fluxes g(`), ` = 1, . . . ,ν , which are normally recombined to form the solution
at time tn+1 as U(tn+1) ≈ Un+1 = Un +∆ t ∑

ν
`=1 b` g(`). Zennaro proved that there

exist ν polynomials b`(θ), `= 1, . . . ,ν , of degree at most p, such that U(tn+θ∆ t)≈
Un+θ =Un+∆ t ∑

ν
`=1 b`(θ)g(`) to order p for any 0≤ θ ≤ 1. In our case, an accurate

solution at time tn +θ∆ t can be found as

ui±(tn +θ∆ t) = ui±(tn)+∆ t
(

b1(θ)g
(1)
i± +b2(θ)g

(2)
i±

)
, (11)

where the polynomials b1(θ) and b2(θ) depend on the Runge-Kutta method chosen.

-
xi−3 xi−2 xi−1 xi xi+1 xi+2

ūi−5/2 ūi−3/2 ūi−1/2 ūi+1/2 ūi+3/2

ui−

︸ ︷︷ ︸
u(i−1)− u(i+1)−

fi−f(i−1)− f(i+1)−︸ ︷︷ ︸
fx,i−

Fig. 1 Illustration of the left reconstructions Ri− = ui− and fx,i− used in the Runge-Kutta step. These
computations are explicit at tn but implicit at tn+1. The average values

{
ūi−3/2, ūi−1/2, ūi+1/2

}
are com-

bined using standard WENO3 to obtain the point value ui−, and similarly for u(i−1)− and u(i+1)−. The
values of f can then be evaluated, and further combined using WENO to obtain a reconstruction of the
derivative fx,i−.

We follow Levy et al. [18,19] to compute the WENO reconstruction of F(t,u) =
− f (u)x in (10). We illustrate the idea in Fig. 1 for the left reconstructions. Aver-
age values of the solution ūn

j+1/2 or, implicitly, ūn+1
j+1/2 are combined using stan-

dard WENO3 to obtain right or left biased point values ui±, respectively. We de-
note these two operators by Ri±(ūi−3/2, . . . , ūi+3/2) = ui±, which uses the right sten-
cil {ūi−1/2, ūi+1/2, ūi+3/2} or the left stencil {ui−3/2,ui−1/2,ui+1/2}, respectively. For
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example,

Ri− = w1

(
−

ūi−3/2

2
+

3ūi−1/2

2

)
+w2

( ūi−1/2

2
+

ūi+1/2

2

)
,

where w1 and w2 are the nonlinear weights, i.e., 1/3 and 2/3 modified by the smooth-
ness indicators IS1 = (ūi−3/2− ūi−1/2)

2 and IS2 = (ūi−1/2− ūi+1/2)
2.

Once we have point values of u, we can then evaluate f . A second WENO re-
construction of three of these values gives the point value of the derivative of f . That
is,

fi±,x = w1

( fi±− fi±−1

∆x

)
+w2

( fi±+1− fi±
∆x

)
, (12)

where w1 and w2 are the nonlinear modifications of the linear weights 1/2 and 1/2
using IS1 = ( fi±−1− fi±)

2 and IS2 = ( fi±− fi±+1)
2.

At first glance, it appears that finding the solution of the scheme requires, e.g.,
Newton’s method applied to the equations (7) and (10) for the variables ūn+1

i+1/2, g(1)i± ,

and g(2)i± (using also (11)). However, (9) allows us to remove, e.g., g(2)i± in terms of

un+1
i± and g(1)i± , which in turn are reconstructions of ūn+1

j+1/2; that is, we have that

g(2)i± =
1

b2(1)

(un+1
i± −un

i±
∆ t

−b1(1)g(1)i±

)
. (13)

Computation showed that it is indeed valuable to eliminate g(2)i± ; it is both less costly
and allows for longer time steps.

Recalling (9)–(10), perhaps the best way to describe a Runge-Kutta method is

by its Butcher tableau
c a

bT . We chose to investigate two implicit Runge-Kutta

schemes. The first is the second-order A-stable scheme [17]

0 0 0
1 1/2 1/2

1/2 1/2
, (14)

for which b1(θ) = θ − θ 2/2 and b2(θ) = θ 2/2. The other is the strongly S-stable
diagonally implicit Runge-Kutta (DIRK or RK) scheme [1]

1−
√

2/2 1−
√

2/2 0
1

√
2/2 1−

√
2/2√

2/2 1−
√

2/2
, (15)

where b1(θ) =
√

2(θ − θ 2/2) and b2(θ) = (1−
√

2)θ +
√

2θ 2/2. Computational
results showed little difference between the two Runge-Kutta methods (14) and (15).
We proceed with the first choice, i.e., the scheme (14). It is simpler than the other,
since g(1)i± is computed explicitly as

g(1)i± = F(tn,un
i±). (16)
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When (13) is used to remove g(2)i± , we need only use Newton’s method to solve for
ūn+1

i+1/2. This simplicity is, in fact, needed in the next section to define an Eulerian-
Lagrangian version of the scheme.

We now express our implicit scheme using the Runge-Kutta method (14) in some-
what more detail to illuminate its nonlinear structure. First note that, by (11) and (13),

ui±(tG`) =
(

1− b2(θ`)

b2(1)

)
un

i±+∆ t
(

b1(θ`)−b2(θ`)
b1(1)
b2(1)

)
g(1)i± +

b2(θ`)

b2(1)
un+1

i±

= (1−θ
2
` )u

n
i±+∆ t(θ`−θ

2
` )g

(1)
i± +θ

2
` un+1

i± , (17)

where θ` =
1
2 (1+(−1)`/

√
3) and `= 1,2. Thus,

ui±(tG`) = θ
2
` Ri±(ūn+1

i−3/2, . . . , ū
n+1
i+3/2)+ r`i±, (18)

where
r`i± = (1−θ

2
` )Ri±(ūn

i−3/2, . . . , ū
n
i+3/2)+∆ t(θ`−θ

2
` )g

(1)
i± (19)

is explicit. Note that, due to our special choice of Runge-Kutta method (14), no im-
plicit derivatives of f are needed to compute (18) (only explicit derivatives are needed
to compute r`i±, i.e., g(1)i± in (19)). Then our scheme (7) with (6) can be expressed as

ūn+1
i+1/2 = ūn

i+1/2 +
∆ t
∆x

2

∑
`=1

ω
G`

[
f̂
(
θ

2
` Ri−(ūn+1

i−3/2, ū
n+1
i−1/2, ū

n+1
i+1/2)+ r`i−,

θ
2
` Ri+(ūn+1

i−1/2, ū
n+1
i+1/2, ū

n+1
i+3/2)+ r`i+

)
− f̂
(
θ

2
` R(i+1)−(ū

n+1
i−1/2, ū

n+1
i+1/2, ū

n+1
i+3/2)+ r`(i+1)−,

θ
2
` R(i+1)+(ū

n+1
i+1/2, ū

n+1
i+3/2, ū

n+1
i+5/2)+ r`(i+1)+

)]
. (20)

The scheme (20) is implicit since the arguments of f̂ contains the five unknowns
{ūn+1

i−3/2, . . . , ū
n+1
i+5/2}. It is also a nonlinear scheme, due to the (possible) nonlinearity

of f (u), but also due to the nonlinear weighting used within the WENO reconstruc-
tions, which appear directly and implicitly in Ri±(ūn+1

i−3/2, . . . , ū
n+1
i+3/2) but also show

up explicitly in r`i± and g(1)i± . A nonlinear solver such as Newton’s method can be used
to solve (20). Terms like

∂ f (ui±(tG`))

∂ ūn+1
j+1/2

=
∂ f (ui±(tG`))

∂u
∂ui±(tG`)

∂ ūn+1
j+1/2

=
∂ f (ui±(tG`))

∂u
θ

2
`

∂Ri±(ūn+1
i−3/2, . . . , ū

n+1
i+3/2)

∂ ūn+1
j+1/2

must be computed to obtain the Jacobian matrix. The choice of Runge-Kutta method
(14) means that we do not need to compute higher order derivatives of the flux terms.
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3 The implicit Eulerian-Lagrangian WENO3 scheme

We present the iEL-WENO3 scheme in this section. A Strang splitting in space can
be used to extend the one dimensional scheme to higher dimensions, but we omit the
details (see, e.g., [15]).

3.1 The approximate velocity v for Lagrangian tracing

The true Lagrangian trace velocity is unknown in a nonlinear problem. We adopt the
point of view of the Arbitrary Lagrangian-Eulerian (ALE) schemes and fix a known
velocity v(x, t) that we view as approximating the true velocity over the time interval
[tn, tn+1] (using information computed up to time tn). Following [13], Lagrangian
tracing of a particle at position x at time tn+1 through the velocity field v(x, t) gives
the position x̌(t) = x̌(t;x), which we will call the v-trace. It satisfies

dx̌(t)
dt

= v(x̌(t), t) and x̌(tn+1) = x. (21)

Generally we trace backward to time tn, and we call x̌n(x) := x̌(tn;x) the v-trace-back
point for x. For a grid point xi, we also denote x̌i(t) := x̌(t;xi) and x̌n

i := x̌(tn;xi), as
illustrated in Fig. 2. As we will see, the scheme itself requires only x̌n

i , not the entire
curve. We can solve (21) as accurately as we wish, since v is given. However, v is
only an approximation, so we do not require x̌n

i to high accuracy. The flux correction
step in Section 3.3 will correct any errors made here.

- xtn ř
xn

i

6
t

tn+1
xi

x̌i(t)

Fig. 2 Illustration of the v-traceline x̌i(t)
of a grid point xi.

- xtn ř
xn

i

r
x̌n

i+1

6
t

tn+1
xi xi+1Ei+1/2

Ěi+1/2

Si
Si+1

Ei+1/2

Fig. 3 Illustration of the space-time region Ei+1/2 with its
top Ei+1/2, bottom Ěi+1/2 and sides Si and Si+1.

In an Eulerian-Lagrangian method, one traces all the particles within an Eulerian
grid element. For the element Ei+1/2 = [xi,xi+1], we denote by Ei+1/2 the resulting
swept space-time region using the velocity v, which is

Ei+1/2 := {(x̌(t;x), t) : tn ≤ t ≤ tn+1 and x ∈ Ei+1/2},

as illustrated in Fig. 3. The boundary consists of four parts, Ei+1/2 on the top when
t = tn+1 and

Ěi+1/2 := {x̌(tn;x) : x ∈ Ei+1/2}= [x̌n
i , x̌

n
i+1] on the bottom when t = tn,

Si := {(x̌i(t), t) : tn ≤ t ≤ tn+1} on the left side,

Si+1 := {(x̌i+1(t), t) : tn ≤ t ≤ tn+1} on the right side.
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We call the interval Ěi+1/2 the v-trace-back of Ei+1/2.

3.2 Mass conservation over the v-trace-back space-time region

We view the differential equation (1) in divergence form, i.e., as

∇t,x ·
( u

f (u)

)
= 0. (22)

For each grid element Ei+1/2, we integrate this in space-time over Ei+1/2 and apply
the divergence theorem. The result is∫

Ei+1/2

u(x, tn+1)dx−
∫

Ěi+1/2

u(x, tn)dx

=−
∫

Si

( u
f (u)

)
·
( v
−1

) dσ√
1+ v2

−
∫

Si+1

( u
f (u)

)
·
(−v

1

) dσ√
1+ v2

=
∫ tn+1

tn

(
f (u)− vu

)∣∣
x=x̌i(t)

dt−
∫ tn+1

tn

(
f (u)− vu

)∣∣
x=x̌i+1(t)

dt. (23)

In a strict Eulerian-Lagrangian method, one would trace the particles in space-time
along the physically correct velocity, f (u)/u. With v = f (u)/u, there would be no
flux terms on Si and Si+1. In our setting, with f (u)/u unknown, we need to account
for this flux, as well as the integration of u over the v-trace-back Ěi+1/2. Therefore,
we have two main steps in our scheme: the computation of the mass at time tn and
the flux correction, which is an approximation of the flux along Si (and Si+1).

Of course, the integral at time tn+1 in (23) is approximated as∫
Ei+1/2

u(x, tn+1)dx≈ ∆x ūn+1
i+1/2. (24)

The integral at time tn is approximated as∫
Ěi+1/2

u(x, tn)dx = ∑
j

∫
Ěi+1/2∩E j+1/2

u(x, tn)dx≈∑
j

∫
Ěi+1/2∩E j+1/2

Ř(x, ūn)dx, (25)

where Ř(x, ūn) is the reconstruction operator used at time tn. We could use a rela-
tively standard WENO3 targeting high order approximation of the integral, which is
what is used in the linear transport scheme described by the authors and Qiu in [15].
However, we shall adopt the somewhat simpler approach Levy, Puppo, and Russo
[18,19] used to define their CWENO3 scheme, because this approach does not re-
quire pre-defined exact linear weights. To avoid confusion, we refer this type of re-
construction as LPR-WENO.

Briefly, Ř(x, ū) is a reconstruction of u using the cell averages {ū j−1/2, ū j+1/2,
ū j+3/2}. The same reconstruction is valid for any point x ∈ E j+1/2. It is a linear com-
bination of the one quadratic polynomial and the two linear polynomials that preserve
average mass over each grid element of the interval [x j−1,x j+2], [x j−1,x j+1], and
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[x j,x j+2], respectively. Using the cell centers xk+1/2 = xk +∆x/2, these polynomials
are

P0(x) = ū j+1/2−
1

24
(
ū j+3/2−2ū j+1/2 + ū j−1/2

)
+

ū j+3/2− ū j−1/2

2∆x
(x− x j+1/2)

+
ū j+3/2−2ū j+1/2 + ū j−1/2

2∆x2 (x− x j+1/2)
2, (26)

PL(x) = ū j−1/2
x j+1/2− x

∆x
+ ū j+1/2

x− x j−1/2

∆x
, (27)

PR(x) = ū j+1/2
x j+3/2− x

∆x
+ ū j+3/2

x− x j+1/2

∆x
. (28)

For some choice of fixed weights W1 > 0 and W2 > 0 such that 2W1 +W2 = 1, the
reconstruction is then

Ř(x, ū) =
w2

W2

[
P0(x)−W1

(
PL(x)+PR(x)

)]
+w1,LPL(x)+w1,RPR(x), (29)

where w2 is the nonlinear weight for W2 using P0, and w1,L and w1,R are the nonlinear
weights for W1 using PL and PR, respectively. The reconstruction can be integrated
over any interval, including the one we need Ěi+1/2∩E j+1/2.

3.3 The flux correction: approximation of the flux between space-time regions

It remains to approximate the two integrals of the flux in (23) over the space-time
paths Si and Si+1. As in the purely Eulerian scheme (20) of the previous section, we
need to use a numerical flux for these terms. Again, we use the Lax-Friedrichs flux
function, but now this function is taken for

g(u) := f (u)− vu. (30)

Technically, we should take α = max
u,x,t
|∂ f (u)/∂u− v|. However, for simplicity, we

took α = max
u,x,t
|∂ f (u)/∂u| as before, since

max
u,x,t
|∂ f (u)/∂u− v|/ max

u
|max

u,x,t
|∂ f (u)/∂u|= α (31)

when v is close to ∂ f/∂u. Thus we define

ĝ(a,b) =
1
2
[g(a)+g(b)−α(b−a)] = f̂ (a,b)− v

a+b
2

. (32)

Consider the left integral Si in (23) (the other being similar). We approximate it
as in (5) using the two-point Gauss rule. If we denote ǔi(t) := u(x̌i(t), t), we have∫ tn+1

tn

(
f (u)− vu

)∣∣
x=x̌i(t)

dt =
∫ tn+1

tn
g(ǔi(t))dt

≈
∫ tn+1

tn
ĝ(ǔi−(t), ǔi+(t))dt ≈ ∆ t

2

∑
`=1

ω
G` ĝ
(
ǔi−(tG`), ǔi+(tG`)

)
= ∆ t

2

∑
`=1

ω
G`

[
f̂
(
ǔi−(tG`), ǔi+(tG`)

)
− v
(
x̌i(tG`), tG`

) ǔi−(tG`)+ ǔi+(tG`)

2

]
. (33)
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Combining this with (23), our Eulerian-Lagrangian scheme can be expressed in gen-
eral terms as

ūn+1
i+1/2 =

1
∆x ∑

j

∫
Ěi+1/2∩E j+1/2

Ř(x, ūn)dx

+
∆ t
∆x

2

∑
`=1

ω
G`

[
ĝ
(
ǔi−(tG`), ǔi+(tG`)

)
− ĝ
(
ǔ(i+1)−(t

G`), ǔ(i+1)+(t
G`)
)]
, (34)

which reduces to (7) in the purely Eulerian case, i.e., the choice v = 0.
The main task remaining is to find a proper reconstruction of right and left biased

values of ǔi(t) = u(x̌i(t), t) at the Gauss points in time along the v-trace. Unlike the
case of Eulerian methods, the Lagrangian case has a path of integration that evolves
in space, and so some special treatment is required. Along the v-trace where x = x̌i(t),
the evolution of ǔi is governed by

dǔi(t)
dt

=
du(x̌i(t), t)

dt
= ux(x̌i(t), t)

dx̌i

dt
+ut(x̌i(t), t)

= ux(x̌i(t), t)v(x̌i(t), t)− ( f (u))x
∣∣
(x,t)=(x̌i(t),t)

:= F̌(t, ǔi(t)), (35)

where we used the definition of the v-trace (21) and the differential equation (1).
The solution of this problem by a Runge-Kutta method requires an evaluation of the
right-hand side function F̌(t, ǔi), and therefore an evaluation of the x-derivatives of f
and u, at the intermediate Runge-Kutta times along the v-trace path. We use only the
second-order A-stable scheme (14), since there are no intermediate slopes, but only
g(1) and g(2) at times tn and tn+1. Recall that g(1)i is computed explicitly and g(2)i is
eliminated from the system using (13). Moreover, because we use the NCE to handle
the Gauss-points in time, we only need to describe how to compute g(1)i , i.e.,

g(1)i = F̌(tn, ǔn
i ) = (ǔn

i )x v(x̌n
i , t

n)−
(

f (ǔn
i )
)

x. (36)

The derivatives within g(1)i require the evaluation of three values of the solution u.
To avoid numerical difficulties, we use a locally frozen velocity field, as was used in
[13,14]. We illustrate the ideas in Fig. 4. The point xi is v-traced to x̌n

i =: x̌n
i,0 at time

tn, tracing out the path Si =: Si,0. We then freeze the velocity locally, so that the
nearby points xi±1 are traced on parallel trajectories Si,±1 := Si± (∆x,0). We care
only about the points at time tn, which are x̌n

i,±1 := x̌n
i ±∆x. The use of a locally

frozen velocity ensures that our three points x̌n
i,`, `=−1,0,1, are equally spaced. The

solution at time tn is reconstructed using these three points.
At the time tn, we can explicitly evaluate ǔn

i,` ≈ u(x̌n
i , t

n), ` = −1,0,1, using a
WENO reconstruction. Assume for the moment that x̌n

i,0 is not too close to a grid
point, so we can simply take the same value for the right and left reconstructions.
In this case, identify the index k such that x̌n

i,0 ∈ Ek+1/2 and reconstruct ǔn
i,` using

ūn
k+`−1/2, ūn

k+`+1/2, and ūn
k+`+3/2. Again to avoid the need for finding exact linear

weights, we use the LPR-WENO reconstruction Ř(x, ūn) of linear and quadratic
polynomials as in [18,19] to find a third order reconstruction of the solution u.
Once we have reconstructed ǔn

i,` = Ř(x̌n
i,`, ū

n), ` = −1,0,1, we can then evaluate
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- xtn r
x̌n

i,−1

r
x̌n

i,0 = x̌n
i

r
x̌n

i,1

6
t

tn+1
xi−1 xi xi+1

Si,−1

S i,0
=

S i
Si,1

= x̌n
i −∆x = x̌n

i +∆x

Fig. 4 A depiction of RK2 used to reconstruct the flux along the v-trace. The point xi is v-traced to x̌n
i,0 := x̌n

i
at time tn, tracing out the path Si,0 := Si. Freezing the velocity locally, the points xi±1 are traced on
parallel trajectories Si,±1 := Si± (∆x,0). So, along the frozen velocity path, the points xi±1 are traced to
x̌n

i,±1 := x̌n
i ±∆x. The solution at time tn is reconstructed using these three points.

f̌ n
i,` = f (ǔn

i,`), as illustrated in Fig. 5. A standard WENO reconstruction (12) gives the
derivatives of u and f , denoted ǔn

i,x and f̌ n
i,x.

If x̌n
i,0 is close to a grid point (say, within 1E-10), then we need right and left

values of the trace-back quantities, which can be constructed using two values of k.
That is, when x̌n

i,0 ≈ x j, take k = j for the right values and k = j−1 for the left values
to define the reconstructions, which we denote Ř±(x, ūn).

We reiterate that in the second order A-stable scheme (14), we only need to com-
pute g(1)i defined in (36), which is computationally reasonable, since it is explicit.
We do not need to approximate (35), because Runge-Kutta fluxes are not required
at intermediate times. Limiting Runge-Kutta fluxes to times tn and tn+1 (where the
latter flux is removed using (13)) limits accuracy to third order. It is not clear how
one might extend our ideas to computationally efficient implicit Eulerian-Lagrangian
schemes of order higher than three, which would require solving (35) to get interme-
diate Runge-Kutta fluxes.

-
xk−2 xk−1 xk xk+1 xk+2 xk+3

ūk−3/2 ūk−1/2 ūk+1/2 ūk+3/2 ūk+5/2

rx̌n
i,−1 rx̌n

i,0 rx̌n
i,1

ǔn
i,0

︸ ︷︷ ︸
ǔn

i,−1 ǔn
i,1

f̌ n
i,0f̌ n

i,−1 f̌ n
i,1︸ ︷︷ ︸

ǔn
i,x, f̌ n

i,x

Fig. 5 Illustration of the reconstruction of ǔn
i = Ř(ūn, x̌n

i ), its derivative, and f̌ n
x,i used in the evaluation of

the Runge-Kutta flux g(1)i . Given the trace-back points x̌n
i,` = x̌n

i + `∆x, ` = −1,0,1 (assuming these are
not at grid points), we identify the index k so that x̌n

i ∈ [xk,xk+1]. We use LPR-WENO to reconstruct the
values ǔn

i,`, which can then be substituted into f (u) to obtain f̌ n
i,`. Finally, the three are combined to give

an approximation to the derivatives.
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The nonlinear structure of the scheme (34) is illuminated by expressing ǔi(tG`) as
in (17)–(18), which is

U `
i±(ū

n+1) := ǔi±(tG`) = θ
2
` Ri±(ūn+1)+ r`i±, (37)

where
r`i± = (1−θ

2
` )Ř±(x̌

n
i , ū

n)+∆ t(θ`−θ
2
` )g

(1)
i± (38)

and g(1)i± is computed from (36). Then we have

ūn+1
i =

1
∆x ∑

j

∫
Ěi+1/2∩E j+1/2

Ř(x, ūn)dx

+
∆ t
∆x

2

∑
`=1

ω
G`

[
f̂
(
U `

i−(ū
n+1), U `

i+(ū
n+1)

)
− f̂
(
U `
(i+1)−(ū

n+1), U `
(i+1)+(ū

n+1)
)

− v
(
x̌i(tG`), tG`

)U `
i−(ū

n+1)+U `
i+(ū

n+1)

2

+ v
(
x̌i+1(tG`), tG`

)U `
(i+1)−(ū

n+1)+U `
(i+1)+(ū

n+1)

2

]
. (39)

Solution by Newton’s method can be found similarly to the Eulerian scheme.
In our scheme, the main component of the mass is transported in Lagrangian

terms in an essentially exact manner. But because the trace velocity v is not exact, the
flux correction step must be performed to account for flux crossing the traceline Si.
Therefore, the CFL constraint is based on this step, and the constraint is [13]

∆ t ≤ ∆x
max |∂g/∂u|

=
∆x

max |∂ f/∂u− v|
. (40)

So if indeed v≈ ∂ f/∂u, then the CFL constraint is significantly relaxed from that of
a purely Eulerian scheme for which v = 0. Of course, our scheme is both Eulerian-
Lagrangian and implicit, so the CFL time step restriction is not necessarily required
to maintain stability.

We remark that the domain of dependence of the explicit EL-WENO3 scheme
[13] is a trapezoidal region that contains a stencil with five values at time tn. The
implicit scheme only needs a stencil with three or four values at time tn, depending
on whether right and left values are computed. However, the unknowns at time tn+1

are fully coupled in the implicit scheme.

4 Some numerical results for scalar equations

We present several examples of our numerical scheme for scalar equations to test its
accuracy and performance. In all cases, we define the trace velocity to approximate
the characteristic velocity ∂ f/∂u. For simplicity, we take a locally constant trace
velocity, i.e., for each grid point xi, we fix the value of the trace velocity as vi while
tracing out the curves x̌i. We begin with three test cases for the linear equation

ut +(a(x, t)u)x = 0, (41)
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for which we specify only the velocity a(x, t) and take the trace velocity vi = a(xi, tn).
We then consider the nonlinear Burgers’ and Buckley-Leverett equations, for which
the flux f (u;x, t) is a function of u only. In these nonlinear cases, we evaluate un

i,up =
Ri±(ūn

i−3/2, . . . , ū
n
i+3/2), where the right or left value is taken to correspond to the

upstream value as determined by the Rankine-Hugoniot jump condition. We then
take vi(x) = f ′(un

i,up).
We report errors in the usual discrete L1

∆x-norm, which is

‖un
true−un

approx‖L1
∆x

:= ∑
i

∣∣utrue(xi+1/2, t
n)− Ř(xi+1/2, ū

n)
∣∣∆x. (42)

We also report discrete L∞
∆x-norm errors, which is the maximum of the absolute cell

center point errors
∣∣utrue(xi+1/2, tn)− Ř(xi+1/2, ūn)

∣∣.
4.1 Example 1, Shu’s linear test with velocity a = 1

m = 100, CFL = 20.5 m = 200, CFL = 20.5 m = 400, CFL = 6.5 m = 400, CFL = 20.5

Fig. 6 Ex. 1, Shu’s linear test. The trace-back points are perturbed randomly by at most ±0.05∆x. Results
are shown at time T = 2 for various spatial resolutions ∆x = 2/m and CFL numbers.

We first present the standard Shu’s linear test, which is simply the linear trans-
late (i.e., velocity a = 1) of a complicated initial condition. An Eulerian-Lagrangian
scheme gives nearly perfect results for this test (since there is no tracing error). We
therefore modify the problem to test the performance of the flux reconstruction by
randomly perturbing the trace-back points x̌n

i by an amount at most ±0.05∆x. We
see excellent results in Fig. 6 for iEL-WENO3 at the final time T = 2, even for CFL
numbers well above one. In fact, the scheme shows less error for the higher CFL 20.5
than 6.5 using m = 400 grid points. The reduction in error for longer time steps in
Eulerian-Lagrangian schemes has been explained in [3].

4.2 Example 2, linear velocity a(x, t) = sin(t)

We next consider linear transport with a(x, t) = sin(t) on [0,2], for which the exact
solution is u(x, t) = u0(x+1+cos(t)) and the initial condition is chosen to be u0(x) =
0.5+ sin(πx). When the grid is sufficiently fine, at least third order convergence is
observed in Table 1 for ∆ t = 5.5∆x. In fact, as we observe, we can increase the time
step to ∆ t = 10.5∆x and retain third order convergence, while slightly reducing the
error.
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Table 1 Ex. 2, linear velocity a = sin(t). Errors and convergence order at T = 4.

m L1
∆x error order L∞

∆x error order
∆ t = 5.5∆x

80 1.56029E-03 —- 6.22469E-03 —
160 3.63294E-04 2.10 2.42792E-03 1.36
320 8.39071E-05 2.11 9.15106E-04 1.41
640 1.30059E-05 2.69 2.29379E-04 2.00
1280 8.34722E-07 3.96 2.24449E-05 3.35
2560 4.51594E-08 4.21 8.79687E-07 4.67

∆ t = 10.5∆x
80 7.33851E-04 — 3.58390E-03 —

160 1.86974E-04 1.97 1.53673E-03 1.22
320 4.56080E-05 2.04 6.00667E-04 1.36
640 7.37190E-06 2.63 1.52435E-04 1.98
1280 4.38335E-07 4.07 1.31308E-05 3.54
2560 2.35534E-08 4.22 4.63970E-07 4.82

4.3 Example 3, linear velocity a(x, t) = sin(x)

We now test our scheme using a(x, t) = sin(x) over [0,2π] up to the final time T = 1.
The exact solution is

u(x, t) =
sin
(
2arctan(e−t tan(x/2))

)
sin(x)

.

We see from Table 2 that the error for iEL-WENO3 as measured in L1
∆x converges at

the optimal rate. However, when measured in L∞
∆x, the error converges to one power

less than optimal. Similar results were seen in [14], where a discussion based on [28]
explaining the loss of convergence in L∞

∆x is also given.
We also show results for this problem using a fixed number of 10 time steps for

various numbers of grid points m in Table 3. In spite of the CFL number increasing
with m, we see nearly third order convergence in the L1

∆x norm.

4.4 Example 4, Burgers’ equation

In the next example, we test Burgers’ equation with a simple initial condition to
evaluate the convergence rate of the scheme for a nonlinear problem; that is, for

ut +(u2/2)x = 0 and u0(x) = 0.5+ sin(πx) for x ∈ (0,2).

A shock will form at time t = 1/π ≈ 0.32. To test convergence, we ran the compu-
tation over gradually refined grids up to time T = 0.25, before the shock develops.
The numerical errors and convergence orders for the scheme are given in Table 4.
The solution is only resolved when the grid is fine enough, and so we see relatively
poor convergence of about second order when the grids are coarse. Under refinement,
however, we pick up at least third order convergence, as expected. The L∞

∆x-norm is
not as well behaved, but the rates also appear to be optimal in this norm.
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Table 2 Ex. 3, linear velocity a = sin(x). Error and convergence order at T = 1.

m L1
∆x error order L∞

∆x error order
∆ t = 0.5∆x

20 4.60463E-02 — 3.93484E-02 —
40 7.49789E-03 2.62 1.43844E-02 1.45
80 1.28815E-03 2.54 4.15480E-03 1.79

160 2.04893E-04 2.65 1.09015E-03 1.93
320 2.96700E-05 2.79 2.75669E-04 1.98
640 4.06187E-06 2.87 6.68901E-05 2.04

∆ t = 6.5∆x
20 4.17349E-02 — 3.60500E-02 —
40 1.12621E-02 1.89 1.11598E-02 1.69
80 1.29803E-03 3.12 3.13010E-03 1.83

160 1.77153E-04 2.87 9.30164E-04 1.75
320 2.30593E-05 2.94 2.51254E-04 1.89
640 3.19292E-06 2.85 6.38763E-05 1.98

∆ t = 10.5∆x
20 4.17349E-02 — 3.60500E-02 —
40 1.12621E-02 1.89 1.11598E-02 1.69
80 5.11521E-03 1.14 3.48220E-03 1.68

160 4.06221E-04 3.65 8.78510E-04 1.99
320 3.75031E-05 3.44 2.42435E-04 1.86
640 3.83848E-06 3.29 6.22530E-05 1.96

Table 3 Ex. 3, linear velocity a = sin(x). Error and convergence order at T = 1 using 10 time steps.

m L1
∆x error order L∞

∆x error order
20 4.75674E-02 — 4.05602E-02 —
40 7.45595E-03 2.67 1.42508E-02 1.51
80 1.23089E-03 2.60 3.99872E-03 1.83

160 1.78506E-04 2.79 1.03140E-03 1.95
320 2.31440E-05 2.95 2.58593E-04 2.00
640 3.44227E-06 2.75 6.25534E-05 2.05

Table 4 Ex. 4, Burgers’ equation with initial condition 0.5+ sin(πx). Error and convergence order at
T = 0.25.

m L1
∆x error order L∞

∆x error order
∆ t = ∆x

20 1.46752E-02 — 7.80723E-02 —
40 3.20908E-03 2.19 1.12451E-02 2.80
80 9.72271E-04 1.72 3.97263E-03 1.50

160 2.19332E-04 2.15 1.43104E-03 1.47
320 4.77243E-05 2.20 5.63698E-04 1.34
640 7.57870E-06 2.65 1.47194E-04 1.94
1280 4.75282E-07 4.00 1.24983E-05 3.56

∆ t = 5∆x
320 2.54921E-05 — 3.10136E-04 —
640 3.80719E-06 2.74 5.43829E-05 2.51
1280 2.23658E-07 4.09 4.25859E-06 3.67
2560 1.30719E-08 4.10 4.91490E-07 3.12

Fig. 7 shows the solutions at T = 3/(2π)≈ 0.48 after the shock has formed. There
is no numerical oscillation, and the scheme performs well.
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m = 80 m = 160

Fig. 7 Ex. 4, Burgers’ equation with initial condition 0.5+sin(πx). The solution at time T = 3/(2π) using
m = 80 and 160 grid elements.

In Figure 8, we show the propagation of a shock using two different choices
for α in the Lax-Friedrichs flux function (6). The circles show the case of using
α = max

u,x,t
|∂ f (u)/∂u|. This is the value we suggested using above on the right-hand

side of (31). The squares use a local value defined using the technically correct value
for α given on the left-hand side of (31). It uses the local left and right reconstructed
values of the solution, and at grid point xi, it is given by

α local = max
(
|(∂ f (ū−)/∂u− v|, |∂ f (ū+)/∂u− v|

)
,

where ū± =
∫

Ěi±1/2
Ř(x, ūn)dx/|Ěi±1/2| is computed after tracing back to time tn

(cf., [29]). Both α and α local are defined explicitly. The results demonstrate that the
more carefully defined numerical flux indeed reduces the numerical diffusion, as is
well known for explicit WENO schemes. However, we did not observe a significant
change to the stability of the scheme, presumably because it does not affect the re-
laxed CFL limit (40).

Fig. 8 Ex. 4, Burgers’ equation with an initial jump at 0.25. The solution at time T = 2 using m = 40 grid
elements. The circles use α = maxu,x,t |∂ f (u)/∂u|, and the squares use the locally defined value α local.

4.5 Example 5, Buckley-Leverett equation

The final scalar example of (1) uses the Buckley-Leverett flux function

f (u) =
u2

u2 +(1−u)2
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and involves the interaction of shocks and rarefactions. The initial condition is

u0(x) =


1−20x for 0≤ x≤ 0.05,
0.5 for 0.25≤ x≤ 0.4,
0 otherwise,

(43)

so the problem has two pulses that merge over time. We use m = 80 grid elements.
The results are shown in Fig. 9. The schemes handle the merging of the two pulses
quite well and reproduces the solution to good accuracy even on this relatively low
resolution grid.

t = 0.1, shock and
rarefaction formation

t = 0.2, initial pulse
catches advanced pulse

t = 0.4, the two
pulses merge

t = 0.5, the two pulses
are fully merged

Fig. 9 Ex. 5, Buckley-Leverett. An interaction of shocks and rarefactions, resulting from the evolution of
two initial pulses (43). The solid line is the reference solution, given by CWENO5 with a very small ∆x =
1/1280 and ∆ t = 1/15360. The black squares are our iEL-WENO3 results using m = 80 and ∆ t = 0.4∆x.

4.6 Example 6, an advection-diffusion equation

We now consider the following advection-diffusion equation,

ut +
(

f (u)
)

x− εuxx = 0, x ∈ R, t > 0, (44)

where ε is assumed to be small, i.e., the equation is advection dominated. We propose
to handle the diffusion term by writing the equation in the form

ut +(vu)x +
(

f (u)− vu− εux
)

x = 0 ⇐⇒ ut +(vu)x +
(
g(u)

)
x = 0, (45)

where
g(u) = f (u)− vu− εux. (46)

The computation of the mass integral in (25) would be computed as before. The
computation of the flux correction step in Section 3.3 requires comment.

Although we do not recommend it, we could solve the problem as described in
the previous sections. We would write (36) with the diffusion term, so we would have
the explicit Runge-Kutta flux

g(1)i = F̌(tn, ǔn
i ) = (ǔn

i )x v(x̌n
i , t

n)−
(

f (ǔn
i )
)

x + ε(ǔn
i )xx, (47)
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which requires second order derivatives in space. However, this is used to compute
an approximation to u, as in (37)–(38), which in turn becomes an argument of g(u)
within the scheme (39). That is, g(u) defined by (46) now requires third derivatives in
space. In order to maintain the accuracy of the scheme, we are required to find high
order WENO reconstructions for third derivatives, which is not desired.

We suggest two ways to circumvent this problem of requiring third derivatives.
First, we could simply reduce the temporal order of accuracy of the time quadrature
rule, using the trapezoidal rule (i.e., two point Gauss-Lobatto rule) rather than a Gauss
rule. This is the same as using the Crank-Nicolson (CN) time stepping procedure for
the flux term g(u). Unfortunately, the order of accuracy of the scheme will reduce
to O(∆ t2 +∆x3). In this case, however, most of the procedures that we described
in Section 2 will not be needed, including using implicit Runge-Kutta, the NCE of
Zennaro, and the trick (13).

A second, more accurate approach is to treat the advection as before using a
two-point Gauss rule, but now handling the diffusion term with the two point Gauss-
Lobatto rule, i.e., Crank-Nicolson time stepping only for diffusion. This scheme is
accurate to order O(ε∆ t2 +∆ t3 +∆x3), which remains small when ε is small. In
fact, it retains third order accuracy in space and time provided only that ε ≤ ∆ t and
∆x and ∆ t are comparable, or if ∆x� ∆ t. We verify this statment numerically in the
remainder of this section.

No matter what we do, we will require accurate spatial derivatives. The derivative
un+1

x,i is needed at the grid point xi at the advanced time tn+1 in (46), so we need to
reconstruct implicitly using un+1

i−3/2, un+1
i−1/2, un+1

i+1/2, and un+1
i+3/2 to achieve a third order

accurate derivative. This reconstruction is symmetric in space, so we do not get right
and left values. However, this computation is used to handle the diffusion, so we
do not require upstream values. Moreover, the reconstruction of ǔn

x,i,`, ` = −1,0,1,
needs to be at least fourth order accurate to evaluate the second derivative in (47). We
actually use a stencil of five elements, i.e., a fifth order LPR-WENO reconstruction,
since the fourth order reconstruction is not symmetric in space, which leads to some
numerical instability.

4.6.1 Example 6a, linear test with velocity a = 1

We first take f (u) = 1 and consider the linear advection-diffusion equation

ut +ux− εuxx = 0, x ∈ [0,2], t > 0,
u0(x) = sin(πx), x ∈ [0,2], t = 0,

where the exact solution is u(x, t) = sin(π(x− t))exp(−επ2t). As in Ex. 1, we ran-
domly perturb the trace-back points x̌n

i , but now by an amount at most ±0.5∆x2.
Using ε = 1E-2, Table 5 shows a comparison of the the full Crank-Nicolson (CN)

scheme to the scheme using only CN for diffusion, i.e., implicit Runge-Kutta (RK)
advection and CN diffusion. We see that the schemes attain third order convergence at
time T = 2, since advection dominates the solution and the error is primarily spatial in
our Eulerian-Lagrangian schemes. This is what one should expect from the truncation
error estimates O(∆ t2 +∆x3) and O(ε∆ t2 +∆ t3 +∆x3) for the two schemes, since
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the ∆x error term is much larger than the ∆ t error terms. Moreover, the solution is
more accurate if the advection term is handled with the third order in time scheme.
We remark that if ε = 1E-1, so that diffusion dominates and the CN temporal error
becomes more pronounced, we see only second order convergence for both schemes,
as one should expect.

Table 5 Ex. 6a, advection-diffusion with linear velocity a = 1. The trace-back points are perturbed ran-
domly by at most ±0.5∆x2. Errors and convergence order at T = 2 for ε = 1E-2, using ∆ t = 5.5∆x and
18.5∆x. Shown are the schemes using full CN and CN only for diffusion.

m L1
∆x error order L∞

∆x error order L1
∆x error order L∞

∆x error order
CN Advection and Diffusion Implicit RK Advection and CN Diffusion

∆ t = 5.5∆x
20 6.51048E-02 —- 8.11891E-02 —- 4.78943E-02 —- 6.08510E-02 —-
40 1.42913E-02 2.19 2.28353E-02 1.83 9.82685E-03 2.29 1.66057E-02 1.87
80 1.98603E-03 2.85 4.75590E-03 2.26 1.34092E-03 2.87 3.32343E-03 2.32

160 2.60817E-04 2.93 8.98874E-04 2.40 1.79057E-04 2.90 6.54588E-04 2.34
320 3.40427E-05 2.94 1.63116E-04 2.46 2.35394E-05 2.93 1.02440E-04 2.68
640 4.23470E-06 3.01 2.36608E-05 2.79 2.92568E-06 3.01 1.46152E-05 2.81
1280 4.99978E-07 3.08 2.18933E-06 3.43 3.41818E-07 3.10 1.40140E-06 3.38

∆ t = 18.5∆x
20 6.05842E-02 —- 7.54926E-02 —- 4.47388E-02 —- 5.63823E-02 —-
40 1.34068E-02 2.18 2.18070E-02 1.79 8.91021E-03 2.33 1.52693E-02 1.88
80 1.88338E-03 2.83 4.56025E-03 2.26 1.24216E-03 2.84 3.11963E-03 2.29

160 2.46143E-04 2.94 7.83357E-04 2.54 1.65256E-04 2.91 5.44148E-04 2.52
320 3.21541E-05 2.94 1.53646E-04 2.35 2.18219E-05 2.92 1.09517E-04 2.31
640 4.15167E-06 2.95 2.71617E-05 2.50 2.82466E-06 2.95 1.42737E-05 2.94
1280 4.60376E-07 3.17 2.06631E-06 3.72 3.09940E-07 3.19 1.47024E-06 3.28

4.6.2 Example 6b, Burgers’ equation with diffusion

We now take f (u) = u2/2 in (44). Exact solutions can be found using the Hopf-Cole
transformation, and we take the exact solution

u(x, t) =
−2επ cos(πx)exp(−επ2t)

2+ sin(πx)exp(−επ2t)
.

We show the results in Table 6 for ε = 1E-2 and three time steps corresponding
to different CFL numbers. The schemes are third order accurate when ∆ t is small
compared to ∆x (i.e., the two lower CFL numbers), but they begin to degenerate
to second order accuracy when ∆ t = 18.5∆x is large, i.e., when the temporal error
O(∆ t2) dominates.

If we use ε = 1E-6, the spacial error dominates even for relatively long time steps.
In that case, we see in Table 7 clean third order convergence. We again see that the
solution is more accurate if the advection term is handled with the third order in time
RK scheme. Moreover, if ε = 1E-1, so that diffusion is more pronounced, we see the
convergence shown in Table 8. The fully CN scheme is pretty much second order
throughout the test, as expected from the convergence order estimate O(∆ t2 +∆x3).
Not surprisingly, the Implicit RK Advection and CN Diffusion scheme, with its third
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Table 6 Ex. 6b, Burgers’ with diffusion. Errors and convergence order at T = 2 for ε = 1E-2, using
∆ t = 3.5∆x, 8.5∆x, and 18.5∆x. Shown are the schemes using full CN and CN only for diffusion.

m L1
∆x error order L∞

∆x error order L1
∆x error order L∞

∆x error order
CN Advection and Diffusion Implicit RK Advection and CN Diffusion

∆ t = 3.5∆x
20 2.98875E-03 —- 3.73615E-03 —- 2.01364E-03 —- 2.67277E-03 —-
40 5.46918E-04 2.45 9.53285E-04 1.97 3.77776E-04 2.41 6.86022E-04 1.96
80 7.66088E-05 2.84 1.97031E-04 2.27 5.26212E-05 2.84 1.37566E-04 2.32

160 8.94278E-06 3.10 2.68699E-05 2.87 6.14164E-06 3.10 1.88187E-05 2.87
320 9.27991E-07 3.27 2.39797E-06 3.49 6.28673E-07 3.29 1.65558E-06 3.51
640 8.68270E-08 3.42 1.94562E-07 3.62 5.88615E-08 3.42 1.37304E-07 3.59
1280 7.54444E-09 3.52 1.50364E-08 3.69 5.74102E-09 3.36 1.18598E-08 3.53

∆ t = 8.5∆x
20 2.90243E-03 —- 3.68226E-03 —- 1.95648E-03 —- 2.63014E-03 —-
40 5.36768E-04 2.43 9.43958E-04 1.96 3.69172E-04 2.41 6.77315E-04 1.96
80 7.52341E-05 2.83 1.95973E-04 2.27 5.12916E-05 2.85 1.36428E-04 2.31

160 8.75831E-06 3.10 2.64808E-05 2.89 5.93501E-06 3.11 1.84876E-05 2.88
320 9.00873E-07 3.28 2.36003E-06 3.49 5.98859E-07 3.31 1.62637E-06 3.51
640 8.43090E-08 3.42 1.90104E-07 3.63 6.29279E-08 3.25 1.36493E-07 3.57
1280 8.82253E-09 3.26 1.52518E-08 3.64 8.09347E-09 2.96 1.42758E-08 3.26

∆ t = 18.5∆x
20 2.75474E-03 —- 3.63156E-03 —- 1.86443E-03 —- 2.57152E-03 —-
40 5.22841E-04 2.40 9.39808E-04 1.95 3.55307E-04 2.39 6.69409E-04 1.94
80 7.25776E-05 2.85 1.93991E-04 2.28 4.80639E-05 2.89 1.33080E-04 2.33

160 8.23859E-06 3.14 2.57242E-05 2.91 5.42097E-06 3.15 1.75230E-05 2.92
320 8.34483E-07 3.30 2.24859E-06 3.52 6.44055E-07 3.07 1.45210E-06 3.59
640 1.04192E-07 3.00 1.75417E-07 3.68 9.84488E-08 2.71 1.68020E-07 3.11
1280 1.59902E-08 2.70 3.04428E-08 2.53 2.44106E-08 2.01 4.77672E-08 1.81

order in time advection computation O(ε∆ t2 +∆ t3 +∆x3), shows nearly third order
convergence for coarser grids, where space error dominates the temporal error.

Table 7 Ex. 6b, Burgers’ with diffusion. Errors and convergence order at T = 2 for ε = 1E-6, using
∆ t = 18.5∆x. Shown are the full CN scheme and the one using CN only for diffusion.

m L1
∆x error order L∞

∆x error order L1
∆x error order L∞

∆x error order
CN Advection and Diffusion Implicit RK Advection and CN Diffusion

∆ t = 18.5∆x
20 1.44407E-07 —– 2.31669E-07 —– 1.03087E-07 —– 1.73703E-07 —–
40 2.47069E-08 2.55 5.03188E-08 2.20 1.68473E-08 2.61 3.51090E-08 2.31
80 3.36307E-09 2.88 7.51913E-09 2.74 2.25083E-09 2.90 5.06073E-09 2.79

160 4.26284E-10 2.98 9.71268E-10 2.95 2.84418E-10 2.98 6.48351E-10 2.96
320 5.34240E-11 3.00 1.22308E-10 2.99 3.56264E-11 3.00 8.15717E-11 2.99
640 6.68099E-12 3.00 1.53147E-11 3.00 4.45497E-12 3.00 1.02128E-11 3.00
1280 8.36551E-13 3.00 1.91558E-12 3.00 5.57082E-13 3.00 1.27758E-12 3.00

4.6.3 Example 6c, Buckley-Leverett equation with diffusion

In the final advection-diffusion test, we use the Buckley-Leverett flux (4.5) in (44),
and the test case used in Ex. 5. We take ε = 1E-6 and m = 80 grid elements. The
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Table 8 Ex. 6b, Burgers’ with diffusion. Errors and convergence order at T = 2 for ε = 1E-1, using
∆ t = 3.5∆x and 8.5∆x. Shown are the full CN scheme and the one using CN only for diffusion.

m L1
∆x error order L∞

∆x error order L1
∆x error order L∞

∆x error order
CN Advection and Diffusion Implicit RK Advection and CN Diffusion

∆ t = 3.5∆x
20 3.03290E-03 —– 3.85294E-03 —– 1.78422E-03 —– 3.58386E-03 —–
40 6.28277E-04 2.27 7.10545E-04 2.43 3.73373E-04 2.25 4.54328E-04 2.97
80 8.79838E-05 2.83 1.03187E-04 2.78 4.35975E-05 3.09 6.07784E-05 2.90

160 1.65835E-05 2.40 1.83054E-05 2.49 7.17319E-06 2.60 9.84879E-06 2.62
320 3.53054E-06 2.23 3.18086E-06 2.52 1.40835E-06 2.34 1.55569E-06 2.66
640 7.93217E-07 2.15 6.88539E-07 2.20 3.05825E-07 2.20 3.59455E-07 2.11
1280 1.86282E-07 2.09 1.61667E-07 2.09 7.09005E-08 2.10 8.53825E-08 2.07

∆ t = 8.5∆x
20 6.27758E-03 —- 6.18175E-03 —- 4.33423E-03 —- 6.88311E-03 —-
40 2.20397E-03 1.51 3.51287E-03 0.81 7.18026E-04 2.59 1.95399E-03 1.81
80 2.80481E-04 2.97 2.64041E-04 3.73 1.08048E-04 2.73 1.80663E-04 3.43

160 7.03043E-05 1.99 6.08731E-05 2.11 2.68221E-05 2.01 3.22019E-05 2.48
320 1.68773E-05 2.05 1.46753E-05 2.05 6.25699E-06 2.09 7.43728E-06 2.11
640 4.19442E-06 2.00 3.65180E-06 2.00 1.56984E-06 1.99 1.86472E-06 1.99
1280 1.04308E-06 2.00 9.07631E-07 2.00 3.90454E-07 2.00 4.64028E-07 2.00

results are shown in Fig. 10. The diffusion term is very small, so that the results are
similar to Fig. 9. For our two schemes, i.e., CN advection and diffusion and implicit
RK advection and CN diffusion, it can be seen that both capture the steep fronts
extremely well. Moreover, the latter scheme provides a somewhat sharper front, since
the advection is handled by a third order scheme in time.

t = 0.1, shock and
rarefaction formation

t = 0.2, initial pulse
catches advanced pulse

t = 0.4, the two
pulses merge

t = 0.5, the two pulses
are fully merged

Fig. 10 Ex. 6c, Buckley-Leverett with diffusion. An interaction of shocks and rarefactions (43). The solid
line is the reference solution without diffusion, given by CWENO5 with a very small ∆x = 1/1280 and
∆ t = 1/15360. The solid gradients are the scheme using CN advection and diffusion, and the open squares
are implicit RK advection and CN diffusion. Results use ε = 1E-6, m = 80 and ∆ t = 0.4∆x.

The physical diffusion is quite important in this problem. It smears the front a bit,
as can be seen in Fig. 11, where diffusion is increased to ε = 1E-2.

5 Extension of iEL-WENO3 to the Euler system

The scalar scheme can be generalized to handle systems of nonlinear conservation
laws. To simplify the presentation, we consider only the Euler system. For a poly-
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t = 0.1, shock and
rarefaction formation

t = 0.2, initial pulse
catches advanced pulse

t = 0.4, the two
pulses merge

t = 0.5, the two pulses
are fully merged

Fig. 11 Ex. 6c, Buckley-Leverett with diffusion. An interaction of shocks and rarefactions (43). The solid
line is the reference solution without diffusion, given by CWENO5 with a very small ∆x = 1/1280 and
∆ t = 1/15360. The solid gradients are the scheme using CN advection and diffusion, and the open squares
are implicit RK advection and CN diffusion. Results use ε = 1E-2, m = 80 and ∆ t = 0.4∆x.

tropic gas, the energy is E = p/(γ − 1)+ρu2/2, where p, ρ , and u are the particle
pressure, density, and velocity, and the adiabatic index γ = ( f + 2)/ f = 1.4, where
f = 5 is the number of degrees of freedom of each gas particle. The one-dimensional
dynamics is described by the Euler equations ρ

ρu
E


t

+

 ρu
ρu2 + p
u(E + p)


x

= 0 ⇐⇒ Ut +
(
f(U)

)
x = 0, (48)

where U = (ρ,ρu,E).

5.1 Local characteristic decomposition

As is usual, the general WENO reconstruction procedures (but not the scheme it-
self) use a local characteristic decomposition to reduce oscillations. For an implicit
scheme, one would expect an implicit local characteristic decomposition. We expand
(48) into a system of the form Ut +A(U)Ux = 0, that is, into ρ

ρu
E


t

+

 0 1 0
1
2 (γ−3)u2 (3− γ)u γ−1

1
2 (γ−1)u3−uh h− (γ−1)u2 γu

 ρ

ρu
E


x

= 0, (49)

where h = (E + p)/ρ is the total specific enthalpy. Assuming that there exist L(U)
such that Λ(U) = L(U)A(U)L−1(U), where Λ(U) is a diagonal matrix, then

L(U)Ut +Λ(U)L(U)Ux = 0.

One would like to set W = L(U)U and write this as Wt +Λ(W)Wx
?
= 0. However,

Wt = LtU+LUt and Wx = LxU+LUx, and so we have

Wt +Λ(W)Wx = LtU+ΛLxU 6≡ 0.

Therefore, we conclude that freezing A is necessary, i.e., an explicit, local character-
istic decomposition is inevitable.
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Fixing a base state U∗, e.g., the solution at time tn or its Roe averages (57), the
explicit linearized equation can be diagonalized based on its eigenvalues. We have

Λ∗ = L∗A(U∗)L−1
∗ =

u∗− c∗ 0 0
0 u∗ 0
0 0 u∗+ c∗

 , (50)

where c∗ =
√

γ p∗/ρ∗ is the sound speed. With W = L∗U, the linearized and diago-
nalized equations are

L∗Ut +Λ∗L∗Ux = 0 ⇐⇒ Wt +Λ∗Wx = 0. (51)

All WENO reconstructions are done in terms of the variables W = L∗U.

5.2 The iEL-WENO3 Scheme for the Euler System and a Roe Solver

For the scheme itself, we choose one fixed trace velocity v for all three conserved
quantities ρ , ρu, and E, as was done in [13]. Then the full system (48), rewritten in
terms of the diagonal matrix of trace velocities vI, is

Ut +
(
vU
)

x +
(
f(U)− vU

)
x = 0 ⇐⇒ Ut +

(
vU
)

x +
(
g(U)

)
x = 0, (52)

where g(U) = f(U)− vU. For the implicit scheme, we solve the Euler system as in
Section 3 in two main steps, for the mass integral at time tn and the flux correction
from g(U). For the mass integral, as in (25), we need a reconstruction operator. We
simply use a vector version of Ř, which is based on application of Ř to each of the
three variables W̄n = L∗Ūn. It is defined by

Ř̌ŘR(x,W̄n) =
(
Ř(x,W̄ n

1 ),Ř(x,W̄ n
2 ),Ř(x,W̄ n

3 )
)
.

Analogous to (34), we have

Ūn+1
i+1/2 =

1
∆x ∑

j
L−1
∗

∫
Ěi+1/2∩E j+1/2

Ř̌ŘR(x,L∗Ūn)dx

+
∆ t
∆x

2

∑
`=1

ω
G`

[
ĝ
(
Ǔi−(tG`), Ǔi+(tG`)

)
− ĝ
(
Ǔ(i+1)−(t

G`), Ǔ(i+1)+(t
G`)
)]
. (53)

We elaborate on the last terms above, i.e., on the flux correction step.
As in (34), we require right and left values at a reconstruction point. Rather than

the Lax-Friedrichs flux, we use the numerical flux of a Roe solver for the flux correc-
tion functions

g(U) =

 ρu− vρ

ρu2 + p− vρu
u(E + p)− vE

 . (54)

The Roe numerical flux is defined to be

ĝ(U−,U+) =
1
2

[
g(U−)+g(U+)−|Av,∗|(U−−U+)

]
, (55)
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wherein the arguments U± =
(
ρ±,u±,E±

)
, are evolved along the v-traceline using

the explicit, local characteristic decomposition (51), as noted above. To be more pre-
cise, we follow Section 3.3 and highlight differences. We have W̄n = L∗Ūn at time
tn (explicitly), which are used in the reconstruction operator Ř̌ŘR± (defined analo-
gously to Ř̌ŘR) to give point values W̌n

i± and, therefore, Ǔn
i± = L−1

∗ W̌n
i±. These are

used to define the vector of Runge-Kutta fluxes g(1)i± in (36) by the procedure de-

scribed in Section 3.3. The Runge-Kutta flux g(2)i± is given implicitly by (13), which
requires a vector version of the operator Ri± to obtain (implicitly) Un+1

i± , i.e., Un+1
i± =

L−1
∗ RRR i±(L∗Un+1). Finally, the NCE gives the values of Ǔ at the Gauss times needed

in (53).
The matrix |Av,∗| must be defined carefully. Before defining |Av,∗|, we recall that

Roe [27] defined his solver for (48) in the form (49) with the constant matrix A(U,V)
defined as

A(U−∗ ,U
+
∗ ) =

 0 1 0
1
2 (γ−3)ū2

∗ (3− γ)ū∗ γ−1
1
2 (γ−1)ū3

∗− ū∗h̄∗ h̄∗− (γ−1)ū2
∗ γ ū∗

 , (56)

where, for the base state U±∗ having right and left values, the Roe averages are

ū∗ =

√
ρ
−
∗ u−∗ +

√
ρ
+
∗ u+∗√

ρ
−
∗ +

√
ρ
+
∗

, h̄∗ =

√
ρ
−
∗ h−∗ +

√
ρ
+
∗ h+∗√

ρ
−
∗ +

√
ρ
+
∗

, (57)

and

h±∗ =
E±∗ + p±∗

ρ
±
∗

.

The matrix A is designed to find the correct shock speeds, and it satisfies the following
Roe’s conditions:

1. f(U)− f(V) = A(U,V)(U−V);

2. A(U,V)→ Df
DU

(U) as V→ U;

3. A(U,V) has only real eigenvalues;
4. A(U,V) has a complete system of eigenvectors, i.e., it is diagonalizable.

Conditions 3 and 4 allow the decomposition (50) for A(U−∗ ,U+
∗ ), i.e.,

Λ∗ := L∗A(U−∗ ,U
+
∗ )L

−1
∗ =

ū∗− c̄∗ 0 0
0 ū∗ 0
0 0 ū∗+ c̄∗

 , (58)

where c̄∗ =
√
(γ−1)(h̄∗− ū2

∗/2). The matrix |A∗| = L−1
∗ |Λ∗|L∗, where |Λ∗| is the

same as Λ∗ except that one takes the absolute value of the entries.
In analogy, we define |Av,∗| to be

|Av,∗|= L−1
∗

|ū∗− c̄∗− v| 0 0
0 |ū∗− v| 0
0 0 |ū∗+ c̄∗− v|

L∗, (59)
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and we note that when v = 0, |A∗| = |A0,∗|. In fact, we claim that we have actually
defined Av as

Av(U,V) = A(U,V)− vI, (60)

and that it satisfies Roe’s conditions. For Roe’s first condition,

g(U)−g(V) = (f(U)− f(V))−V (v)(U−V)

= A(U,V)(U−V)− vI(U−V) = Av(U,V)(U−V).

For the second condition, we have

Av(U,V) = A(U,V)− vI→ Df
DU

(U)− vI =
Dg
DU

(U), as V→ U,

since
Dg(U)

DU
=

f(U)−V (v)U
DU

=
Df
DU
− vI. The third and fourth conditions are satis-

fied when v = 0 and continue to hold for a perturbation by a multiple of the identity,
−vI. That is,

L∗Av,∗L−1
∗ = L∗(A− vI)L−1

∗ = Λ − vI

=

ū∗− c̄∗− v 0 0
0 ū∗− v 0
0 0 ū∗+ c̄∗− v

=: Λv,∗. (61)

Thus Av,∗ as defined in (60) satisfies all four of Roe’s conditions, and its absolute
value is properly defined in (59). This result shows that A and Av,∗ can be diagonal-
ized simultaneously. It also suggests that using the same v-trace velocity for each
conserved quantity in (52) is the only reasonable choice if we follow Roe’s approach
[27]; otherwise, we will completely change the eigenstructure of the problem.

We remark that because the matrix Av,∗(U,V) is (locally) constant, the computa-
tion of the Jacobian matrix is simplified when solving (52) implicitly using Newton’s
method.

We used |A| in our explicit Eulerian-Lagrangian WENO scheme [13], and it gave
good results. However, we observed computationally that using |Av,∗| in (55) is cru-
cial, since otherwise a non-entropy solution may be obtained.

We need to make a choice for the trace velocity v. Following [13], we take v to
approximate the velocity u, since it is the most neutral single trace velocity v for the
entire system. However, this is also the velocity of the mass particles, which must be
correctly evolved in a physical sense to have an accurate solution. The iEL-WENO3
scheme should be stable as long as the two untraced characteristic velocities u± c
do not travel across the space-time trace-back region; that is, the velocity ±c relative
to the trace velocity v = u determines the relaxed CFL constraint, which is about
∆ t = h/|c|.
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6 Some numerical results for the Euler system

In this section, we consider several standard test problems for the Euler system. In all
our tests, we again take a locally constant trace velocity vi while tracing out the curves
x̌i for the grid point xi. For the grid point xi, for the local characteristic variables W̄n

in (51), we reconstruct Wn
i± = Ři±(W̄n). After transforming back to the variables

Un
i±, we set vi = ū∗,i, the reference Roe average (57) at xi.

6.1 Example 7: A smooth problem for the Euler equations

In this example, the initial condition is set to be ρ(x,0) = 1+ 0.2sin(πx), u(x,0) =
1, and p(x,0) is either 1 or 0.01, with 2-periodic boundary conditions. The exact
solution is

ρ(x, t) = 1+0.2sin(π(x− t)), u = 1, p = 1 or 0.01.

The sound speed is given by

c =

√
1.4p

ρ
=

{
1.32 when p = 1,
0.132 when p = 0.01,

and so the spread of the characteristic speeds is much less in the latter case. Because
we use only a single trace velocity v = u, it is the spread of the characteristics that
determine the limits of the time step. The usual CFL time step is

∆ tCFL =
h

u+ c
=

{
0.43h when p = 1,
0.88h when p = 0.01h,

but the relaxed value is

∆ tCFL,relaxed =
h
c
=

{
0.76h when p = 1,
7.56h when p = 0.01,

We compute the solution up to time T = 2. The numerical errors and conver-
gence orders for the density are given in Table 9. The scheme achieves third order
convergence. When p = 1, we use ∆ t = 0.6h = 1.4∆ tCFL, and when p = 0.01, we
use ∆ t = 3.75h = 4.3∆ tCFL.

6.2 Example 8: Riemann problems for the Euler equations

For this series of one-dimensional shock tube tests, we specify a discontinuous initial
condition, written in terms of the primitive variables ρ , u, and p. As is typical, we
only report the density ρ; the other variables show comparable accuracy. The one-
dimensional shock tube test of Sod uses the initial condition

ρ,u, p =

{
ρl = 1, ul = 0, pl = 1, for x < 1/2,
ρr = 1/8, ur = 0, pr = 1/10, for x > 1/2,
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Table 9 Ex. 7, Euler equation with c = 1.32. Error and convergence order for the density at T = 2.

m L1
h error order L∞

h error order
p = 1, c = 1.32, ∆ t = 0.6h

20 2.71096E-02 —— 2.65181E-02 ——
40 8.26686E-03 1.71 1.11980E-02 1.24
80 1.99465E-03 2.05 4.46671E-03 1.33

160 4.46184E-04 2.16 1.58934E-03 1.49
320 5.99188E-05 2.90 3.71836E-04 2.10
640 4.04820E-06 3.89 3.95759E-05 3.23

p = 0.01, c = 0.132, ∆ t = 3.75h
20 1.89069E-02 —— 3.13287E-02 ——
40 3.98620E-03 2.24583 8.36638E-03 1.90481
80 6.30228E-04 2.66107 1.35649E-03 2.62472

160 8.76242E-05 2.84647 3.94738E-04 1.78092
320 9.19777E-06 3.25197 8.91172E-05 2.14712
640 5.25718E-07 4.12892 5.75380E-06 3.95312

and the test of Lax uses the initial condition

ρ,u, p =

{
ρl = 0.445, ul = 0.698, pl = 3.528, for x < 1/2,
ρr = 0.5, ur = 0, pr = 0.571, for x > 1/2.

The iEL-WENO3 results in Figs. 12–13 show the effect of grid refinement for
these two test problems. Indeed the solution improves when 200 elements are used
versus 100. The graphs for 100 elements show the iEL-WENO3 results as open
squares and WENO3 results as closed squares. The iEL-WENO results use a time
step longer than the CFL limit. For Sod, we use ∆ t = 2∆ tCFL; for Lax, we use
∆ t = 2.8∆ tCFL. The WENO3 results use ∆ t = 0.9∆ tCFL. So the iEL-WENO3 scheme
can use 2 to 2.8 times the CFL time step, while also showing less numerical diffusion
than WENO3 for both test problems.

Some of the improvement in the time step is due to the use of Lagrangian coor-
dinates and some is due to the implicitness of the scheme. To assess the difference
between these two, we ran the examples using trace velocity v = 0; that is, we ran a
purely Eulerian scheme, so only the implicitness of the scheme manifests itself. Good
results were achieved for time steps up to about 1.25 CFL for Sod’s test and 2.1 CFL
for Lax’s test.

m = 100 m = 200

Fig. 12 Ex. 8, Sod 1-D shock tube test. The density profile is shown as open squares for iEL-WENO3
with v = u at time T = 0.16 using ∆ t = 2∆ tCFL and m = 100 and 200 grid elements. When m = 100, we
also show WENO3 results using 0.9∆ tCFL as closed squares.
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m = 100 m = 200

Fig. 13 Ex. 8, Lax 1-D shock tube test. The density profile is shown as open squares for iEL-WENO3
with v = u at time T = 0.16 using ∆ t = 2.8∆ tCFL and m = 100 and 200 grid elements. When m = 100, we
also show WENO3 results using 0.9∆ tCFL as closed squares.

6.3 Example 9: Shu and Osher’s shock interaction with entropy waves

In our next example, we consider the challenging test case of Shu and Osher [30], in
which a Mach 3 shock interacts with entropy sine waves in the density. We scale the
problem to the domain (0,1), and the initial conditions are

ρ,u, p =

{
ρl = 3.857143, ul = 2.629369, pl = 10.333333, for 0 < x < 1/10,
ρr = 1+0.2sin(5(10x−5)), ur = 0, pr = 1, for 1/10≤ x < 1.

We use ∆ t = 0.4∆x and compute to the final time T = 0.18. Using the grid sizes
m = 300 and m = 600 grid elements, the results appear in Fig. 14. Compared to
WENO3, we see that iEL-WENO3 has a much better ability to resolve the sine waves.

m = 300 m = 600

m = 300, zoom m = 600, zoom

Fig. 14 Ex. 9, Shu and Osher’s test with a shock interacting with entropy waves. The density profile at
time T = 0.18 using m = 300 and m = 600 grid elements, with a magnified view of the results shown
on the bottom. Shown are results for iEL-WENO3 (open squares) and WENO3 (solid squares) and a fine
resolution reference solution (solid line).
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6.4 Example 10: Woodward and Colella’s double blast test

Our final one-dimensional example of the Euler system is the double blast test of
Woodward and Colella, which uses the initial condition

ρ,u, p =


ρl = 1, ul = 0, pl = 1000, for x < 1/10,
ρm = 1, um = 0, pm = 1/100, for 1/10 < x < 9/10,
ρr = 1, ur = 0, pr = 100, for 9/10 < x.

This is a rather challenging problem, because the two blast waves go through each
other. Nevertheless, reasonably good results are obtained by our iEL-WENO3 scheme
using m = 400, 800, and 1600 grid elements, as shown in Fig. 15. The reference
solution was computed by a MUSCL scheme with grid size m = 4000. The results
are compared to a WENO3 scheme. In Fig. 16, we significantly zoom the solution.
One can see clearly that iEL-WENO3 shows very accurate resolution over the entire
profile, and that it is generally better than WENO3 for the same resolution m = 800.
Of particular note, iEL-WENO3 matches the solution near x = 0.69 in Zoom 2 for all
three grids, while the WENO3 solution is too low.

m = 400,800,1600 m = 400,800,1600, zoom

Fig. 15 Ex. 10, Woodward and Colella’s double blast test. The density profile at time T = 0.038 of iEL-
WENO3 using m = 400, 800, and 1600 grid elements (black squares or dots) and WENO3 using m = 800
(diffused, fine line), with a zoomed view of the results shown on the right. The fine resolution reference
solution is the sharp, solid line.

Zoom 1 Zoom 2 Zoom 3 Zoom 4

Fig. 16 Ex. 10, Woodward and Colella’s double blast test. Magnified views of the density profile at time
T = 0.038 using m= 400,800,1600 (iEL-WENO3, black squares or dots) and m= 800 (WENO3, diffused,
fine line) grid elements. The fine resolution reference solution is the sharp, solid line.
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7 Conclusions

We have presented a new, formally third order, implicit Weighted Essentially Non-
Oscillatory (iWENO3) finite volume scheme for solving systems of nonlinear con-
servation laws. The special choice (14) of two-stage, implicit Runge-Kutta time inte-
grator allowed us to drastically simplify the computation of the intermediate Runge-
Kutta fluxes, since we could eliminate one using (13) and explicitly compute the
other. This led to a computationally reasonable scheme that could be generalized to
Lagrangian coordinates.

We generalized our Eulerian scheme to define an implicit, Eulerian-Lagrangian
WENO (iEL-WENO) scheme consisting of two main steps. The first accounts for
particles being transported within a grid element in a Lagrangian sense along the
particle paths. Since this particle velocity is unknown (in a nonlinear problem), a
fixed tace velocity v was used, and the equation was rewritten as

ut +
(

f (u)
)

x = 0 ⇐⇒ ut +(vu)x +
(

f (u)− vu
)

x = 0.

A space-time integration (23) accounted for mass particles being transported within
the velocity field v. The particles within a grid element E were traced back in time to
Ě where they originated from, and so the transported mass can be quantified. This part
of the computation, ut +(vu)x, is essentially exact up to the accuracy of the WENO
reconstructions used.

The second step of the scheme, the flux correction, accounts for the inaccuracy of
the trace velocity v by computing the flux of particles crossing the incorrect tracelines
bounding the space-time region, due to the term

(
f (u)− vu

)
x. This computation is

similar to what is done in an Eulerian scheme, except that the spatial path along
which time evolves itself changes with time. By our choice of Runge-Kutta method,
no higher order derivatives of the flux need be computed, neither to define the method
nor to implement Newton’s method. The CFL condition is relaxed when v is chosen
to approximate the characteristic velocity.

For the Euler system, a new Roe solver (55) was developed to account for the
Lagrangian tracings, which could be useful even for explicit EL-WENO schemes.

Numerical results show that very long time steps can be taken for linear problems,
up to even 15 times the Eulerian CFL limit. We also saw good accuracy compared
to standard WENO3. The iEL-WENO3 is both less numerically diffusive and can
take longer time steps, on the order of about 2 to 3 times longer than WENO3 for
challenging nonlinear scalar problems and Euler systems.

Two simple extensions of the scheme to the advection-diffusion equation were
given in Section 4.6. When advection dominates, both schemes retain third order ac-
curacy. An advection-diffusion equation must be solved using an implicit method
(otherwise the restrictive parabolic CFL constraint ∆ t ≤ c∆x2 results). Since the
main computational cost of solving implicit problems is in the nonlinear solver,
the advection-diffusion equation can be solved nearly as efficiently using explicit
or implicit WENO schemes. Our new iEL-WENO3 provides an efficient third order
scheme that can capture sharp fronts extremely well.
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