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Highlights

• We use nonoverlapping domain decomposition for mixed method approximations.
• We propose a two-level preconditioner based on the interfaces between subdomains.
• The coarse preconditioner uses the multiscale mortar domain decomposition method.
• Prolongation is defined uniquely to preserve projection onto normal velocities.
• Numerical tests of highly heterogeneous porous media show efficiency and robustness.

Abstract

We consider a second order elliptic problem with a heterogeneous coefficient, which models, for example, single phase flow
through a porous medium. We write this problem in mixed form and approximate it for parallel computation using the multiscale
mortar domain decomposition mixed finite element method, which gives rise to a saddle point linear system. We use a relatively
fine mortar space, which allows us to enforce continuity of the normal velocity flux, or nearly so in the case of nonmatching
meshes. To solve the Schur complement linear system for the mortar unknowns, we propose a two-level preconditioner based
on the interfaces between subdomains. The coarse preconditioner also uses the multiscale mortar domain decomposition method,
but with instead a very coarse mortar space. We show that the prolongation operator of the coarse mortar to the fine is defined
uniquely by the condition that the L2-projection of a coarse mortar agrees with its projection onto the space of normal velocity
fluxes, i.e., no energy is introduced when changing mortar scales. The local smoothing preconditioner is based on block Jacobi,
using blocks defined by the interfaces. We use restrictive smoothing domains that are smaller normal to the interfaces, and
overlapping in the directions tangential to the interfaces. In the simplest case, the condition number of the preconditioned
interface operator is bounded by a multiple of (log(1 + H/h))2. We show several numerical examples involving strongly
heterogeneous porous media to demonstrate the efficiency and robustness of the preconditioner. We see that it is often desirable, and
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sometimes necessary, to use a piecewise linear or higher order coarse mortar space to achieve good convergence for heterogeneous
problems.
c⃝ 2014 Elsevier B.V. All rights reserved.

MSC: 65F08; 76S99
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scale

1. Introduction

On a domain Ω ⊂ Rd , d = 2 or 3, we consider the second order elliptic problem

u = −a∇ p in Ω , (1)

∇ · u = f in Ω , (2)

u · ν = 0 on ∂Ω , (3)

wherein ν is the outer unit normal vector to the domain, which is written in mixed form, i.e., as a system of two
first order equations plus the boundary condition. The equation arises from minimizing the functional F(u, p) =
1
2 E(u)+


Ω (∇ ·u− f ) p dx , where E(u) =


Ω a−1

|u|
2 dx is the energy of the system and p enforces the divergence

constraint. We target applications involving flow in porous media [1,2], in which case p is the fluid pressure, u
is the (Darcy) velocity, and the coefficient a is the permeability. The permeability is often highly anisotropic and
heterogeneous, varying by many orders of magnitude from point to point. In fact, often the permeability has narrow
channels within which the flow is concentrated. These channels are high in permeability and correlated for great
distances in some directions but not in others (see, e.g., [3]).

Understanding and predicting fluid flow processes is critical in many subsurface applications, such as CO2
sequestration, nuclear waste storage, and oil and natural gas production. Furthermore, the flow problem is one of
the most time-consuming parts of these simulations. With the development of reservoir characterization methods and
geostatistical modeling techniques, the description of reservoir properties can be detailed at multiple scales, from core
scales (centimeters) to geological scales (kilometers). A typical reservoir or aquifer is extremely large, and so the
geocellular model may have billions of mesh elements. Subsurface processes often last hundreds of years, as in the
case of CO2 migration, or even millions of years for nuclear contaminants. Therefore, we can only simulate these
processes using massively parallel supercomputers.

One way of tackling this problem is to reduce its size through upscaling or multiscale techniques [4]. However,
the accuracy of the upscaled solution can deteriorate with increasing channel correlation length. Moreover, the flow
solution is often coupled to a transport problem, which can magnify errors associated to the flow (see Section 2.2).
Our goal is to solve the system on a fine-scale and use multiscale ideas to design effective and robust two-level
preconditioners that are suitable for parallel computing when combined with a Krylov accelerator. It is not a new idea
to use multiscale ideas to design preconditioners (see, e.g., [5–7]), multigrid methods (e.g., [8,9]), and other iterative
procedures (e.g., [10]).

Our approach is to use domain decomposition methods to increase parallelism. In pioneering work, Glowinski and
Wheeler [11] defined a nonoverlapping domain decomposition approach to solve the mixed system (1)–(3). We base
our work on this method, as modified later to incorporate a general mortar space [12], which became the multiscale
mortar mixed method [13,14]. This method fully resolves the problem within the subdomains and glues them together
with a mortar finite element space. A multiscale solution is obtained when the mortar uses only a few degrees of
freedom per interface between subdomains. We use a relatively fine scale mortar space to obtain a fine-scale solution,
and a coarse mortar space to define the coarse level preconditioner. The key is to define the extension operator RT

0
from the coarse to the fine mortar space. In fact, we will show that it is uniquely defined by the energy minimizing
condition (16) that the L2-projection of a coarse mortar agree with the projection of its extension, where the projection
is onto the space of traces of the normal component of the velocity on the interfaces between subdomains.
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The local, smoothing part of the two-level preconditioner is based on the block Jacobi method, where the block is
determined by the unknowns on each interface between subdomains. We advocate using a nonsymmetric, overlapping
smoother [15–22].

There is a vast literature on the subject of preconditioners for elliptic problems [22,23]. We mention only a few
closely related works that apply to mixed or saddle point systems. The balancing domain decomposition (BDD)
[24,25] and BDD with constrains (BDDC) [26] approaches are very similar. These two base their coarse and lo-
cal preconditioners on single subdomain problems rather than on the interfaces between adjacent subdomains. The
method in [27] shares many similarities in terms using domain decomposition and multiscale preconditioners. Solv-
ing the interface system using multigrid has been proposed in [28,29]. In the simplest case, our preconditioner has a
bounded condition number; the proof (not given here) is related to well-developed theory for similar methods [30,18,
24,31,19,22].

Numerical examples show that the convergence performance of our preconditioners is not very sensitive to the
ratio of the highest to smallest permeability in a high contrast medium (at least when appearing in a checkerboard
arrangement). Problems involving heterogeneous porous media, such as the permeability fields from the SPE10
benchmark problem [3], show that the preconditioned system has a low condition number and eigenvalues clustered
around 1, and that our preconditioner is relatively efficient and robust for these types of problems.

In the sequel, Section 2 describes the general mortar domain decomposition methods used and shows why a fine-
scale solution is desired for the coupled flow-transport system of two-phase flow in porous media. Section 3 introduces
the fine and coarse multiscale mortar domain decomposition methods. The coarse and local preconditioners are defined
in Sections 4–5, and these are combined into two-level preconditioners in Section 6. The bound on the condition
number is given in Section 7. Numerical results are presented in Section 8, and a summary and conclusions are given
in the last section.

2. Mortar domain decomposition

Let the domain Ω be decomposed into n nonoverlapping subdomains Ωi , i = 1, 2, . . . , n. Define the interface
Γi j = interior


Ω̄i ∩ Ω̄ j


, 1 ≤ i, j ≤ n and the union of the internal interfaces Γ =


1≤i, j≤n Γi, j .

Let Th,i be a conforming, quasi-uniform, finite element partition of Ωi , with hi denoting the maximum element
diameter of the partition Th,i and h = maxi hi . Then Th =

n
i=1 Th,i is the finite element partition over the

entire domain Ω . Let Vh,i × Wh,i denote any of the usual inf–sup stable mixed finite element spaces [32,33],
e.g., the Raviart–Thomas spaces [34], that enforce the outer boundary condition (3), and let Vh =

n
i=1 Vh,i and

Wh =
n

i=1 Wh,i/R.
Denote by T H,i j a quasi-uniform finite element partition of Γi j , with maximal diameter Hi j and H = max1≤i, j≤n

Hi j . Let MH,i j ⊂ L2(Γi j ) be the local mortar finite element space and MH =


i≠ j MH,i j be the entire coarse mortar
space. This space can be continuous or discontinuous polynomials [13,14] or a more general finite element space
[35,36]. For the most part, T H,i j will be either a single element or the coarser of the traces of the meshes Th,i and Th, j
onto Γi j .

Denote the standard inner-product on L2(ω) by ( · , · )ω when ω ⊂ Ω and by ⟨ · , · ⟩ω when ω ⊂ ∂Ω ∪ Γ . The
discrete variational form of (1)–(3) is formulated as [13,14]: Find uh ∈ Vh, ph ∈ Wh , and λH ∈ MH such that for
1 ≤ i ≤ n,

(a−1uh, v)Ωi − (ph, ∇ · v)Ωi + ⟨λH , v · νi ⟩∂Ωi = 0 ∀ v ∈ Vh,i , (4)

(∇ · uh, w)Ωi = ( f, w)Ωi ∀ w ∈ Wh,i , (5)
n

i=1

⟨uh · νi , µ⟩∂Ωi = 0 ∀µ ∈ MH . (6)

Eqs. (4)–(5) represent (1)–(2) locally for a consistent pressure λH on Γ , and (6) enforces (possibly only weakly)
continuity of the normal flux uh · ν.

We remark that the finite element partitions on Ωi and Ω j are allowed to be non-matching across some Γi j (or to
not match T H,i j ). This is the nonmatching mesh case, and the method gives a nonconforming approximation of the
true solution. A unique discrete solution exists provided only that a technical condition is met [14], which basically
says that we do not over-resolve each interface Γi j . It is given in (10).
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2.1. The linear system

Let bases be given for the finite element spaces,

Vh = span{vk}, Wh = span{wk}, MH = span{µk}
n f
k=1,

and define the matrices

Akℓ = (a−1vℓ, vk)Ω , Bkℓ = −(wℓ, ∇ · vk)Ω , Lkℓ =

n
i=1

⟨µℓ, vk · νi ⟩∂Ωi .

Then the linear system representing (4)–(6) is the saddle point system A B L
BT 0 0
LT 0 0

 u⃗
p⃗
λ⃗

 =

 0
− f⃗
0

 , (7)

where we use the convention that for each unknown, the same expression overset by an arrow represents the vector of
weights in the basis expansion (so, e.g., λH (x) =

n f
k=1 λ⃗k µk(x)).

Removing the local degrees of freedom u⃗ and p⃗, we have the Schur complement system

LT C L λ⃗ = Sλ⃗ = b⃗, (8)

where C = A−1 B(BT A−1 B)−1 BT A−1
+ A−1 and b⃗ = LT A−1 B(BT A−1 B)−1 f⃗ . Application of S to λ⃗ is achieved

simply by solving (4)–(5) for u⃗ and p⃗ given the boundary condition represented by λ⃗, and then computing the jump
(difference) in the normal flux from (6), i.e., computing b⃗ = LT u⃗. Generally we solve (8) using a Krylov method,
such as the Preconditioned Conjugate Gradient (PCG) [37,38] or the Generalized Minimal Residual (GMRES)
algorithm [39,38].

2.2. The need for flux continuity

If the mortar space is small, we can solve (8) relatively easily. Accuracy can be maintained by using multi-
scale finite element techniques (see, e.g., [14,40,41,35,36]). These techniques require oversampling or special
homogenization-based mortar spaces, which lead to discontinuities in the flux. That is, (6) imposes continuity of
the flux only very weakly when the mortar space is small. Nevertheless, the method gives a quite accurate velocity in
terms of the L2-norm.

Often the velocity field is used to transport some substance. Generally a transport problem is advection dominated,
i.e., nearly hyperbolic. We give an example representing two-phase flow in a porous medium [1,2]. The equations
consist of an elliptic flow equation of the form (1)–(3) and an advection–diffusion equation. The former equation
is solved implicitly using the mortar domain decomposition scheme described here. The latter equation is solved
using operator splitting of the advection and diffusion. The hyperbolic advection is further operator split into locally
one-dimensional problems and solved explicitly using a formally fifth order accurate Eulerian–Lagrangian WENO
scheme [42]. The parabolic diffusion is solved implicitly using cell-centered finite differences [43].

The permeability coefficient a was geostatistically generated on a uniform 50 × 50 grid. It is moderately
heterogeneous, mildly correlated, locally isotropic, and varies on a log scale by about five orders of magnitude (see
Fig. 1). The square domain was decomposed into a 5 × 5 array of subdomains, each with a 10 × 10 subgrid. An
injection well is placed at the bottom left element and a production well is at the top right element.

As can be seen in Fig. 1 by comparing to the fine scale reference saturation, the reduced degree of freedom
mortar methods are completely unsatisfactory. The error in the velocity itself is actually very small, especially for
the homogenization-based mortar [35]. However, error accumulates over time in the transport problem due to slight
discontinuities in the velocity field at the subdomain interfaces (where the velocity is only weakly continuous). This
suggests that one would like to compute the fine scale solution to the flow equations (1)–(3), or at least a nearly
continuous velocity field, when solving coupled, nonlinear, time dependent problems in a heterogeneous medium at
least when using an IMPES solution strategy (i.e., implicit methods for flow and explicit methods for advection).
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Fig. 1. The permeability (left) and three saturations at day 100, using a fine mortar, a discontinuous linear mortar along each subdomain interface,
and a homogenization-based mortar, respectively, for the flow velocity.

A scheme was developed for the multiscale finite volume method [44–46] that included a post-processing technique
to impose normal continuity of the flux. For multiscale mixed methods, as we use here, a general postprocessing
technique was developed by Sun and Wheeler [47]. However, the algorithm they propose corrects the flux by solving
an isotropic diffusion problem. This is unlikely to work well in the case of the highly heterogeneous and highly
nonlinear, coupled problem considered here, since we would expect to generate unphysical flows for transport. We
therefore concentrate on the case of a full (or nearly full) mortar space, so that a continuous (or nearly continuous)
normal flux is generated directly. To solve this larger linear system (8), we develop a suitable two-level preconditioner.

3. Two-level domain decomposition preconditioners

A two-level preconditioner M−1
≈ S−1 has two components, a global coarse-scale preconditioner M−1

0 and a local
fine-scale smoothing preconditioner M−1

loc , which will be combined later in Section 6. Effective coarse preconditioners,
such as the ones in [48,49,40], are not trivial to construct. We propose to construct the coarse preconditioner simply
by solving (8) using a coarse mortar space that has only a few degrees of freedom per interface Γi j . Nevertheless, the
numerical results will show that this simple procedure works well for problems arising in porous medium applications.

Henceforth we assume that MH is a relatively fine discrete mortar space. We assume only that it is not too fine so
that (10) holds. Let P̃ :


L2(Γ )

2
→ Φh be (L2)2-projection into the space of normal fluxes

Φh =

n
i=1

Vh,i · νi ,

which is double valued on each interface Γi j . Further, let P : L2(Γ ) → Φh be defined by Pλ = P̃(λ, λ), so that

n
i=1

⟨Pλ, v · νi ⟩∂Ωi =

n
i=1

⟨λ, v · νi ⟩∂Ωi ∀ v ∈ Vh . (9)

Our assumption is that

Pλ = 0 =⇒ λ = 0; (10)

that is, the matrix L has full column rank.

3.1. Some examples of mortar spaces

The fine mortar space MH may consist of piecewise constant or linear (or higher order polynomial) functions on a
relatively fine mesh T H,i j on each Γi j . The coarse mortar space MH,0 may be defined similarly over a much coarser
mesh.

However, there are other possibilities for the mortar spaces. For example, one might simply take a relatively coarse
mesh, even a single element over each Γi j , and compensate by using higher order functions. The simplest example is
to use polynomials, such as, for a one-dimensional interface,

MH |Γi j = span{1, x, . . . , x p f } and MH,0|Γi j = span{1, x, . . . , x pc }, (11)
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where p f > pc ≈ 1. Another choice is to base an expansion of the mortar pressure on cosine series, leading to

MH |Γi j = span{1, cos x, . . . , cos(p f x)} and MH,0|Γi j = span{1, cos x, . . . , cos(pcx)}, (12)

assuming the interface is scaled to [0, π]. Of course, we can mix and match the types of mortar spaces between fine
and coarse as well.

3.2. The coarse mortar problem

Let MH,0 denote a coarse-scale mortar space, containing at least piecewise constant functions over each interface
Γi j and being much smaller than MH . We assume that

P MH,0 ⊂ P MH . (13)

With this mortar space, we have a similar domain decomposition problem (4)–(6) for λH,0 using MH,0 in place of
MH . Then the linear system is modified using a basis and matrix

MH,0 = span{µ0,k}
nc
k=1, L0,kℓ =

n
i=1

⟨µ0,ℓ, vk · ν⟩∂Ωi

to  A B L0

BT 0 0
LT

0 0 0

 u⃗0
p⃗0

λ⃗0

 =

 0
− f⃗
0

 and LT
0 C L0λ⃗0 = S0λ⃗0 = b⃗0. (14)

In order to design a successful coarse preconditioner, we need some properties. First, we need a small dimensional
problem to achieve computational efficiency, since this is the only part in the two-level domain decomposition
algorithm that is not naturally parallel. Second, we need a stable decomposition (see, e.g., [30,31,19,22]), which
is usually achieved by requiring that the interpolation operator preserves constants [30] and [31, p. 132] and that
the coarse space has low energy and provides good approximation properties [19,22]. Our mortar spaces include at
least piecewise constants. The preconditioner will have the low energy property for two reasons. First, we solve the
subdomain problems (4)–(5), minimizing the energy locally within each subdomain. Second, the conditions (13) and
later (16) ensure that no energy is introduced on the interfaces Γ when changing scales from coarse to fine.

It is interesting that the error analysis of domain decomposition mixed methods requires that at least piecewise
linear functions be used for the mortar spaces to achieve accuracy [13]. This is one of the conclusions of the numerical
result below (Fig. 2), i.e., that such a coarse mortar provides superior results to simply using piecewise constants.

3.3. Some general remarks on two-level preconditioners

It is perhaps fairly well known that when using a two-level preconditioner, as long as coarse-scale information is
effectively transmitted, the local preconditioner will smooth out the fine-scale error. That is, when solving problems
with relatively homogeneous permeability, the convergence behavior using a more accurate coarse preconditioner is
often only marginally better than using a more modest one [7].

The simplest coarse solver, however, is not likely to work for a highly heterogeneous problem. Consider the strongly
heterogeneous problem in Fig. 2, which has a 3 × 11 domain decomposition and 20 × 20 subdomains. We depict the
value or error in the magnitude of the velocity, i.e., the speed, for several cases. On the far left is the converged
fine-scale reference solution, which clearly shows a complex channelized flow field. Using only a local block-Jacobi
preconditioner (blocked by the subdomains), the error after ten iterations is large and not evenly distributed. It has
features related to the channeling of the flow. If we add a second, coarse level preconditioning using a coarse mortar
space consisting of a single constant over each interface Γi j , considerable error remains along the channels, although
the maximum error goes down. However, when we use a linear instead of a constant coarse mortar space, the error
reduces greatly and it is evenly distributed except at the corners of the subdomains. That is, channel-like flow cannot
be resolved by a constant coarse mortar space.

These results motivate us to design higher dimensional coarse mortar spaces in the next section. Moreover, the
error left at the corners motivates us to design restricted overlapping local Block-Jacobi preconditioners in Section 5.
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Fig. 2. For a heterogeneous problem, the reference speed and the error in the speed after 10 iterations preconditioned only with the local block
Jacobi preconditioner, and with that and the constant and linear mortar space.

4. Global coarse preconditioners

The coarse preconditioner is defined to be

M−1
0 = RT

0 S−1
0 R0 (15)

in terms of an interpolation or extension matrix RT
0 that we need to define. It is the transpose of the restriction matrix

R0 : Rn f → Rnc . Since the Schur complement represents the jump in the normal flux, we need to preserve the jump
during interpolation to avoid introducing additional energy into the system. In terms of functions, R0 is the operator
R0 : MH → MH,0, and because of (13), we can require that

PλH,0 = P RT
0 λH,0 ∀λH,0 ∈ MH,0. (16)

It is easy to show that if

Dkℓ =

n
i=1

⟨vℓ · νi , vk · νi ⟩∂Ωi ,

then the matrices associated to P restricted to MH and MH,0 are

P = D−1L and P0 = D−1L0,

respectively, and so the requirement (16) is P0λ⃗0 = P RT
0 λ⃗0, or more simply

L0 = L RT
0 ⇐⇒ R0LT

= LT
0 . (17)

We claim that

R0LT
= LT

0 ⇐⇒ R0LT L = LT
0 L .

The forward implication is trivial. For the converse, let nΦ = dim Φh . In terms of column and null spaces, we have
that

RnΦ = C(L) ⊕ N (LT ) = C(L0) ⊕ N (LT
0 ).

Assumption (13) says that C(D−1L0) ⊂ C(D−1L), and so also C(L0) ⊂ C(L), which leads us to conclude that

N (LT ) ⊂ N (LT
0 ).

For φ⃗ ∈ RnΦ , we decompose as φ⃗ = Lα⃗ + β⃗, where β⃗ ∈ N (LT ) ⊂ N (LT
0 ). Then

R0LT φ⃗ = R0LT (Lα⃗ + β⃗) = R0LT Lα⃗ = LT
0 Lα⃗ = LT

0 φ⃗ − LT
0 β⃗ = LT

0 φ⃗,
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and the converse is proven. Finally, assumption (10) implies that LT L is invertible, and so the requirement (16) holds
if, and only if, we make the definition

R0 = LT
0 L(LT L)−1. (18)

4.1. The matching mesh case

When the traces of the meshes on Ωi and Ω j agree on Γi j for all i and j , the double valued space Φh can be
interpreted as single valued. In that case, let L i j denote the matrix L as assembled from either side (both will agree).
We then have a simpler expression for R0 restricted to degrees of freedom associated to Γi j , to wit

R0|Γi j = L i j,T
0 L i j (L i j,T L i j )−1. (19)

In the matching mesh case, it is possible to take on each Γi j the full mortar space of Lagrange multipliers that
appear in the hybrid form of the mixed method [50]. This was done by Glowinski and Wheeler [11] to obtain the full
fine-scale solution of the discrete form of the problem (1)–(3), i.e., (4)–(6) using a single subdomain. If we take this
space, which is

MH |Γi j = Vh,i · νi |Γi j = Vh, j · νi |Γi j = Λh,i j , (20)

then L i j is invertible (it is the identity if the correct basis is chosen for MH ) and

R0|Γi j = L i j,T
0 L i j,−T . (21)

We can now simplify the action of the matrix M−1
0 = RT

0 S−1
0 R0 on a residual vector λ⃗old. Let u⃗old = L−T λ⃗old, which

corresponds to the function uh,old ∈ Vh . Application of the coarse preconditioner M−1
0 to λ⃗old is equivalent to solving

the variational problem: Given uh,old, find λH,0 (and uh and ph) such that for 1 ≤ i ≤ n,

(a−1uh, v)Ωi − (ph, ∇ · v)Ωi + ⟨λH,0, v · νi ⟩∂Ωi = 0 ∀ v ∈ Vh,i , (22)

(∇ · uh, w)Ωi = 0 ∀ w ∈ Wh,i , (23)
n

i=1

⟨uh · νi , µ0⟩∂Ωi =

n
i=1

⟨uh,old · νi , µ0⟩∂Ωi ∀µ0 ∈ MH,0, (24)

and then setting M−1
0 λ⃗old = RT

0 λ⃗0 (where λ⃗0 corresponds to λH,0). This observation allows us to save one application
of L−T and LT

0 compared to a direct calculation of M−1
0 λ⃗old, when u⃗old is stored and available for computation.

4.2. The nonmatching mesh case

In the nonmatching mesh case, we normally prefer to make a stronger assumption than (13), which is that

MH,0 ⊂ MH . (25)

In this case, it is trivial to realize that RT
0 is simply the change of basis inclusion matrix, since R0 is uniquely defined

by (16).

5. Local smoothing preconditioners

For the local preconditioner M−1
loc , we use a type of block Jacobi (BJ) smoother with each block associated with an

interface between two subdomains. Let Ri j : MH → MH |Γi j denote the restriction operator from the interface Γ to
Γi j . The corresponding matrix is Ri j .

For each interface Γi j , we will smooth over a domain Ω̃i j ⊃ Γi j which is a union of elements from the fine
partition Th . Let Ei j : MH → MH |Γ∩Ω̃i j

denote the restriction operator from the interface Γ to Ω̃i j ∩ Γ . To simplify
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the notation and the ideas, we assume that degrees of freedom defining MH over the mesh T H can be associated with
nodal points contained within Ω̃i j . This may not hold in some cases when the meshes do not match, so we will need
to choose carefully our domains and spaces. For example, with Ωi j = Ωi ∪ Ω j ∪ Γi j , we might choose Ω̃i j = Ωi j ,
and then there is no difficulty whatsoever. Under this assumption, we have the discrete matrix Ei j corresponding to
the operator Ei j . The local preconditioner is

M−1
loc =


i< j

RT
i j (Ei j SET

i j )
−1 Ei j . (26)

If Ei j = Ri j , then M−1
loc is symmetric and PCG should be used as the outer accelerator (provided that a symmetric

two-level preconditioner is chosen in the next section). Otherwise, M−1
loc is nonsymmetric and an algorithm such as

GMRES is required for the outer accelerator.

Application of this matrix is equivalent to computing contributions from each block. For block Γi j , it consists in
solving a modification of the original variational problem (4)–(6), but posed on the smaller domain Ω̃i j . Let

Ṽh,i j = Vh |Ω̃i j
∩ {v : v · ν = 0 on ∂Ω̃i j }, W̃h,i j = Wh |Ω̃i j

, M̃H,i j = MH |Ω̃i j ∩Γ .

To apply M−1
loc to a mortar vector r⃗ , we find uh ∈ Ṽh,i j , ph ∈ W̃h,i j , and λH,i j ∈ M̃H,i j such that

(a−1uh, v)Ω̃i j
− (ph, ∇ · v)Ω̃i j

+


k,ℓ

⟨λH,i j , v · νk⟩Γkℓ∩Ω̃i j
= 0 ∀ v ∈ Ṽh,i j , (27)

(∇ · uh, w)Ω̃i j
= 0 ∀ w ∈ W̃h,i j , (28)

k,ℓ

⟨uh · νk, µm⟩Γkℓ∩Ω̃i j
= rm ∀µm ∈ the basis for M̃H,i j . (29)

In this problem, we have imposed zero Dirichlet boundary conditions on ∂Ω̃i j \ ∂Ω and zero boundary conditions of
the same type as the original problem (3) on ∂Ω . The result is

M−1
loc r⃗ = λ⃗ =


i< j

RT
i j λ⃗i j ,

where λ⃗i j corresponds to λH,i j .

We can reformulate the local preconditioner as

M−1
loc =


i j

RT
i j S̃−1

i j Ei j , (30)

where S̃−1
i j is the Schur complement of the local problem (27)–(29); that is, of

 Ã B̃ L̃
B̃T 0 0
L̃T 0 0

  u⃗
p⃗

λ⃗i j

 =

 0
0

Ei j r⃗

 , (31)

which involves the restriction of A, B, and L to Ã, B̃, and L̃ involving only degrees of freedom associated to Ω̃i j .

The local preconditioner is defined here in terms of each edge, not each subdomain. This is in contrast to the local
preconditioners defined in balancing domain decomposition (BDD) [24,25] and BDD with constrains (BDDC) [26].
The one defined here may be more appropriate for strongly heterogeneous problems, since the definition of the local
solver based on the subdomains in BDD and BDDC depends on a scaling matrix. For highly heterogeneous problems,
the effectiveness of the local preconditioner is affected by the selection of the scaling matrix [51]. Our local solver
(30) does not depend on such a scaling operator.
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Fig. 3. An example of a domain Ω̃i j containing the interface Γi j between Ωi and Ω j for matching 3 × 3 subdomain meshes. The restrictive
overlapping local preconditioner depicted here involves the mortar degrees of freedom, denoted by crosses (×), that are on Γi j and immediately
adjacent to it.

5.1. The full BJ local preconditioner

The simplest choice is to take Ω̃i j = Ωi j = Ωi ∪ Ω j ∪ Γi j , and thus Ei j = Ri j . In this case, we have the usual, full
BJ preconditioner associated to the interface blocks Γi j . The preconditioner is

M−1
loc,BJ =


i< j

RT
i j (Ri j S RT

i j )
−1 Ri j =


i< j

RT
i j S−1

i j Ri j , (32)

which is symmetric, where Si j = S̃i j is the local Schur matrix for degrees of freedom on Ωi j .

5.2. A restrictive local preconditioner

In the application of S−1
i j in the BJ preconditioner (32), we need to solve the problem (27)–(29) on Ωi j , which is

essentially twice as large as the subdomain Ωi itself. In d = 3 dimensions, if we solve the local smoothing problems
by a sparse direct solver, the application of M−1

loc,BJ is approximately four times more expensive than the application
of a local preconditioner based on subdomains (as in BDD and BDDC). Furthermore, the number of interfaces are
asymptotically d = 2 or 3 times more than the number of the subdomains for a rectangular coarse mesh. This is a
computational bottleneck in applying the local block Jacobi preconditioner M−1

loc,BJ.
In practice, we can greatly improve the computational efficiency by solving the local problems (27)–(29) on a

much smaller region Ω̃i j ⊂ Ωi j containing the edge Γi j . For example, Ω̃i j may consist of Γi j and one or two layers
of elements normal to it on both sides. In this case, again Ei j = Ri j , since we restrict to Γi j , and the preconditioner,
called a restrictive local preconditioner, remains symmetric.

Based on the observation that the Green’s function for an elliptic problem decays very fast, and that we only use
M−1

loc as a smoothing preconditioner for the outer accelerator (PCG or GMRES), we should retain efficient convergence
behavior. We will show some three dimensional, highly heterogeneous examples in Section 8 to demonstrate that this
is indeed the case.

5.3. A restrictive overlapping local preconditioner

Notice that the local smoother (32) or its restricted approximation uses the mortar r⃗ only on Γi j and ignores it on
∂Ωi j , using instead a zero Dirichlet boundary condition there. This over-constrains the resulting flux near the corners,
and accounts for why the errors in Fig. 2 are large at the corners. We need to account for r⃗ on interfaces close to Γi j ,
as in the example depicted in Fig. 3.

We solve the local problem (27)–(29) on Ω̃i j chosen to be an extension outside of Ωi j in the direction tangential to
Γi j and, most likely, restricted in the normal directions as explained in the previous subsection. To do this consistently,
we may need to restrict the meshes Th and T H . For example, we can use a matching mesh Th and let T H be the trace of
Th on Γ , as shown in Fig. 3. The resulting preconditioner M−1

loc =


i j RT
i j S̃−1

i j Ei j is called a restrictive overlapping
local preconditioner. It is nonsymmetric, even for a symmetric problem, and we need to use something like GMRES
as the outer accelerator.

The idea of using overlapping local preconditioners for nonoverlapping domain decomposition was used in
the Vertex Space Method [16,17,19] (or Copper Mountain algorithm [15]) for Galerkin approximations. Cowsar
[18, Section 2.4] extended the theory to hybrid mixed finite element methods. Nonsymmetric local preconditioners
were also developed for overlapping domain decomposition as the restricted additive Schwarz (RAS)
preconditioner [20,22,21]. The discovery of the RAS method by Cai and Sarkis in [20] is quite interesting. They
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found it accidentally by removing the communication routine in the overlapping additive Schwarz/GMRES algorithm.
But here we see clearly the need for a nonsymmetric local preconditioner. They showed that the nonsymmetric local
preconditioner is more efficient than the symmetric one for several numerical examples. Efstathiou and Gander [21]
proved that, when using an overlapping local preconditioner as a solver, often the nonsymmetric solver will converge
but not the symmetric one.

6. Two-level preconditioners

Now that we have defined the local M−1
loc and coarse M−1

0 preconditioners, we can combine them in different
ways to define several symmetric and nonsymmetric two-level preconditioners, to be used within the PCG or GMRES
algorithms. The first and simplest is the additive preconditioner

M−1
add = M−1

0 + M−1
loc , (33)

which is symmetric if M−1
loc is symmetric. The second is the hybrid preconditioner

M−1
hyb = M−1

0 + (I − P0)M−1
loc (I − PT

0 ), (34)

where P0 = M−1
0 S is the Schwarz projection operator. This preconditioner is symmetric if M−1

loc is symmetric, and it
is due to Mandel [52]. In practice, we do not need to apply I − PT

0 in each PCG iteration, see [22, Lemma 2.11]. The
third and last two-level preconditioner that we consider is the nonsymmetric multiplicative preconditioner

M−1
mul = M−1

0 + M−1
loc − M−1

loc SM−1
0 . (35)

Since it is nonsymmetric, we cannot use the PCG algorithm as the outside accelerator, so instead we use the right
preconditioned GMRES algorithm. This two-level preconditioner is especially useful when we use the efficient
nonsymmetric restricted overlapping local preconditioners.

We can modify the definition of M−1
mul as

M̃−1
mul = M−1

0 + M−1
loc − M−1

0 SM−1
loc = (I − P0)M−1

loc + M−1
0 . (36)

By [53, Theorem 3.1], we have σ(M−1
mulS) = σ(M̃−1

mulS) = σ(M−1
hybS), where σ(·) is the spectrum of the matrix. If we

drop the term (I − PT
0 ) in the definition (34) of M−1

hyb, we have M̃−1
mul = M−1

hyb.
Nabben and Vuik [54] defined an effective condition number which depends on the initial guess. They showed

that for hybrid preconditioned CG, the S-norm of the error is controlled by the effective condition number of M−1
hybS,

which is less than the condition number of M−1
addS, if we use λ⃗0

= M−1
0 b⃗ as the initial guess. Simply speaking, the

hybrid preconditioner generally converges faster than the additive.
If we use nested mortar spaces MH,0 ⊂ MH , as in (11) or (12), then MH can be viewed as having two scales,

a coarse and fine scale. In this case the hybrid two-scale preconditioner with the full BJ smoother has a nice
interpretation. When we use the special starting value M−1

0 b⃗ for the PCG iteration, it is equivalent to using the coarse
solver to project out (i.e., exactly solve) the coarse components. PCG then works with the BJ smoother only to solve
the Schur complement system representing the fine components of the mortar. For more details and a proof of this
statement, see [55, Theorem 4.6.1].

7. A bound on the condition number in a special case

In this section we consider the simplest preconditioner that we can define. We consider only a problem defined using
matching grids, and using the lowest order Raviart–Thomas or Brezzi–Douglas–Marini [56] mixed finite elements (or
more general elements, see [18, Chapter 4]). The fine mortar space is the normal trace of the velocity space MH = Λh ,
and the coarse mortar space is the piecewise constants, where the coarse mortar grid has a single element on each
interface Γi j . We use the additive two-level preconditioner (33) combined with the simple full BJ local smoother
M−1

loc,BJ. We assume that exact coarse and local solvers are used, and that the coarse mesh is shape-regular. The
permeability a is bounded and uniformly positive.
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Theorem 7.1. The condition number of the additive two-level preconditioned Schur matrix, i.e., M−1
addS, is bounded

by a multiple of (log(1 + H/h))2.

For the proof, see [55, Chapter 4, Section 5]. The proof uses the abstract theory of Schwarz methods, technical tools
for conforming finite element discretizations, and interpolation operators defined from the nonconforming mortar
space to the conforming linear finite element space. It is based mainly on the work of Toselli and Widlund [22],
Casarin [57], Cowsar, Mandel, and Wheeler [24], and Cowsar [18]. Our condition number bound is the same as for
the classic BDD [18,24] and BDDC [26] two-level preconditioners.

8. Numerical examples

All our numerical examples are posed over a rectangular domain in d = 2 or d = 3 dimensions, and each uses
a rectangular array of n subdomains, each of which has a rectangular fine mesh so that the meshes match across the
subdomain boundaries. The subdomain problems are approximated using the lowest order Raviart–Thomas spaces
RT0 [34] for Vh,i × Wh,i , which approximate to first order in h. Unless otherwise noted, the fine mortar space is the
trace of the normal velocities MH = ΛH (see (20)). The coarse mortar grid T H,0 = ∪i< j Γi j uses a single element on
each interface.

We construct the coarse Schur matrix S0 by coloring the subdomain interfaces and applying the operator to each
color. Since the matrix S0 is banded and sparse, to apply its inverse we use a direct solver, either LAPACK [58] in
serial or MUMPS [59–61] in parallel.

To apply the local preconditioner M−1
loc , we solve the local system (31) so that we need not explicitly calculate the

entries of S̃i j . Again we use a direct solver, either LAPACK, MUMPS, or PARDISO [62–65].
To apply the operators L and LT in parallel, we use the message passing interface (MPI) [66] with nonblocking

send and receive. In our implementations of the mortar mixed finite element method, we do not require that the
partition of the coarse grid and the processor grid be the same, i.e., one subdomain per computer core. Instead, we
allow the problem to be divided so that multiple subdomains may be solved by a single core. This gives us greater
flexibility to adjust the size of the subdomains. As a consequence, the condition number bound and the size of the
coarse matrix are independent of the number of cores.

The outer accelerator is PCG if the two-level preconditioner is symmetric, and GMRES otherwise.
We run all our three dimensional numerical examples on supercomputer Stampede supported by the Texas

Advanced Computing Center (TACC) of the University of Texas at Austin. A Compute node consists of two Xeon Intel
8-Core 64-bit E5-processors (16 cores in all) on a single board, as a symmetric multiprocessing shared memory unit.
The core frequency is 2.7 GHz and supports 8 floating-point operations per clock period with a peak performance of
21.6 GFLOPS per core or 346 GFLOPS per node. Each node contains 32 GB of memory (2 GB per core). The memory
subsystem has 4 channels, each rated at 1600 MT/s (51.2 GB/s for all four channels in a socket). The processor
interconnect runs at 8.0 GT/s between sockets.

8.1. Three-dimensional Poisson tests

The first test is Poisson’s equation on the unit cube Ω = [0, 1]
3 with the exact solution p(x, y, z) = sin(πx)

sin(πy) sin(π z). This is a good test example for demonstrating the consistency of the performance of two-level
preconditioners with the theory of Section 7. The two-level preconditioner is the hybrid one (34) with the coarse
level preconditioner constructed from the piecewise constant coarse mortar space. The full BJ local smoother is used.

For a fixed ratio of H/h, the number of iterations does not increase as H or h changes, as shown in Table 1. As we
increase H/h by changing H or h, the number of iterations increases slowly. These numerical results are consistent
with our Theorem 7.1, which says that the condition number is bounded by (log(1 + H/h))2. Actually, the results
suggest that the bound might be log(1 + H/h).

8.2. High contrast checker board

In the next numerical example, we study the sensitivity of the multiplicative two-level preconditioner to a high
contrast, isotropic medium. We define our permeability tensor a on a unit cubic domain Ω = [0, 1]

3 with an
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Table 1
The number of iterations for H versus H/h in the Poisson three
dimensional test, which does not change for fixed ratio H/h and grows
slowly as the ratio increases.

H
1/2 1/4 1/8 1/16

4 7 7 7 7
H/h 8 10 10 10 10

16 12 13 13 13

alternating, checker board pattern. In the black regions a = 10α , while in the white regions a = 1. The source
term f = 1, and the Dirichlet boundary condition p = 0 is imposed on ∂Ω . We decompose the domain Ω into
8 × 8 × 8 subdomains and each subdomain has an 8 × 8 × 8 subgrid. We use a zero initial guess, and the stopping
criterion that the residual is reduced by 6 orders of magnitude in the discrete ℓ2-norm. The local smoother is the full
BJ preconditioner (32).

When the coarse preconditioner M−1
0 uses a single constant on each interface Γi j , the number of iterations is 20

for α = 0 (no contrast), and 21 for α = 6 and α = 12. When the coarse preconditioner uses a single linear on each
interface, the number of iterations is 15 for α = 0, α = 6, and α = 12. The number of iterations is almost independent
of the contrast 10α . This is because the transmissibility coefficients defined on the faces of the fine grid elements are
almost homogeneous except on the boundary of the domain Ω . That is, the flow pattern does not change much with
the contrast α.

8.3. Two-dimensional examples from the SPE10 dataset

In this section, we present some numerical examples to study the performance of the different two-level precondi-
tioners M−1

add, M−1
mul, and M−1

hyb with different coarse preconditioners (constant, linear, cosine, homogenization based,
etc. mortar) for homogeneous and strongly heterogeneous permeability coefficients.

In our two-dimensional examples, the fine scale mortar grid depends on which fine scale mortar space we use.
When the fine scale mortar space is the trace of the velocity flux space MH = Λh = Vh · ν, the fine scale mortar
grid is the trace of the subdomain grid. When the fine scale mortar space is spanned by discontinuous piecewise
polynomials or cosine series, the fine scale mortar grid is the coarse scale mortar grid.

The permeability fields are taken from the Tenth Society of Petroleum Engineers Comparative Solution Project
(SPE10) [3] benchmark problem model 2. We take the 36th and 85th layers, as shown in Fig. 4. The domain is
1200 × 2200 [ft2]. The fine scale grid has 60 × 220 elements. The test is an example of a quarter five-spot pattern
of wells, with an injection well in the lower left corner element and a production well in the upper right corner
element. We assume no-flow boundary conditions. These permeability fields give rise to strong, long-range channels
and produces extremely complex velocity fields.

8.3.1. The spectrum of the preconditioned matrix
We decompose the 60 × 220 fine grid into a 3 × 11 coarse grid with a 20 × 20 subgrid. In this example, on each

interface we use the first, the first two, or the first three functions of the cosine series on a reference element [0, π]

to define the coarse mortar space, and all 20 modes to define the fine mortar space (see (12)). The hybrid two-level
preconditioner M−1

hyb (34) is used with the full BJ local smoother. To reduce the size of the fine scale matrix, on each
interface we divided the fine mortar space MH into a coarse space of three cosine modes MH,0 plus the other 17
modes. We then found the Schur complement for the finer modes.

In Fig. 5, we show on the left the histogram from 0 to 60 of the eigenvalues of the unpreconditioned matrix on a log
scale from −17 to −8. It has a condition number of k = 1.0 × 106. The other three histograms, from 0 to about 800,
show the eigenvalues of the preconditioned system (not on a log scale) from about 0 to 1.8. The condition numbers
are k = 33.5, 9.8, and 7.4 for MH,0 consisting of one, two, and three cosine modes, respectively. Furthermore, the
spectrum of the preconditioned matrices are clustered about 1, which is advantageous for Krylov algorithms. Similar
results are obtained for the 36th layer (not shown), which has a simpler permeability field than the 85th layer. The
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Fig. 4. The logarithm of the permeability field and the magnitude of the velocity solution (speed) for the 36th and 85th layers of the SPE10
benchmark problem.

Fig. 5. Histogram of eigenvalues of the SPE10 85th layer, showing the unpreconditioned matrix on a log scale using only 3 degrees of freedom per
edge (left) and the preconditioned matrix using a coarse space of 1, 2, and 3 degrees of freedom per edge.

Table 2
Number of iterations of the multiplicative two-level preconditioner using the full BJ local smoother for two SPE10 layers. Results are for 6 × 22
and 3 × 11 subdomains (with 10 × 10 and 20 × 20 subgrids) using no coarse preconditioner, and coarse mortar spaces of polynomials of degree 0
(const), 1 (lin), and 2 (quad), cosine series of 2 and 3 modes (cos), and the homogenization-based mortar space without (hom) and with oversampling
(hom-os). The number of degrees of freedom (DOF) per edge is noted. Shown also are results for the BDD preconditioner.

M0 coarse space no const lin quad cos cos hom hom-os BDD
# DOF per edge 0 1 2 3 2 3 3 3 –

Layer 36
6 × 22 subdomains >100 33 20 15 19 15 12 11
3 × 11 subdomains 80 24 18 15 18 16 13 12 27

Layer 85
6 × 22 subdomains >100 45 22 17 21 17 13 12
3 × 11 subdomains 88 34 19 14 20 15 14 12 41

condition number reduces from k = 3.9 × 104 to 11.9, 8.5, and 6.4, for MH,0 consisting of one, two, and three cosine
modes, respectively.

8.3.2. Comparison of different coarse preconditioners
We now compare various choices for the coarse preconditioner. In each test case, we use the multiplicative

preconditioner M−1
mul (35) and the full local BJ preconditioner. We set the stopping criterion as residual reduction

to 10−6 of the initial residual.
In Table 2, we compare the number of iterations to reach the convergence criterion using various coarse mortar

spaces. We compare results using no coarse preconditioner (i.e., BJ alone), and coarse mortar spaces of polynomials
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Fig. 6. Logarithm of the diagonal permeability tensor from SPE10 model 2.

(see (11)) of degree 0 (const), 1 (lin), and 2 (quad), cosine series (see (12)) of 2 and 3 modes (cos), and the special
homogenization-based mortar space [35,36] using formal linear approximations homogenized over Ωi j (hom) and on
an oversampled domain (hom-os). Each space has the given number of degrees of freedom (DOF) per interface edge.

Of course, using only the block Jacobi local preconditioner without the coarse component requires many more
iterations to converge, or possibly even diverges. However, a reasonable number of iterations is obtained by adding a
piecewise constant coarse preconditioner. Moreover, we see a significant reduction using linears instead of constants,
cutting the number of iterations by about a third and a half for the 36th and 85th layers, respectively. After that, adding
more degrees of freedom shows a more marginal improvement, even though the coarse preconditioner is becoming
more expensive (i.e., the coarse problem becomes larger).

The cosine series mortar spaces perform about as well as the polynomial ones for the same number of degrees of
freedom. Generally, the coarse preconditioner defined by the homogenization-based mortar space, with or without the
oversampling technique, performs the best. But it also requires the most work to set up the coarse level preconditioner
matrix. We note that for the multigrid method, a coarse preconditioner based on homogenization theory has been
defined already in [5,6] for Galerkin approximations to elliptic problems with highly oscillatory coefficients.

The more complicated 85th layer takes much more effort to converge with the piecewise constant coarse precon-
ditioner than the 36th layer for the same subdomain partition. But this is not true for the other coarse preconditioners.
This suggests that the linear, quadratic, etc., coarse preconditioners are much less sensitive to the heterogeneity of the
problem.

There is an interesting and unusual phenomenon, that for a given coarse preconditioner, the number of iterations
for the 3 × 11 (H/h = 20) coarse grid partition is less than the 6 × 22 (H/h = 10) partition for both the 36th and
85th layers. There are large errors inside the subdomains for the 6×22 subdomain partition, possibly due to the effect
of heterogeneity and the way of setting up the right hand side for applying the local BJ preconditioner.

We also compare the number of iterations with the balancing domain decomposition method (BDD) [18,24,25]
using 3 × 11 subdomains in Table 2. The fine scale mortar space is spanned by piecewise constant functions. The
number of iterations of the BDD preconditioner is a little bit more than the multiplicative two-level one with a
piecewise constant coarse preconditioner (27 to 24 for the 36th layer and 41 to 34 for the 85th layer). However,
the BDD preconditioner is quite a bit cheaper to compute. The coarse space of the BDD method is constructed based
on subdomains, not on interfaces, and thus the size of the coarse matrix is about 2 times smaller. Notice also that the
local preconditioner in BDD is the Neumann to Dirichlet map, so the local preconditioner M−1

loc,BJ in M−1
mul is also

about twice as large as the local preconditioner in BDD.

8.4. Three-dimensional examples from the SPE10 dataset

In this section, the permeability field is again taken from the SPE10 benchmark problem [3], but we use the full
three-dimensional dataset. The fine scale model has 60 × 220 × 85 elements. The dimension of the model is 1200 ×

2200 × 170 [ft3]. Fig. 6 shows the logarithm of the x-direction (same for y-direction) and z-direction permeability
fields. The top 35 layers form a Tarbert formation and represent a prograding near-shore environment. The bottom 50
layers represent an Upper Ness fluvial formation, with the channels clearly visible in the 85th layer shown in Fig. 4.
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Table 3
Number of iterations and CPU time for the 3-D uniform SPE10 isotropic x-permeability using the full block Jacobi
local smoother M−1

loc,BJ. Shown are results using coarse mortar spaces of polynomials of degree 0 (const), 1 (lin), and

2 (quad) using the initial guess M−1
0 b⃗.

M0 coarse space const lin quad
iter CPU (s) iter CPU (s) iter CPU (s)

12 × 44 × 17 subdomains
Hybrid preconditioner 45 56.8 15 41.8 8 49.3

6 × 22 × 17 subdomains
Additive preconditioner 48 50.5 23 45.8 14 48.0
Hybrid preconditioner 32 50.1 14 45.1 9 47.5
Multiplicative preconditioner 30 50.7 13 45.3 9 47.9

6 × 22 × 5 subdomains
Hybrid preconditioner 73 81.6 44 72.2 22 66.6

The largest and smallest value of the permeability is 2×105
[md] and 6.65×10−8

[md]. This permeability field gives
rise to strong, long-range correlated channels and produces an extremely complex velocity field.

In all our three dimensional examples, the additive and multiplicative two-level preconditioners use zero as the
initial guess, and the hybrid uses M−1

0 b⃗ as the initial guess, except for the results of Table 3.

8.4.1. Isotropic permeability and uniform grids
For the following examples, we modify the SPE10 dataset to use an isotropic permeability field, i.e., a11 = a22 =

a33, where a11 is the x-direction permeability. We also set Ω = 60×220×85 such that the fine grid is uniform. There
is no source nor sink ( f = 0). For the boundary conditions, the pressure on the left and right faces in the pictures of
Fig. 6 is normalized to 1 and 0, respectively; the rest of the faces have the no-flow condition.

In the first numerical example, we study the effect of the subdomain partition and the choice of two-level
preconditioner. We use the full BJ local smoothing preconditioner and a coarse preconditioner with a single
polynomial on each interface of degree 0 (const), 1 (lin), or 2 (quad). We decompose the domain Ω into a different
number of subdomains, 12 × 44 × 17 with a 5 × 5 × 5 subgrid, 6 × 22 × 17 subdomains with a 10 × 10 × 5 subgrid,
and 6 × 22 × 5 subdomains with a 10 × 10 × 17 subgrid. The stopping criteria is that the residual is reduced by five
orders of magnitude in the discrete ℓ2-norm. For this test only, we use the initial guess M−1

0 b⃗ for all test cases so that
we can more fairly compare the two-level preconditioners.

As seen in Table 3, this strongly heterogeneous problem behaves differently from the homogeneous Poisson’s
problem as we change the size of the subdomains (H/h). Because of the discontinuity of the coefficients along the
interfaces and the long range correlated channels, the performance of the two-level preconditioners becomes much
less predictable. For the hybrid preconditioner, the best grid partition in terms of number of iterations and CPU time
is 6 × 22 × 17 subdomains with subgrid 10 × 10 × 5. We use this partition for the other tests.

Table 3 shows that the additive two-level preconditioner M−1
add takes more iterations, but not necessarily more

CPU time, since each iteration applies the Schur complement S one time less than the hybrid and multiplicative
preconditioners. The number of iterations and CPU time for the preconditioner M−1

hyb and M−1
mul are almost the

same.

8.4.2. Nonsymmetric restricted overlapping local preconditioners
We now apply the restricted (RBJ), nonsymmetric overlapping (OBJ), and nonsymmetric restricted overlapping

(ROBJ) local preconditioners discussed in Section 5.2 with the multiplicative two-level preconditioner and zero initial
guess. We use a 3×3 matrix (dkℓ)3×3 to represent the dimensions of the local extended smoothing domains Ω̃i j for the
local preconditioners. A two dimensional example is shown in Fig. 7. Entry dkℓ gives the extension distance in the ℓth
direction from Γi j for an interface with normal in the kth direction. If dkℓ = 0 for k ≠ ℓ, we have a nonoverlapping
local preconditioner. If dkk < Hk/hk , we have a restrictive preconditioner in the k-direction.

For a given coarse preconditioner M−1
0 , there is little difference in terms of the number of iterations using the local

BJ preconditioners configured with dkℓ = 1 and dkℓ = 2 for k ≠ ℓ. Thus, in the following numerical examples, we
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Fig. 7. Two dimensional matrix representation describing the domain Ω̃i j .

Table 4
Number of iterations and CPU time for SPE10 with isotropic permeability and uniform grid using the multiplicative two-level preconditioner and
various coarse and local preconditioners.

M0 coarse space const const lin lin lin

Ω̃i j

2 0 0
0 2 0
0 0 1

 2 1 1
1 2 1
1 1 1

 10 0 0
0 10 0
0 0 5

 2 0 0
0 2 0
0 0 1

 2 1 1
1 2 1
1 1 1


RBJ ROBJ BJ RBJ ROBJ

iter 34 25 16 17 12
CPU (s) 24.5 25.7 42.0 18.9 20.7

will set dkℓ = 0 or 1 for k ≠ ℓ. The least number of iterations should use the valuesH1/h1 1 1
1 H2/h2 1
1 1 H3/h3

 .

In the following examples, we will give the smallest values of (dkℓ)3×3 needed to match this case.
The results shown in Table 4 use the isotropic physical parameters, uniform grid, and mesh settings as in

Section 8.4.1, using 6 × 22 × 17 subdomains (10 × 10 × 5 subgrid). Both piecewise constant and linear coarse
preconditioners show fewer iterations for the overlapping ROBJ versus RBJ, but not improved CPU time for this
problem. The restrictive preconditoners are much better than the full BJ in CPU time, but only marginally worse in
the number of iterations (compare also to Table 3, which has a slightly different convergence criterion).

The ROBJ smoother is most effective for the multiplicative two-level preconditioner with a piecewise constant
coarse mortar space. It reduces the number of iterations from 34 to 25. It is effective, but less so, for the piecewise
linear coarse mortars, because these already capture errors along the vertices and edges of the interfaces much more
effectively than the piecewise constant coarse mortars.

In [27], Zhou and Tchelepi had a similar number of iterations counts for this problem. But their CPU time seems
faster, since the size of their local preconditioner is much smaller than the ones here. We also used PETSc [67–69]
to solve some simpler problems. We notice that usually the PETSc default multigrid solver takes more iterations.
However, each iteration is much faster than our implementation, and so the total solver time is 2 to 3 times faster, if
the linear solver converged (it does not always converge).

We next use the unmodified, anisotropic permeability field and grid from the SPE10 dataset, i.e., a11 = a22 ≠ a33
and h1 = 2h2 = 10h3 = 20. Boundary conditions and source terms are the same as before. We use a piecewise
linear coarse mortar for these results. The results are given in Table 5. Due to the anisotropic permeability and the
non-uniform grid, comparing with the results in Table 4, the number of iterations increases for this problem.

Compared to the full BJ preconditioner (21 iterations, 46.4 s), the RBJ (25 iterations, 23.2 s) and ROBJ (22 itera-
tions, 23.0 s) are much faster and take only a few more iterations. The fewest number of iterations is given by the OBJ
smoother, but it is of course the slowest (12 iterations, 65.5 s). The final ROBJ′ matches this number of iterations and
is faster (36.5 s), but not as fast as RBJ and ROBJ.

The number of iterations, shown in Column 5 and 6 of Table 5 for OBJ and ROBJ′, are the same when we set
d13 = 0. This is due to the fact that a33 ≪ a11 = a22. Thus, the amount of flux that goes through the z-direction
interfaces is much smaller than x-direction interfaces. Therefore, we can ignore the flux jumps on the z-direction
interfaces when we smooth the new mortar defined on the x-direction interfaces (i.e., we can set d13 = 0).
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Table 5
Number of iterations and CPU time for the original SPE10 dataset using the multiplicative two-level preconditioner, linear coarse and various local
preconditioners.

M0 coarse space lin lin lin lin lin

Ω̃i j

10 0 0
0 10 0
0 0 5

 1 0 0
0 3 0
0 0 1

 1 0 0
1 3 0
0 1 1

 10 1 1
1 10 1
1 1 5

 4 1 0
1 8 1
1 1 2


BJ RBJ ROBJ OBJ ROBJ′

iter 21 25 22 12 12
CPU (s) 46.4 23.2 23.0 65.5 36.5

Table 6
Number of iterations and CPU time for the original SPE10 dataset with the flow driven by a quarter five-spot pattern of wells. We use the
multiplicative two-level preconditioner and various coarse and local preconditioners.

M0 coarse space lin lin quad quad quad

Ω̃i j

4 1 0
1 7 1
1 1 2

 2 0 0
1 4 0
0 0 2

 2 1 0
1 7 1
1 1 2

 2 0 0
1 4 0
0 0 2

 2 0 0
0 4 0
0 0 2


ROBJ ROBJ′ ROBJ ROBJ′ RBJ

iter 31 44 18 27 36
CPU (s) 52.9 39.6 41.7 35.6 40.2

Table 7
Residual for the original SPE10 dataset with the flow driven by a quarter five-spot pattern of wells as
solved using the PETSc MG as a preconditioner with an ILU(2) smoother.

Iteration #
0 1 10 20 30 100 200

Residual 1.95e+2 4.20e+1 1.67e+0 2.52e−1 4.34e−2 2.33e−2 2.02e−2

Finally, we show results for a quarter five-spot pattern of wells, with an injection well at the origin and an production
well at the furthest corner element. The boundary conditions are no-flow on the outer boundaries of Ω . Other physical
parameters are the same as the above example, i.e., we use the original anisotropic SPE10 dataset. Results appear in
Table 6, using piecewise linear and quadratic mortars. When we use a one-element overlapping smoothing domain,
the ROBJ smoothers given have the fewest number of iterations (31 iterations, 52.9 s for linears and 18 iterations,
41.7 s for quadratics), while the ROBJ′ local smoothers give the fastest times (44 iterations, 39.6 s for linears and 27
iterations, 35.6 s for quadratics). The nonoverlapping RBJ is almost as effective for quadratics (36 iterations, 40.2 s).

The sparse direct solver MUMPS took 303.5 s to solve the problem, which is almost 9 times more than our
iterative solver. The PETSc multigrid (MG) and algebraic multigrid (AMG) were also tested as preconditioners for
the accelerator GMRES. We set the local smoother to be the incomplete LU factorization with 2-level fill-in (ILU(2)).
The tolerance is 10−5. Other options are taken as the defaults. In Table 7, we show the convergence history of the
multigrid preconditioner. At the first 30 iterations, the residual is reduced quickly. However, it stagnates and does not
converge. This convergence behavior is very similar to the one level preconditioner without a coarse component for
a homogeneous problem. This indicates that we need a better coarse preconditioner to achieve convergence for this
extremely heterogeneous problem. The AMG preconditioner behaves the same as the MG preconditioner.

8.5. Parallel strong scalability study for a problem of size 16M

As a final example, we test a large problem using an isotropic, heterogeneous permeability generated by a geolog-
ical software package on a uniform fine grid, which varies over about 6 orders of magnitude. We impose Dirichlet
boundary conditions on the external faces that are perpendicular to the x-axis with normalized pressure 1 and 0, and
a no-flow Neumann condition on the other faces.
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Fig. 8. Strong scalability plots (number of cores from 8 to 256 versus the ratio of the base time to the time required) for of the hybrid two-level
preconditioner, including the total solver time, the time to assemble and factor the local matrices in the BJ smoother for applying S̃−1

i j , the time to
assemble the coarse interface matrix S0, and the time to factor the matrix S0 using the sparse direct solver MUMPS. Ideal linear scaling plots are
also shown.

Table 8
CPU times for factoring the coarse interface matrix S0 with MUMPS. It does not scale well, since the
size of the matrix is small (34,560 × 34,560).

Number of cores
8 16 32 64 128 256

Time (s) 0.49 0.47 0.55 0.33 1.04 1.35

We decompose the 256 × 256 × 256 uniform fine grid into a 16 × 16 × 16 coarse grid of subdomains, each
with a 16 × 16 × 16 subgrid. The number of fine grid elements is about 16.7 million, and the coarse mesh has 11,520
interfaces. We use piecewise linear functions to construct the coarse preconditioner M−1

0 . The size of the coarse mortar
interface matrix S0 is 34,560 × 34,560, but it is block sparse. The local preconditioner is the full nonoverlapping BJ
smoother M−1

loc,BJ (32). The stopping criteria is that the residual is reduced by six orders of magnitude in the discrete
ℓ2-norm. The hybrid two-level preconditioner takes 20 iterations to converge on the TACC computer Stampede, which
was described above.

Strong scalability plots are shown in Fig. 8. Due to memory limitations, we use 8 cores to determine the base
timings, and these are 180.6 s for the total solver time, 138.2 s to assemble and factor Si j , 7.39 s to assemble S0, and
0.49 s to factor S0. We note that assembling and factoring the local preconditioner takes most of the CPU time. The
only part of the system that does not scale well is factoring the coarse mortar interface matrix S0. The other routines
in our implementation scale almost linearly.

In Table 8, we see that the time for factoring the matrix S0 (of size 34,560 × 34,560) increases as the number of
cores increases. This suggests that the communication time is significant compared with the CPU time of floating
point operations; that is the size of the matrix S0 is too small to scale well. Clearly, a more scalable coarse solver
needs to be developed for our coarse solver, such as perhaps using multigrid to solve the interface system for the
coarse mortar unknowns [28,29].

9. Summary and conclusions

We defined domain decomposition, two-level, additive, multiplicative, and hybrid iterative preconditioners
(33)–(34) for elliptic problems in mixed form, most likely to be used within a Krylov accelerator such as PCG or
GMRES. These two-level preconditioners incorporate a coarse preconditioner based on subdomain interfaces using
the multiscale mortar method [14,35,36] and a local smoothing preconditioner based on block Jacobi (BJ), blocked
by subdomain interfaces.

Given mixed finite element and fine scale mortar spaces for the discretization of the elliptic problem (4)–(6),
we provided a framework for defining the coarse mortar space and thereby the coarse preconditioners. We need the
technical assumption (10) for unique solvability, and the assumption (13), that the projection P onto the space of
normal fluxes of the coarse mortar space is contained in the projection of the fine mortar space. In terms of the coarse
Schur complement matrix S0, the coarse preconditioner M−1

0 = RT
0 S−1

0 R0 (i.e., (15)) is defined once the prolongation
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RT
0 is defined. It is defined uniquely as R0 = LT

0 L(LT L)−1 (i.e., (18)) by the condition that the projection P of a
coarse mortar agree with the projection of the extension (i.e., (16)). Application of R0 can be simplified in the
matching and nonmatching mesh cases.

We use local smoothers M−1
loc based on BJ that arise from solving the local problem (27)–(29) on a domain Ω̃i j ⊃

Γi j . We use one of the full smoothing domain Ω̃i j = Ωi j (BJ), a restrictive domain Ω̃i j ( Ωi j (RBJ), an overlapping
domain Ω̃i j ) Ωi j (OBJ), or a domain restricted normal to Γi j and overlapping in the tangential directions (ROBJ).
Generally, RBJ or ROBJ are the most efficient. The overlapping smoothers lead to an nonsymmetric local, and
therefore also two-level, preconditioner.

The simplest additive two-level preconditioner that uses piecewise constant coarse mortars on matching grids has
a preconditioned matrix with a condition number bounded by a multiple of (log(H/h))2 (Theorem 7.1), which is the
same as in the classic BDD [18,24] and BDDC [26] two-level preconditioners, which are based on subdomains rather
than interfaces.

Finally, we showed some numerical examples that demonstrate the convergence performance of the precondi-
tioners. We observed that the two-level preconditioners are not very sensitive to the ratio of the highest to smallest
permeability in a high contrast medium (at least when appearing in a checkerboard arrangement). We considered
problems involving heterogeneous porous media, such as the permeability fields from the SPE10 benchmark problem.
We observed that the preconditioned system has a low condition number and eigenvalues clustered around 1. We
also found that it is often desirable, and even necessary, to use at least piecewise linear instead of piecewise constant
coarse mortar spaces to achieve convergence and efficiency. Moreover, the use of restrictive local smoothers improved
efficiency significantly, without increasing much the number of iterations to converge. Errors often accumulate around
the corners of the subdomains, so the use of the nonsymmetric restrictive overlapping preconditioner (ROBJ) could
result in a faster and more robust algorithm.
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[51] M. Čertı́ková, J. Šı́stek, P. Burda, On selection of interface weights in domain decomposition methods, in: Programs and Algorithms of
Numerical Matematics, vol. 16, Institute of Mathematics AS CR Prague, 2012, pp. 35–44.

[52] J. Mandel, Hybrid domain decomposition with unstructured subdomains, in: J. Mandel, et al. (Eds.), Sixth International Conference on
Domain Decomposition Methods, Contemporary Mathematics, American Mathematical Society, 1992, pp. 103–112.

[53] J.M. Tang, R. Nabben, C. Vuik, Y.A. Erlangga, Comparison of two-level preconditioners derived from deflation, domain decomposition and
multigrid methods, J. Sci. Comput. 39 (2009) 340–370.

[54] R. Nabben, C. Vuik, A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners, Numer.
Linear Algebra Appl. 15 (2008) 355–372.

[55] H. Xiao, Multiscale mortar mixed finite element methods for flow problems in highly heterogeneous porous media (Ph.D. thesis), University
of Texas at Austin, 2013.

[56] F. Brezzi, J. Douglas Jr., L.D. Marini, Two families of mixed elements for second order elliptic problems, Numer. Math. 47 (1985) 217–235.
[57] M.A. Casarin, Schwarz preconditioners for spectral and mortar finite element methods with applications to incompressible fluids (Ph.D.

thesis), Courant Institute of Mathematical Sciences, New York University, 1996.
[58] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,

LAPACK Users’ Guide, third ed., Society for Industrial and Applied Mathematics, 1999.
[59] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J.

Matrix Anal. Appl. 23 (1) (2001) 15–41.
[60] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput. 32

(2006) 136–156.
[61] I.S. Duff, A.M. Erisman, J.K. Reid, Direct Methods for Sparse Matrices, in: Monographs on Numerical Analysis, Oxford University Press,

USA, 1989.
[62] O. Schenk, M. Bollhoefer, R. Roemer, On large-scale diagonalization techniques for the Anderson model of localization, SIAM Rev. 50

(2008) 91–112.
[63] O. Schenk, A. Waechter, M. Hagemann, Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale

nonconvex interior-point optimization, J. Optim. Theory Appl. 36 (2–3) (2007) 321–341.
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