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A B S T R A C T

We construct direct serendipity finite elements on general cuboidal hexahedra, which are 𝐻1-
conforming and optimally approximate to any order. The new finite elements are direct in that
the shape functions are directly defined on the physical element. Moreover, they are serendipity
by possessing a minimal number of degrees of freedom satisfying the conformity requirement.
Their shape function spaces consist of polynomials plus (generally nonpolynomial) supplemental
functions, where the polynomials are included for the approximation property and supplements
are added to achieve 𝐻1-conformity. The finite elements are fully constructive. The shape
function spaces of higher order 𝑟 ≥ 3 are developed first, and then the lower order spaces
are constructed as subspaces of the third order space. Under a shape regularity assumption,
and a mild restriction on the choice of supplemental functions, we develop the convergence
properties of the new direct serendipity finite elements. Numerical results with different choices
of supplements are compared on two mesh sequences, one regularly distorted and the other one
randomly distorted. They all possess a convergence rate that aligns with the theory, while a
slight difference lies in their performance.

1. Introduction

The seminal book of Wachspress in 1975 [1] has focused interest in defining 𝐻1-conforming finite elements on polytopal
elements, in particular, on polygons and polyhedra. Polytopal meshes have been used in many areas of application with the
advantage of its flexibility. For just two examples, in applications to topology optimization [2,3] and fracture propagation [4,5],
randomly generated polytopal elements were seen to reduce the bias that is associated to standard meshes.

There are many approaches for numerically solving partial differential equations on polyhedral meshes. Of course, the
nonconforming discontinuous Galerkin (DG) methods can be posed on polyhedral meshes [6,7], and this is also the case for the
related weak Galerkin methods [8]. An interesting approach to construct finite elements on polytopes is introduced in [9–11] by
considering broken ultraweak variational formulations and applying the discontinuous Petrov–Galerkin (DPG) methodology [12].
The discretization applies classical broken test and trial spaces; however, it uses more than the minimal number of degrees of freedom
(DoFs) required for 𝐻1-conformity (see Section 3 below). Although the framework is not 𝐻1-conforming for a general polyhedral
element, a conforming approximation is provided of any optimal order of accuracy 𝑟 as long as the elements have triangular or
quadrilateral faces.

The mimetic methods, a type of finite volume method, have been defined on polyhedra in [13]. They mimic the properties of
the differential operators such as the discrete divergence theorem. However, they represent the solution only at DoFs (i.e., they do
not provide a basis for interpolation). The virtual element methods [14] seem to have grown out of the mimetic methods. They do

∗ Corresponding author.
E-mail addresses: arbogast@oden.utexas.edu (T. Arbogast), wan01937@umn.edu (C. Wang).
https://doi.org/10.1016/j.cma.2024.117500
Received 1 July 2024; Received in revised form 26 August 2024; Accepted 19 October 2024
vailable online 30 October 2024 
045-7825/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
mailto:arbogast@oden.utexas.edu
mailto:wan01937@umn.edu
https://doi.org/10.1016/j.cma.2024.117500
https://doi.org/10.1016/j.cma.2024.117500
http://creativecommons.org/licenses/by/4.0/


T. Arbogast and C. Wang

H

b
p

c

e
s

p

6
f
f

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117500 
not provide a basis for interpolation but possess a virtual (i.e., not computable) and conforming underlying finite element basis.
owever, they usually require the addition of a problem dependent stabilization term in the equations to control the unknown

virtual components of the solution.
One may desire a conforming approximation with an explicit finite element basis in many instances. The latter is particularly

helpful when dealing with nonlinear partial differential equations and coupled systems of equations. They are more fundamental
for application since they provide a general framework for interpolation and approximation of functions, independent of how they
are used. For example, they could be applied to data interpolation and visualization. However, there are currently not many good
𝐻1-conforming polyhedral finite elements.

Serendipity finite elements defined on cubes by Arnold and Awanou [15], denoted as 𝑟(�̂�), 𝑟 ≥ 1, are well known to be 𝐻1-
conforming and approximate to order 𝑟+ 1 with a minimal number of DoFs. However, they lose optimal order accuracy when mapped
to a cuboidal hexahedron, which is defined as a three dimensional non-degenerate hexahedron with flat faces that can be obtained
y a trilinear map from a reference cube. Tensor product spaces on a cube, on the other hand, maintain optimal approximation
roperties while mapped to a cuboidal hexahedron. However, they suffer from using an excessive number of DoFs.

In this work, we construct direct serendipity finite elements on a cuboidal hexahedron 𝐸, which are of the form

𝑟(𝐸) = P𝑟(𝐸)⊕ S
𝑟 (𝐸), 𝑟 ≥ 1, (1)

where P𝑟(𝐸) is the space of polynomials on 𝐸 up to degree 𝑟, and S
𝑟 (𝐸) consists of supplemental functions. These supplemental

functions cannot in general be polynomials. We give several ways to define them, and one choice results in the supplements being
piecewise polynomial on a submesh of the element. The construction is based on the previous work of the authors on developing
direct serendipity finite elements for two dimensional convex polygons [16,17]. The complicated geometry of a three dimensional
hexahedron makes the construction more subtle and intricate. We develop the approximation properties of the new finite elements,
and evaluate their performance through numerical tests. Our work may also provide a methodology for future development of
conforming finite elements on more general polyhedra, and possibly 𝐻(curl)-conforming finite elements on cuboidal hexahedra in
the de Rham sequence [18].

One interesting use of our new direct serendipity finite elements is in application to enriched Galerkin (EG) methods [19,20],
in which continuous finite elements are enriched with piecewise discontinuous constants to maintain local mass conservation. They
have fewer degrees of freedom than DG methods, so they are easier to solve [20]. Implementation using direct serendipity spaces
an make the method even more efficient [21].

The rest of the paper is organized as follows. We introduce some notation and preliminaries in Section 2. We count the minimum
number of degrees of freedom needed for 𝐻1-conformity in Section 3. The actual construction proceeds by constructing the finite
lement, independently of conformity considerations, in Sections 4–5. To illustrate the key idea, we first construct the direct
erendipity space for 𝑟 = 3 in Section 4. We extend the construction to general higher order 𝑟 ≥ 3 cases in Section 5. The lower

order 𝑟 = 1, 2 direct serendipity elements are then constructed in Section 6 as subsets of the 𝑟 = 3 case. Section 7 is included to
describe how to construct certain special functions needed in Sections 4–5. Returning to the question of conformity, some additional
restrictions are introduced in Section 8 to make the finite elements𝐻1-conforming on the entire domain. We prove the approximation
roperties in Section 9 and discuss the numerical results in Section 10. Finally, in Section 11 we summarize our results and propose

some suggestions for future work.

2. Notation and preliminaries

Let P𝑟(𝜔) denote the space of polynomials of degree up to 𝑟 on 𝜔 ⊂ R𝑑 , where 𝑑 = 0 (a point), 1, 2, or 3. Recall that

dimP𝑟(R𝑑 ) =
(

𝑟 + 𝑑
𝑑

)

=
(𝑟 + 𝑑)!
𝑟! 𝑑!

. (2)

Let P̃𝑟(𝜔) denote the space of homogeneous polynomials of degree 𝑟 on 𝜔. Then

dim P̃𝑟(R𝑑 ) =
(

𝑟 + 𝑑 − 1
𝑑 − 1

)

=
(𝑟 + 𝑑 − 1)!
𝑟! (𝑑 − 1)! , 𝑑 ≥ 1. (3)

Let the element 𝐸 ⊂ R3 be a closed, nondegenerate, convex cuboidal hexahedron (i.e., a quadrilaterally-faced hexahedron), with
 faces, 12 edges, and 8 vertices. The hexahedron 𝐸 is nondegenerate in that it does not degenerate to any polyhedron with fewer
aces, edges, or vertices, neither to a polygon, line segment, nor a point. We choose to identify the faces of 𝐸 based on the mapping
rom a reference element �̂� as depicted in Fig. 1. Note that this is only for the convenience of indexing.

Let the faces of 𝐸 be denoted as 𝑓𝑛, 𝑛 = ±1,±2,±3. Let the reference element �̂� be [−1, 1]3, with faces denoted as 𝑓𝑛, 𝑛 = ±1,±2,±3.
Define the trilinear and bijective map 𝐅𝐸 ∶ �̂� → 𝐸 that maps the faces of �̂� to those of 𝐸, such that

𝑓−1 = �̂� ∩ {�̂� = −1} 𝐅𝐸
←←←←←←←←←←←←←→ 𝑓−1, 𝑓1 = �̂� ∩ {�̂� = 1} 𝐅𝐸

←←←←←←←←←←←←←→ 𝑓1,

𝑓−2 = �̂� ∩ {�̂� = −1} 𝐅𝐸
←←←←←←←←←←←←←→ 𝑓−2, 𝑓2 = �̂� ∩ {�̂� = 1} 𝐅𝐸

←←←←←←←←←←←←←→ 𝑓2, (4)

𝑓−3 = �̂� ∩ {�̂� = −1} 𝐅𝐸
←←←←←←←←←←←←←→ 𝑓−3, 𝑓3 = �̂� ∩ {�̂� = 1} 𝐅𝐸

←←←←←←←←←←←←←→ 𝑓3.

For 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3, denote the edges of 𝐸 as
𝑒𝑗 ,𝑘 = 𝑓𝑗 ∩ 𝑓𝑘, 𝑒𝑖,𝑘 = 𝑓𝑖 ∩ 𝑓𝑘, 𝑒𝑖,𝑗 = 𝑓𝑖 ∩ 𝑓𝑗 , (5)
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Fig. 1. A reference element �̂� = [−1, 1]3 and a cuboidal hexahedron 𝐸, with faces 𝑓𝑖 and 𝑓𝑖, as well as vertices (−1,−1,−1) and 𝐯−1,−2,−3, etc., respectively. The
notation of each vertex, edge, and face of 𝐸 is shown correspondingly in the top right picture, the bottom left picture, and the bottom right picture.

and the vertices as 𝐯𝑖,𝑗 ,𝑘 = 𝑓𝑖 ∩ 𝑓𝑗 ∩ 𝑓𝑘, as shown in Fig. 1. Also let 𝜈𝑛 denote the unit outer normal to face 𝑓𝑛 for 𝑛 = ±1,±2,±3.
Denote 𝐹 0

𝐸 as the pullback map induced from 𝐅−1
𝐸 . To be more precise, 𝐹 0

𝐸 takes a function �̂� defined on �̂� to a function 𝜙 defined
n 𝐸 by the rule

𝜙(𝐱) = 𝐹 0
𝐸 (�̂�)(𝐱) = �̂�(�̂�), (6)

where 𝐱 = 𝐅𝐸 (�̂�). We require special functions 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧 satisfying

𝑅𝑥 =

{

−1, on 𝑓−1,
1, on 𝑓1,

𝑅𝑦 =

{

−1, on 𝑓−2,
1, on 𝑓2,

𝑅𝑧 =

{

−1, on 𝑓−3,
1, on 𝑓3.

(7)

Such functions exist, however, they cannot be polynomials, unless opposite faces are parallel. For instance, these functions could
e defined as pullback maps

𝑅𝑥(𝐱) = �̂�, 𝑅𝑦(𝐱) = �̂�, 𝑅𝑧(𝐱) = �̂�, where �̂� = 𝐅−1
𝐸 (𝐱) = (�̂�, �̂�, �̂�). (8)

Alternative constructions will be given later in Section 7.
Define linear functions 𝜆𝑥, 𝜆𝑦, and 𝜆𝑧 such that the zero plane 𝑥 of 𝜆𝑥 intersects the four edges 𝑒±2,±3, and that of 𝜆𝑦,

denoted as 𝑦, intersects 𝑒±1,±3. Similarly, the zero plane of 𝜆𝑧, denoted as 𝑧, intersects 𝑒±1,±2. Notice that for some special
eometry, such a definition has a possibility of forming linearly dependent 𝜆𝑥, 𝜆𝑦, and 𝜆𝑧. Taking the cube as an example, note

that 𝐯−1,−2,−3, 𝐯1,−2,−3, 𝐯1,2,3, and 𝐯−1,2,3 form a plane, and this plane could be taken both as 𝑦 and 𝑧. Therefore, we also ask 𝑥,
𝑦, and 𝑧 not to coincide. These linear functions form bases for spaces of polynomials.

Lemma 2.1. Let the polynomial degree be 𝑟 ≥ 0.

1. For 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3, {𝜆𝑠𝑥|𝑒𝑗 ,𝑘 , 𝑠 = 0, 1,… , 𝑟}, {𝜆𝑠𝑦|𝑒𝑖,𝑘 , 𝑠 = 0, 1,… , 𝑟}, and {𝜆𝑠𝑧|𝑒𝑖,𝑗 , 𝑠 = 0, 1,… , 𝑟} form bases for P𝑟(𝑒𝑗 ,𝑘),
P𝑟(𝑒𝑖,𝑘), and P𝑟(𝑒𝑖,𝑗 ), respectively.

2. For 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3, {𝜆𝑠1𝑦 𝜆
𝑠2
𝑧 |𝑓𝑖 , 0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟}, {𝜆𝑠1𝑥 𝜆

𝑠2
𝑧 |𝑓𝑗 , 0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟}, and {𝜆𝑠1𝑥 𝜆

𝑠2
𝑦 |𝑓𝑘 , 0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟} form

bases for P𝑟(𝑓𝑖), P𝑟(𝑓𝑗 ), and P𝑟(𝑓𝑘), respectively.
3. The polynomials 𝜆𝑠1𝑥 𝜆

𝑠2
𝑦 𝜆

𝑠3
𝑧 with 0 ≤ 𝑠1 + 𝑠2 + 𝑠3 ≤ 𝑟 form a basis for P𝑟(𝐸).

Proof. Part 1. By construction, 𝑒𝑗 ,𝑘 ∦ 𝑥 for 𝑗 = ±2 and 𝑘 = ±3, so 𝜆𝑥|𝑒𝑗 ,𝑘 is linear with nonzero slope. Therefore, its powers 𝜆𝑠𝑥 with

𝑠 = 0, 1,… , 𝑟 form a basis for P𝑟(𝑒𝑗 ,𝑘). The proof for the other edges follows by symmetry.
Part 2. We need to show that if 𝑝 = ∑𝑟

𝑠2=0
∑𝑟−𝑠2
𝑠1=0

𝑐𝑠1 ,𝑠2𝜆
𝑠1
𝑦 𝜆

𝑠2
𝑧 = 0 on 𝑓𝑖 for 𝑖 = −1 or 1, then 𝑐𝑠1 ,𝑠2 = 0, ∀0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟. Recall that

𝑦|𝑦 = 𝜆𝑧|𝑧 = 0, and both 𝑦 and 𝑧 intersects 𝑓𝑖 along some line. Therefore,

𝑝|𝑓𝑖∩𝑦 =
𝑟
∑

𝑐0,𝑠2𝜆
𝑠2
𝑧 = 0, (9)
𝑠2=0
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𝑝|𝑓𝑖∩𝑧 =
𝑟
∑

𝑠1=0
𝑐𝑠1 ,0𝜆

𝑠1
𝑦 = 0. (10)

We conclude 𝑐0,𝑠2 = 𝑐𝑠1 ,0 = 0, ∀𝑠1, 𝑠2 = 0, 1,… , 𝑟 using part 1 of the lemma. Now we have

𝑝 =
𝑟−1
∑

𝑠2=1

𝑟−𝑠2
∑

𝑠1=1
𝑐𝑠1 ,𝑠2𝜆

𝑠1
𝑦 𝜆

𝑠2
𝑧 = 𝜆𝑦𝜆𝑧 𝑝1, 𝑝1 =

𝑟−1
∑

𝑠2=1

𝑟−𝑠2
∑

𝑠1=1
𝑐𝑠1 ,𝑠2𝜆

𝑠1−1
𝑦 𝜆𝑠2−1𝑧 . (11)

By 𝜆𝑦𝜆𝑧 ≠ 0 in the interior of 𝑓𝑖, 𝑝|𝑓𝑖 = 0 is equivalent to 𝑝1|𝑓𝑖 = 0. Therefore,

𝑝1|𝑓𝑖∩𝑦 =
𝑟−1
∑

𝑠2=1
𝑐1,𝑠2𝜆

𝑠2−1
𝑧 = 0, (12)

𝑝1|𝑓𝑖∩𝑧 =
𝑟−1
∑

𝑠1=1
𝑐𝑠1 ,1𝜆

𝑠1−1
𝑦 = 0, (13)

and again in analogy to part 1 of the lemma (for 𝑟− 2) shows 𝑐1,𝑠2 = 𝑐𝑠1 ,1 = 0, ∀𝑠1, 𝑠2 = 1, 2,… , 𝑟− 1. We can continue the argument
and finally obtain 𝑐𝑠1 ,𝑠2 = 0 for all 0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟. The proof for the bases on the other faces follows by symmetry.

Part 3. The idea of proof for part 3 is the same as in part 2, where we restrict the polynomial to a lower dimensional object. If
n 𝐸 we have

∑

0≤𝑠1+𝑠2+𝑠3≤𝑟
𝑐𝑠1 ,𝑠2 ,𝑠3𝜆

𝑠1
𝑥 𝜆

𝑠2
𝑦 𝜆

𝑠3
𝑧 = 0, (14)

then we must have on 𝑥, where 𝜆𝑥 = 0, only terms with 𝑠1 = 0, i.e.,
∑

0≤𝑠2+𝑠3≤𝑟
𝑐0,𝑠2 ,𝑠3𝜆

𝑠2
𝑦 𝜆

𝑠3
𝑧 = 0. (15)

By a similar proof as in part 2 for faces, we can also show that {𝜆𝑠2𝑦 𝜆
𝑠3
𝑧 |𝑥 , 0 ≤ 𝑠2 + 𝑠3 ≤ 𝑟} forms a basis for P𝑟(𝑥). Therefore, in

(14), 𝑐0,𝑠2 ,𝑠3 = 0, and similarly, 𝑐𝑠1 ,0,𝑠3 = 𝑐𝑠1 ,𝑠2 ,0 = 0. Then

𝑝 =
𝑟−2
∑

𝑠3=1

𝑟−1−𝑠3
∑

𝑠2=1

𝑟−𝑠2−𝑠3
∑

𝑠1=1
𝑐𝑠1 ,𝑠2 ,𝑠3𝜆

𝑠1
𝑥 𝜆

𝑠2
𝑦 𝜆

𝑠3
𝑧 = 𝜆𝑥𝜆𝑦𝜆𝑧 𝑝1, (16)

𝑝1 =
𝑟−2
∑

𝑠3=1

𝑟−1−𝑠3
∑

𝑠2=1

𝑟−𝑠2−𝑠3
∑

𝑠1=1
𝑐𝑠1 ,𝑠2 ,𝑠3𝜆

𝑠1−1
𝑥 𝜆𝑠2−1𝑦 𝜆𝑠3−1𝑧 .

We repeat the previous step of restricting the function to 𝑥, 𝑦, and 𝑧, obtaining that 𝑐1,𝑠2 ,𝑠3 = 𝑐𝑠1 ,1,𝑠3 = 𝑐𝑠1 ,𝑠2 ,1 = 0. Continuing
this procedure, we finally conclude that all the coefficients are zero. □

Finally, define 𝜆𝑛 as the distance of a point to the face 𝑓𝑛,

𝜆𝑛(𝐱) = −(𝐱 − 𝐱𝑓𝑛 ) ⋅ 𝜈𝑛, 𝑛 = ±1,±2,±3, (17)

where 𝐱𝑓𝑛 is any point on the face 𝑓𝑛. Note that 𝜆𝑛 does not depend on the choice of 𝐱𝑓𝑛 . Later, in Section 4 we will need to
understand the restriction of 𝜆𝑛 for 𝑛 ∈ {±1,±2,±3} to the edges.

Lemma 2.2. For 𝑖 = ±1, 𝑗 = ±2, 𝑘 = ±3 and 𝑛 ∈ {±1,±2,±3}, let 𝐴𝑗 ,𝑘𝑛,𝑥, 𝐴𝑖,𝑘𝑛,𝑦, and 𝐴𝑖,𝑗𝑛,𝑧 satisfy

𝜆𝑛|𝑒𝑗 ,𝑘 = 𝐴𝑗 ,𝑘𝑛,𝑥 + 𝐵𝑗 ,𝑘𝑛,𝑥 𝜆𝑥|𝑒𝑗 ,𝑘 , (18)

𝜆𝑛|𝑒𝑖,𝑘 = 𝐴𝑖,𝑘𝑛,𝑦 + 𝐵
𝑖,𝑘
𝑛,𝑦 𝜆𝑦|𝑒𝑖,𝑘 , (19)

𝜆𝑛|𝑒𝑖,𝑗 = 𝐴𝑖,𝑗𝑛,𝑧 + 𝐵
𝑖,𝑗
𝑛,𝑧 𝜆𝑧|𝑒𝑖,𝑗 . (20)

Then 𝐴𝑗 ,𝑘−𝑗 ,𝑥, 𝐴𝑗 ,𝑘−𝑘,𝑥, 𝐴𝑖,𝑘−𝑖,𝑦, 𝐴𝑖,𝑘−𝑘,𝑦, 𝐴
𝑖,𝑗
−𝑖,𝑧, and 𝐴𝑖,𝑗−𝑗 ,𝑧 are strictly positive.

Proof. By Lemma 2.1, it is possible to define the restriction of 𝜆𝑛 on each edge in the form (18)–(20). The strict positivity of 𝐴𝑗 ,𝑘−𝑗 ,𝑥,
𝐴𝑗 ,𝑘−𝑘,𝑥, 𝐴𝑖,𝑘−𝑖,𝑦, 𝐴𝑖,𝑘−𝑘,𝑦, 𝐴

𝑖,𝑗
−𝑖,𝑧, and 𝐴𝑖,𝑗−𝑗 ,𝑧 is due to the geometry of a convex hexahedron. □

In Section 5, we will also need to understand the restriction of 𝜆𝑛 to the faces.

Lemma 2.3. For 𝑛 ∈ {±1,±2,±3}, the following expressions hold for appropriate coefficients:

𝜆𝑛|𝑓±1 = 𝐴±1
𝑛,𝑦𝑧 + 𝐵

±1
𝑛,𝑦𝑧𝜆𝑦|𝑓±1 + 𝐶

±1
𝑛,𝑦𝑧𝜆𝑧|𝑓±1 ; (21)

𝜆𝑛|𝑓±2 = 𝐴±2
𝑛,𝑥𝑧 + 𝐵

±2
𝑛,𝑥𝑧𝜆𝑥|𝑓±2 + 𝐶

±2
𝑛,𝑥𝑧𝜆𝑧|𝑓±2 ; (22)

𝜆𝑛|𝑓±3 = 𝐴±3
𝑛,𝑥𝑦 + 𝐵

±3
𝑛,𝑥𝑦𝜆𝑥|𝑓±3 + 𝐶

±3
𝑛,𝑥𝑦𝜆𝑦|𝑓±3 . (23)

Moreover, 𝐴1
−1,𝑦𝑧, 𝐴

−1
1,𝑦𝑧, 𝐴

2
−2,𝑥𝑧, 𝐴

−2
2,𝑥𝑧, 𝐴

3
−3,𝑥𝑦, and 𝐴−3

3,𝑥𝑦 are strictly positive.
4 
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Table 1
Geometric decomposition and number of degrees of freedom (DoFs) associated to each geometric object of a
cuboidal hexahedron 𝐸 for a serendipity element of index 𝑟 ≥ 1.

Dim. Object Object DoFs per Total
name count object DoFs

0 Vertex 8 1 8
1 Edge 12 dimP𝑟−2(R) 12(𝑟 − 1)
2 Face 6 dimP𝑟−4(R2) 3(𝑟 − 2)(𝑟 − 3), if 𝑟 ≥ 2
3 Interior 1 dimP𝑟−6(R3) 1

6
(𝑟 − 3)(𝑟 − 4)(𝑟 − 5), if 𝑟 ≥ 3

Fig. 2. Degrees of freedom (DoFs) for a serendipity element of index 𝑟 = 2, 3, and 4. The DoFs are expressed as dots, as if they were nodal DoFs. They appear
t the vertices, in the interior of the edges, and in the interior of the faces (DoFs in the element interior do not appear until 𝑟 = 6).

The proof is similar to that for the previous lemma.
To conclude this section, we recall from Ciarlet’s definition [22] of a finite element (𝐸 , , ) that we need  , a finite-dimensional

space of functions on 𝐸, and  = {𝑁1, 𝑁2,… , 𝑁dim}, a basis for  ′, for which the members are referred to as degrees of
freedom (DoFs). That  is a basis for  ′ is equivalent to saying that the DoFs are unisolvent, i.e., if 𝜓 ∈  satisfies 𝑁𝑗 (𝜓) = 0,
∀𝑗 = 1, 2,… , dim , then 𝜓 = 0. According to Ciarlet, the issue of global conformity over the domain should be addressed after the
finite elements are defined, which we do in Section 8.

3. Geometric decomposition and degrees of freedom

For approximation purposes, we ask that P𝑟(𝐸) ⊂ 𝑟(𝐸). The total number of DoFs required for 𝐻1-conformity can be
determined by a geometric decomposition of 𝐸 as given in Table 1. These required DoFs are illustrated in Fig. 2. The total number
of DoFs for 𝑟 = 1 and 𝑟 = 2 is

𝐷𝑟 =

{

8 = dimP1(𝐸) + 4, if 𝑟 = 1,
20 = dimP2(𝐸) + 10, if 𝑟 = 2, (24)

which means we need 4 linearly independent supplements for 1(𝐸) and 10 for 2(𝐸). When 𝑟 ≥ 3, the total number of DoFs is
𝐷𝑟 = 8 + 12(𝑟 − 1) + 3(𝑟 − 2)(𝑟 − 3) + 1

6
(𝑟 − 3)(𝑟 − 4)(𝑟 − 5) (25)

= dimP𝑟(𝐸) + 3(𝑟 + 1).

We view 1(𝐸) and 2(𝐸) as special cases, and start with the construction for 𝑟 ≥ 3, where we need to define exactly 3(𝑟+ 1)
linearly independent supplemental functions. We have many choices, and each choice give a unique serendipity space. In this paper,
we give particular constructions, and show their conformity and unisolvence.

The DoFs for 𝜙 ∈ 𝑟(𝐸) are given by

𝜙(𝐯), for all the vertices 𝐯, (26)

∫𝑒
𝜙 𝑞 , ∀𝑞 ∈ P𝑟−2(𝑒), for all the edges 𝑒, (27)

∫𝑓
𝜙 𝑞 , ∀𝑞 ∈ P𝑟−4(𝑓 ), for all the faces 𝑓 , (28)

∫𝐸
𝜙 𝑞 , ∀𝑞 ∈ P𝑟−6(𝐸). (29)

The unisolvence of the DoFs will be clear after we construct the basis functions. Note that we can also take DoFs to be nodal
valuation, and construct the corresponding nodal basis functions. These will assist the development of the approximation theory
ater in Section 9.
5 
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4. Finite element space and basis functions for 𝒓 = 𝟑

We illustrate our finite elements with an explicit construction for the simplest case 𝑟 = 3, which has 32 DoFs, including 8 vertex
oFs and 24 edge DoFs. For vertex DoFs, the corresponding basis functions 𝜙𝐯

𝑖,𝑗 ,𝑘, where 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3, will be defined
later such that

𝜙𝐯
𝑖,𝑗 ,𝑘(𝐱) =

{

1 at 𝐯𝑖,𝑗 ,𝑘,
0 at all the other vertices.

(30)

Edges and their DoFs are divided into three sets of 4 edges between opposite faces. For 𝑖 = ±1, 𝑗 = ±2, 𝑘 = ±3, and 𝑠 = 0, 1, denote
the corresponding basis functions for each set of DoFs as 𝜙𝑒𝑖,𝑗;𝑠, 𝜙

𝑒
𝑗 ,𝑘;𝑠, and 𝜙𝑒𝑖,𝑘;𝑠 respectively. These will be defined later so that

𝜙𝑒𝑗 ,𝑘;𝑠(𝐱) =
{

𝜆−1𝜆1𝜆𝑠𝑥, ∀𝐱 ∈ 𝑒𝑗 ,𝑘,
0, ∀𝐱 ∈ 𝑓𝑛, 𝑛 ≠ 𝑗 , 𝑘. (31)

𝜙𝑒𝑖,𝑘;𝑠(𝐱) =
{

𝜆−2𝜆2𝜆𝑠𝑦, ∀𝐱 ∈ 𝑒𝑖,𝑘,
0, ∀𝐱 ∈ 𝑓𝑛, 𝑛 ≠ 𝑖, 𝑘. (32)

𝜙𝑒𝑖,𝑗;𝑠(𝐱) =
{

𝜆−3𝜆3𝜆𝑠𝑧, ∀𝐱 ∈ 𝑒𝑖,𝑗 ,
0, ∀𝐱 ∈ 𝑓𝑛, 𝑛 ≠ 𝑖, 𝑗 . (33)

The set of these functions are linearly independent according to Lemma 2.1.
The finite element requires a supplemental function space S

3 (𝐸) such that

3(𝐸) = P3(𝐸)⊕ S
3 (𝐸) (34)

= span{𝜙𝐯
𝑖,𝑗 ,𝑘, 𝜙𝑒𝑗 ,𝑘;𝑠, 𝜙𝑒𝑖,𝑘;𝑠, 𝜙𝑒𝑖,𝑗;𝑠 | 𝑖 = ±1, 𝑗 = ±2, 𝑘 = ±3, 𝑠 = 0, 1}.

4.1. The serendipity space on a cube

We first review the construction of 3(�̂�) for �̂� = [−1, 1]3 a cube [15]. The vertex basis function 𝜙𝐯
𝑖,𝑗 ,𝑘 with the property (30)

is

𝜙𝐯
𝑖,𝑗 ,𝑘(�̂�, �̂�, ̂𝑧) =

1
8
(1 + sign(𝑖)�̂�) (1 + sign(𝑗)�̂�) (1 + sign(𝑘)�̂�) ∈ P3, (35)

with the sign function defined as sign(𝑖) = 𝑖∕|𝑖|. For edge basis functions, we present those for the DoFs on 𝑒±1,±2 as an example. If
𝑖 = ±1 and 𝑗 = ±2, the two edge basis functions 𝜙𝑒𝑖,𝑗;𝑠 for 𝑠 = 0, 1 are defined as

𝜙𝑒𝑖,𝑗;𝑠(�̂�, �̂�, �̂�) =
1
4
�̂�𝑠(1 − �̂�2) (1 + sign(𝑖)�̂�) (1 + sign(𝑗)�̂�) ∈ P5. (36)

All the vertex basis functions are in P3(�̂�) and require no supplemental functions. However, in the construction of 𝜙𝑒±1,±2;1, there
are 3 supplemental functions which are linearly independent polynomials with degree greater than 𝑟 = 3, namely

�̂�(1 − �̂�2){�̂�, �̂�, �̂� ̂𝑦}. (37)

The construction of 𝜙𝑒±1,±2;0, has one polynomial with the highest degree greater than 𝑟 = 3, which is
(1 − �̂�2)�̂� ̂𝑦. (38)

Similarly, there are 4 different supplemental functions needed for constructing 𝜙𝑒±1,±3;𝑠, 𝑠 = 0, 1, and also 4 more for 𝜙𝑒±2,±3;𝑠, 𝑠 = 0, 1.
ll of these 32 basis functions belong to the space P3(�̂�)⊕S

3 (�̂�), and they form a linearly independent set, since each corresponds
to a different degree of freedom.

4.2. Vertex basis functions

The next step is to generalize the construction to a cuboidal hexahedron 𝐸. It is straightforward to generalize the eight vertex
basis functions as

𝜙𝐯
𝑖,𝑗 ,𝑘(𝐱) =

𝜆−𝑖(𝐱)𝜆−𝑗 (𝐱)𝜆−𝑘(𝐱)
𝜆−𝑖(𝐯𝑖,𝑗 ,𝑘)𝜆−𝑗 (𝐯𝑖,𝑗 ,𝑘)𝜆−𝑘(𝐯𝑖,𝑗 ,𝑘)

∈ P3, (39)

for 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3.
6 
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4.3. Supplemental functions

In accordance with the serendipity element for a reference cube, the 24 edge basis functions are divided into 3 groups 𝜙𝑒±1,±2;𝑠,
𝑒
±1,±3;𝑠, and 𝜙𝑒±2,±3;𝑠. The construction of each group will involve four supplements, of which three functions are for 𝑠 = 1, and one

unction is for 𝑠 = 0.
On a cube, the serendipity element restricted to any lower-dimensional geometry object coincides with a serendipity element

defined directly on that object [15]. We aim to construct 𝜙𝑒𝑗 ,𝑘;𝑠, 𝜙𝑒𝑖,𝑘;𝑠, and 𝜙𝑒𝑖,𝑗;𝑠 on a cuboidal hexahedron in such a way that they
estrict to a 2D direct serendipity space on each face. The 2D direct serendipity spaces are defined in [16], and these are, for any
𝑟 ≥ 2,

 (2)
𝑟 (𝑓𝑖) = P𝑟(𝑓𝑖)⊕ span{𝜆−2𝜆2𝜆𝑟−2𝑦 𝑅𝑧, 𝜆−3𝜆3𝜆𝑟−2𝑧 𝑅𝑦}|𝑓𝑖 , 𝑖 = ±1, (40)

 (2)
𝑟 (𝑓𝑗 ) = P𝑟(𝑓𝑗 )⊕ span{𝜆−1𝜆1𝜆𝑟−2𝑥 𝑅𝑧, 𝜆−3𝜆3𝜆𝑟−2𝑧 𝑅𝑥}|𝑓𝑗 , 𝑗 = ±2, (41)

 (2)
𝑟 (𝑓𝑘) = P𝑟(𝑓𝑘)⊕ span{𝜆−1𝜆1𝜆𝑟−2𝑥 𝑅𝑦, 𝜆−2𝜆2𝜆𝑟−2𝑦 𝑅𝑥}|𝑓𝑘 , 𝑘 = ±3. (42)

From the cube, we extend the construction naturally in (36) for 𝑠 = 1 to

𝜙𝑒𝑗 ,𝑘;1 =
1
4
𝜆𝑥𝜆−1𝜆1(1 + sign(𝑗)𝑅𝑦)(1 + sign(𝑘)𝑅𝑧), (43)

𝜙𝑒𝑖,𝑘;1 =
1
4
𝜆𝑦𝜆−2𝜆2(1 + sign(𝑖)𝑅𝑥)(1 + sign(𝑘)𝑅𝑧), (44)

𝜙𝑒𝑖,𝑗;1 =
1
4
𝜆𝑧𝜆−3𝜆3(1 + sign(𝑖)𝑅𝑥)(1 + sign(𝑗)𝑅𝑦), (45)

which are zero on all the faces except for 𝑓𝑗∪𝑓𝑘, 𝑓𝑖∪𝑓𝑘, and 𝑓𝑖∪𝑓𝑗 , respectively, and have the required property that their restrictions
on each face 𝑓𝑛 lie in  (2)

3 (𝑓𝑛) for all 𝑛 ∈ {±1,±2,±3}. We have used three supplements for each group in the construction of
(43)–(45), which are identified as

𝜆𝑥𝜆−1𝜆1{𝑅𝑦, 𝑅𝑧, 𝑅𝑦𝑅𝑧}, (46)

𝜆𝑦𝜆−2𝜆2{𝑅𝑥, 𝑅𝑧, 𝑅𝑥𝑅𝑧}, (47)

𝜆𝑧𝜆−3𝜆3{𝑅𝑥, 𝑅𝑦, 𝑅𝑥𝑅𝑦}. (48)

Unfortunately, (38) does not naturally generalize so that the restrictions 𝜙𝑒𝑗 ,𝑘;0|𝑓𝑛 , 𝜙𝑒𝑖,𝑘;0|𝑓𝑛 , and 𝜙𝑒𝑖,𝑗;0|𝑓𝑛 belong to  (2)
3 (𝑓𝑛) for

ll 𝑛 ∈ {±1,±2,±3}. We require functions 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 with special properties. For 𝜓𝑥 we require that

𝜓𝑥|𝑓−2∪𝑓−3 = 0, 𝜆−1𝜆1𝜓𝑥|𝑓2 ∈  (2)(𝑓2),

𝜆−1𝜆1𝜓𝑥|𝑓3 ∈  (2)(𝑓3), 𝜓𝑥|𝑒2,3 = 1.
Because the face direct serendipity spaces are well defined, knowing 𝜓𝑥 on the edges determines it on the faces 𝑓±2 and 𝑓±3 of the
element. Similar properties need to hold for 𝜓𝑦 and 𝜓𝑧, especially that 𝜓𝑦|𝑒1,3 = 𝜓𝑧|𝑒1,2 = 1. To be precise, in terms of the coefficients
introduced in Lemma 2.2, these functions satisfy on the faces

𝜓𝑥 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜓𝑥,2 =
1

𝐴2,3
−3,𝑥

(

𝜆−3 −
1
2𝐵

2,3
−3,𝑥 𝜆𝑥 (1 + 𝑅𝑧)

)

, on 𝑓2,

𝜓𝑥,3 =
1

𝐴2,3
−2,𝑥

(

𝜆−2 −
1
2𝐵

2,3
−2,𝑥 𝜆𝑥 (1 + 𝑅𝑦)

)

, on 𝑓3,

0, on 𝑓−2 ∪ 𝑓−3,

(49)

𝜓𝑦 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜓𝑦,1 =
1

𝐴1,3
−3,𝑦

(

𝜆−3 −
1
2𝐵

1,3
−3,𝑦 𝜆𝑦 (1 + 𝑅𝑧)

)

, on 𝑓1,

𝜓𝑦,3 =
1

𝐴1,3
−1,𝑦

(

𝜆−1 −
1
2𝐵

1,3
−1,𝑦 𝜆𝑦 (1 + 𝑅𝑥)

)

, on 𝑓3,

0, on 𝑓−1 ∪ 𝑓−3,

(50)

𝜓𝑧 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜓𝑧,1 =
1

𝐴1,2
−2,𝑧

(

𝜆−2 −
1
2𝐵

1,2
−2,𝑧 𝜆𝑧 (1 + 𝑅𝑦)

)

, on 𝑓1,

𝜓𝑧,2 =
1

𝐴1,2
−1,𝑧

(

𝜆−1 −
1
2𝐵

1,2
−1,𝑧 𝜆𝑧 (1 + 𝑅𝑥)

)

, on 𝑓2,

0, on 𝑓−1 ∪ 𝑓−2.

(51)

We have the interior left to be filled in. This will be discussed later in Section 7.
7 
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Continuing, we represent 𝜙𝑒2,3;0, 𝜙
𝑒
1,3;0, and 𝜙𝑒1,2;0 as

𝜙𝑒2,3;0 = 𝜆−1𝜆1𝜓𝑥, 𝜙𝑒1,3;0 = 𝜆−2𝜆2𝜓𝑦, 𝜙𝑒1,2;0 = 𝜆−3𝜆3𝜓𝑧, (52)

which equal 𝜆−1𝜆1 on 𝑒2,3, 𝜆−2𝜆2 on 𝑒1,3, and 𝜆−3𝜆3 on 𝑒1,2, respectively. Moreover, their restrictions on faces belong to the
orresponding 2D serendipity spaces described in (40)–(42), and they are zero on all the faces other than 𝑓2 ∪ 𝑓3, 𝑓1 ∪ 𝑓3, and
1 ∪ 𝑓2, respectively. Since only one additional supplemental function for each group is allowed to construct all the 𝜙𝑒𝑗 ,𝑘;0, 𝜙𝑒𝑖,𝑘;0 and
𝑒
𝑖,𝑗;0, we take (52) as the additional supplements. We get the supplemental space of dimension 12

S
3 (𝐸) = 𝜆−1𝜆1𝜆𝑥 span{𝑅𝑦, 𝑅𝑧, 𝑅𝑦𝑅𝑧}⊕ 𝜆−2𝜆2𝜆𝑦 span{𝑅𝑥, 𝑅𝑧, 𝑅𝑥𝑅𝑧} (53)

⊕ 𝜆−3𝜆3𝜆𝑧 span{𝑅𝑥, 𝑅𝑦, 𝑅𝑥𝑅𝑦}⊕ span{𝜙𝑒1,2;0, 𝜙𝑒1,3;0, 𝜙𝑒2,3;0}.

4.4. Edge basis functions

We now describe how to construct edge basis functions for 3(𝐸) satisfying (31)–(33). For simplicity, we consider first the
group of 8 basis functions 𝜙𝑒𝑖,𝑗;𝑠 for 𝑖 = ±1, 𝑗 = ±2, 𝑠 = 0, 1. The four functions 𝜙𝑒𝑖,𝑗;1 are given in (45). We also have the supplemental
function 𝜙𝑒1,2;0 described in (52). For each group of 4 edges (that lie between a pair of opposite faces), we need 3 more basis functions,
which will each be formed as a linear combination of 𝜙𝑒1,2;0, 𝜙

𝑒
±1,±2;1, and some polynomials in P3(𝐸).

In fact, we need to take

𝜙𝑒−1,2;0 =
1

𝐴−1,2
−2,𝑧

[

𝜆−3𝜆3𝜆−2 − 𝐴
1,2
−2,𝑧𝜙

𝑒
1,2;0 − 𝐵

1,2
−2,𝑧𝜙

𝑒
1,2;1 − 𝐵

−1,2
−2,𝑧𝜙

𝑒
−1,2;1

]

(54)

=
𝜆−3𝜆3
𝐴−1,2
−2,𝑧

[

𝜆−2 − 𝐴
1,2
−2,𝑧𝜓𝑧 −

1
4𝐵

1,2
−2,𝑧𝜆𝑧(1 + 𝑅𝑥)(1 + 𝑅𝑦)

− 1
4𝐵

−1,2
−2,𝑧𝜆𝑧(1 − 𝑅𝑥)(1 + 𝑅𝑦)

]

,

using (52) and (45). It is not difficult to verify that 𝜙𝑒−1,2;0 ∈ 3(𝐸) has the properties required in (33). It clearly vanishes on the

faces 𝑓±3. Using (20), it also vanishes on edges 𝑒±1,−2 and 𝑒1,2, and it has the value 𝜆−3𝜆3 on edge 𝑒−1,2. But by construction, 𝜙𝑒−1,2;0
restricted to a face 𝑓𝑛 lies in  (2)

3 (𝑓𝑛), which has only edge and vertex DoFs. Thus we conclude that 𝜙𝑒−1,2;0 vanishes on all the faces
not containing edge 𝑒−1,2, i.e., on all the faces but 𝑓−1 and 𝑓2.

By a similar procedure, we also get the basis function of order 𝑠 = 0 for 𝑒1,−2

𝜙𝑒1,−2;0 =
1

𝐴1,−2
−1,𝑧

(𝜆−3𝜆3𝜆−1 − 𝐴
1,2
−1,𝑧𝜙

𝑒
1,2;0 − 𝐵

1,2
−1,𝑧𝜙

𝑒
1,2;1 − 𝐵

1,−2
−1,𝑧𝜙

𝑒
1,−2;1). (55)

We can obtain 𝜙𝑒−1,−2;0 using a similar procedure, but it is simpler to realize that

𝜙𝑒−1,−2;0 = 𝜆−3𝜆3 − 𝜙𝑒1,2;0 − 𝜙
𝑒
−1,2;0 − 𝜙

𝑒
1,−2;0. (56)

For the 16 remaining edge basis functions, we have 𝜙𝑒𝑗 ,𝑘;1 and 𝜙𝑒𝑖,𝑘;1 from (43)–(44), as well as 𝜙𝑒2,3;0 and 𝜙𝑒1,3;0 from (52), and we
can construct

𝜙𝑒−2,3;0 =
1

𝐴−2,3
−3,𝑥

(𝜆−1𝜆1𝜆−3 − 𝐴
2,3
−3,𝑥𝜙

𝑒
2,3;0 − 𝐵

2,3
−3,𝑥𝜙

𝑒
2,3;1 − 𝐵

−2,3
−3,𝑥𝜙

𝑒
−2,3;1), (57)

𝜙𝑒2,−3;0 =
1

𝐴2,−3
−2,𝑥

(𝜆−1𝜆1𝜆−2 − 𝐴
2,3
−2,𝑥𝜙

𝑒
2,3;0 − 𝐵

2,3
−2,𝑥𝜙

𝑒
2,3;1 − 𝐵

2,−3
−2,𝑥𝜙

𝑒
2,−3;1), (58)

𝜙𝑒−1,3;0 =
1

𝐴−1,3
−3,𝑦

(𝜆−2𝜆2𝜆−3 − 𝐴
1,3
−3,𝑦𝜙

𝑒
1,3;0 − 𝐵

1,3
−3,𝑦𝜙

𝑒
1,3;1 − 𝐵

−1,3
−3,𝑦𝜙

𝑒
−1,3;1), (59)

𝜙𝑒1,−3;0 =
1

𝐴1,−3
−1,𝑦

(𝜆−2𝜆2𝜆−1 − 𝐴
1,3
−1,𝑦𝜙

𝑒
1,3;0 − 𝐵

1,3
−1,𝑦𝜙

𝑒
1,3;1 − 𝐵

1,−3
−1,𝑦𝜙

𝑒
1,−3;1). (60)

Finally, we get 𝜙𝑒−2,−3;0 and 𝜙𝑒−1,−3;0 by

𝜙𝑒−2,−3;0 = 𝜆−1𝜆1 − 𝜙𝑒2,3;0 − 𝜙
𝑒
−2,3;0 − 𝜙

𝑒
2,−3;0, (61)

𝜙𝑒−1,−3;0 = 𝜆−2𝜆2 − 𝜙𝑒1,3;0 − 𝜙
𝑒
−1,3;0 − 𝜙

𝑒
1,−3;0. (62)
8 
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4.5. Remarks on the construction

The formulation of vertex and edge basis functions naturally gives the unisolvence of the DoFs. Moreover, all the basis functions
belong to the space P3(𝐸) ⊕ S

3 (𝐸), and they are linearly independent. We conclude that (34) holds by a dimension counting
argument with S

3 (𝐸) defined in (53).
Note that our construction starts from asking 𝜙𝑒1,2;0 to be 𝜆−3𝜆3 on 𝑒1,2, and 0 on 𝑓−1 and 𝑓−2, which loses symmetry. However,

there is actually no difference on each face, even if we start the construction from a different edge 𝑒𝑖,𝑗 , 𝑖 = ±1, 𝑗 = ±2. This is
ecause all the 𝜙𝑒𝑖,𝑗;0 must satisfy the property that

𝜙𝑒𝑖,𝑗;0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∈ 𝜆−3𝜆3(P1(𝑓𝑖)⊕ {𝜆𝑧𝑅𝑦}), on 𝑓𝑖,
∈ 𝜆−3𝜆3(P1(𝑓𝑗 )⊕ {𝜆𝑧𝑅𝑥}), on 𝑓𝑗 ,

= 1, on 𝑓𝑖 ∩ 𝑓𝑗 = 𝑒𝑖,𝑗 ,
= 0, on 𝑓𝑛, 𝑛 ≠ 𝑖, 𝑗 .

(63)

Such a function is uniquely defined up to its values in the interior.

5. Finite element space and basis functions for 𝒓 ≥ 𝟑

We can now present the finite element space analogous to (53) when 𝑟 ≥ 3. Among all the supplements, 3(𝑟− 3) of them are zero
on all the edges, and we define them as

𝜙𝑓𝑥,𝑠 = 𝜆−2𝜆2𝜆−3𝜆3𝑅𝑥𝜆
𝑠
𝑦𝜆
𝑟−4−𝑠
𝑧 , (64)

𝜙𝑓𝑦,𝑠 = 𝜆−1𝜆1𝜆−3𝜆3𝑅𝑦𝜆
𝑠
𝑥𝜆

𝑟−4−𝑠
𝑧 , (65)

𝜙𝑓𝑧,𝑠 = 𝜆−1𝜆1𝜆−2𝜆2𝑅𝑧𝜆
𝑠
𝑥𝜆

𝑟−4−𝑠
𝑦 , (66)

with 𝑠 = 0, 1,… , 𝑟 − 4. The remaining 12 supplements are defined as

𝜙𝑒𝑥,1 = 𝜆−1𝜆1𝜆
𝑟−2
𝑥 𝑅𝑦, 𝜙𝑒𝑦,1 = 𝜆−2𝜆2𝜆

𝑟−2
𝑦 𝑅𝑥, 𝜙𝑒𝑧,1 = 𝜆−3𝜆3𝜆

𝑟−2
𝑧 𝑅𝑥, (67)

𝜙𝑒𝑥,2 = 𝜆−1𝜆1𝜆
𝑟−2
𝑥 𝑅𝑧, 𝜙𝑒𝑦,2 = 𝜆−2𝜆2𝜆

𝑟−2
𝑦 𝑅𝑧, 𝜙𝑒𝑧,2 = 𝜆−3𝜆3𝜆

𝑟−2
𝑧 𝑅𝑦, (68)

𝜙𝑒𝑥,3 = 𝜆−1𝜆1𝜆
𝑟−2
𝑥 𝑅𝑦𝑅𝑧, 𝜙𝑒𝑦,3 = 𝜆−2𝜆2𝜆

𝑟−2
𝑦 𝑅𝑥𝑅𝑧, 𝜙𝑒𝑧,3 = 𝜆−3𝜆3𝜆

𝑟−2
𝑧 𝑅𝑥𝑅𝑦, (69)

𝜙𝑒𝑥,4 = 𝜆−1𝜆1𝜆
𝑟−3
𝑥 𝜓𝑥, 𝜙𝑒𝑦,4 = 𝜆−2𝜆2𝜆

𝑟−3
𝑦 𝜓𝑦, 𝜙𝑒𝑧,4 = 𝜆−3𝜆3𝜆

𝑟−3
𝑧 𝜓𝑧, (70)

wherein the requirements of 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 are given in (49)–(51). The finite element space is given by 𝑟(𝐸) = P𝑟(𝐸)⊕ S
𝑟 (𝐸),

where

S
𝑟 (𝐸) = span{𝜙𝑓𝑥,𝑠, 𝜙𝑓𝑦,𝑠, 𝜙𝑓𝑧,𝑠, 𝜙𝑒𝑥,𝓁 , 𝜙𝑒𝑦,𝓁 , 𝜙𝑒𝑧,𝓁 (71)

| 𝑠 = 0, 1,… , 𝑟 − 4, 𝓁 = 1, 2, 3, 4}.

Similar to the 𝑟 = 3 case, 𝜙𝑒𝑥,𝑚, 𝜙𝑒𝑦,𝑚, and 𝜙𝑒𝑧,𝑚 with 𝑚 = 1, 2, 3 are used for the construction of the highest degree edge basis
unctions, and 𝜙𝑒𝑥,4, 𝜙

𝑒
𝑦,4, and 𝜙𝑒𝑧,4 are used for the construction of the second highest degree edge basis functions. The restriction of

𝑒
𝑥,4, 𝜙

𝑒
𝑦,4, and 𝜙𝑒𝑧,4 on each face 𝑓𝑛 belongs to  (2)

𝑟 (𝑓𝑛) (see (40)–(42)). Moreover,

𝜙𝑒𝑥,4|𝑒2,3 = 𝜆−1𝜆1𝜆
𝑟−3
𝑥 , 𝜙𝑒𝑦,4|𝑒1,3 = 𝜆−2𝜆2𝜆

𝑟−3
𝑦 , 𝜙𝑒𝑧,4|𝑒1,2 = 𝜆−3𝜆3𝜆

𝑟−3
𝑧 (72)

are zero on the faces that do not contain 𝑒2,3, 𝑒1,3, and 𝑒1,2 as an edge, respectively.
In the rest of this section, we construct basis functions with respect to DoFs on each geometry object (i.e., vertex, edge, face,

nterior element) and conclude unisolvence of the DoFs.

5.1. Vertex and interior basis functions requiring no supplements

We take vertex basis functions 𝜙𝐯
𝑖,𝑗 ,𝑘, where 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3, the same as given in (39), since these are 1 at 𝐯𝑖,𝑗 ,𝑘, and

at all the other vertices. For 𝑟 ≥ 6, define interior element basis functions as 𝜙𝐸𝑠1 ,𝑠2 ,𝑠3 with 0 ≤ 𝑠1 + 𝑠2 + 𝑠3 ≤ 𝑟 − 6 by

𝜙𝐸𝑠1 ,𝑠2 ,𝑠3 =
(

3
∏

𝑛=−3
𝜆𝑛
)

𝜆𝑠1𝑥 𝜆
𝑠2
𝑦 𝜆

𝑠3
𝑧 . (73)

Such functions are zero on 𝜕 𝐸.

Lemma 5.1. For any linear combination

𝜙 =
∑

0≤𝑠1+𝑠2+𝑠3≤𝑟−6
𝑐𝐸𝑠1 ,𝑠2 ,𝑠3𝜙

𝐸
𝑠1 ,𝑠2 ,𝑠3

, (74)

if the interior DoFs defined in (29) vanish, then 𝜙 = 0.
9 
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Proof. In (29), let

𝑞 =
∑

0≤𝑠1+𝑠2+𝑠3≤𝑟−6
𝑐𝐸𝑠1 ,𝑠2 ,𝑠3𝜆

𝑠1
𝑥 𝜆

𝑠2
𝑦 𝜆

𝑠3
𝑧 ∈ P𝑟−6. (75)

Then

0 = ∫𝐸
𝜙
(

∑

0≤𝑠1+𝑠2+𝑠3≤𝑟−6
𝑐𝐸𝑠1 ,𝑠2 ,𝑠3𝜆

𝑠1
𝑥 𝜆

𝑠2
𝑦 𝜆

𝑠3
𝑧

)

(76)

= ∫𝐸

(

3
∏

𝑛=−3
𝜆𝑛
)(

∑

0≤𝑠1+𝑠2+𝑠3≤𝑟−6
𝑐𝐸𝑠1 ,𝑠2 ,𝑠3𝜆

𝑠1
𝑥 𝜆

𝑠2
𝑦 𝜆

𝑠3
𝑧

)2

implies that all the coefficients 𝑐𝐸𝑠1 ,𝑠2 ,𝑠3 vanish by the non-negativity of the integrand and Lemma 2.1. □

5.2. Face basis functions

We next construct basis functions associated to the face DoFs (28). As an example, we want 𝜙𝑓1;𝑠1 ,𝑠2 for face 𝑓1 when 𝑟 ≥ 4, where
1 + 𝑠2 ≤ 𝑟 − 4, and, on the faces,

𝜙𝑓1;𝑠1 ,𝑠2 =

{

𝜆−2𝜆2𝜆−3𝜆3𝜆
𝑠1
𝑦 𝜆

𝑠2
𝑧 , on 𝑓1,

0, on 𝑓𝑛, 𝑛 ≠ 1.
(77)

We start the construction from the highest order. For 𝑠1 + 𝑠2 = 𝑟 − 4, we directly have from the supplement 𝜙𝑓𝑥,𝑠1 in (64) that

𝜙𝑓1;𝑠1 ,𝑠2 = 1
2
(𝜙𝑓𝑥,𝑠1 + 𝜆−2𝜆2𝜆−3𝜆3𝜆

𝑠1
𝑦 𝜆

𝑠2
𝑧 ) (78)

= 1
2
𝜆−2𝜆2𝜆−3𝜆3(1 + 𝑅𝑥)𝜆𝑠1𝑦 𝜆𝑠2𝑧 ∈ 𝑟(𝐸).

We obtain the basis functions for lower order by induction. For any 0 ≤ 𝑠0 ≤ 𝑟 − 5, if we already have 𝜙𝑓
1;𝑠′1 ,𝑠

′
2

for 𝑠′1 + 𝑠
′
2 > 𝑠0, then

we construct 𝜙𝑓1;𝑠1 ,𝑠2 with 𝑠1 + 𝑠2 = 𝑠0, from

𝜑𝑓1;𝑠1 ,𝑠2 = 𝜆−1𝜆−2𝜆2𝜆−3𝜆3𝜆
𝑠1
𝑦 𝜆

𝑠2
𝑧 ∈ P𝑟(𝐸). (79)

It is zero on all the faces except 𝑓1, where, using Lemma 2.3,

𝜑𝑓1;𝑠1 ,𝑠2 |𝑓1 = 𝜆−2𝜆2𝜆−3𝜆3𝜆
𝑠1
𝑦 𝜆

𝑠2
𝑧
(

𝐴1
−1,𝑦𝑧 + 𝐵

1
−1,𝑦𝑧𝜆𝑦 + 𝐶

1
−1,𝑦𝑧𝜆𝑧

)

|

|

|𝑓1
. (80)

By canceling the higher order terms in 𝜑𝑓1;𝑠1 ,𝑠2 , we obtain the basis function

𝜙𝑓1;𝑠1 ,𝑠2 = 1
𝐴1
−1,𝑦𝑧

(

𝜑𝑓1;𝑠1 ,𝑠2 − 𝐵
1
−1,𝑦𝑧𝜙

𝑓
1;𝑠1+1,𝑠2

− 𝐶1
−1,𝑦𝑧𝜙

𝑓
1;𝑠1 ,𝑠2+1

)

. (81)

Note that although higher order terms are canceled here, it is not a necessary procedure, which means 𝜑𝑓1;𝑠1 ,𝑠2 are also able to serve
as basis functions.

A similar construction gives 𝜙𝑓𝑛,𝑠1 ,𝑠2 for 𝑛 = −1,±2,±3 and 0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟 − 4. We obtain 3(𝑟 − 2)(𝑟 − 3) = 6 dimP𝑟−4(𝑓 ) functions.

Lemma 5.2. On any face 𝑓𝑛, suppose 𝜙|𝑓𝑛 can be represented as

𝜙|𝑓𝑛 =
∑

0≤𝑠1+𝑠2≤𝑟−4
𝑐𝑓𝑛;𝑠1 ,𝑠2𝜙

𝑓
𝑛;𝑠1 ,𝑠2

. (82)

If the face DoFs for 𝑓𝑛 defined in (28) vanish for 𝜙, then 𝜙|𝑓𝑛 = 0.

Proof. If the face DoFs (28) vanish for 𝑓1, for example, in (28), let

𝑞 =
∑

0≤𝑠1+𝑠2≤𝑟−4
𝑐𝑓1;𝑠1 ,𝑠2𝜆

𝑠1
𝑦 𝜆

𝑠2
𝑧 . (83)

Then (77) implies that the integrand is always non-negative on 𝑓1 and the second part of Lemma 2.1 implies that all the coefficients
𝑐𝑓1;𝑠1 ,𝑠2 vanish. By symmetry, we conclude that 𝑐𝑓𝑛;𝑠1 ,𝑠2 = 0 for all −3 ≤ 𝑛 ≤ 3 and 0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟 − 4. □
10 
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5.3. Edge basis functions

For illustration purpose, we construct 𝜙𝑒𝑖,𝑗;𝑠 for 𝑖 = ±1, 𝑗 = ±2, and 𝑠 = 0, 1, 2,… , 𝑟 − 2, such that on edges and faces,

𝜙𝑒𝑖,𝑗;𝑠 =

{

𝜆−3𝜆3𝜆𝑠𝑧, on 𝑒𝑖,𝑗 .
0, on 𝑓𝑛, 𝑛 ≠ 𝑖, 𝑗 . (84)

We start from the highest order 𝑠 = 𝑟 − 2, where

𝜙𝑒𝑖,𝑗;𝑟−2 =
1
4
𝜆−3𝜆3𝜆

𝑟−2
𝑧 (1 + sign(𝑖)𝑅𝑥)(1 + sign(𝑗)𝑅𝑦) ∈ 𝑟(𝐸), (85)

using the supplements 𝜙𝑒𝑧,1, 𝜙
𝑒
𝑧,2, and 𝜙𝑒𝑧,3 in (67)–(69).

For 𝑠 = 𝑟− 3, the construction follows the idea of constructing 𝜙𝑒𝑖,𝑗;0 for 3(𝐸) in Section 4.4, except for that they are multiplied
through by 𝜆𝑟−3𝑧 . First of all, we directly have 𝜙𝑒1,2;𝑟−3 = 𝜙𝑒𝑧,4 from (70). By the same procedure of finding proper linear combinations,
using Lemma 2.2, we derive the basis functions

𝜙𝑒−1,2;𝑟−3 =
1

𝐴−1,2
−2,𝑧

(

𝜆−3𝜆3𝜆
𝑟−3
𝑧 𝜆−2 − 𝐴

1,2
−2,𝑧𝜙

𝑒
𝑧,4 (86)

− 𝐵1,2
−2,𝑧𝜙

𝑒
1,2;𝑟−2 − 𝐵

−1,2
−2,𝑧𝜙

𝑒
−1,2;𝑟−2

)

,

𝜙𝑒1,−2;𝑟−3 =
1

𝐴1,−2
−1,𝑧

(

𝜆−3𝜆3𝜆
𝑟−3
𝑧 𝜆−1 − 𝐴

1,2
−1,𝑧𝜙

𝑒
𝑧,4 (87)

− 𝐵1,2
−1,𝑧𝜙

𝑒
1,2;𝑟−2 − 𝐵

1,−2
−1,𝑧𝜙

𝑒
1,−2;𝑟−2

)

.

Finally, we directly obtain the basis function of order 𝑠 = 𝑟 − 3 for 𝑒−1,−2 by

𝜙𝑒−1,−2;𝑟−3 = 𝜆−3𝜆3𝜆
𝑟−3
𝑧 − 𝜙𝑒1,2;𝑟−3 − 𝜙

𝑒
−1,2;𝑟−3 − 𝜙

𝑒
1,−2;𝑟−3. (88)

These functions are uniquely defined up to their values in the interior, no matter from which edge we start the construction.
We continue to construct basis functions for smaller 𝑠 by induction. If we already have 𝜙𝑒𝑖,𝑗;𝑠 for 𝑠 > 𝑠0, where 0 ≤ 𝑠0 ≤ 𝑟 − 4,

hen we first construct

𝜑𝑒𝑖,𝑗;𝑠0 = 𝜆−3𝜆3𝜆−𝑖𝜆−𝑗𝜆
𝑠0
𝑧 ∈ P𝑟(𝐸). (89)

Note that

𝜑𝑒𝑖,𝑗;𝑠0 =

{

𝜆−3𝜆3𝜆
𝑠0
𝑧 (𝐴𝑖,𝑗−𝑖,𝑧 + 𝐵

𝑖,𝑗
−𝑖,𝑧𝜆𝑧)(𝐴

𝑖,𝑗
−𝑗 ,𝑧 + 𝐵𝑖,𝑗−𝑗 ,𝑧𝜆𝑧), on 𝑒𝑖,𝑗 ,

0, on 𝑓𝑛, 𝑛 ≠ 𝑖, 𝑗 . (90)

Then we subtract higher order terms from it and get

𝜙𝑒𝑖,𝑗;𝑠0 = 1
𝐴𝑖,𝑗−𝑖,𝑧𝐴

𝑖,𝑗
−𝑗 ,𝑧

[

𝜑𝑒𝑖,𝑗;𝑠0 (91)

− (𝐴𝑖,𝑗−𝑖,𝑧𝐵𝑖,𝑗−𝑗 ,𝑧 + 𝐴𝑖,𝑗−𝑗 ,𝑧𝐵𝑖,𝑗−𝑖,𝑧)𝜙𝑒𝑖,𝑗;𝑠0+1 − 𝐵
𝑖,𝑗
−𝑖,𝑧𝐵

𝑖,𝑗
−𝑗 ,𝑧𝜙𝑒𝑖,𝑗;𝑠0+2

]

.

If we want to simplify the construction, we can directly use 𝜑𝑒𝑖,𝑗;𝑠0 as the basis function of order 𝑠0 on 𝑒𝑖,𝑗 for 𝑠0 ≤ 𝑟 − 4. The basis
construction for 𝑒±1,±2 can be easily generalized to 𝑒±1,±3 and 𝑒±2,±3 by symmetry. We have constructed 12(𝑟 − 1) = 12 dimP𝑟−2(𝑒)
functions.

Lemma 5.3. On any edge 𝑒𝑚,𝑛, suppose 𝜙|𝑒𝑚,𝑛 could be represented as

𝜙|𝑒𝑚,𝑛 =
𝑟−2
∑

𝑠=0
𝑐𝑒𝑚,𝑛;𝑠𝜙

𝑒
𝑚,𝑛;𝑠. (92)

If the edge DoFs for 𝑒𝑚,𝑛 defined in (27) vanish for 𝜙, then 𝜙|𝑒𝑚,𝑛 = 0.

Proof. We prove the argument for 𝑚 = ±1 and 𝑛 = ±2 as an example. If the edge DoFs (27) vanish, let

𝑞 =
𝑟−2
∑

𝑠=0
𝑐𝑒𝑚,𝑛;𝑠𝜆

𝑠
𝑧. (93)

Since the integral is zero and the integrand is always non-negative on 𝑒𝑚,𝑛 by (84), we conclude 𝑐𝑒𝑚,𝑛;𝑠 = 0 for all 𝑠 = 0, 1,… , 𝑟 − 2
by the first part of Lemma 2.1. □

5.4. Unisolvence of the degrees of freedom

Lemma 2.1 gives certain polynomial bases for each geometry object (i.e., vertices, edges, faces, and interior element). We state
nd prove the unisolvence of DoFs in the following theorem.
11 
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Theorem 5.1. The finite element 𝑟(𝐸) = P𝑟(𝐸) ⊕ S
𝑟 (𝐸) with the basis functions of S

𝑟 (𝐸) defined by (64)–(70) is well-defined
(i.e., unisolvent) with DoFs (26)–(29).

Proof. Write 𝜙 ∈ 𝑟(𝐸) as

𝜙 =
∑

𝑖=±1,𝑗=±2,𝑘=±3
𝑐𝐯𝑖,𝑗 ,𝑘𝜙𝐯

𝑖,𝑗 ,𝑘 (94)

+
𝑟−2
∑

𝑠=0

(

∑

𝑗=±2,𝑘=±3
𝑐𝑒𝑗 ,𝑘;𝑠𝜙𝑒𝑗 ,𝑘;𝑠 +

∑

𝑖=±1,𝑘=±3
𝑐𝑒𝑖,𝑘;𝑠𝜙

𝑒
𝑖,𝑘;𝑠 +

∑

𝑖=±1,𝑗=±2
𝑐𝑒𝑖,𝑗;𝑠𝜙

𝑒
𝑖,𝑗;𝑠

)

+
∑

0≤𝑠1+𝑠2≤𝑟−4

3
∑

𝑛=−3
𝑐𝑓𝑛;𝑠1 ,𝑠2𝜙

𝑓
𝑛;𝑠1 ,𝑠2

+
∑

0≤𝑠1+𝑠2+𝑠3≤𝑟−6
𝑐𝐸𝑠1 ,𝑠2 ,𝑠3𝜙

𝐸
𝑠1 ,𝑠2 ,𝑠3

.

Restricted to any vertex 𝐯𝑖,𝑗 ,𝑘, only 𝜙𝐯
𝑖,𝑗 ,𝑘 is nonzero among all the basis functions. Therefore, if vertex DoFs (26) vanish for 𝜙, we

must have 𝑐𝐯𝑖,𝑗 ,𝑘 = 0 for all 𝑖 = ±1, 𝑗 = ±2, 𝑘 = ±3. Since 𝑐𝐯𝑖,𝑗 ,𝑘 = 0, and all the face and interior element basis functions are zero on
edges, we have

𝜙|𝑒𝑗 ,𝑘 =
𝑟−2
∑

𝑠=0
𝑐𝑒𝑗 ,𝑘;𝑠𝜙𝑒𝑗 ,𝑘;𝑠, 𝜙|𝑒𝑖,𝑘 =

𝑟−2
∑

𝑠=0
𝑐𝑒𝑖,𝑘;𝑠𝜙

𝑒
𝑖,𝑘;𝑠, 𝜙|𝑒𝑖,𝑗 =

𝑟−2
∑

𝑠=0
𝑐𝑒𝑖,𝑗;𝑠𝜙

𝑒
𝑖,𝑗;𝑠, (95)

for any edge 𝑒𝑗 ,𝑘, 𝑒𝑖,𝑘, and 𝑒𝑖,𝑗 . By Lemma 5.3, 𝑐𝑒𝑗 ,𝑘;𝑠 = 𝑐𝑒𝑖,𝑘;𝑠 = 𝑐𝑒𝑖,𝑗;𝑠 = 0 for all the edges and 𝑠 = 0, 1,… , 𝑟 − 2. Similarly, since all the
ertex and edge coefficients are zero, and interior element basis functions vanish on faces, we have

𝜙|𝑓𝑛 =
∑

0≤𝑠1+𝑠2≤𝑟−4
𝑐𝑓𝑛;𝑠1 ,𝑠2𝜙

𝑓
𝑛;𝑠1 ,𝑠2

(96)

for all the faces 𝑓𝑛. By Lemma 5.2, 𝑐𝑓𝑛;𝑠1 ,𝑠2 = 0 for all the faces 𝑓𝑛 and 0 ≤ 𝑠1 + 𝑠2 ≤ 𝑟 − 4. Since all the other coefficients vanish, we
ave 𝜙 consisting only of interior element basis functions. By Lemma 5.1, we finally conclude that all the coefficients vanish. □

6. Direct serendipity finite elements for 𝒓 ≤ 𝟐

We construct direct serendipity finite elements 𝑟(𝐸) for 𝑟 = 1, 2 as a subspace of 3(𝐸), which has been constructed explicitly
in Section 4. The DoFs can be chosen either as defined in (26)–(27) or nodal DoFs.

For 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3, define 𝜙𝐯,low
𝑖,𝑗 ,𝑘 ∈ 3(𝐸) for each vertex 𝐯𝑖,𝑗 ,𝑘, such that it is linear on each edge, and is one at 𝐯𝑖,𝑗 ,𝑘

hile zero on all other vertices. These functions are uniquely defined in 3(𝐸), since there are no face or interior DoFs for 𝑟 = 3.
urthermore, denote the edge basis functions 𝜙𝑒𝑗 ,𝑘;0, 𝜙𝑒𝑖,𝑘;0, and 𝜙𝑒𝑖,𝑗;0 defined for 3(𝐸) as 𝜙𝑒,low

𝑗 ,𝑘 , 𝜙𝑒,low
𝑖,𝑘 , and 𝜙𝑒,low

𝑖,𝑗 , respectively.
efine

1(𝐸) = span{𝜙𝐯,low
𝑖,𝑗 ,𝑘 | 𝑖 = ±1, 𝑗 = ±2, 𝑘 = ±3}, (97)

2(𝐸) = 1(𝐸)⊕ span{𝜙𝑒,low
𝑗 ,𝑘 , 𝜙𝑒,low

𝑖,𝑘 , 𝜙𝑒,low
𝑖,𝑗 (98)

| 𝑖 = ±1, 𝑗 = ±2, 𝑘 = ±3}.

Theorem 6.1. For 𝑟 = 1, 2, the lower order spaces 𝑟(𝐸) defined as (97)–(98) satisfy that P𝑟(𝐸) ⊂ 𝑟(𝐸).

Proof. For any 𝑝 ∈ P𝑟(𝐸), there is a unique function 𝜙 ∈ 𝑟(𝐸) having the same evaluation of DoFs as 𝑝. Moreover, restricted to
any edge 𝑒𝑚,𝑛, 𝜙|𝑒𝑚,𝑛 has to be a polynomial of order 𝑟 by construction (97)–(98). Any function in 3(𝐸) is uniquely defined by its
shape on edges and vertices. Since we both have 𝑝 ∈ 3(𝐸) and 𝜙 ∈ 3(𝐸) with the same values restricted to edges and vertices,
we must have 𝑝 = 𝜙. □

More details on the construction of 1(𝐸) are now given. The special functions 𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 must be constructed
beforehand (see Section 7). These are used to define the space 3(𝐸). Specifically, one needs the edge functions 𝜙𝑒𝑖,𝑗;1, defined in
(43)–(45), and the edge functions 𝜙𝑒𝑖,𝑗;0, defined in (52) and Section 4.4. For 𝑖 = ±1, 𝑗 = ±2, and 𝑘 = ±3, the vertex basis function
𝜙𝐯,low
𝑖,𝑗 ,𝑘 is the linear combination

𝜙𝐯,low
𝑖,𝑗 ,𝑘 = 𝜙𝐯

𝑖,𝑗 ,𝑘 + 𝛼0𝜙𝑒𝑖,𝑗;0 + 𝛼1𝜙𝑒𝑖,𝑗;1 + 𝛽0𝜙𝑒𝑖,𝑘;0 + 𝛽1𝜙𝑒𝑖,𝑘;1 (99)

+ 𝛾0𝜙𝑒𝑗 ,𝑘;0 + 𝛾1𝜙𝑒𝑗 ,𝑘;1,

for some coefficients 𝛼0, 𝛼1, 𝛽0, 𝛽1, 𝛾0, and 𝛾1, where 𝜙𝐯
𝑖,𝑗 ,𝑘 is defined in (39). Note that 𝜙𝐯,low

𝑖,𝑗 ,𝑘 is zero on faces 𝑓−𝑖, 𝑓−𝑗 , and 𝑓−𝑘, and
zero at each vertex save 𝐯 , where it is one. However, 𝜙𝐯,low is in general cubic on each edge emanating from 𝐯 . The coefficients
𝑖,𝑗 ,𝑘 𝑖,𝑗 ,𝑘 𝑖,𝑗 ,𝑘
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Fig. 3. The partition of marching tetrahedra  𝑀
𝐸 , where 𝑇𝑀2,−1 is painted in gray.

are chosen to ensure that 𝜙𝐯,low
𝑖,𝑗 ,𝑘 is linear on these edges. For example, consider 𝜙𝐯,low

1,2,3 and the edge 𝑒2,3 from 𝐯1,2,3 to 𝐯−1,2,3. Divide
he edge into thirds at the points 𝐱+2,3 (nearer to 𝐯1,2,3) and 𝐱−2,3. Then one must solve the linear system

(

𝜙𝑒2,3;0(𝐱
+
2,3) 𝜙𝑒2,3;1(𝐱

+
2,3)

𝜙𝑒2,3;0(𝐱
−
2,3) 𝜙𝑒2,3;1(𝐱

−
2,3)

)

(

𝛾0
𝛾1

)

=
⎛

⎜

⎜

⎝

2
3 − 𝜙𝐯

1,2,3(𝐱
+
2,3)

1
3 − 𝜙𝐯

1,2,3(𝐱
−
2,3)

⎞

⎟

⎟

⎠

. (100)

7. Construction of the special functions 𝑹∗ and 𝝍∗

We present two ways of filling in the interior of the needed special functions. Recall that the boundary values required of 𝑅𝑥,
𝑅𝑦, and 𝑅𝑧 are specified in (7), and those of 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 are found in (49)–(51). The first way results in smooth supplemental
functions, while the second way constructs supplements that are piecewise polynomials in 𝐻1(𝐸).

7.1. Smooth supplemental functions

The first construction makes use of the mapping 𝐱 = 𝐅𝐸 (�̂�) from a reference element �̂� introduced in Section 2. With �̂� = 𝐅−1
𝐸 (𝐱) =

(�̂�, �̂�, ̂𝑧), we define 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 on the element 𝐸 by

𝜓𝑥(𝐱) = �̂�𝑥(�̂�) = �̂�𝑥(�̂�, �̂�, �̂�) = 𝜓𝑥,2(𝐅𝐸 (�̂�, 1, ̂𝑧))𝜓𝑥,3(𝐅𝐸 (�̂�, �̂�, 1)), (101)

𝜓𝑦(𝐱) = �̂�𝑦(�̂�) = �̂�𝑦(�̂�, �̂�, ̂𝑧) = 𝜓𝑦,1(𝐅𝐸 (1, �̂�, ̂𝑧))𝜓𝑦,3(𝐅𝐸 (�̂�, �̂�, 1)), (102)

𝜓𝑧(𝐱) = �̂�𝑧(�̂�) = �̂�𝑧(�̂�, �̂�, �̂�) = 𝜓𝑧,1(𝐅𝐸 (1, �̂�, ̂𝑧))𝜓𝑧,2(𝐅𝐸 (�̂�, 1, ̂𝑧)), (103)

where 𝜓𝑥,2,… , 𝜓𝑧,2 are defined in (49)–(51). It is not difficult to verify that these functions have the required properties. Moreover,
they are smooth if 𝑅𝑥|𝑓2 , 𝑅𝑥|𝑓3 , 𝑅𝑦|𝑓1 , 𝑅𝑦|𝑓3 , 𝑅𝑧|𝑓1 and 𝑅𝑧|𝑓2 are smooth. For example, 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧 could be taken as in (8).

7.2. 𝐻1 supplemental functions

The second construction makes use of partitions of the hexahedron into tetrahedra, of which two partitions are discussed.
We first consider a partition based on marching tetrahedra, as discussed in [23], where the element 𝐸 is divided into six

etrahedra as shown in Fig. 3. An interior diagonal mesh line joining vertex 𝐯−1,−2,−3 to 𝐯1,2,3 is added, as well as six mesh lines on
he faces joining 𝐯±1,−2,−3 to 𝐯±1,2,3, 𝐯−1,±2,−3 to 𝐯1,±2,3, and 𝐯−1,−2,±3 to 𝐯1,2,±3. Denote this sub-partition as  𝑀

𝐸 and the tetrahedron
which has two faces lying in 𝑓𝑚 and 𝑓𝑛 as 𝑇𝑀𝑚,𝑛. We remark that this partition naturally matches adjacent hexahedra in a logically
rectangular mesh.

Let the piecewise continuous polynomial spaces corresponding to the partition be denoted

𝑠( 𝑀
𝐸 ) = {

𝑓 ∈ 𝐶0(𝐸) ∶ 𝑓 |𝑇𝑀𝑚,𝑛 ∈ P𝑠(𝑇𝑀𝑚,𝑛) ∀𝑚, 𝑛
}

. (104)

Define 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧 in 1( 𝑀
𝐸 ) according to (7) by fixing each vertex value to be either −1 or 1.

Since the functions 𝑅∗ are piecewise linear, the functions 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 satisfying (49)–(51) must be piecewise continuous
quadratic functions. They can be defined in 2( 𝑀

𝐸 ) by interpolation at the vertices and mesh line midpoints of the sub-partition.
owever, each of these functions is fixed only on four of the faces of 𝐸, and so no values are given at the midpoints of three

ub-partition mesh lines (two lying on faces, one being the interior diagonal line). We need to fix these values to define 𝜓𝑥, 𝜓𝑦, and
𝑧, and any value will suffice (such as taking the average of the ends at the midpoint). By such a construction, all the supplemental

unctions will be piecewise polynomials that are continuous on 𝐸, so they will lie in 𝐻1(𝐸).
The second partition is based on the diamond lattice cells, which divides the hexahedron 𝐸 into five tetrahedra with exactly one

aving all its faces in the interior of 𝐸. The partition uses six additional mesh lines that all lie in 𝜕 𝐸. As shown in Fig. 4, there are
two patterns for this partition. First, one can take the ‘‘even’’ set of vertices 𝐯1,2,3, 𝐯−1,−2,3, 𝐯−1,2,−3, and 𝐯1,−2,−3, and the six mesh
lines joining each pair. Denote this pattern as  𝐷. Second, one can take the ‘‘odd’’ set of vertices 𝐯 , 𝐯 , 𝐯 , and 𝐯 ,
𝐸 −1,−2,−3 −1,2,3 1,−2,3 1,2,−3
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Fig. 4. The diamond cubic based partition  𝐷
𝐸 (left) and  𝐷′

𝐸 (right). Displayed in gray for both partitions is the tetrahedron with all four faces internal to 𝐸.

and the six mesh lines joining each pair, to obtain the pattern denoted as  𝐷′

𝐸 . We remark that these patterns appear alternately for
adjacent hexahedra in a logically rectangular mesh.

Similar to the case for the marching tetrahedra, the special functions 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧 can be interpolated into 1( 𝐷
𝐸 ) or 1( 𝐷′

𝐸 ).
Moreover, 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧, can be interpolated into 2( 𝐷

𝐸 ) or 2( 𝐷′

𝐸 ). We will need to fix arbitrarily the midpoint values of the
two mesh lines of the sub-partition not fixed by the required function values.

8. Defining an 𝑯𝟏-conforming space on the domain

Direct serendipity elements in 2D are not uniquely defined, as discussed in [16]. The traces of our 3D elements on the faces are
affected by our choice of the functions 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧 and the functions 𝜆𝑥, 𝜆𝑦, and 𝜆𝑧. When merging two elements together, these
choices must be respected by the adjoining elements.

Consider two adjacent elements 𝐸1 and 𝐸−1 joined on the face 𝑓 = 𝐸1 ∩ 𝐸−1. For simplicity of the discussion, we assume that
in the notation of this paper, 𝐸1 considers 𝑓 as being its 𝑓1, and 𝐸−1 considers 𝑓 as being its 𝑓−1. Moreover, we denote the special
functions on 𝑓 restricted to 𝐸±1 as being 𝑅𝑦,±1, 𝑅𝑧,±1, 𝜆𝑦,±1, and 𝜆𝑧,±1.

We must ask two things. First, we require that,

𝑅𝛼 ,1|𝑓 = ±𝑅𝛼 ,−1|𝑓 , 𝛼 = 𝑦, 𝑧. (105)

We are dealing with vector spaces, so technically the two expressions need only be multiples of each other, but they are ±1 on
opposite edges. The constructions in Section 7 have this property. For the smooth case, the functions 𝑅∗ are defined in (8) by the
trilinear mapping of the reference cube to 𝐸±1. The trilinear map restricts to a bilinear map on each face, determined only by
its four vertices. Therefore the value of 𝑅𝛼 ,±1|𝑓 must agree with the value of �̂�, 𝛼 = 𝑦, 𝑧, up to its sign. For the 𝐻1 supplemental
function case, we merely ask that the partition of neighboring elements coincide when restricted to the common face. In the case of
 logically rectangular mesh, this is satisfied naturally by marching tetrahedra. However, if we use the partition based on diamond
attice cells, two neighboring elements that share a common face must use different patterns  𝐷

𝐸 and  𝐷′

𝐸 to match.
Second, we must ask that the special linear functions agree up to a multiple. That is, the zero line of 𝜆𝛼 ,±1|𝑓 is denoted 𝛼 ,±1 ∩𝑓 ,

nd we require that

𝛼 ,1 ∩ 𝑓 = 𝛼 ,−1 ∩ 𝑓 , 𝛼 = 𝑦, 𝑧. (106)

This requirement is more delicate to enforce on a general mesh. To illustrate a very special case, suppose that our mesh is composed
only of elements that have consistent mid planes, meaning that the midpoints of the four edges 𝑒±1,±2 form a plane, and similarly
for 𝑒±1,±3 and 𝑒±2,±3. We could then simply take these three planes as the zero planes of our three special linear functions. But the
consistent mid plane condition is a severe restriction on the mesh.

We can resolve the issue if we restrict to the most natural situation of a logically rectangular mesh. In that case, a simple choice
is to take

𝜆𝑥 = 𝜆−1, 𝜆𝑦 = 𝜆−2, 𝜆𝑧 = 𝜆−3. (107)

The zero lines on the faces then agree between pairs of elements, so the condition (106) is satisfied.

9. Approximation results

We give a summary of the necessary constructions and the main approximation results without complete proofs, since the
evelopment closely follows that for direct serendipity finite elements on quadrilaterals discussed in [16]. A minor issue is that [16]

assumes extra smoothness of the special functions analogous to those in (7), but this extra smoothness requirement was removed in
[24,25], allowing only piecewise continuous, differentiable functions. The uniform shape regularity of the mesh ℎ on the domain
𝛺 is assumed for the purpose of proving global approximation properties, with its definition generalized from [26, pp. 104–105].
14 
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Definition 9.1. For any 𝐸 ∈ ℎ, denote by 𝑇𝑖,𝑗 ,𝑘, 𝑖 = ±1, 𝑗 = ±2, 𝑘 = ±3, the sub-tetrahedron of 𝐸 with vertices 𝐯𝑖,𝑗 ,𝑘, 𝐯−𝑖,𝑗 ,𝑘, 𝐯𝑖,−𝑗 ,𝑘,
nd 𝐯𝑖,𝑗 ,−𝑘 of 𝐸. Define the parameters

ℎ𝐸 = diameter of 𝐸 , (108)

𝜌𝐸 = min
𝑖,𝑗 ,𝑘{diameter of the largest sphere inscribed in 𝑇𝑖,𝑗 ,𝑘}. (109)

A collection of meshes {ℎ}ℎ>0 is uniformly shape regular if there exists a shape regularity parameter 𝜎∗ > 0, independent of ℎ and
ℎ > 0, such that the ratio

𝜌𝐸
ℎ𝐸

≥ 𝜎∗ > 0 for all 𝐸 ∈ ℎ. (110)

We construct an interpolation operator that maps onto 𝑟 inspired by Scott and Zhang [27]. For the purpose of the proof,
denote the global nodal points as {𝑎1,… , 𝑎𝑁𝑟} with 𝑁𝑟 = dim𝑟. For each nodal point 𝑎𝑖, denote its corresponding global nodal
basis function as 𝜑𝑖. We require that the nodal points on an element depend continuously on its vertices. If 𝑎𝑖 lies in the interior
cell of an element 𝐸 ∈ ℎ, we set 𝐾𝑖 to be (the closed set) 𝐸. These are referred to as interior nodes. If 𝑎𝑖 lies in the interior of face
𝑓 of ℎ (i.e., not on the edges or at the vertices), we set 𝐾𝑖 = 𝑓 (a closed set), and 𝑎𝑖 is referred to as a face node. If 𝑎𝑖 belongs to
the interior of an edge or is a vertex of ℎ, 𝐾𝑖 is chosen to be any fixed face 𝑓 containing 𝑎𝑖, with the additional requirement that
if 𝑎𝑖 ∈ 𝜕 𝛺, then 𝑓 ⊂ 𝜕 𝛺. Those nodes are said to be edge and vertex nodes, respectively. Note that for such nodes, we are free to
chose 𝑓 from among multiple faces.

An 𝐿2-dual nodal basis, denoted as {𝜓1,… , 𝜓𝑁𝑟}, is defined as follows. Firstly, let 𝑛𝑖 be the total number of nodes in 𝐾𝑖.
Secondly, denote the nodes in 𝐾𝑖 as {𝑎𝑖,𝑗 ∶ 𝑗 = 1,… , 𝑛𝑖} with 𝑎𝑖,1 = 𝑎𝑖, corresponding to the global nodal basis functions
𝑆𝑖 = {𝜑𝑖,𝑗 ∶ 𝑗 = 1,… , 𝑛𝑖}. Thirdly, define an 𝐿2(𝐾𝑖)-dual nodal basis {𝜓𝑖,𝑗 ∶ 𝑗 = 1,… , 𝑛𝑖} ⊂ span𝑆𝑖 satisfying

∫𝐾𝑖
𝜓𝑖,𝑗 (𝐱)𝜑𝑖,𝑘(𝐱) 𝑑 𝑥 = 𝛿𝑗 𝑘, 𝑗 , 𝑘 = 1, 2,… , 𝑛𝑖, (111)

where we use a slight abuse of notation in that 𝑑 𝑥 should be 𝑑 𝜎(𝑥) when 𝐾𝑖 is a face. Finally, for the node 𝑎𝑖, its corresponding
𝐿2-dual nodal basis function is taken to be 𝜓𝑖 = 𝜓𝑖,1. For each node 𝑎𝑖 giving rise to 𝐾𝑖 and 𝜓𝑖, we can prove that

∫𝐾𝑖
𝜓𝑖(𝐱)𝜑𝑗 (𝐱) 𝑑 𝑥 = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, 2,… , 𝑁𝑟. (112)

We define an interpolation operator 𝑟ℎ ∶ 𝑊 𝑙
𝑝 (𝛺) → 𝑟 by

𝑟ℎ 𝑣(𝐱) =
𝑁𝑟
∑

𝑖=1
𝜑𝑖(𝐱)∫𝐾𝑖

𝜓𝑖(𝐲) 𝑣(𝐲) 𝑑 𝑦 ∈ 𝑟, (113)

where 1 ≤ 𝑝 ≤ ∞ and 𝑙 > 1∕𝑝 (but 𝑙 ≥ 1 if 𝑝 = 1). Note that for any 𝑣 ∈ 𝑊 𝑙
𝑝 (𝛺), the nodal values ∫𝐾𝑖 𝜓𝑖(𝐲) 𝑣(𝐲) 𝑑 𝑦 are well defined

ccording to the trace theorem. With a proof analogous to [16,24,25], we can derive the following lemma by a continuity and
compactness argument.

Lemma 9.1. Let 𝑣 ∈ 𝑊 𝑙
𝑝 (𝛺), where 1 ≤ 𝑝 ≤ ∞ and 𝓁 > 1∕𝑝 (or 𝓁 ≥ 1 if 𝑝 = 1). Let ℎ be uniformly shape regular (Definition 9.1) with

shape regularity parameter 𝜎∗. For every 𝐸 ∈ ℎ, suppose that 𝑟(𝐸) are constructed with 𝜆𝑥, 𝜆𝑦, and 𝜆𝑧 such that the intersection of their
zero set depends on the vertices of 𝐸 continuously. Moreover, assume that 𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 are piecewise uniformly differentiable
𝐻1(𝐸) functions of the vertices of 𝐸 up to order 𝑚. Then for 𝑟 ≥ 1, 𝐸 ∈ ℎ, 1 ≤ 𝑞 ≤ ∞, and any nonnegative integer 𝑚,

‖𝑟ℎ 𝑣‖𝑊 𝑚
𝑞 (𝐸) ≤ 𝐶(𝜎∗, 𝑚, 𝑞)

𝓁
∑

𝑘=0
ℎ
𝑘−𝑚+ 3

𝑞 −
3
𝑝

𝐸 |𝑣|𝑊 𝑘
𝑝 (𝐸∗), (114)

where 𝐸∗ =
⋃

𝐹∈ℎ , 𝐹∩𝐸≠∅ 𝐹 and | ⋅ |𝑊 𝑘
𝑝

is the seminorm of 𝑘th order derivatives.

Combining Lemma 9.1 and the Bramble–Hilbert lemma [28] in the form developed by Dupont and Scott in [29] leads to the
following error estimation results.

Theorem 9.1. With the assumptions of Lemma 9.1, there exists a constant 𝐶 = 𝐶(𝑟, 𝜎∗) > 0 such that for all functions 𝑣 ∈ 𝑊 𝓁
𝑝 (𝐸∗), with

1 ≤ 𝑝 ≤ ∞ and 𝓁 > 1∕𝑝 (or 𝓁 ≥ 1 if 𝑝 = 1),

‖𝑣 − 𝑟ℎ 𝑣‖𝑊 𝑚
𝑝 (𝐸) ≤ 𝐶 ℎ𝓁−𝑚𝐸 |𝑣|𝑊 𝓁

𝑝 (𝐸∗), 0 ≤ 𝑚 ≤ min(𝓁, 𝑟 + 1). (115)

Moreover, there exists a constant 𝐶 = 𝐶(𝑟, 𝜎∗) > 0, independent of ℎ = max𝐸∈ℎ ℎ𝐸 , such that for all functions 𝑣 ∈ 𝑊 𝓁
𝑝 (𝛺),

(

∑

𝐸∈ℎ

‖𝑣 − 𝑟ℎ 𝑣‖
𝑝
𝑊 𝑚
𝑝 (𝐸)

)1∕𝑝
(116)

≤ 𝐶 ℎ𝓁−𝑚 |𝑣|𝑊 𝓁
𝑝 (𝛺), 0 ≤ 𝑚 ≤ min(𝓁, 𝑟 + 1).
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Fig. 5. Plots of the  1
ℎ mesh for 𝑛 = 4 with a general view, a top view, and a front view.

10. Some numerical tests

We test the new finite elements using Poisson’s equation

− ∇ ⋅ (∇𝑝) = 𝑓 in 𝛺 , (117)

𝑝 = 0 on 𝜕 𝛺 , (118)

where 𝑓 ∈ 𝐿2(𝛺). The problem can be written in the weak form: Find 𝑝 ∈ 𝐻1
0 (𝛺) such that

(∇𝑝,∇𝑞) = (𝑓 , 𝑞), ∀𝑞 ∈ 𝐻1
0 (𝛺), (119)

where (⋅, ⋅) is the 𝐿2(𝛺) inner product. In view of Theorem 9.1, it is well known that the following theorem holds [30].

Theorem 10.1. Let ℎ be uniformly shape regular with shape regularity parameter 𝜎∗ and let the assumption in Theorem 9.1 hold. There
exists a constant 𝐶 > 0, depending on 𝑟 and 𝜎∗ but otherwise independent of ℎ and ℎ > 0, such that

‖𝑝 − 𝑝ℎ‖𝐻𝑚(𝛺) ≤ 𝐶 ℎ𝑠+1−𝑚 |𝑝|𝐻𝑠+1(𝛺), 𝑠 = 0, 1,… , 𝑟, 𝑚 = 0, 1, (120)

where 𝑝ℎ ∈ 𝑟(𝛺) ∩𝐻1
0 (𝛺) approximates the solution p of (119) for 𝑟 ≥ 1.

We consider the test problem (117)–(118) on the cubical domain 𝛺 = [0, 1]3. The analytical solution of the test problem is
𝑝(𝑥1, 𝑥2, 𝑥3) = sin(𝜋 𝑥1) sin(𝜋 𝑥2) sin(𝜋 𝑥3),

with the source term 𝑓 (𝑥1, 𝑥2, 𝑥3) = 3𝜋2 sin(𝜋 𝑥1) sin(𝜋 𝑥2) sin(𝜋 𝑥3).
The numerical solutions are computed on two sequences of 𝑛 × 𝑛 × 𝑛 meshes for 𝑛 = 4, 8, 12, 16. Let the global vertices be

𝐯global
𝑖,𝑗 ,𝑘 = (𝑥global

1;𝑖,𝑗 ,𝑘 , 𝑥
global
2;𝑖,𝑗 ,𝑘 , 𝑥

global
3;𝑖,𝑗 ,𝑘 ) for 0 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑛. The first set of meshes,  1

ℎ , is generated by deviating the interior vertices of a
cubical mesh regularly such that there are two pairs of non-parallel faces in each element, with the vertices defined by

𝑥global
1;𝑖,𝑗 ,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑛 (𝑖 + 0.1), if 𝑖%2 = 𝑗%2 and 0 < 𝑖 < 𝑛,
1
𝑛 (𝑖 − 0.1), if 𝑖%2 ≠ 𝑗%2 and 0 < 𝑖 < 𝑛,

𝑖
𝑛 , if 𝑖 = 0, 𝑛,

(121)

𝑥global
2;𝑖,𝑗 ,𝑘 = 𝑗 ℎ, (122)

𝑥global
3;𝑖,𝑗 ,𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑛 (𝑘 + 0.1), if 𝑘%2 = 𝑗%2 and 0 < 𝑘 < 𝑛,
1
𝑛 (𝑘 − 0.1), if 𝑘%2 ≠ 𝑗%2 and 0 < 𝑘 < 𝑛,

𝑘
𝑛 , if 𝑘 = 0, 𝑛.

(123)

We show the  1
ℎ mesh for 𝑛 = 4 as an example in Fig. 5.

The second set of meshes,  2
ℎ , are generated randomly by first deviating the vertices on the lower boundaries {𝑥1 = 0} ∪ {𝑥2 =

0} ∪ {𝑥3 = 0}. For the distortion factor 𝑑 and random numbers 𝑟1;𝑖,𝑗 ,𝑘, 𝑟2;𝑖,𝑗 ,𝑘, 𝑟3;𝑖,𝑗 ,𝑘 generated from uniform distribution [−1, 1], define

𝑥global
1;𝑖,𝑗 ,𝑘 =

⎧

⎪

⎨

⎪

⎩

1
𝑛 (𝑖 + 𝑑 𝑟1;𝑖,𝑗 ,𝑘), if 𝑗 = 0 or 𝑘 = 0, and 0 < 𝑖 < 𝑛,

𝑖
𝑛 , if 𝑗 = 0 or 𝑘 = 0, and 𝑖 = 0, 𝑛,

(124)

𝑥global
2;𝑖,𝑗 ,𝑘 =

⎧

⎪

⎨

⎪

1
𝑛 (𝑗 + 𝑑 𝑟2;𝑖,𝑗 ,𝑘), if 𝑖 = 0 or 𝑘 = 0, and 0 < 𝑗 < 𝑛,

𝑗 , if 𝑖 = 0 or 𝑘 = 0, and 𝑗 = 0, 𝑛,
(125)
⎩

𝑛
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Fig. 6. A plot of the  2
ℎ mesh for 𝑛 = 4 with a general view.

Table 2
Errors and convergence rates for S

𝑟 on  1
ℎ .

𝑛 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4
Error Rate Error Rate Error Rate Error Rate

𝐿2 errors and convergence rates

4 7.688e−02 – 5.453e−03 – 1.445e−03 – 1.882e−04 –
8 1.878e−02 2.03 6.935e−04 2.98 9.020e−05 4.00 5.843e−06 5.01
12 8.333e−03 2.00 2.065e−04 2.98 1.773e−05 4.01 7.698e−07 4.99
16 4.688e−03 2.00 8.730e−05 3.00 5.590e−06 4.02 1.830e−07 5.00

𝐻1-seminorm errors and convergence rates

4 2.438e−01 – 2.778e−02 – 9.693e−03 – 1.362e−03 –
8 1.204e−01 1.02 6.739e−03 2.04 1.187e−03 3.03 8.555e−05 3.99
12 8.022e−02 1.00 2.985e−03 2.01 3.500e−04 3.01 1.693e−05 3.99
16 6.019e−02 1.00 1.678e−03 2.00 1.473e−04 3.01 5.372e−06 4.00

𝑥global
3;𝑖,𝑗 ,𝑘 =

⎧

⎪

⎨

⎪

⎩

1
𝑛 (𝑘 + 𝑑 𝑟3;𝑖,𝑗 ,𝑘), if 𝑖 = 0 or 𝑗 = 0, and 0 < 𝑘 < 𝑛,

𝑘
𝑛 , if 𝑖 = 0 or 𝑗 = 0, and 𝑘 = 0, 𝑛.

(126)

For each hexahedral element, since all the faces are required to be flat, seven vertices are enough to decide the location of the eighth.
Therefore, all the other vertices such that 𝑖, 𝑗 , 𝑘 > 0 are consequently decided by the order of ascending indices. However, by this
definition, the irregularity of the element will increase for larger indices. For the same distortion factor 𝑑, the 𝜎∗ in Definition 9.1 can
decrease for larger 𝑛. Therefore, we pick 𝑑 = 0.075, 0.063, 0.055, 0.056 for 𝑛 = 4, 8, 12, 16, respectively, such that 𝜎∗ is approximately
0.1 to three decimal precision. A plot of  2

ℎ mesh with 𝑛 = 4 is shown in Fig. 6 as an example.
We present the convergence results for 𝑟 with 𝑟 = 1, 2, 3, 4 on the meshes with 𝑛 = 4, 8, 12, 16. The results are compared

for three different definitions of supplemental functions. Denote the direct serendipity space with the smooth supplements, the
piecewise polynomial supplements based on marching tetrahedra, and those based on diamond lattice cells as S

𝑟 , M
𝑟 and D

𝑟 ,
respectively.

10.1. Shape regular meshes  1
ℎ

The errors and the corresponding convergence rates of S
𝑟 on  1

ℎ are presented in Table 2. The convergence rates are
approximately 𝑟+ 1 for 𝐿2-norm error, and 𝑟 for 𝐻1-seminorm error, which agree with Theorem 10.1. The errors and the convergence
rates for M

𝑟 and D
𝑟 are shown in Tables 3 and 4. We note that the errors for M

𝑟 and D
𝑟 are slightly worse than those of

S
𝑟 for higher 𝑟. We suppose that this is because smooth supplements behave better in approximating smooth functions.

10.2. Randomly generated meshes  2
ℎ

We show the errors and convergence rates for S
𝑟 , M

𝑟 , and D
𝑟 on  2

ℎ in Tables 5–7. The results are similar to those of  1
ℎ .

For all the direct serendipity spaces, we observe optimal convergence rates, with the errors for S
𝑟 being smaller than M

𝑟 and
D

𝑟 for larger 𝑟.

11. Conclusions

We constructed direct serendipity finite elements on a general non-degenerate cuboidal hexahedron 𝐸, which is a three-
dimensional polytope with all the faces being flat, and that can be obtained by some trilinear map of a cube. For approximation
purposes, 𝑟(𝐸) takes the form


𝑟(𝐸) = P𝑟(𝐸)⊕ S𝑟 (𝐸), 𝑟 ≥ 1, (127)
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Table 3
Errors and convergence rates for M

𝑟 on  1
ℎ .

𝑛 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4
Error Rate Error Rate Error Rate Error Rate

𝐿2 errors and convergence rates

4 7.682e−02 – 7.032e−03 – 5.219e−03 – 5.912e−04 –
8 1.879e−02 2.03 7.089e−04 3.31 2.410e−04 4.44 1.603e−05 5.20
12 8.339e−03 2.00 2.069e−04 3.03 4.433e−05 4.17 1.999e−06 5.13
16 4.691e−03 2.00 8.702e−05 3.01 1.362e−05 4.11 4.628e−07 5.09

𝐻1-seminorm errors and convergence rates

4 2.437e−01 – 3.922e−02 – 3.070e−02 – 4.121e−03 –
8 1.204e−01 1.02 7.322e−03 2.42 3.436e−03 3.16 2.478e−04 4.06
12 8.023e−02 1.00 3.082e−03 2.13 9.825e−04 3.08 4.747e−05 4.07
16 6.020e−02 1.00 1.703e−03 2.06 4.080e−04 3.06 1.480e−05 4.06

Table 4
Errors and convergence rates for D

𝑟 on  1
ℎ .

𝑛 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4
Error Rate Error Rate Error Rate Error Rate

𝐿2 errors and convergence rates

4 7.691e−02 – 6.158e−03 – 3.747e−03 – 4.831e−04 –
8 1.873e−02 2.04 7.081e−04 3.12 2.281e−04 4.04 1.612e−05 4.91
12 8.302e−03 2.00 1.988e−04 3.13 4.498e−05 4.00 2.128e−06 4.99
16 4.669e−03 2.00 8.210e−05 3.08 1.421e−05 4.01 5.036e−07 5.02

𝐻1-seminorm errors and convergence rates

4 2.440e−01 – 3.407e−02 – 2.589e−02 – 3.598e−03 –
8 1.202e−01 1.02 7.111e−03 2.26 3.197e−03 3.02 2.417e−04 3.90
12 8.010e−02 1.00 2.955e−03 2.16 9.419e−04 3.01 4.794e−05 3.99
16 6.009e−02 1.00 1.621e−03 2.09 3.963e−04 3.01 1.517e−05 4.01

Table 5
Errors and convergence rates for S

𝑟 on  2
ℎ .

𝑛 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4
Error Rate Error Rate Error Rate Error Rate

𝐿2 errors and convergence rates

4 7.508e−02 – 5.109e−03 – 1.317e−03 – 1.770e−04 –
8 1.797e−02 2.21 6.252e−04 3.24 7.446e−05 4.43 5.327e−06 5.40
12 7.626e−03 2.12 1.885e−04 2.96 1.342e−05 4.24 6.956e−07 5.03
16 4.349e−03 2.30 8.192e−05 3.41 4.406e−06 4.56 1.720e−07 5.73

𝐻1-seminorm errors and convergence rates

4 2.410e−01 – 2.571e−02 – 9.244e−03 – 1.263e−03 –
8 1.181e−01 1.10 6.006e−03 2.24 1.092e−03 3.29 7.755e−05 4.30
12 7.697e−02 1.06 2.677e−03 2.00 3.031e−04 3.17 1.533e−05 4.01
16 5.788e−02 1.17 1.527e−03 2.30 1.307e−04 3.45 5.002e−06 4.59

Table 6
Errors and convergence rates for M

𝑟 on  2
ℎ .

𝑛 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4
Error Rate Error Rate Error Rate Error Rate

𝐿2 errors and convergence rates

4 7.510e−02 – 6.793e−03 – 5.130e−03 – 5.733e−04 –
8 1.797e−02 2.21 6.439e−04 3.63 2.240e−04 4.83 1.490e−05 5.63
12 7.627e−03 2.12 1.903e−04 3.01 4.116e−05 4.19 1.877e−06 5.12
16 4.349e−03 2.30 8.225e−05 3.44 1.283e−05 4.78 4.434e−07 5.91

𝐻1-seminorm errors and convergence rates

4 2.410e−01 – 3.767e−02 – 3.036e−02 – 4.027e−03 –
8 1.181e−01 1.10 6.627e−03 2.68 3.296e−03 3.42 2.350e−04 4.38
12 7.697e−02 1.06 2.792e−03 2.14 9.435e−04 3.09 4.534e−05 4.07
16 5.788e−02 1.17 1.562e−03 2.38 3.948e−04 3.57 1.434e−05 4.72
18 
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Table 7
Errors and convergence rates for D

𝑟 on  2
ℎ .

𝑛 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4
Error Rate Error Rate Error Rate Error Rate

𝐿2 errors and convergence rates

4 7.509e−02 – 6.434e−03 – 3.634e−03 – 4.786e−04 –
8 1.797e−02 2.21 6.427e−04 3.55 2.242e−04 4.30 1.565e−05 5.28
12 7.626e−03 2.12 1.813e−04 3.13 4.441e−05 4.00 2.076e−06 4.99
16 4.349e−03 2.30 7.660e−05 3.53 1.433e−05 4.63 5.008e−07 5.83

𝐻1-seminorm errors and convergence rates

4 2.410e−01 – 3.517e−02 – 2.527e−02 – 3.516e−03 –
8 1.181e−01 1.10 6.436e−03 2.62 3.127e−03 3.22 2.330e−04 4.19
12 7.697e−02 1.06 2.662e−03 2.18 9.180e−04 3.03 4.608e−05 4.01
16 5.788e−02 1.17 1.475e−03 2.42 3.913e−04 3.49 1.473e−05 4.67

where the supplemental space S
𝑟 (𝐸) was constructed for the sake of 𝐻1-conformity. We developed the direct serendipity spaces

or 𝑟 ≥ 3, where there are 3(𝑟 + 1) linearly independent supplements, of which 12 are for separating edge DoFs, and the others are
for the separation of face DoFs. We noted that not all of the supplemental functions on a cube are naturally generalized, since we
required that the space restricted to each face coincides with a two dimensional direct serendipity space. The direct serendipity
spaces on element 𝐸 for 𝑟 = 1, 2 were constructed as subspaces of 3(𝐸).

The spaces 𝑟(𝐸) depend on our choice of nine special functions. Additional restrictions were required for the first six, 𝜆𝑥,
𝜆𝑦, 𝜆𝑧, 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧, in order to satisfy global 𝐻1-conformity. For the other three, 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧, their traces on 𝜕 𝐸 were fully
determined by 𝜆𝑥, 𝜆𝑦, 𝜆𝑧, 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧, and their definition in the interior could be decided in different ways, of which a few
were presented in Section 7. The unisolvence of DoFs naturally follows from our development of basis functions.

The restriction of the finite elements to the faces gives a set of functions that are not merely polynomials. Rather, they are two-
dimensional direct serendipity spaces. As such, two adjacent finite elements do not necessarily merge to form an 𝐻1-conforming
space. However, we noted that this can always be done in a straightforward manner if one uses a logically rectangular mesh.

The establishment of approximation properties closely followed [16,24,25] with a continuous dependence argument over a
compact set of perturbations. An assumption on the regularity of the mesh was made. Moreover, the special functions used in
the construction of the finite elements were required to be piecewise continuous and uniformly differentiable 𝐻1 functions of the
vertices of 𝐸. Under these assumptions, the optimal convergence rates were obtained for 𝑟.

We conducted numerical tests for the finite element approximation of a Dirichlet problem on regularly and randomly distorted
esh sequences. For different choices of the special functions 𝑅𝑥, 𝑅𝑦, 𝑅𝑧, 𝜓𝑥, 𝜓𝑦, and 𝜓𝑧 in Section 7 (smooth, marching tetrahedra,

and diamond lattice cells), the performance of 𝑆𝑟 , 𝑀𝑟 , and 𝐷𝑟 were compared. They all converge at the expected rates on
both mesh sequences, but 𝑆𝑟 with smooth supplements gives the best performance for higher 𝑟.

We close by noting that an open problem is to develop 𝐻(div) and 𝐻(curl) conforming mixed finite elements related by a de
Rham complex to the direct serendipity finite elements constructed in this paper. We emphasize that they are not trivially found
from the serendipity spaces. The finite element exterior calculus (FEEC) [18,31] suggests that the relevant de Rham sequence is

R ⟶ 𝐻1 grad
←←←→ 𝐻(curl)

curl
←←←→ 𝐻(div)

div
←←←→ 𝐿2 ⟶ 0, (128)

wherein the new direct serendipity elements approximates the space 𝐻1.

CRediT authorship contribution statement

Todd Arbogast: Writing – review & editing, Writing – original draft, Validation, Supervision, Software, Resources, Project
dministration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Chuning Wang: Writing

– review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis,
onceptualization.

Funding

This work was supported by the U.S. National Science Foundation under grant DMS-2111159.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.
19 



T. Arbogast and C. Wang Computer Methods in Applied Mechanics and Engineering 433 (2025) 117500 
Data availability

Data will be made available on request.

References

[1] E.L. Wachpress, A Rational Finite Element Basis, in: Mathematics in Science and Engineering, vol. 114, Academic Press, New York and London, 1975.
[2] C. Talischi, G.H. Paulino, A. Pereira, I.F. Menezes, Polygonal finite elements for topology optimization: a unifying paradigm, Int. J. Numer. Methods Eng.

82 (6) (2006) 671–698.
[3] A.L. Gain, G.H. Paulino, L.S. Duarte, I.F. Menezes, Topology optimization using polytopes, Comput. Methods Appl. Mech. Engrg. 293 (2015) 411–430.
[4] D.W. Spring, S.E. Leon, G.H. Paulino, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture,

Int. J. Fract. 189 (2014) 33–57, http://dx.doi.org/10.1007/s10704-014-9961-5.
[5] J.E. Bishop, Applications of polyhedral finite elements in solid mechanics, in: Generalized Barycentric Coordinates in Computer Graphics and Computational

Mechanics, CRC Press, 2017, pp. 179–196.
[6] D. Arnold, F. Brezzi, B. Cockburn, L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001)

1749–1779.
[7] A. Cangiani, E.H. Georgoulis, P. Houston, hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes, Math. Models Methods Appl.

Sci. 24 (10) (2014) 2009–2041.
[8] L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model. 12 (1) (2015) 31–53.
[9] A. Vaziri, J. Mora Paz, F. Fuentes, L. Demkowicz, High-order polygonal finite elements using ultraweak formulations, Comput. Methods Appl. Mech. Engrg.

332 (2018) 686–711.
[10] J.D.M. Paz, Polydpg: A Discontinuous Petroz-Galerkin Methodology for Polytopal Meshes with Applications to Elasticity (Ph.D. thesis), University of Texas

at Austin, Austin, TX 78712, computational Science, Engineering and Mathematics (CSEM) Program, 2020.
[11] C. Bacuta, L. Demkowicz, J. Mora Paz, C. Xenophontos, Analysis of non-conforming DPG methods on polyhedral meshes using fractional Sobolev norms,

Comput. Math. Appl. 95 (2021) 215–241, special Issue on Minimum Residual Methods.
[12] L. Demkowicz, J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Engrg.

199 (23–24) (2010) 1558–1572.
[13] F. Brezzi, K. Lipnikov, V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci.

15 (10) (2005) 1533–1551.
[14] L. Beirão da Veiga, F. Dassi, A. Russo, High-order virtual element method on polyhedral meshes, Comput. Math. Appl. 74 (5) (2017) 1110–1122.
[15] D.N. Arnold, G. Awanou, The serendipity family of finite elements, Found. Comput. Math. 11 (3) (2011) 337–344.
[16] T. Arbogast, Z. Tao, C. Wang, Direct serendipity and mixed finite elements on convex quadrilaterals, Numer. Math. 150 (2022) 929–974, http:

//dx.doi.org/10.1007/s00211-022-01274-3.
[17] T. Arbogast, C. Wang, Direct serendipity and mixed finite elements on convex polygons, Numer. Algorithms 92 (2023) 1451–1483, http://dx.doi.org/10.

1007/s11075-022-01348-1.
[18] D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006) 1–155.
[19] S. Sun, J. Liu, A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method, SIAM J. Sci.

Comput. 31 (4) (2009) 2528–2548.
[20] S. Lee, Y.-J. Lee, M.F. Wheeler, A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems, SIAM J.

Sci. Comput. 38 (3) (2016) A1404–A1429.
[21] T. Arbogast, Z. Tao, A direct mixed–enriched Galerkin method on quadrilaterals for two-phase Darcy flow, Comput. Geosci. 23 (5) (2019) 1141–1160,

http://dx.doi.org/10.1007/s10596-019-09871-2.
[22] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[23] A. Doi, A. Koide, An efficient method of triangulating equi-valued surfaces by using tetrahedral cells, IEICE Trans. Inf. Syst. 74 (1) (1991) 214–224.
[24] C. Wang, Direct Serendipity and Mixed Finiye Elements on Polygons and Cuboidal Hexahedra (Ph.D. thesis), University of Texas at Austin, 2023.
[25] T. Arbogast, C. Wang, Construction of supplemental functions for direct serendipity and mixed finite elements on polygons, Mathematics 11 (22) (2023)

4663, http://dx.doi.org/10.3390/math11224663.
[26] V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986.
[27] L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990) 483–493.
[28] J.H. Bramble, S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM J.

Numer. Anal. 7 (1970) 112–124.
[29] T. Dupont, L.R. Scott, Polynomial approximation of functions in Sobolev space, Math. Comp. 34 (1980) 441–463.
[30] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
[31] D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2) (2010)

281–354.
20 

http://refhub.elsevier.com/S0045-7825(24)00754-0/sb1
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb2
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb2
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb2
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb3
http://dx.doi.org/10.1007/s10704-014-9961-5
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb5
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb5
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb5
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb6
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb6
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb6
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb7
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb7
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb7
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb8
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb9
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb9
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb9
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb10
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb10
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb10
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb11
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb11
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb11
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb12
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb12
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb12
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb13
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb13
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb13
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb14
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb15
http://dx.doi.org/10.1007/s00211-022-01274-3
http://dx.doi.org/10.1007/s00211-022-01274-3
http://dx.doi.org/10.1007/s00211-022-01274-3
http://dx.doi.org/10.1007/s11075-022-01348-1
http://dx.doi.org/10.1007/s11075-022-01348-1
http://dx.doi.org/10.1007/s11075-022-01348-1
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb18
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb19
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb19
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb19
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb20
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb20
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb20
http://dx.doi.org/10.1007/s10596-019-09871-2
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb22
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb23
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb24
http://dx.doi.org/10.3390/math11224663
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb26
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb27
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb28
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb28
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb28
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb29
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb30
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb31
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb31
http://refhub.elsevier.com/S0045-7825(24)00754-0/sb31

	Direct serendipity finite elements on cuboidal hexahedra
	Introduction
	Notation and preliminaries
	Geometric decomposition and degrees of freedom
	Finite element space and basis functions for r = 3
	The serendipity space on a cube
	Vertex basis functions
	Supplemental functions
	Edge basis functions
	Remarks on the construction

	Finite element space and basis functions for r≥3
	Vertex and interior basis functions requiring no supplements
	Face basis functions
	Edge basis functions
	Unisolvence of the degrees of freedom

	Direct serendipity finite elements for r≤2
	Construction of the special functions R* and psi*
	Smooth supplemental functions
	H1 supplemental functions

	Defining an H1-conforming space on the domain
	Approximation results
	Some numerical tests
	Shape regular meshes Th1
	Randomly generated meshes Th2

	Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References


