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Abstract

We construct new families of direct serendipity and direct mixed finite
elements on general planar, strictly convex polygons that are H1 and
H(div) conforming, respectively, and possess optimal order of accuracy
for any order. They have a minimal number of degrees of freedom subject
to the conformity and accuracy constraints. The name arises because the
shape functions are defined directly on the physical elements, i.e., with-
out using a mapping from a reference element. The finite element shape
functions are defined to be the full spaces of scalar or vector polynomials
plus a space of supplemental functions. The direct serendipity elements
are the precursors of the direct mixed elements in a de Rham complex.
The convergence properties of the finite elements are shown under a reg-
ularity assumption on the shapes of the polygons in the mesh, as well
as some mild restrictions on the choices one can make in the construc-
tion of the supplemental functions. Numerical experiments on various
meshes exhibit the performance of these new families of finite elements.
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1 Introduction

Serendipity finite elements defined on a rectangle Ê, denoted as Sr(Ê), r ≥ 1,
are well known to be H1-conforming and approximate to order r + 1 with a
minimal number of degrees of freedom (DoFs). The finite elements Sr+1(Ê) are
related to Brezzi-Douglas-Marini [1] mixed finite elements BDMr(Ê), r ≥ 1,
through a de Rham complex [2]. BDMr(Ê) is H(div)-conforming and has opti-
mal order approximation properties with a minimal number of DoFs. Arnold
and Awanou [3, 4] have given a definition, construction, and geometric decom-
position of Sr(Ê) and BDMr(Ê) of any approximation order on cubical meshes
in any dimension. However, the elements lose optimal order accuracy when
mapped to a quadrilateral E.

Recently, the current authors and Z. Tao [5] constructed serendipity spaces
directly on quadrilaterals of any approximation order r+ 1 ≥ 2 without using
a mapping from a reference element. The resulting new family of spaces were
called direct serendipity finite elements and denoted DSr(E), r ≥ 1. The de
Rham complex then yields a strategy to construct H(div) conforming direct
mixed finite elements, denoted Vr−1

r (E) and Vr
r(E), giving optimal order

reduced and full H(div)-approximation with a minimal number of DoFs. The
direct serendipity finite elements take the form

DSr(E) = Pr(E)⊕ SDSr (E), (1)

where Pr(E) is the space of polynomials on E up to degree r, and SDSr (E)
consists of supplemental functions. The direct mixed elements take a simi-
lar form. In this paper, we construct a new family of direct serendipity and
direct mixed finite elements for a general planar, strictly convex polygon, dis-
cuss their approximation properties, and test their performance by numerical
experiments.

Other approaches to construct serendipity and mixed finite elements with
a minimal number of degrees of freedom have appeared in the literature. In
[6], Rand, Gillette, and Bajaj used products of linear generalized barycentric
coordinates to construct serendipity finite elements on quadrilaterals. Based on
this work, Sukumar [7] constructed quadratic maximum-entropy serendipity
shape functions. These two works only have elements with quadratic order
of accuracy, and it appears to be technically difficult to develop higher order
accurate serendipity finite elements in this way. However, their construction
works for general polygonal elements, including non-convex ones. For mixed
spaces, Chen and Wang [8] constructed minimal degree H(curl) and H(div)
conforming finite elements of linear accuracy based on generalized barycentric
coordinates and the Whitney forms. Floater and Lai [9] generalized this idea
to construct finite element spaces for a general order of accuracy r. However,
their construction asks for more DoFs than the minimum, since 1

2 (r−1)(r−2)
interior DoFs are always required for any polygon. Another methodology, the
serendipity virtual element method, was introduced in [10] to deal with general
polygonal elements, including non-convex and very distorted elements. The
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method works for any order of accuracy r, but it uses even more interior DoFs,
1
2r(r − 1).

In the rest of this paper, we generalize the construction in [5] to a general
strictly convex polygon EN with N vertices. Our construction does not extend
to non strictly convex polygons. We begin by introducing some notation in
Section 2. In Section 3 we define higher order direct serendipity elements (r ≥
N − 2) and show their unisolvence and conformity by the construction of
nodal basis functions. In Section 4, lower order direct serendipity elements
(r < N − 2) are constructed within a higher order direct serendipity space.
We discuss the approximation properties and convergence rates of the space
DSr over the whole domain Ω in Section 5. In Sections 6 and 7, we construct
direct mixed finite elements from the direct serendipity elements and the de
Rham complex, and then discuss the convergence theory. In Section 8, we
provide some numerical results that test the performance of our direct spaces
on various meshes. Finally, the results are summarized in Section 9.

2 Some notation

Let Pr(ω) denote the space of polynomials of degree up to r on ω ⊂ Rd, where
d = 0 (a point), 1, or 2. Recall that

dimPr(Rd) =

(
r + d
d

)
=

(r + d)!

r! d!
. (2)

Let P̃r(ω) denote the space of homogeneous polynomials of degree r on ω. Then

dim P̃r(Rd) =

(
r + d− 1
d− 1

)
=

(r + d− 1)!

r! (d− 1)!
, d ≥ 1. (3)

When r < 0, we interpret Pr as the empty set with dimension zero.
Let the element E = EN ⊂ R2 be a closed, nondegenerate, strictly con-

vex polygon with N ≥ 3 edges. By nondegenerate, we mean that EN does not
degenerate to any polygon with fewer edges, a line segment, or a point. We
choose to identify the edges and vertices of EN adjacently in the counterclock-
wise direction, as depicted in Figure 1 (throughout the paper, we interpret
indices modulo N). Let the edges of EN be denoted ei, i = 1, 2, . . . , N , and
the vertices be xv,i = ei∩ ei+1. Let νi denote the unit outer normal to edge ei,
and let τi denote the unit tangent vector of ei oriented in the counterclockwise
direction, for i = 1, 2, . . . , N .

Let the overall domain Ω ⊂ R2 be a connected, polygonal open set with a
Lipschitz boundary (i.e., Ω has no slits). Let Th be a conforming finite element
partition or mesh of Ω̄ into elements (closed, nondegenerate, convex polygons)
of maximal diameter h > 0. These elements need not have the same number
of edges.

For any two distinct points y1 and y2, let L[y1,y2] be the line passing
through y1 and y2, and take ν[y1,y2] to be the unit vector normal to this line
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Fig. 1 A pentagon E5, with edges ei, outer unit normals νi, tangents τi, and vertices xv,i.

interpreted as going from y1 to y2 in the clockwise direction (i.e., pointing to
the right). Then we define a linear polynomial giving the signed distance of x
to L[y1,y2] as

λ[y1,y2](x) = −(x− y2) · ν[y1,y2]. (4)

To simplify the notation for linear functions that will be used throughout the
paper, let Li = L[xv,i−1,xv,i] be the line containing edge ei and let λi(x) give
the distance of x ∈ R2 to edge ei opposite the normal direction, i.e.,

λi(x) = λ[xv,i−1,xv,i](x) = −(x− xv,i) · νi, i = 1, 2, . . . , N. (5)

These functions are strictly positive in the interior of EN , and each vanishes
on the edge which defines it.

Recall Ciarlet’s definition [11] of a finite element.

Definition 2.1 (Ciarlet 1978). Let

1. E ⊂ Rd be a bounded closed set with nonempty interior and a Lipschitz
continuous boundary,

2. P be a finite-dimensional space of functions on E, and
3. N = {N1, N2, . . . , NdimP} be a basis for P ′.

Then (E,P,N ) is called a finite element.

3 Direct serendipity elements when r ≥ N − 2

We construct direct serendipity elements for r ≥ N − 2 in this section. The
construction for 1 ≤ r < N − 2 is different, and it is discussed in Section 4.

Table 1 Geometric decomposition and number of degrees of freedom (DoFs) associated
to each geometric object of a polygon EN for a serendipity element of index r ≥ N − 2 ≥ 1.

Dimension Object Object DoFs per Total
Name Count Object DoFs

0 vertex N 1 N
1 edge N dimPr−2(R) N(r − 1)
2 cell 1 dimPr−N (R2) 1

2
(r −N + 2)(r −N + 1)
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To obtain both that Pr(E) ⊂ DSr(E) and that the shape functions on
adjoining elements can be merged together continuously, we consider the lower
dimensional geometric objects within E. As shown in Table 1, the minimal
number of DoFs associated to each lower dimensional object must correspond
to the dimension of the polynomials that restrict to that object. A polygon
with N sides has N vertices, N edges, and one cell of dimension 0, 1, and
2, respectively. Each vertex requires dimPr(R0) = 1 DoF, each edge requires
dimPr−2(R) = r − 1 DoFs (interior to the edge), and each cell requires

dimPr−N (R2) =

(
r −N + 2

2

)
= 1

2 (r−N+2)(r−N+1) DoFs (interior to the

cell). There are cell DoFs only if r ≥ N , but the formula works for r ≥ N − 2.
The total number of DoFs is then DN,r, where

DN,r = N+N(r−1)+
1

2
(r−N+2)(r−N+1) = dimPr(E)+

1

2
N(N−3), (6)

and so to define DSr(E), we will supplement Pr(E) ⊂ DSr(E) with the span
of 1

2N(N −3) linearly independent functions. The quantity 1
2N(N −3) can be

interpreted as the number of pairs of edges that are not adjacent.

3.1 Shape functions

To define the supplemental basis functions, we have two series of choices for
each i, j such that 1 ≤ i < j ≤ N and 2 ≤ j − i ≤ N − 2 (i.e., i and j are
nonadjacent). First, as shown in Fig. 2, one must choose two distinct points
xi,j1 ∈ Li and xi,j2 ∈ Lj that avoid the intersection point xi,j = Li ∩ Lj , if it
exists. Then let

λi,j(x) = λ[xi,j1 ,xi,j2 ](x) = −(x− xi,j2 ) · νi,j , νi,j = ν[xi,j1 ,xi,j2 ], (7)

be the linear function associated to the line Li,j = L[xi,j1 ,xi,j2 ]. Simple choices
are to take the midpoints of the edges, or

λsimple
i,j =

λ[xv,j ,xv,i−1]− λ[xv,i,xv,j−1]

‖ν[xv,j ,xv,i−1]− ν[xv,i,xv,j−1]‖
, (8)

although the normalization is not strictly necessary.
Second, one must choose the functions Ri,j to satisfy the properties

Ri,j(x)|ei = −1, Ri,j(x)|ej = 1. (9)

These are ±1 on ei and ej , but arbitrary on the other edges. For example, take
the simple rational functions

Ri,j(x) = Rsimple
i,j (x) =

λi(x)− λj(x)

λi(x) + λj(x)
(10)
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2 ) · ν1,4 and the
intersection point x1,4 = L1 ∩ L4, if it exists.

(note that the denominators do not vanish on EN , since ei and ej are not
adjacent).

The supplemental basis functions are then constructed as

φs,i,j =
( ∏
k 6=i,j

λk

)
λr−N+2
i,j Ri,j , (11)

and the supplemental space is defined to be

SDSr (EN ) = SDSr (EN ; λi,j , Ri,j)

= span
{
φs,i,j : 1 ≤ i < j ≤ N, 2 ≤ j − i ≤ N − 2

}
. (12)

The λi,j ’s are not needed when r = N−2, and SDSr (EN ) is empty when N = 3.
The full space P in Definition 2.1 is

DSr(EN ) = Pr(EN )⊕ SDSr (EN ). (13)

Each of our earlier choices gives rise to a distinct family of direct serendipity
elements of index r ≥ N − 2 ≥ 1.

3.2 Degrees of Freedom

DoFs could be defined in various ways. DoFs based on orthogonal polynomials
are generally more numerically stable. However, to ease the exposition and
proof of unisolvence, we simply use DoF functionals given by evaluation at
(nodal) points.

As depicted in Figure 3, for vertex DoFs, the nodal points are exactly
the vertices xv,i, of EN , where i = 1, 2, . . . , N . For edge DoFs, we simply fix
nodal points so that they, plus the two vertices, are equally distributed on
each edge. There are r − 1 nodal points on the interior of each edge, which
can be denoted xe,i,j , j = 1, 2, . . . , r − 1, for nodal points that lie on edge
ei, i = 1, 2, . . . , N , ordered in the counterclockwise direction. The interior cell
DoFs can be set, for example, on points of a triangle T strictly inside E, where
the set of nodal points is the same as the nodes of the Lagrange element of
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Fig. 3 The nodal points for the DoFs of a direct serendipity finite element E5, for small r.

order r − N on the triangle T . We denote the interior nodal points as xE,i,
i = 1, 2, . . . , 1

2 (r −N + 2)(r −N + 1).
The total number of nodal points is indeed DN,r. If

{xnodal
1 , xnodal

2 , . . . , xnodal
DN,r
} is the set of all nodal points, then the set of DOFs

(N in Definition 2.1) is

N = {Ni : Ni(φ) = φ(xnode
i ) for all φ(x), i = 1, 2, . . . , DN,r}. (14)

3.3 Unisolvence and conformity of the finite element

In this section we will show that we have a properly defined finite element.

Theorem 3.1. The finite element DSr(EN ) = Pr(EN ) ⊕ SDSr (EN ), for
SDSr (EN ) given by (12), with nodal DoFs (14) is well defined (i.e., unisolvent)
when r ≥ N − 2. Moreover, a nodal basis is given by the functions defined
below in (20), (23), and (26).

To prove the theorem, we will explicitly construct a basis of shape functions
ϕi for P dual to N . Such shape functions are called nodal basis functions. For
a nodal point xnode

j , they have the property that Nj(ϕi) = ϕi(x
node
j ) = δij , the

Kronecker delta. The unisolvence property (i.e., that N is a basis for the dual
space) is then immediate. Moreover, it follows from the construction that we
obtain global H1 conforming elements by just matching vertex and edge DoFs
on the boundaries of the elements; that is, local basis functions merge together
continuously to give a global nodal basis for DSr = DSr(Ω) ⊂ H1(Ω). Our
construction directly extends that given in [5] for the case N = 4.

Before beginning the construction, it is convenient to define

Ri,j(x) = 1
2

(
1−Ri,j(x)

)
, Rj,i(x) = 1

2

(
1 +Ri,j(x)

)
, (15)

so that Rk,` is 1 on edge ek, 0 on e`, and arbitrary on the other edges. Let us
now set λj,i = λi,j when i < j, and define, for any 1 ≤ k, ` ≤ N , 2 ≤ |k − `| ≤
N − 2,

φk,`(x) =
( ∏
m6=k,`

λm

)
λr−N+2
k,` Rk,` ∈ DSr(EN ). (16)
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These lie in Pr(E)⊕ SDSr (E) and satisfy

φk,`(x) =


0, x ∈ em, m 6= k,( ∏

m 6=k,`

λm

)
λr−N+2
k,` ∈ Pr(ek), x ∈ ek. (17)

Moreover,

DSr(EN ) = Pr(EN ) + span{φk,` : 1 ≤ k, ` ≤ N, 2 ≤ |k − `| ≤ N − 2}. (18)

3.3.1 Interior cell nodal basis functions

For the element EN , we have interior shape functions only when r ≥ N (recall
Table 1). These shape functions are

λ1λ2 · · ·λNPr−N , (19)

and they vanish on all the edges (i.e., at all edge and vertex nodes). Let
{φE,i} ⊂ Pr−N be a nodal basis for the cell nodes {xE,i}, where i =
1, 2, . . . ,dimPr−N . That is, φE,i(xE,j) = δij . Our interior cell nodal basis
functions are then

ϕE,i(x) =
λ1(x)λ2(x) · · ·λN (x)φE,i(x)

λ1(xE,i)λ2(xE,i) · · ·λN (xE,i)
, i = 1, 2, . . . ,dimPr−N . (20)

3.3.2 Edge nodal basis functions

For DSr(EN ), there are r−1 edge nodes on each edge. To simplify the notation,
we construct ϕe,1,1(x), which is 1 at xe,1,1 and vanishes at all other nodal
points. The construction of the other edge nodal basis functions is similar.

For some p̃ ∈ Pr−N+1(e1) (take p̃ = 0 when r = N − 2) and for some
coefficients βj , let

φe,1,1(x) =
( ∏
m6=1

λm(x)
)
p(x) +

∑
j 6=N,1,2

βjφ1,j(x) ∈ DSr(EN ), (21)

where p(x) = p̃((x − xv,N ) · τ1) extends p̃ to EN constantly in the normal
direction to L1. This function vanishes on all edges but e1.

Denote

te,1,n = (xe,1,n − xv,N ) · τ1 and p̃(t) =

r−N+1∑
`=0

α` t
`.
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We require that φe,1,1(xe,1,n) = δ1,n for n = 1, 2, . . . , r − 1, so the r − 1
coefficients {α`, βj} solve the square linear system

φe,1,1(xe,1,n)

(λNλ2)(xe,1,n)
=
( ∏
m 6=N,1,2

λm(xe,1,n)
) r−N+1∑

`=0

α` t
`
e,1,n

+
∑

j 6=N,1,2

βj

( ∏
m6=N,1,2,j

λm(xe,1,n)
)
λr−N+2

1,j (xe,1,n) =
δ1,n

(λNλ2)(xe,1,n)
. (22)

Assume for the moment that the function φe,1,1 is well defined on EN . It
takes the value 1 at xe,1,1 and vanishes at all the other vertex and edge nodes,
so we define

ϕe,1,1(x) = φe,1,1(x)−
dim Pr−N (E)∑

k=1

φe,1,1(xE,k)ϕE,k(x). (23)

The nodal basis functions {ϕe,i,j : i = 1, 2, . . . , N, j = 1, 2, . . . , r − 1} for the
other edge nodes are defined similarly. In Figure 4, we show an edge nodal basis
function for a pentagon. The next Lemma justifies that φe,1,1 is well defined
on EN .

Fig. 4 Plots of the r = 3 basis function for the edge node at ( 1
3
, 0) of a pentagon.

Lemma 3.1. There exists a unique set of coefficients α`, ` = 0, 1, . . . , r−N+1,
and βj, j = 3, 4, . . . , N − 1, solving the (r − 1)× (r − 1) linear system (22).

Proof For t ∈ R, let x(t) = xv,N + t τ1 and define q̃(t) ∈ Pr−2(e1) by

q̃(t) =
φe,1,1(x(t))

(λNλ2)(x(t))
=
( ∏
m6=N,1,2

λm(x(t))
)
p̃(t)

+
∑

j 6=N,1,2
βj

( ∏
m 6=N,1,2,j

λm(x(t))
)
λr−N+2

1,j (x(t)). (24)

We must show that the linear system has a unique solution, which is equivalent to
showing that q̃(te,1,n) = 0 for all n = 1, 2, . . . , r − 1, then all α` = 0 and βj = 0
(j 6= N, 1, 2). Now q̃(t) is a polynomial of degree r−2, and it vanishes at r−1 points,
so it vanishes identically.
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Suppose that the lines through e1 and ej intersect at x1,j = L1 ∩ Lj for some
j 6= N, 1, 2. Since λj(x1,j) = 0, q̃((x1,j − xv,N ) · τ1) reduces to

0 = q̃((x1,j − xv,N ) · τ1) = βj

( ∏
m 6=N,1,2,j

λm(x1,j)
)
λr−N+2

1,j (x1,j).

But λm(x1,j) 6= 0 for all m 6= 1, j and λ1,j(x1,j) 6= 0 by our choice of this linear
function, so we conclude that βj = 0.

We have two cases to consider. First, if no edge is parallel to e1 (so the intersection
points x1,j exist for all j 6= N, 1, 2), then all the βj vanish. Second, suppose that the
lines through e1 and ej are parallel for some j 6= N, 1, 2. No other edges can also be
parallel, so we conclude βk = 0 for all k 6= j. Moreover, λj |e1 = c > 0 is a strictly
positive constant, and so

0 = q̃(t) =
( ∏
m6=N,1,2,j

λm(x(t))
)( r−N+1∑

`=0

c α` t
` + βjλ

r−N+2
1,j (x(t))

)
,

or

βjλ
r−N+2
1,j (x(t)) = −

r−N+1∑
`=0

c α` t
` ∈ Pr−N+1(e1).

The zero line of λ1,j is transverse to e1 (again by our choice of this linear function),

leading us to conclude that λr−N+2
1,j must have strict degree r − N + 2. Therefore,

again, all the βj = 0.
We have reduced q̃(t) = 0 to a positive function times p̃(t), so we must conclude

that p̃(t) = 0. That is, all the α` = 0, and the proof is complete. �

3.3.3 Vertex nodal basis functions

For the vertices, since r ≥ N − 2, we can define for each i = 1, 2, . . . , N the
shape functions

φv,i(x) =
∏

j 6=i,i+1

λj(x)−
i+1∑
k=i

r−1∑
`=1

( ∏
j 6=i,i+1

λj(xe,k,`)
)
ϕe,k,`(x), (25)

wherein we interpret indices modulo N . These N functions vanish at all of the
edge nodes, and φv,i(xv,j) = 0 if i 6= j and is positive otherwise. The nodal
basis functions are then

ϕv,i(x) =
φv,i(x)−

∑dim Pr−N (E)
k=1 φv,i(xE,k)ϕE,k(x)

φv,i(xv,i)
, i = 1, 2, . . . , N. (26)

A vertex nodal basis function for a pentagon is shown in Figure 5. This com-
pletes the construction of the DN,r = dimPr(EN ) + 1

2N(N − 3) nodal basis
functions for DSr(EN ). It also completes the proof of Theorem 3.1.
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Fig. 5 Plots of the r = 3 basis function for the vertex node at (1, 0) of a pentagon.

4 Direct serendipity elements when
1 ≤ r < N − 2

There are vertex and possibly edge nodes, but no interior nodes, when 1 ≤
r < N . The total number of DoFs needed for EN is then simply

DN,r = N +N(r − 1) = Nr ≥ dimPr(EN ). (27)

Our strategy is to define the space as a subset of a higher order direct
serendipity space; that is, for some index s such that r < s < N , we define

DS(s)
r (EN ) =

{
ϕ ∈ DSs(EN ) : ϕ|e ∈ Pr(e) for all edges e of EN

}
. (28)

Theorem 4.1. The finite element (28) with nodal DoFs (14) is well defined
(i.e., unisolvent) when r < N − 2 and r < s < N . Moreover,

DS(s)
r (EN ) = Pr(EN )⊕ SDSr (EN ) (29)

for some supplemental space of functions SDSr (EN ), and a nodal basis is given
by the functions listed in (33) and defined as in (31) and (32).

As a practical matter, one should take s = N − 2. It is obvious that
Pr(EN ) ⊂ DS(s)

r (EN ), since Pr(EN ) ⊂ Ps(EN ) ⊂ DSs(EN ) restricts to ∂EN
as required. That is, DS(s)

r (EN ) has the form (29). We prove the rest of the
theorem in the next section by constructing a nodal basis.

4.1 Construction of the nodal basis functions when
r < N − 2

We construct nodal basis functions for DSr(EN ) from DSs(EN ) for any r <
s < N . To make the notation clear as to which order (r or s) a quantity refers
to, we will use a superscript within parentheses. For example, edge node xe,1,1

will be referred to as x
(r)
e,1,1 if it is the node in DSr(E), and x

(s)
e,1,1 if it is the

node in DSs(E) (these two nodes are not at the same position).
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We first note that for each j = 0, 1, . . . , r, there exists a unique p̃
(r)
j (t) ∈

Pr([0, 1]) interpolating r + 1 points as

p̃
(r)
j (k/r) = δj,k, ∀k = 0, 1, . . . , r. (30)

A basis function for edge node x
(r)
e,i,j , i = 1, 2, . . . , N and j = 1, 2, . . . , r−1,

is then

ϕ
(r,s)
e,i,j (x) =

s−1∑
k=1

p̃
(r)
j (k/s)ϕ

(s)
e,i,k(x) ∈ DSs(EN ), (31)

which vanishes on all the edges except for ei. Restricted to ei, it is nominally a

polynomial of degree s. However, it agrees with p̃
(r)
j at s+ 1 > r+ 1 points, so

it is in fact a polynomial of degree r on ei. In consequence, ϕ
(r,s)
e,i,j ∈ DS

(s)
r (EN ),

and it vanishes at all nodes of DS(s)
r (E) except x

(r)
e,i,j , where it is one (i.e., it

is a nodal basis function).

For a vertex node xv,i = x
(r)
v,i = x

(s)
v,i , we define

ϕ
(r,s)
v,i (x) = ϕ

(s)
v,i(x) +

s−1∑
j=1

p̃(r)
r (j/s)ϕ

(s)
e,i,j(x) +

s−1∑
j=1

p̃
(r)
0 (j/s)ϕ

(s)
e,i+1,j(x)

∈ DSs(EN ), (32)

which vanishes on all the edges except ei and ei+1. As before, we conclude

that it is a polynomial of degree r on edges ei and ei+1, and so ϕ
(r,s)
v,i (x) ∈

DS(s)
r (EN ). Moreover, it is the nodal basis function for xv,i, since it vanishes

at all edge nodes x
(r)
e,k,j of ek, k = i, i+ 1, and ϕ

(r,s)
v,i (xv,i) = 1.

Finally, since there are no interior cell DoFs, we conclude that

DS(s)
r (EN ) = span

{
{ϕ(r,s)

v,i : i = 1, 2, . . . , N}

∪ {ϕ(r,s)
e,i,j : i = 1, 2, . . . , N, j = 1, 2, . . . , r − 1}

}
, (33)

which indeed has dimension Nr. This completes the proof of Theorem 4.1.

4.2 A second construction identifying the supplemental
function space

From either the definition (28) or from the nodal basis (33), it is difficult to
determine the supplemental space SDSr (EN ) in (29). In this section, we give
an explicit construction SDSr (EN ). In practice, the supplemental space is not
needed to implement DSr(EN ) (one would simply use (33)); however, as we
will see later, it could be used to implement mixed finite elements.
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ei(1)

ei(2)

ei(3)

ei(4)
Li(4)

Li(3)

L[xn,i(1),j(1),xn,i(2),j(1)]

L[xn,i(1),j(1),xn,i(2),j(2)]

AP

AS

Fig. 6 A choice of nodes AP and AS for N = 6, r = 3. And the dashed lines show the
choices of zero lines for the construction of φn,i(2),j(`), ` = 1, 2.

It will be convenient in this section to use a notation that unifies edge and
vertex nodes. For each edge index i = 1, 2, . . . , N and j = 0, 1, . . . , r, let

xn,i,j =


xv,i−1 if j = 0 (interpret i− 1 as N when i = 1),

xv,i if j = r,

xe,i,j if j = 1, 2, . . . , r − 1.

(34)

We caution that the vertices are represented twice in this indexing convention.
Let the full set of nodal points be denoted

A = {xv,i,xe,i,j : i = 1, 2, . . . , N, j = 1, 2, . . . , r − 1}
= {xn,i,j : i = 1, 2, . . . , N, j = 1, 2, . . . , r}.

We will divide this set into two disjoint subsets AP and AS = A \ AP.
The subset of nodes AP is chosen iteratively as follows, and as depicted

in Figure 6. For each k = r + 1, . . . , 2, 1 in descending order, first select a
distinct edge ei(k) with index i(k) ∈ {1, 2, . . . , N}. At this stage, there are
at least N − r + k − 1 > 0 edges left to choose from, since N − r > 2 and
k ≥ 1. Second, select k distinct nodes xn,i(k),j(`) on this chosen edge, with the
indices j(`) ∈ {0, 1, . . . , r} and ` = 1, 2, . . . , k. The only restriction is that one
may not choose a vertex node that lies on any of the previously chosen edges.
Since there are 2 vertex nodes and r− 1 edge nodes, one can always meet this
restriction. As a simple example, one can choose edges i(k) = k and take only
edge nodes, except for xv,r and xv,r+1 on er+1 and xv,r−1 on er.

The total number of nodes in AP is

r+1∑
k=1

k =
1

2
(r + 2)(r + 1) = dimPr(EN ). (35)
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The total number of unselected nodes AS = A \AP is the same as the dimen-

sion of SDSr (EN ). For each node xn,i,j ∈ AS, we construct ϕn,i,j = ϕ
(r,s)
n,i,j ,

the supplemental function associated to xn,i,j as in the previous section. The
supplemental space is then

SDSr (EN ) = span{ϕn,i,j : xn,i,j ∈ AS} ⊂ DS(s)
r (EN ), (36)

and it has the correct dimension. These basis functions are nodal, by
construction.

To verify that (36) is indeed the supplemental space, we finish the construc-
tion of the nodal basis (i.e., for nodal points in AP) by including additional
functions only from Pr(EN ). We do this iteratively for each k = 1, 2, . . . , r+ 1
in ascending order as follows. For k = 1, we construct the nodal basis function
for xn,i(1),j(1) by first defining

φn,i(1),j(1)(x) =

r+1∏
m=2

λi(m)(x)

λi(m)(xn,i(1),j(1))
∈ Pr, (37)

which vanishes at all the nodes of AP except xn,i(1),j(1), where it is one. By
the choice of edges, the denominator does not vanish. Then

ϕn,i(1),j(1)(x) = φn,i(1),j(1)(x)−
∑

xn,i,j∈AS

φn,i(1),j(1)(xn,i,j)ϕn,i,j(x), (38)

and this is indeed our nodal basis function for the node xn,i(1),j(1).
For k = 2, we need to construct the nodal basis functions for the two

points on the edge ei(2). Note that we have one more point compared to the
previous step, but we also have one fewer edge to deal with, since we now have
ϕn,i(1),j(1). Therefore we can construct for each ` = 1, 2,

φn,i(2),j(`)(x)

=
λ[xn,i(1),j(1),xn,i(2),j(`∗)](x)

λ[xn,i(1),j(1),xn,i(2),j(`∗)](xn,i(2),j(`))

r+1∏
m=3

λi(m)(x)

λi(m)(xn,i(2),j(`))
∈ Pr,

where `∗ = 2, 1 is the other index. For each ` = 1, 2, the function vanishes at
all the nodes of AP except xn,i(2),j(`), where it is one. Then let

ϕn,i(2),j(`)(x) = φn,i(2),j(`)(x)−
∑

xn,i,j∈AS

φn,i(2),j(`)(xn,i,j)ϕn,i,j(x),

which give our two desired nodal basis functions on ei(2).
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Perhaps the general construction is clear. For k = 1, 2, . . . , r+1, first define
for each ` = 1, 2, . . . , k,

φn,i(k),j(`)(x)

=

k∏
m=1,m6=`

λ[xn,i(1),j(1),xn,i(k),j(m)](x)

λ[xn,i(1),j(1),xn,i(k),j(m)](xn,i(k),j(`))

r+1∏
m=k+1

λi(m)(x)

λi(m)(xn,i(k),j(`))

∈ Pr,

and then set

ϕn,i(k),j(`)(x) = φn,i(k),j(`)(x)−
∑

xn,i,j∈AS

φn,i(k),j(`)(xn,i,j)ϕn,i,j(x)

−
k−1∑
m=2

m∑
l=1

φn,i(k),j(`)(xn,i(m),j(l))ϕn,i(m),j(l)(x).

This completes the identification of DS(s)
r (EN ) as Pr(EN )⊕ SDSr (EN ) for the

supplemental space defined by (36).

5 Approximation properties of DSr

To obtain global approximation properties, we need to assume that the mesh
is uniformly shape regular in some sense. We take the definition due to Girault
and Raviart [12, pp. 104–105].

Definition 5.1. For any EN ∈ Th, denote by Ti, i = 1, 2, . . . , N(N − 1)(N −
2)/6, the sub-triangle of EN with vertices being three of the N vertices of EN .
Define the parameters

hEN
= diameter of EN , (39)

ρEN
= 2 min

1≤i≤N(N−1)(N−2)/6
{diameter of largest circle inscribed in Ti}. (40)

A collection of meshes {Th}h>0 is uniformly shape regular if there exists a
shape regularity parameter σ∗ > 0, independent of Th and h > 0, such that
the ratio

ρEN

hEN

≥ σ∗ > 0 for all EN ∈ Th. (41)

A shape regular mesh has the property that every element can take on ver-
tices only in a compact set of possible values (up to translation and rotation).
It also has a bound on the number of elements that can share a single vertex.
We need the following hypothesis on the construction of the finite elements.
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Assumption 5.1. For every EN ∈ Th, suppose that the basis functions of
DSr(EN ) are constructed using λi,j such that the zero set Li,j intersects ei
and ej. Moreover, assume that Ri,j are uniformly differentiable functions of
the vertices of EN up to order m ≤ r + 1.

Theorem 5.1. Let Th be uniformly shape regular with shape regularity param-
eter σ∗ and let Assumption 5.1 hold. Let 1 ≤ p ≤ ∞ and ` > 1/p (or ` ≥ 1 if
p = 1). Then for r ≥ 1, there exists a constant C = C(r, σ∗) > 0, independent
of h = maxEN∈Th hEN

, such that for all functions v ∈W `,p(Ω),

inf
vh∈DSr(Ω)

‖v − vh‖Wm,p(Ω) ≤ C h`−m ‖v‖W `,p(Ω), 0 ≤ m ≤ ` ≤ r + 1. (42)

The proof follows closely that given in [5] for the quadrilateral case and
so is omitted here except for discussion of one important issue. The proof
uses a continuous dependence argument, relying on the fact that the set of
vertices lies in a compact set as well as Assumption 5.1, which ensures that
the construction of the finite elements on EN depends continuously on its
vertices. The issue that arises when dealing with polygons is settling on a
suitable reference configuration, from which the true element of the mesh is a
continuous and compact perturbation.

(0, 0)
Ê5

(1, 0)

x̂
FẼ
−−−→

(0, 0)
Ẽ5

(1, 0)

(v1, v2)

(v3, v4)

(v5, v6)

x̃ scaling
−−−→

(0, 0) E5
(H, 0)

xv,3

xv,4

xv,5

x

Fig. 7 An element E5 ∈ Th is shown on the right-hand side in its translated and rotated
local coordinates. It is the image of a regular reference polygon Ê5 on the left-hand side.
The map is decomposed into one that changes the geometry but not the size FẼ : Ê5 → Ẽ5,
and a scaling map x̃ 7→ Hx̃.

The main argument is illustrated in Figure 7 for a pentagonal element
EN = E5 ∈ Th for which, after translation and rotation, xv,1 = (0, 0) and
xv,2 = (H, 0). The reference domain is a regular polygon (equilateral and

equiangular) ÊN with two fixed vertices x̂v,1 = (0, 0) and x̂v,2 = (1, 0). We

need a bijective and smooth map FẼN
: ÊN → ẼN = EN/H with (`, 0)

being mapped to (`, 0), ` = 0, 1. In the case of a quadrilateral, one uses a
bilinear map. For a polygon, it is probably clear to the reader that such a
map FẼN

: ÊN → ẼN exists. To be rigorous, however, we construct FẼN
using

smooth barycentric coordinates {ϕ̂v,i : i = 1, . . . , N} on EN [13]. The map is
then

FẼN
(x̂) =

N∑
i=1

1

H
xv,i ϕ̂v,i(x̂). (43)
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6 The de Rham complex and mixed finite
elements

The de Rham complex of interest here is

R ↪−→ H1 curl−−−→ H(div)
div−−−→ L2 −→ 0, (44)

where the curl (or rot) of a scalar function φ(x) = φ(x1, x2) is curlφ =(
∂φ

∂x2
,− ∂φ

∂x1

)
. From left to right, the image of one linear map is the kernel

of the next.

6.1 Direct mixed finite elements on polygons

For r = 0 and s = 0, as well as for each r = 1, 2 . . . and s = r − 1, r, there
are important discrete analogues of the de Rham complex involving the direct
serendipity spaces and mixed finite element spaces, denoted Vs

r(EN ), namely

R ↪−→ DSr+1(EN )
curl−−−→ Vs

r(EN )
div−−−→ Ps(EN ) −→ 0. (45)

On triangular and rectangular elements when r ≥ 1, it is known that the
classic serendipity space Sr+1 (in place of DSr+1 above) is the precursor of
the Brezzi-Douglas-Marini mixed finite element space BDMr [1, 3, 4] (in place
of Vr−1

r above). It is also known that on quadrilateral elements, the direct
serendipity space is the precursor of the direct mixed spaces [5]. The families
of mixed finite elements on EN , N > 4, are new.

To dissect the properties of these new elements, we note two facts. First, the
divergence operator takes xPs one-to-one and onto Ps. Second, the well-known
Helmholtz-like decomposition holds [14]

P2
r = curlPr+1 ⊕ xPr−1. (46)

From (45), we have a reduced (s = r − 1 ≥ 0) and full (s = r) H(div)-
approximating mixed finite element space (P in Definition 2.1) defined directly
on a polygon EN with minimal number of DoFs of the form

Vr−1
r (EN ) = curlDSr+1(EN )⊕ xPr−1

= curlPr+1(EN )⊕ xPr−1 ⊕ curlSDSr+1(EN )

= P2
r(EN )⊕ SVr (EN ), (47)

Vr
r(EN ) = curlDSr+1(EN )⊕ xPr

= curlPr+1(EN )⊕ xPr ⊕ curlSDSr+1(EN )

= P2
r(EN )⊕ xP̃r ⊕ SVr (EN ), (48)
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with the following definition of the supplemental (vector valued) functions

SVr (EN ) = curlSDSr+1(EN ). (49)

Similar to [5, 14], the DoFs (N in Definition 2.1) for v ∈ Vs
r(EN ), s =

r − 1, r, are given (after fixing a basis for the test functions) by∫
ei

v · νi p dσ, ∀p ∈ Pr(ei), i = 1, 2, . . . , N, (50)∫
EN

v · ∇q dx, ∀q ∈ Ps(EN ), q not constant, (51)∫
EN

v ·ψψψ dx, ∀ψψψ ∈ BV
r (EN ), if r ≥ N − 1, (52)

where dσ is the one dimensional surface measure and the H1(EN ) and
H(div; EN ) bubble functions, for r ≥ N − 1, are

Br+1(EN ) = λ1λ2 . . . λNPr−N+1(EN ) and BV
r (EN ) = curlBr+1(EN ). (53)

We remark that the edge DoFs (50) determine the normal components (flux)
of our vector functions, the divergence DoFs (51) determine the divergence of
our vector functions (with the previous edge DoFs), and the curl DoFs (52)
control the curl of our vector functions.

Theorem 6.1. The finite element Vs
r(EN ) defined by (47)–(48), (49) for r =

1, 2 . . . and s = r − 1, r (but s ≥ 0) with DoFs (50)–(52), (53) is well defined
(i.e., unisolvent). Moreover, it has the minimal number of DoFs needed of a
space of index r that is H(div) conforming and has independent divergence
approximation to order s.

Proof The minimal number of DoFs needed are expressed by (50)–(52), since (50) is
required for H(div) conformity of order r and (51) is required for independent diver-
gence approximation to order s. Moreover, (52) is required to control polynomials of
degree r which have no divergence nor edge normal flux.

The total number of degrees of freedom is

DV
N,r =


N dimPr(e) + (dimPs(EN )− 1)

+ dimPr−N+1(EN ), if r ≥ N − 1,

N dimPr(e) + (dimPs(EN )− 1), if r < N − 1,

(54)

and the local dimensions of the spaces are

dimVs
r(EN ) = (dimDSr+1 − 1) + dim(xPs). (55)

By (6) and (27), these numbers agree. In fact,

DV
N,r =


N(r + 1)− 1 + 1

2 (s+ 2)(s+ 1)

+ 1
2 (r −N + 3)(r −N + 2), r ≥ N − 1,

N(r + 1)− 1 + 1
2 (s+ 2)(s+ 1), r < N − 1.

(56)
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The remainder of the proof, to show that these spaces are unisolvent (i.e., a vector
function in Vs

r(EN ) with vanishing DoFs is zero everywhere), is essentially the same
as that given in [5] for direct mixed spaces on quadrilaterals. �

6.2 Implementation of the mixed method

The mixed space of vector functions Vs
r over Ω is defined by merging continu-

ously the normal fluxes across each edge e of the mesh Th. That is, for r ≥ 0,
s = r − 1, r, s ≥ 0,

Vs
r =

{
v ∈ H(div; Ω) : v

∣∣
EN
∈ Vs

r(EN ) for all EN ∈ Th
}
. (57)

Associated to this space is the scalar space of its divergences, namely,

Ws = div Vs
r =

{
w ∈ L2(Ω) : w

∣∣
EN
∈ Ps(EN ) for all EN ∈ Th

}
. (58)

It is used, for example, when solving a second order elliptic partial differential
equation in mixed form.

6.2.1 Implementation using the hybrid mixed method

The hybrid form of the mixed method is often used [15] so that no globally
merged basis is required. A Lagrange multiplier space is used to enforce the
normal flux continuity through an additional equation, using the space

Λr =
{
λ ∈ L2

(
∪EN∈Th ∂EN

)
: λ
∣∣
e
∈ Pr(e) for each edge e of Th

}
. (59)

The vector functions in Vs
r(EN ) can be represented by any of the equiv-

alent forms in (47)–(48). First, since Vs
r(EN ) = curlDSr+1(EN ) ⊕ xPs, we

can construct the full space DSr+1(EN ) as discussed in Sections 3 and 4.1,
apply the curl operator, and add in xPs(EN ). But we can also use the fact
that Vr−1

r (EN ) = P2
r(EN )⊕SVr (EN ) and Vr

r(EN ) = P2
r(EN )⊕xP̃r⊕SVr (EN ),

and simply add to the polynomials the supplemental space SVr (EN ) =
curlSDSr+1(EN ). To construct SDSr+1(EN ), one uses (11)–(12) when r is large, and
otherwise requires the construction given in Section 4.2.

6.2.2 Implementation as an H(div)-conforming mixed space

If an explicit basis for the H(div)-conforming space (57) of vector-valued func-
tions is required, one can proceed as follows. The construction is an extension
of the N = 4 case given in [5]. We use the fact that the tangential derivative
of a function along an edge ei of an element EN maps by the curl operator to
a normal derivative, i.e., for φ ∈ DSr+1(EN ),

∇φ · τi
∣∣
ei

= curlφ · νi
∣∣
ei
, with τi = (−νi,2, νi,1) on ei. (60)
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Since the serendipity spaces are globally continuous, the tangential derivatives
will agree across ei, which implies that the global basis functions arising from
DSr+1(Ω) will be in H(div; Ω).

We construct H(div)-conforming vector basis functions in four sets, related
to the edge DoFs (50) with nonconstant test functions, the edge DoFs (50)
with constant test functions, the divergence DoFs (51), and the curl DoFs (52).

Basis functions from curls of interior cell basis functions of
DSr+1(EN )

The interior cell basis functions of DSr+1(EN ) are {ϕ(r+1)
E,i , i =

1, 2, . . . ,dimPr+1−N} as given by (20) (the superscript is a reminder that
the index of the direct serendipity space is r + 1). However, any basis for
(19), i.e., the bubble space Br+1(EN ) defined in (53), suffices. Denote it as

{φ(r+1)
EN ,i

, i = 1, 2, . . . ,dimPr+1−N}. Then for each EN ∈ Th, the global basis
functions for Vs

r are

ψψψb,EN ,i =


curlφ

(r+1)
EN ,i

,

i = 1, . . . , 1
2 (r + 3−N)(r + 2−N), on EN ,

0, otherwise.

(61)

These exist only when r ≥ N − 1, and they are in fact the H(div) bubble
functions BV

r appearing in (53). They have no normal flux and no divergence.
They are associated to the curl DoFs (52).

Basis functions from curls of interior edge basis functions of
DSr+1(EN )

The interior edge basis functions of DSr+1(EN ) are {ϕ(r+1)
e,i,j , i =

1, 2, . . . , N, j = 1, 2, . . . , r} as given by (23) or (31) when r < N − 2. For

r ≥ N − 2, one could use the simpler set {φ(r+1)
e,i,j /φ

(r+1)
e,i,j (xe,i,j)} given in (21)

which ignores the internal cell DoFs, and we proceed with this choice (the
case r < N − 2 is entirely similar). Consider an edge e of the mesh shared
by elements Ek and E` with k < ` and e locally denoted as edge i1 and i2,
respectively. The global basis functions for Vs

r are, for r ≥ 1 and j = 1, . . . , r,

ψψψe,j(x) =


curlφ

(r+1)
e,i1,j

(x)/φ
(r+1)
e,i1,j

(xe,i1,j), x ∈ Ek,

curlφ
(r+1)
e,i2,r−j+1(x)/φ

(r+1)
e,i2,r−j+1(xe,i2,r−j+1), x ∈ E`,

0, x /∈ Ek ∪ E`.

(62)

These functions have vanishing divergence but nonvanishing normal flux; how-
ever, the average normal flux vanishes. They are associated to the edge DoFs
(50) with nonconstant test functions.
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Basis functions from curls of vertex basis functions of DSr+1(EN )

We will now construct basis functions that have constant normal flux on a
single edge of the mesh. These cannot have vanishing divergence. We will use

the vertex basis functions of DSr+1(EN ), which are {ϕ(r+1)
v,i , i = 1, 2, . . . , N}

as given in (26) or (32). Again, when r ≥ N − 2 we can instead simply use

{φ(r+1)
v,i /φ

(r+1)
v,i (xv,i)} given in (25), and we proceed with the discussion using

this case. The construction is complicated by the fact that the curls of these
functions have nonvanishing normal flux on all the edges of the mesh emanating
from the vertex in question.

We work on the element EN , and we first modify the serendipity vertex
basis functions so that their restrictions to each edge e of EN is a linear
function, i.e., we define for all i

φ∗v,i(x) =
φ

(r+1)
v,i (x)

φ
(r+1)
v,i (xv,i)

+

r∑
j=1

[
j

r + 1

φ
(r+1)
e,i,j (x)

φ
(r+1)
e,i,j (xe,i,j)

+
(

1− j

r + 1

) φ
(r+1)
e,i+1,j(x)

φ
(r+1)
e,i+1,j(xe,i+1,j)

]
,

again using indices modulo N . Then define ψψψ∗v,i = curlφ∗v,i, for which

ψψψ∗v,i(x) · νj
∣∣
ej

= ∇φ∗v,i(x) · τj
∣∣
ej

=


1/|ei|, j = i,

−1/|ei+1|, j = i+ 1,

0, otherwise.

We also use the vector ψψψ∗∗v,i(x) = x− xv,i+1 ∈ xP0(EN )⊕ P2
0(EN ) ⊂ Vs

r(EN ),
which is in our space and satisfies

ψψψ∗∗v,i(x) · νj
∣∣
ej

=

{
0, j = i+ 1, i+ 2,

(xv,j − xv,i+1) · νj , otherwise,

which is nonnegative on every edge ej .
For any edge ei of element EN , we define a vector function with flux only

on ei by canceling the fluxes of ψψψ∗∗v,i on all the other edges using some of the
ψψψ∗v,k. Precisely, we define for edge e = ei of element EN

ψψψe,0
∣∣
EN

=
1

ci,i+N

(
ψψψ∗∗v,i −

i+N−1∑
j=i+3

ci,j |ej |ψψψ∗v,j

)
, (63)

ci,i+2 = 0, ci,j = (xv,j − xv,i+1) · νj +
|ej−1|
|ej |

ci,j−1 > 0, j = i+ 3, . . . , i+N,

which has normal flux 1 on ei and 0 on all the other edges. These can be
merged across edges to define H(div)-conforming global basis functions, which
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have constant divergence on each element. Note that the choice of vertex index
xv,i+1 in ψψψ∗∗v,i is only for convenience in presenting the construction. We might
have chosen it to be any other vertex except xv,i−1 and xv,i. The basis functions
here are associated to the edge DoFs (50) with constant test functions.

Basis functions with nonvanishing and nonconstant divergence

Finally, when s ≥ 1 we define the global basis functions associated to the
nonconstant divergences. They are local to each element EN ∈ Th. Working on
EN , we begin with the functions xP∗s(EN ), where P∗s(EN ) =

∑s
k=1 P̃k(EN ) ⊂

Ps(EN ). Take pi(x) in a basis for P∗s(EN ), so i = 1, . . . , 1
2 (s + 2)(s + 1) − 1.

We must remove the normal flux on ∂EN from xpi(x). We do this using (62)
and (63) by defining

ψψψd,EN ,i(x) =


xpi(x)−

N∑
j=1

r∑
k=0

αj,kψψψej ,k(x), on EN ,

0, otherwise,

(64)

and setting the coefficients αj,k on each edge ej so that

0 = cjpi(x)−
r∑

k=0

αj,kψψψej ,k(x) · νj
∣∣
ej
, (65)

where cj = x · νj |ej is a constant. The coefficients can be found once one

realizes that on edge ej , ϕ
(r+1)
e,j,k (x)

∣∣
ej

= Lk(t), a Lagrange basis polynomial,

where x(t) = (1− t)xv,j−1 + txv,j for t ∈ [0, 1]. Therefore, for k ≥ 1,

ψψψej ,k(x) · νj
∣∣
ej

= curlϕ
(r+1)
e,j,k (x) · νj

∣∣
ej

= ∇ϕ(r+1)
e,j,k (x) · τj

∣∣
ej

=
L′k(t)

|xv,j − xv,j−1|
,

and

0 = cj

∫ t

0

pi(x(s)) ds− αj,0 t−
r∑

k=1

αj,k Lk(t)

|xv,j − xv,j−1|
. (66)

The coefficients can be read off by substituting in the Lagrange points t` =
`/(r + 1) for ` = 1, . . . , r + 1. These basis functions are associated to the
divergence DoFs (51) with nonconstant local divergence.

The global basis is now fully defined.

7 Approximation properties for Vs
r

In this section, we state the approximation theory for our new direct mixed
finite elements. A discussion and detailed proof for the N = 4 case has been
given in [5]. The proof for polygons is very similar, and so omitted here.
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We can define a projection operator π : H(div; Ω) ∩ (L2+ε(Ω))2 → Vs
r,

s = r − 1, r, where ε > 0, by piecing together locally defined operators πE .
For suitable v, πEv is defined in terms of the DoFs (50)–(52). The operator π
satisfies the commuting diagram property [16], which is to say that

PWs∇ · v = ∇ · πv, (67)

where PWs is the L2-orthogonal projection operator onto Ws = ∇ ·Vs
r. The

following lemma holds.

Theorem 7.1. Let Th be uniformly shape regular with shape regularity param-
eter σ∗ and let Assumption 5.1 hold. Then for Vs

r there is a constant C =
C(r, σ∗) > 0, independent of h > 0, such that

‖v − πv‖L2(Ω) ≤ C ‖v‖Hk(Ω) h
k, k = 1, . . . , r + 1, (68)

‖p− PWs
p‖L2(Ω) ≤ C ‖p‖Hk(Ω) h

k, k = 0, 1, . . . , s+ 1, (69)

‖∇ · (v − πv)‖L2(Ω) ≤ C ‖∇ · v‖Hk(Ω) h
k, k = 0, 1, . . . , s+ 1, (70)

where s = r− 1 ≥ 0 and s = r ≥ 1 for reduced and full H(div)-approximation,
respectively. Moreover, the discrete inf-sup condition

sup
vh∈Vs

r

(wh,∇ · vh)

‖vh‖H(div)
≥ γ ‖wh‖L2(Ω), ∀wh ∈Ws, (71)

holds for some γ = γ(r, σ∗) > 0 independent of h > 0.

8 Numerical results

We test our finite elements on Poisson’s equation

−∇ · (∇p) = f in Ω, (72)

p = 0 on ∂Ω, (73)

where f ∈ L2(Ω). The problem can be written in the weak form: Find p ∈
H1

0 (Ω) such that
(∇p,∇q) = (f, q), ∀q ∈ H1

0 (Ω), (74)

where (·, ·) is the L2(Ω) inner product. Setting

u = −∇p, (75)

we have the mixed weak form: Find u ∈ H(div; Ω) and p ∈ L2(Ω) such that

(u,v)− (p,∇ · v) = 0, ∀v ∈ H(div; Ω), (76)

(∇ · u, w) = (f, w), ∀w ∈ L2(Ω). (77)
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These weak forms give rise to finite element approximations. In view of
Theorems 5.1 and 7.1, it is well known that the following theorem holds [17, 18].

Theorem 8.1. Let Th be uniformly shape regular with shape regularity param-
eter σ∗ and let Assumption 5.1 hold. There exists a constant C > 0, depending
on r and σ∗ but otherwise independent of Th and h > 0, such that

‖p− ph‖Hm(Ω) ≤ C hs+1−m |p|Hs+1(Ω), s = 0, 1, . . . , r, m = 0, 1, (78)

where ph ∈ DSr(Ω) ∩H1
0 (Ω) approximates (74) for r ≥ 1. Moreover,

‖u− uh‖L2(Ω) ≤ C‖u‖Hk(Ω)h
k, k = 1, . . . , r + 1, (79)

‖p− ph‖L2(Ω) ≤ C‖u‖Hk(Ω)h
k, k = 1, . . . , s+ 1, (80)

‖∇ · (u− uh)‖L2(Ω) ≤ C‖∇ · u‖Hk(Ω)h
k, k = 0, 1, . . . , s+ 1, (81)

where (uh, ph) ∈ Vs
r ×Ws approximates (76)–(77), for r ≥ 0 and 0 ≤ s =

r, r − 1.

We consider the test problem (72)–(73) defined on the unit square Ω =
[0, 1]2. The exact solution is u(x1, x2) = sin(πx1) sin(πx2) and the source term
is f(x) = 2π2 sin(πx1) sin(πx2).

T 1
h , n = 6 T 2

h , n = 6 T 1
h , n = 18 T 2

h , n = 18

Fig. 8 Meshes with 6× 6 and 18× 18 elements.

Solutions are computed on two different sequences of meshes, each has n2

elements and is a Voronoi diagram mesh generated using the software pack-
age PolyMesher [19]. The first set of meshes, T 1

h , is a simple mesh composed
of polygons generated from regularly spaced seeds. The seeds are initially uni-
formly spaced and then alternatively perturbed up or down in the y-direction
by one quarter of the regular spacing. The number of vertices of each element
is N = 4, 5, or 6. The second sequence, T 2

h , is generated by PolyMesher using
n2 random initial seeds and up to 10, 000 iterations to smooth the mesh. We
illustrate these patterns by showing the n = 6 and n = 18 cases in Figure 8.

We give results on each mesh sequence for n = 6, 10, 14, 18, and 22. The
maximum, minimum, and average shape regularity parameters are shown in
Table 2. Sequence T 1

h has a fixed maximum and minimum shape regularity
parameter; moreover, the average shape regularity parameter decreases and
converges to a constant as the number of elements increases. However, since
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Table 2 Maximum, minimum, and average shape regularity parameters for each mesh.

T 1
h T 2

h Modified T 2
h (n = 18, 22)

n max min avg max min avg max min avg

6 0.568 0.355 0.401 0.778 0.180 0.341 –— –— –—
10 0.568 0.355 0.391 0.762 0.115 0.381 –— –— –—
14 0.568 0.355 0.387 0.787 0.161 0.408 –— –— –—
18 0.568 0.355 0.384 0.787 0.127 0.378 0.787 0.160 0.380
22 0.568 0.355 0.383 0.783 0.150 0.386 0.776 0.186 0.390

the meshes of T 2
h are generated randomly, we can see in Figure 8 that there

is no fixed pattern in the shape of the elements, and so the shape regularity
parameter varies as well. The n = 18 and 22 meshes seem to be less regular
than the other T 2

h meshes, so to improve the regularity, we removed some of
the small edges, creating the “modified T 2

h ” mesh sequence, as described later
in Section 8.1.2.

8.1 Direct serendipity spaces

We present in this section convergence studies for the direct serendipity spaces
DSr.

8.1.1 Shape regular meshes of mostly hexagons, T 1
h

Table 3 shows the errors and orders of convergence for the mesh sequence T 1
h

consisting of quadrilaterals, pentagons, and hexagons. The convergence rates
are consistent with the theory.

We observed (in results not reported here) that for the same number of
elements, the error on a mesh from T 1

h is smaller compared to a mesh of
trapezoids. As n increases, the T 1

h meshes are refined in a fixed pattern, giving
a higher percentage of elements that are hexagons in the interior of the mesh.
This observation suggests that elements with more edges might tend to give
better approximations.

Table 3 Errors and convergence rates for DSr on T 1
h meshes.

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

L2-errors and convergence rates

10 1.991e-04 3.19 8.639e-06 4.31 3.549e-07 5.37 9.891e-09 6.50
14 6.960e-05 3.12 2.129e-06 4.16 5.921e-08 5.32 1.152e-09 6.39
18 3.199e-05 3.09 7.595e-07 4.10 1.568e-08 5.29 2.384e-10 6.27
22 1.725e-05 3.08 3.357e-07 4.07 5.460e-09 5.26 6.442e-11 6.52

H1-seminorm errors and convergence rates

10 3.223e-03 2.18 1.826e-04 3.19 8.844e-06 4.34 2.669e-07 5.44
14 1.575e-03 2.13 6.441e-05 3.10 2.083e-06 4.30 4.383e-08 5.37
18 9.285e-04 2.10 2.985e-05 3.06 7.138e-07 4.26 1.150e-08 5.32
22 6.110e-04 2.09 1.622e-05 3.04 3.052e-07 4.23 3.978e-09 5.29
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n = 10 n = 18
Fig. 9 The L2 error on each element for mesh sequence T 1

h at level n = 10 and n = 18
with approximation index r = 5.

To test this hypothesis, we graphed the L2 error on each element in Figure 9
at level n = 10 and 18 with r = 5. The error is indeed concentrated around
the boundary, where the quadrilateral and pentagonal elements concentrate.
However, the solution u(x1, x2) = sin(πx1) sin(πx2) on [0, 1]2 has a single hump
over the domain, so the solution is steepest near the boundary and thus harder
to approximate there.

Larger domain Exact solution with four humps

Fig. 10 The L2 error on each element for the two additional tests based on mesh sequence
T 1
h at level n = 18 with approximation index r = 5

We performed two additional tests, with the L2 error on each element shown
in Figure 10. For the first additional test, we solved the same problem on the
domain [0, 2]×[−1, 1] using a mesh given by reflecting the original n = 18 mesh
with respect to x = 1, and then reflecting this with respect to y = 0. This test
shows that when the original boundary elements are moved to the interior of
the domain, we still observe the same larger error. For the second additional
test, we solved the problem on the unit square domain with the original mesh,
but we set the exact solution to be u(x1, x2) = sin(2πx1) sin(2πx2), which has
four humps. From the figure, we see that the solution is better approximated
in the interior where hexagons are used versus the approximation near the
boundary.

To further verify that hexagons are better at approximation, we performed
experiments for index r = 2, 3, 4, 5 at levels n = 6, 10, 14, 18, 22 on seven differ-
ent meshes, each emphasizing a fixed number of edges N for the elements. The
first mesh consists of isosceles right triangles, and we distort it with random
noise to get the second mesh. The third mesh consists of squares, the fourth
mesh is a mesh of identical trapezoids, and the fifth mesh consists of quadri-
laterals obtained by randomly distorting the vertices of a square mesh. The
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Fig. 11 Log of the L2-norm and H1-seminorm errors versus half the log of the number of
DoFs on seven different mesh sequences with n = 6, 10, 14, 18, 22 and r = 5.

sixth mesh is T 1
h (mostly hexagons), and we distort it with some randomness

to get the seventh mesh. To simplify the presentation, we only show results for
r = 5 in Figure 11, since the others are similar. We plot the log of error versus
half the log of the number of degrees of freedom for each mesh sequence. We
see that for the same number of degrees of freedom, hexagonal elements give
the best results, followed by quadrilaterals, with triangular elements giving the
worst performance.

Table 4 Errors and convergence rates for DSr on T 2
h meshes.

r = 2 r = 3 r = 4 r = 5
n error rate error rate error rate error rate

L2-errors and convergence rates

10 2.160e-04 3.45 8.859e-06 4.34 3.467e-07 5.69 1.133e-08 6.97
14 7.329e-05 3.16 2.175e-06 4.11 5.644e-08 5.31 1.202e-09 6.57
18 3.452e-05 2.95 7.927e-07 3.96 1.530e-08 5.12 4.376e-10 3.97
22 1.863e-05 3.47 3.555e-07 4.51 5.314e-09 5.95 8.905e-11 8.95

H1-seminorm errors and convergence rates

10 3.561e-03 2.32 1.933e-04 3.13 8.530e-06 4.55 3.103e-07 5.73
14 1.683e-03 2.19 6.724e-05 3.09 1.973e-06 4.29 4.625e-08 5.57
18 1.018e-03 1.97 3.144e-05 2.98 6.952e-07 4.09 2.646e-08 2.19
22 6.712e-04 2.34 1.730e-05 3.36 2.969e-07 4.78 5.973e-09 8.37

8.1.2 Not so shape regular meshes of mostly hexagons, T 2
h

Table 4 presents the errors and orders of convergence for the mesh sequence
T 2
h generated by n2 random initial seeds. We see that the convergence rates

are generally correct, but they are not steady due to the randomness inherent
in the mesh refinement process. Of particular concern are the rates for n =
18, 22, especially as r increases. We attribute this behavior to the poor shape
regularity of these two random meshes (recall Table 2).

An examination of the spatial distribution of the error for n = 18, as shown
on the left in Figure 12, suggests that the error is exceptionally large near
one corner. The n = 18 mesh has two edges that are relatively very short
containing the vertices (0.108, 0.050) and (0.890, 0.057), and the n = 22 mesh
has five short edges. We created the modified T 2

h meshes by removing one
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Pointwise error for original T 2
h Pointwise error for modified T 2

h

Fig. 12 The L2 error on each element of the domain [0, 1]2 for T 2
h with level n = 18 and

approximation index r = 5 before and after modifying the mesh. The two small edges were
taken out of the mesh by removing vertices located at (0.108, 0.050) and (0.890, 0.057).

vertex of each short edge. As can be seen in Table 2, the shape regularity
parameters of the elements of the modified mesh are more uniform. The right
plot in Figure 12 shows that the error is reduced without the offending edges.
The overall error and convergence results for the modified mesh are presented
in Table 5, and they are closer to the expected rates.

Table 5 Errors and convergence rates for DSr on modified T 2
h meshes.

r = 2 r = 3 r = 4 r = 5

n error rate error rate error rate error rate

L2-errors and convergence rates

18 3.454e-05 3.30 8.172e-07 4.29 1.544e-08 5.68 3.080e-10 5.97
22 1.881e-05 3.26 3.605e-07 4.39 5.476e-09 5.56 8.151e-11 7.13

H1-seminorm errors and convergence rates

18 1.018e-03 2.20 3.194e-05 3.26 6.992e-07 4.55 1.553e-08 4.78
22 6.762e-04 2.19 1.743e-05 3.25 3.035e-07 4.48 4.995e-09 6.09

8.2 Direct mixed spaces

We now consider the direct mixed finite elements Vs
r × Ws derived in

Section 6.2. These are implemented both in hybrid form (Section 6.2.1) and
as H(div)-conforming elements (Section 6.2.2), which, of course, provide the
same results.

The L2 and H1-seminorm errors and convergence orders for the mesh
sequence T 1

h with r = (0,) 1, 2, 3 appear in Tables 6–7. The theory predicts
that the scalar p, the vector u, and the divergence ∇ · u should attain the
order of approximation s + 1, r + 1, and s + 1, respectively, for the reduced
(s = r− 1) and full (s = r) H(div)-approximation spaces. We see rates of con-
vergence that are close to the theoretical ones. Moreover, the errors for T 1

h are
a bit smaller than what we see for meshes of trapezoids, due to having many
elements with more than four edges.

The errors and orders of convergence of the modified T 2
h mesh sequence

are given in Tables 8–9. We see the expected results.
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Table 6 Errors and convergence rates in L2 for reduced H(div)-approximation direct
mixed finite elements on T 1

h meshes.

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
n error rate error rate error rate

r = 1, reduced H(div)-approximation

10 1.308e-01 1.10 1.820e-02 2.05 1.277e-01 1.02
14 9.196e-02 1.05 9.199e-03 2.03 9.084e-02 1.01
18 7.104e-02 1.03 5.539e-03 2.02 7.051e-02 1.01
22 5.791e-02 1.02 3.698e-03 2.01 5.763e-02 1.01

r = 2, reduced H(div)-approximation

10 8.640e-03 2.04 5.053e-04 3.04 8.639e-03 2.04
14 4.363e-03 2.03 1.825e-04 3.03 4.363e-03 2.03
18 2.624e-03 2.02 8.545e-05 3.02 2.624e-03 2.02
22 1.750e-03 2.02 4.666e-05 3.01 1.750e-03 2.02

r = 3, reduced H(div)-approximation

10 3.858e-04 3.07 1.831e-05 4.06 3.858e-04 3.07
14 1.385e-04 3.05 4.710e-06 4.04 1.385e-04 3.05
18 6.464e-05 3.03 1.713e-06 4.02 6.464e-05 3.03
22 3.522e-05 3.03 7.643e-07 4.02 3.522e-05 3.03

Table 7 Errors and convergence rates in L2 for full H(div)-approximation direct mixed
finite elements on T 1

h meshes.

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
n error rate error rate error rate

r = 0, full H(div)-approximation

10 1.299e-01 1.07 6.167e-02 1.36 1.277e-01 1.02
14 9.170e-02 1.04 3.970e-02 1.31 9.084e-02 1.01
18 7.093e-02 1.02 2.883e-02 1.27 7.051e-02 1.01
22 5.786e-02 1.01 2.245e-02 1.25 5.763e-02 1.01

r = 1, full H(div)-approximation

10 8.641e-03 2.04 2.403e-03 2.38 8.639e-03 2.04
14 4.363e-03 2.03 1.094e-03 2.34 4.363e-03 2.03
18 2.624e-03 2.02 6.133e-04 2.30 2.624e-03 2.02
22 1.759e-03 1.99 3.888e-04 2.27 1.750e-03 2.02

r = 2, full H(div)-approximation

10 3.858e-04 3.07 7.535e-05 3.37 3.858e-04 3.07
14 1.385e-04 3.05 2.420e-05 3.38 1.385e-04 3.05
18 6.464e-05 3.03 1.038e-05 3.37 6.464e-05 3.03
22 3.522e-05 3.03 5.288e-06 3.36 3.522e-05 3.03

r = 3, full H(div)-approximation

10 1.372e-05 4.13 2.572e-06 4.52 1.372e-05 4.13
14 3.459e-06 4.10 5.879e-07 4.39 3.459e-06 4.10
18 1.243e-06 4.07 1.987e-07 4.32 1.243e-06 4.07
22 5.502e-07 4.06 8.451e-08 4.26 5.502e-07 4.06
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Table 8 Errors and convergence rates in L2 for reduced H(div)-approximation direct
mixed finite elements on modified T 2

h meshes.

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
n error rate error rate error rate

r = 1, reduced H(div)-approximation

10 1.290e-01 1.24 1.770e-02 2.29 1.260e-01 1.15
14 9.109e-02 1.02 8.997e-03 1.98 9.001e-02 0.98
18 7.039e-02 1.13 5.429e-03 2.21 6.988e-02 1.11
22 5.734e-02 1.10 3.619e-03 2.18 5.707e-02 1.09

r = 2, reduced H(div)-approximation

10 8.635e-03 2.23 5.013e-04 3.24 8.634e-03 2.23
14 4.308e-03 2.04 1.785e-04 3.02 4.308e-03 2.03
18 2.616e-03 2.19 8.487e-05 3.26 2.616e-03 2.19
22 1.719e-03 2.25 4.649e-05 3.23 1.719e-03 2.25

r = 3, reduced H(div)-approximation

10 3.878e-04 3.38 1.992e-05 4.37 3.878e-04 3.38
14 1.384e-04 3.02 5.102e-06 3.99 1.384e-04 3.02
18 6.516e-05 3.30 1.889e-06 4.36 6.516e-05 3.30
22 3.514e-05 3.31 8.363e-07 4.37 3.514e-05 3.31

9 Summary and Conclusions

We defined direct serendipity finite elements on general closed, nondegenerate,
and convex polygons EN with N vertices for any index of approximation r.
A direct serendipity element has its function space of the form of polynomials
plus supplemental functions, i.e.,

DSr(EN ) = Pr(EN )⊕ SDSr (EN ), r ≥ 1, (82)

with the supplemental space SDSr (EN ) being of minimal local dimension sub-
ject to the requirement of global H1-conformity. For higher order finite element
spaces with r ≥ N − 2, the supplemental space SDSr (EN ) has dimension
1
2N(N − 3), which is the number of pairs of nonadjacent edges. This fact
inspires our construction (12), for which different choices of λi,j and Ri,j give
rise to different spaces. Each index i, j represents a pair of nonadjacent edges
ei and ej of EN . Simple choices for λi,j and Ri,j can be made, as given in
(8) and (10). The lower order direct serendipity finite element spaces with
r < N − 2, are given as the subset of functions in DSN−2(EN ) that restrict
to polynomials of degree r on ∂EN . Taking nodal DoFs, we constructed nodal
bases for the direct serendipity spaces.

By the de Rham theory, each direct serendipity element DSr+1(EN ) gives
rise to both a reduced and a full H(div)-approximation direct mixed finite
element

Vr−1
r (EN ) = curlDSr+1(EN )⊕ xPr−1(EN )

= P2
r(EN )⊕ SVr (EN ), r ≥ 1, (83)
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Table 9 Errors and convergence rates in L2 for full H(div)-approximation direct mixed
finite elements on modified T 2

h meshes.

‖p− ph‖ ‖u− uh‖ ‖∇ · (u− uh)‖
n error rate error rate error rate

r = 0, full H(div)-approximation

10 1.282e-01 1.20 5.915e-02 1.59 1.260e-01 1.15
14 9.089e-02 1.01 3.577e-02 1.47 9.001e-02 0.98
18 7.030e-02 1.13 2.701e-02 1.23 6.988e-02 1.11
22 5.730e-02 1.10 2.005e-02 1.60 5.707e-02 1.09

r = 1, full H(div)-approximation

10 8.635e-03 2.23 1.892e-03 2.67 8.634e-03 2.23
14 4.308e-03 2.04 8.562e-04 2.32 4.308e-03 2.03
18 2.616e-03 2.19 4.903e-04 2.44 2.616e-03 2.19
22 1.719e-03 2.25 3.142e-04 2.39 1.719e-03 2.25

r = 2, full H(div)-approximation

10 3.881e-04 3.38 6.546e-05 3.69 3.881e-04 3.38
14 1.384e-04 3.02 1.945e-05 3.55 1.384e-04 3.02
18 6.516e-05 3.30 8.982e-06 3.39 6.516e-05 3.30
22 3.514e-05 3.31 4.448e-06 3.77 3.514e-05 3.31

r = 3, full H(div)-approximation

10 1.299e-05 4.59 2.473e-06 5.15 1.299e-05 4.59
14 3.270e-06 4.04 5.434e-07 4.44 3.270e-06 4.04
18 1.188e-06 4.44 2.220e-07 3.92 1.188e-06 4.44
22 5.259e-07 4.37 1.021e-07 4.17 5.259e-07 4.37

Vr
r(E) = curlDSr+1(EN )⊕ xPr(EN )

= P2
r(EN )⊕ xP̃r(EN )⊕ SVr (EN ), r ≥ 0, (84)

respectively, where SVr (E) = curlSDSr+1(EN ) has minimal local dimension sub-
ject to the requirement of global H(div)-conformity. These mixed elements can
be implemented globally in the hybrid form of the mixed method without the
need of a global basis. However, we also provided an explicit conforming global
basis that we constructed locally on each EN using the basis of DSr+1(EN ).

The convergence theory handled the polygonal geometry through a con-
tinuous dependence argument over a compact set of perturbations. Assuming
that the meshes are shape regular as h → 0 (Definition 5.1) and that the
functions λi,j and Ri,j in (12) are chosen to be continuously differentiable
with respect to the vertices of the element (i.e., Assumption 5.1), we obtained
optimal approximation rates for the elements in Theorems 5.1 and 7.1.

We presented and discussed numerical results from finite element numerical
solutions of Poisson’s equation. The convergence rates were consistent with the
theory, Theorem 8.1, and provided confirmation of the optimal order of accu-
racy of the finite element approximations. We found that mesh shape regularity
was quite important in terms of the observed error. In particular, we found
that short edges, which lead to a poor (i.e., small) shape regularity parameter,
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could also result in a poor approximation in that region of the mesh. Remov-
ing such edges greatly improved the approximation and convergence rates. We
also observed that meshes that emphasize elements with many edges per ele-
ment out perform meshes with fewer edges per element. This observation, as
well as the need for flexible meshing in some applications, can be considered
justification for using polygonal elements.

Data availability

All pertinent data generated or analyzed during this study are included in this
published article. Supporting data omitted from the article are available from
the corresponding author on reasonable request. Software was developed by
the authors (called directpoly) to implement the finite elements and generate
the data. It is available for download from either author’s professional website.
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