
TBD manuscript No.
(will be inserted by the editor)

An Efficient and Accurate Approximation to the Classic
Polynomial Smoothness Indicator

Todd Arbogast · Chieh-Sen Huang · Chenyu Tian · Gabriel M. Gray

Received: date / Accepted: date

Abstract For a stencil polynomial in any number of dimensions, its classic smooth-
ness indicator σJS can be expressed as a double sum over the coefficients. A sin-
gle sum approximation is presented leading to the polynomial coefficient squared
smoothness indicator σP. It is proven to satisfy the appropriate asymptotic behav-
ior for a smoothness indicator. Theoretical estimates of the computational costs are
given for implementations appropriate for both explicit and implicit timestepping.
Computational tests involving single stencils show that σP is a remarkably accurate
approximation of σJS, especially for finer stencil meshes, and much more efficient to
compute. Application to solving hyperbolic conservation laws show solutions using
σJS and σP that are very comparable, with the latter being significantly more efficient
to compute.

Keywords polynomial coefficient squared smoothness indicator · weighted
essentially non-oscillatory (WENO) · indicator of smoothness (IS) · finite volume ·
hyperbolic conservation law

Mathematics Subject Classification (2010) 65D15 · 65M08 · 76M12

The first author was funded in part by the U.S. National Science Foundation grant DMS-1912735. The
second author was funded by the Taiwan Ministry of Science and Technology grant MOST 109-2115-M-
110-003-MY3 and the National Center for Theoretical Sciences, Taiwan.

T. Arbogast
Department of Mathematics C1200; University of Texas; Austin, TX 78712–1202; USA and Oden Insti-
tute for Computational Engineering and Sciences C0200; University of Texas; Austin, TX 78712–1229;
USA E-mail: arbogast@oden.utexas.edu

C.-S. Huang
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan, R.O.C.
E-mail: huangcs@math.nsysu.edu.tw

Chenyu Tian
Oden Institute for Computational Engineering and Sciences C0200; University of Texas; Austin, TX
78712–1229; USA E-mail: chenyu@ices.utexas.edu

Gabriel M. Gray
University of Texas; Austin, TX 78712; USA E-mail: gabriel.m.gray@gmail.com

2 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

1 Introduction

Weighted essentially non-oscillatory (WENO) schemes [17,30,27,29] are often used
to solve hyperbolic conservation laws and advection-diffusion equations [28,1,6].
Finite difference and finite volume WENO schemes rely on WENO reconstructions
of the discrete solution u(x). These reconstructions are a weighted sum of stencil
polynomials Pℓ(x) for ℓ in some index set, each of which approximates u(x). The
goal of the weighting is to effectively remove the polynomials that are defined on
stencils that contain shocks or steep fronts in the solution.

There are several ways to define the (nonlinear) weights in the reconstruction
(see, e.g., [20,29,9,5]), but all of them require a good measure of the smoothness of
the stencil polynomial. This indicator of smoothness (IS), or more simply smoothness
indicator, will be denoted as σ . In particular, if the size of the stencil elements or cells
is h > 0, then as h → 0+, there must be some D ≥ 0 such that

σ =

{
Dh2 +O(h3) if u is smooth on the stencil,
O(1) if u has a jump discontinuity on the stencil.

(1.1)

Moreover, σ ≥ 0 is required to use it effectively in practice.
We remark that we actually want σ = Θ(1) in the case that u has a jump dis-

continuity (see [5] for more details). Fortunately, the difference between σ = O(1)
and σ =Θ(1) does not cause problems when solving conservation laws, since σ not
being order 1 near a jump discontinuity may occur only occasionally in space and
time. It is common practice in the literature to justify (1.1) only in the case that u is
smooth.

The most common and perhaps the most reliable smoothness indicator is the clas-
sic one defined by Jiang and Shu [20], σJS, and generalized to multiple dimensions
by O. Friedrich [14]. It does a good job of identifying whether or not a shock appears
in the solution over the stencil. This property is critical to the success of WENO
schemes.

The evaluation of σJS is a significant computational cost in dimensions greater
than one over general stencils, and especially for implicit WENO schemes. This has
motivated recent research on simplified smoothness indicators that do not require
derivatives of Pℓ [18,23,7,19]. Simplified smoothness indicators generally do not
preserve all the good properties of the classic σJS.

In this paper we propose an approximation of the classic smoothness indicator,
denoted σP. It is a special weighted sum of the squares of the stencil polynomial
coefficients, and so we say that it is the polynomial coefficients squared smoothness
indicator. The idea of using a weighted sum of the squares of the stencil polynomial
coefficients first appeared in [7]. However, in that work, a simple weighting was used.
Here, we give a more involved weighting (see (4.1)) defined so as to make σP a true
approximation of σJS.

To preview the results, ūE will denote the average of the solution u(x) over the
mesh element E and, for the multi-index α , cα will denote the αth coefficient of the
stencil polynomial P(x). We will show that one can compute σJS by either of two

An Approximation to the Classic Polynomial Smoothness Indicator 3

formulas, at least the first of which is commonly used (see [3]). These are

σJS = ∑
E

∑
F

σE,F ūE ūF = ∑
α

∑
β

ηα,β cα cβ , (1.2)

where each sum in the first formula is over the elements in the stencil, and in the
second formula over the polynomial coefficient multi-indices. Since the number of
elements in the stencil is greater than (or at best equal to) the number of coefficients,
the later formula turns out to be more efficient. The new smoothness indicator will be
computed by a sum of the form

σP = ∑
α

η̃α c2
α , (1.3)

where η̃α = ηα,α . The use of a single sum over the multi-indices makes it more
efficient.

In practice, the computational efficiency of computing the smoothness indicator
depends on the needs of the overall WENO scheme, allowing for the possibility of
reusing some computations. In addition to evaluation of the smoothness indicator,
one always computes P(x) at specific points. If implicit methods are used, solution of
a nonlinear problem by Newton’s method also requires computation of the Jacobian
terms, i.e., the derivatives ∂P/∂ ū and ∂σ/∂ ū. We will discuss the computational
efficiency of computing the smoothness indicators in this broader context.

In the next section, Section 2, we fix notation and discuss finite volume sten-
cil polynomials arising from general meshes in multiple dimensions. The classic
smoothness indicator is discussed in Section 3. The new polynomial coefficient squared
smoothness indicator is developed and analyzed in Section 4. Section 5 compares the
costs of computing the smoothness indicators and Jacobian derivative terms. Sec-
tion 6 is devoted to a numerical comparison of the classic and polynomial coefficient
squared smoothness indicators in two dimensions, where it is shown that the approx-
imation is accurate and computationally efficient (at least for the chosen test prob-
lems). Application of the smoothness indicators to the solution of conservation laws
exhibiting hyperbolic behavior in two space dimensions is given in Section 7, where
the computational efficiency and accuracy is discussed for three test problems. We
close the paper with a summary of our results and conclusions in Section 8.

2 Finite Volume Stencil Polynomials

We follow the notation used in [4]. Let d be the dimension of space and let a sten-
cil S = {E0,E1, . . . ,ENS−1} be a set of NS nonoverlapping (except on their bound-
aries) and contiguous mesh elements Ek. The stencil domain is ΩS =

⋃
E∈S E ⊂ Rd ,

hE = diam(E), and h = hS = max{hE : E ∈ S}. We tacitly assume that the stencil is
quasiuniform, so all stencil elements are of comparable size.

In finite volume schemes, the data available at the start of the time step, or at the
start of the current Newton iteration, are the element averages of the solution u(x)
over the stencil, which are

ūE =
1
|E|

∫
E

u(x)dx ∀E ∈ S. (2.1)

4 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

Denote the NS-vector ū = (ūE).
Let Pr denote the set of polynomials of degree up to r, and represent the stencil

polynomial P(x) ∈ Pr as

P(x) = ∑
|α|≤r

cα

(
x−xS

hS

)α

, (2.2)

where xS is the center of ΩS and α is a d-dimensional multi-index. The stencil poly-
nomial P(x) is supposed to satisfy

1
|E|

∫
E

P(x)dx = ūE , for each E ∈ S. (2.3)

In one dimension, (2.3) can be set directly by choosing r + 1 = NS. However,

in multiple dimensions, the number of polynomial coefficients NC =

(
r+d

d

)
will

not normally agree with the number of stencil elements NS, and so a least-squares
polynomial fitting is (usually) required [26]. Since we want to evaluate P(x) on a
target element, say E0, we use a constrained least squares fitting with the constraint
that (2.3) holds for the target element. As discussed in [4], one can compute the
polynomial coefficients, written as an NC-vector c = (cα), as a linear transformation
of ū. That is,

c = Aū, (2.4)

where the matrix A is NC ×NS.
There is an alternative to evaluation of P(x) using (2.2) and (2.4). It involves

a special basis for the stencil polynomials [3,6]. For the given stencil S and target
element E0, let PE(x) be the base polynomial of degree r that is the constrained least
squares solution of (2.3) modified so that

1
|F |

∫
F

PE(x)dx =

{
1 if F = E,
0 otherwise.

(2.5)

The stencil polynomial is then evaluated simply as

P(x) = ∑
E∈S

PE(x) ūE . (2.6)

Under reasonable hypotheses [4], the stencil polynomial P ∈ Pr approximates
u(x) for all x ∈ E0 ∈ S as

|Dα u(x)−Dα P(x)| ≤

{
C hr+1−|α| if u is smooth on the stencil,
C otherwise,

(2.7)

for some constant C > 0 as h → 0+, where Dα is partial differentiation of order α ,
|α| ≤ r+1.

An Approximation to the Classic Polynomial Smoothness Indicator 5

3 The Classic Smoothness Indicator σJS

The classic smoothness indicator [20,14] is

σJS = ∑
1≤|α|≤r

h2|α|
0
|E0|

∫
E0

|Dα P(x)|2 dx, (3.1)

where h0 = hE0 = diam(E0).
When u is smooth on the stencil, the estimate σJS =Dh2+O(h3) in (1.1) is known

to hold in one dimension [20], where D ≥ 0 is related to the derivative of u. The result
is also known in multiple dimensions, but to be complete and precise, we provide the
following lemma.

Lemma 3.1 If u is approximated on the target element E0 over the stencil S by the
polynomial P ∈ Pr, then there is some constant D ≥ 0 such that as h = hS → 0+,

σJS = Dh2
0 +O(h3), if u is smooth on the stencil. (3.2)

Moreover, when r ≥ 1,

D =
1

|E0|

∫
E0

|∇u(x)|2 dx ≥ 0. (3.3)

Proof The result is trivial when r = 0, since σJS = 0 and we can take D = 0. For
r ≥ 1, we start from (3.1) and note that

σJS =
h2

0
|E0|

∫
E0

|∇P(x)|2 dx+ ∑
2≤|α|≤r

h2|α|
0
|E0|

∫
E0

|Dα P(x)|2 dx.

By the trivial inequality P2 ≤ 2((u−P)2 +u2), the latter sum is

∑
2≤|α|≤r

h2|α|
0
|E0|

∫
E0

|Dα P(x)|2 dx

≤ 2 ∑
2≤|α|≤r

h2|α|
0
|E0|

∫
E0

(
|Dα(u(x)−P(x))|2 + |Dα u(x)|2

)
dx

≤C ∑
2≤|α|≤r

h2|α|
0

(
h2(r+1−|α|)+1)

≤Ch4,

wherein we used (2.7). Moreover,

h2
0

|E0|

∫
E0

|∇P(x)|2 dx

=
h2

0
|E0|

(∫
E0

|∇u(x)|2 dx+
∫

E0

(
∇P(x)+∇u(x)

)
·
(
∇P(x)−∇u(x)

)
dx

)
= Dh2

0 +
h2

0
|E0|

∫
E0

(
∇P(x)−∇u(x)+2∇u(x)

)
·
(
∇P(x)−∇u(x)

)
dx.

6 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

Finally, the last term above, using (2.7) again, is bounded by

h2
0

|E0|

∫
E0

(
|∇P(x)−∇u(x)|+2|∇u(x)|

)
|∇P(x)−∇u(x)|dx

≤Ch2
0
[
(hr

0 +1)hr
0
]
≤Chr+2

0 ≤Ch3,

since r ≥ 1. The result follows. ⊓⊔

The classic smoothness indicator can be implemented using either the represen-
tation of P(x) from base polynomials or directly after computing the polynomial
coefficients.

3.1 Implementation using base polynomials

It is natural to compute σJS directly from ū. An efficient implementation that is com-
monly used involves the special base polynomials (2.5) [3,6]. The smoothness indi-
cator (3.1) can be computed using (2.6) as

σJS = ∑
1≤|α|≤r

h2|α|
0
|E0|

∫
E0

(
∑
E∈S

ūEDα PE(x)
)2

dx

= ∑
1≤|α|≤r

h2|α|
0
|E0|

∫
E0

∑
E1∈S

∑
E2∈S

ūE1 ūE2D
α PE1(x)D

α PE2(x)dx

= ∑
E1∈S

∑
E2∈S

(
∑

1≤|α|≤r

h2|α|
0
|E0|

∫
E0

Dα PE1(x)D
α PE2(x)dx

)
ūE1 ūE2

= ∑
E1∈S

∑
E2∈S

σE1,E2 ūE1 ūE2 , (3.4)

where

σE1,E2 = ∑
1≤|α|≤r

h2|α|
0
|E0|

∫
E0

Dα PE1(x)D
α PE2(x)dx (3.5)

is independent of the data ū. It can be precomputed and reused for multiple recon-
structions as ū changes.

In matrix form, σ = (σE1,E2) is a symmetric, positive semidefinite NS×NS matrix,
and

σJS = ūT
σ ū. (3.6)

Symmetry shows that

σJS =
NS−1

∑
i=0

NS−1

∑
j=0

σEi,E j ūEi ūE j =
NS−1

∑
i=0

σEi,Ei ū
2
Ei
+2

NS−1

∑
i=1

i−1

∑
j=0

σEi,E j ūEi ūE j . (3.7)

An Approximation to the Classic Polynomial Smoothness Indicator 7

3.2 Implementation using the polynomial coefficients

Starting from ū, recall from (2.4) that c = Aū, where the matrix A is NC ×NS. Once
one has computed the polynomial coefficients, the smoothness indicator can be easily
computed. A combination of (3.1) and (2.2) gives

σJS = ∑
1≤|γ|≤r

h2|γ|
0
|E0|

∫
E0

(
∑

|α|≤r
cαD γ

(
x−xS

hS

)α)2

dx

= ∑
1≤|γ|≤r

h2|γ|
0
|E0|

∫
E0

∑
|α|≤r

∑
|β |≤r

cα cβ D γ

(
x−xS

hS

)α

D γ

(
x−xS

hS

)β

dx

= ∑
|α|≤r

∑
|β |≤r

(
∑

1≤|γ|≤r

h2|γ|
0
|E0|

∫
E0

D γ

(
x−xS

hS

)α

D γ

(
x−xS

hS

)β

dx
)

cα cβ

= ∑
|α|≤r

∑
|β |≤r

ηα,β cα cβ , (3.8)

where

ηα,β = ∑
1≤|γ|≤r

h2|γ|
0
|E0|

∫
E0

D γ

(
x−xS

hS

)α

D γ

(
x−xS

hS

)β

dx

= ∑
1≤|γ|≤r,

γ≤α,γ≤β

(
h0

hS

)2|γ|
α!β !

(α − γ)!(β − γ)!
1

|E0|

∫
E0

(
x−xS

hS

)α+β−2γ

dx (3.9)

is independent of the data ū and c and can be precomputed. The symmetric NC ×NC
matrix η = (ηα,β) is positive semidefinite and gives

σJS = cT
ηc. (3.10)

4 A New Polynomial Coefficient Squared Smoothness Indicator

We now present our approximation to σJS on the stencil S for target element E0 ∈ S.
Return to (3.8), where σJS was expanded in terms of the polynomial coefficients. We
conjecture that the cross terms in the expansion are uncorrelated and can be dropped,
so we define

σP = ∑
1≤|γ|≤r

h2|γ|
0
|E0|

∫
E0

∑
|α|≤r

(
cαD γ

(
x−xS

hS

)α)2

dx

= ∑
|α|≤r

(
∑

1≤|γ|≤r

h2|γ|
0
|E0|

∫
E0

(
D γ

(
x−xS

hS

)α)2

dx
)

c2
α . (4.1)

That is,
σP = ∑

α

η̃α c2
α = cT diag(η̃)c, (4.2)

8 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

where the NC-vector η̃ = (ηα,α) is

η̃α = ηα,α = ∑
1≤|γ|≤r,

γ≤α

(
h0

hS

)2|γ|(
α!

(α − γ)!

)2 1
|E0|

∫
E0

(
x−xS

hS

)2(α−γ)

dx, (4.3)

which can be precomputed, being independent of ū and c. Moreover, diag(η̃) is pos-
itive semidefinite, so σP ≥ 0.

The following lemma provides an estimate of the asymptotic behavior of σP in
the smooth case.

Lemma 4.1 If u is approximated on the target element E0 over the stencil S by the
polynomial P ∈ Pr, then there is some constant D ≥ 0 such that as h = hS → 0+,

σP = Dh2
0 +O(h3), if u is smooth on the stencil. (4.4)

Moreover, when r ≥ 1, D is given by (3.3).

Proof The result is trivial when r = 0, so suppose that r ≥ 1. When evaluated at the
base point x = xS, we have that

cα =
h|α|

S
α!

Dα P(xS). (4.5)

Note from (4.3) that in general η̃0 = 0 and η̃α = O(1), and that when |α| = 1 (say
α = em ∈ Rd), we have η̃α = (h0/hS)

2. Therefore,

σP = ∑
|α|≤r

η̃α

(h|α|
S

α!
Dα P(xS)

)2
= 0+h2

0 |∇P(xS)|2 + ∑
1<|α|≤r

O(h2|α|).

Invoke (2.7) to see that

|∇P(xS)| ≤ |∇P(xS)−∇u(xS)|+ |∇u(xS)| ≤Chr + |∇u(xS)|,

and the result follows with the wrong value for D, i.e., |∇u(xS)|2. However,

|∇u(xS)|2 =
1

|E0|

∫
E0

(
|∇u(xS)|2 −|∇u(x)|2

)
dx+D ≤Ch+D,

by the mean value theorem. The proof is complete. ⊓⊔

An Approximation to the Classic Polynomial Smoothness Indicator 9

5 Computational Costs

WENO schemes are generally applied to time dependent problems. We tacitly as-
sume that the smoothness indicators are being used in a time stepping loop on a fixed
computational mesh, or perhaps a mesh that is updated only infrequently. Various
quantities can be precomputed before the time stepping loop begins. The main com-
putational effort required is that required at each time step. We thus consider only the
cost for evaluation in a time step (or Newton iteration), assuming that the matrices A,
σ , η , and the vector η̃ have been precomputed. At the start of the time step, assume
only that the NS-vector ū = (ūE) is given.

The computational costs depend strongly on the needs of the overall WENO
scheme. We consider efficiency in the context of an unstructured mesh in multiple
space dimensions. In any application, the stencil polynomial P(x) will be evaluated
at, say, NQ points (such as quadrature points). Explicit and implicit methods have
very different needs, so we will consider each separately. If implicit methods are
used, solution by Newton’s method of the nonlinear problem also requires evaluation
of the Jacobian derivatives ∂P/∂ ū and ∂σ/∂ ū. It is evaluation of these additional
derivatives that motivates the use of the base polynomials [3].

For the computations, we consider both the number of floating point operations
(FLOPs) required as well as the number of floating point (FP) number transfers from
the main memory.

5.1 Evaluations needed in explicit schemes

Perhaps Horner’s method is the most efficient algorithm to compute a polynomial in
one dimension, and recursion over the variables can be used to handle polynomials in
d > 1 dimensions. Horner’s method is discussed in Appendix A. The work required
to evaluate a single polynomial at a single point is 2(NC −1) (see (A.5)), about twice
the number of coefficients.

Since the coefficients of the base polynomials PE can be precomputed, we simply
need to transfer these NSNC coefficients from the main memory to access them (i.e.,
NSNC FP transfers). Evaluation of c = Aū requires NC(2NS−1) FLOPs with the same
number of FP transfers for A. In fact, the coefficients of PE are exactly the columns
of A, so these are simply transfered from menory for either case. For reference, these
results are tabulated in Table 5.1.

Consider first the case of evaluating the stencil polynomial using the base poly-
nomials (2.6). In this approach, NS base polynomials must be evaluated and then
combined using 2NS −1 FLOPs, so the total work required is NQ(2NSNC −1) FLOPs
for evaluation at NQ points. Given the coefficients of P(x), the second case needs the
evaluation of a single polynomial at each point, which is 2NQ(NC −1) FLOPs. These
results appear in Table 5.1.

Each time step, the smoothness indicator σJS can be computed from ū = (ūE)
directly using (3.7), which will take

(3NS −1)+
NS−1

∑
i=1

(3i−1)+2 = 3
2 N2

S +
1
2 NS +2 FLOPs. (5.1)

10 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

Table 5.1: For explicit schemes, FLOP and FP transfer costs per time step related to
evaluation of the stencil polynomial P(xQ) at NQ points and the smoothness indicator
σJS or σP.

requiring
to evaluate using from memory FLOPs FP transfers

A — A — NSNC

PE (coef) A — — —
c ū, A — NC(2NS −1) —

P(xQ) ū, PE (coef) — NQ(2NSNC −1) —
P(xQ) c — 2NQ(NC −1) —

σJS ū σ
3
2 N2

S +
1
2 NS +2 1

2 NS(NS +1)
σJS c η

3
2 N2

C + 1
2 NC +2 1

2 NC(NC +1)
σP c η̃ 3NC −1 NC

The computation also requires the additional transfer of the floating point (FP) num-
bers in the symmetric matrix σ from the main memory, which is 1

2 NS(NS + 1) FP
transfers. On the other hand, given the polynomial coefficients, σJS can be com-
puted via the symmetric version of (3.10) with a cost of 3

2 N2
C + 1

2 NC +2 FLOPs and
1
2 NC(NC + 1) FP transfers, since the matrix η is symmetric. This is the more effi-
cient way to compute σJS in isolation. Finally, the smoothness indicator σP can be
computed in 3NC − 1 FLOPs and NC FP transfers, which is by far the most efficient
computation of a smoothness indicator alone. These results appear in Table 5.1.

Which combination of computations is most efficient overall depends on the costs
of computing both P(xQ) and the smoothness indicator, which in turn depends on the
values of NC ≥ 1, NS ≥ NC ≥ 1, and NQ ≥ 1. Assuming that NQ ≥ 2, it is always more
efficient to compute the polynomial coefficients c and then P(xQ) from them than to
use the base polynomials. To see this, simply check that

NC(2NS −1)+2NQ(NC −1)
?
≤ NQ(2NSNC −1).

Notice that
2NQ(NC −1)≤ NQ(2NSNC −1),

so the minimal value of NQ is the harder case and we merely check if

NC(2NS −1)+4(NC −1)
?
≤ 2(2NSNC −1) ⇐⇒ 3NC

?
≤ 2NSNC +2.

The minimal value of NS = NC is the harder case, and easily seen to hold true since
the polynomial 2x2 −3x+2 has no real roots.

We conclude that for explicit methods, the use of base polynomials is the most
expensive route in terms of FLOPs and FP transfers. The polynomial coefficients c
should first be found using (2.4) and then P(x) evaluated from (2.2) directly using
c. Given c, σJS should be computed using η in (3.10). But it is much more efficient
for both FLOPs and FP transfers to instead compute σP using η̃ in (4.2). The total
computational costs are summarized in Table 5.2.

An Approximation to the Classic Polynomial Smoothness Indicator 11

Table 5.2: For explicit schemes, total FLOP and FP transfer costs per time step re-
lated to evaluation of the stencil polynomial P(xQ) at NQ points and the smoothness
indicator σJS or σP.

requiring
to evaluate from memory FLOPs FP transfers

P(xQ), σJS PE (coef), σ NQ(2NSNC −1)+ 3
2 N2

S +
1
2 NS +2 1

2 NS(2NC +NS +1)
c, P(xQ), σJS A, η 2NQ(NC −1)+NC(2NS +

3
2 NC − 1

2)+2 1
2 NC(2NS +NC +1)

c, P(xQ), σP A, η̃ 2NQ(NC −1)+2NC(NS +1)−1 NC(NS +1)

5.2 Evaluations needed in implicit schemes

Consider first evaluation of the Jacobian derivative ∂P/∂ ū. It is easy to compute from
the base polynomials (2.6), and it is in fact

∂P
∂ ūE

= PE(x). (5.2)

It is therefore necessary to compute PE(xQ) at each point. Direct computation has a
workload of 2NQNS(NC − 1) FLOPs. On the other hand, if one has the polynomial
coefficients c, the Jacobian derivative requires evaluation of

∂P(x)
∂ ū

= ∑
|α|≤r

∂cα

∂ ū

(
x−xS

hS

)α

. (5.3)

This is exactly evaluation of NS polynomials with coefficients drawn from the columns
of ∂c

∂ ū = A. These polynomials are the base polynomials. Therefore, (5.2) is the only
way to compute the Jacobian derivatives of P. These results are tabulated in Table 5.3,
along with the costs of evaluating P(xQ).

The Jacobian derivatives of the classic smoothness indicator, expressed as σJS =
ūT σ ū (3.6), is easily computed to be

∂σJS

∂ ū
= 2σ ū. (5.4)

For efficiency, one should compute σ ū in 2NS − 1 FLOPs, σJS = ūT σ ū in 2NS − 1
additional FLOPs, and finally ∂σJS/∂ ū by doubling the values of σ ū for NS FLOPs.
These results are given in Table 5.3.

Using that σJS = cT ηc (3.10), evaluation of the Jacobian derivatives requires in-
cluding the partial derivative ∂c/∂ ū = A, so

∂σJS

∂ ū
= 2AT

ηc. (5.5)

Again for efficiency, one should compute c first, ηc in NC(2NC − 1) FLOPs, σJS =
cT ηc in 2NC−1 additional FLOPs, and finally ∂σJS/∂ ū in NC+NS(2NC−1) FLOPs.
Using σP = cT diag(η̃)c (4.2) gives a similar computation. These results appear in
Table 5.3.

12 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

Table 5.3: For implicit schemes, FLOP and FP transfer costs per time step related to
evaluation of the stencil polynomial P(xQ) and Jacobian derivative P(xQ)/∂ ū at NQ
points and the smoothness indicator σJS or σP and its Jacobian derivative.

requiring
to evaluate using from memory FLOPs FP transfers

A — A — NSNC

PE (coef) A — — —
c ū, A — NC(2NS −1) —

PE (xQ) PE (coef) — 2NQNS(NC −1) —

P(xQ) ū, PE (xQ) — NQ(2NS −1) —
P(xQ) c — 2NQ(NC −1) —

∂P(xQ)/∂ ū PE (xQ) — — —

σ ū ū σ NS(2NS −1) 1
2 NS(NS +1)

σJS ū, σ ū — 2NS −1 —
∂σJS/∂ ū σ ū — NS —

ηc c η NC(2NC −1) 1
2 NC(NC +1)

σJS c, ηc — 2NC −1 —
∂σJS/∂ ū A, ηc — NC +NS(2NC −1) —

diag(η̃)c c η̃ NC NC

σP c, diag(η̃)c — 2NC −1 —
∂σP/∂ ū A, diag(η̃)c — NC +NS(2NC −1) —

The total computational costs are summarized in Table 5.4. In terms of FP trans-
fers, computing σJS from the base polynomials and P(xQ) from these or from c are
the most costly approaches, followed by computing c and then P(xQ) and σJS using
the polynomial coefficients. Computing c and then P(xQ) and σP is the most efficient.

Table 5.4: For implicit schemes, total FLOP and FP transfer costs per time step re-
lated to evaluation of the stencil polynomial P(xQ) at NQ points and the smoothness
indicator σJS or σP, and their Jacobian derivatives.

to evaluate requiring
with der. from memory FLOPs FP transfers

P(xQ), σJS PE (coef), σ NQ(2NSNC −1)+2N2
S +2NS −1 NSNC + 1

2 NS(NS +1)
c, P(xQ), σJS A, σ 2NQ(NS +1)(NC −1) NSNC + 1

2 NS(NS +1)
+2NS(NS +NC)+2NS −NC −1

c, P(xQ), σJS A, η 2NQ(NS +1)(NC −1) NSNC + 1
2 NC(NC +1)

+4NSNC +2N2
C +NC −NS −1

c, P(xQ), σP A, η̃ 2NQ(NS +1)(NC −1) NSNC +NC
+4NSNC +3NC −NS −1

In terms of FLOPs, it is less clear which approach is best, although given c, com-
puting σJS is more costly than computing σP. The number of FLOPs required to eval-

An Approximation to the Classic Polynomial Smoothness Indicator 13

uate P(xQ) and σJS (and derivatives) from the base polynomials minus the number
for evaluating c and then P(xQ) and σP is[

NQ(2NSNC −1)+2N2
S +2NS −1

]
−
[
2NQ(NS +1)(NC −1)+4NSNC +3NC −NS −1

]
= (NS −NC)(2NQ +2NS +3)+NQ −2NSNC. (5.6)

If this number is positive, then evaluating c and then P(xQ) and σP is more efficient
in terms of FLOPs. In one space dimension, NS = NC and NQ is typically 2, so the
number is negative. However, in two dimensions, typically NS ∼ 3NC/2, and the sign
of the number depends on the specific values of the parameters. We conclude that for
implicit methods, our new approach of computing the coefficients c and then P(xQ),
σP, and their Jacobian derivatives is the most efficient in terms of FP transfers, and is
at least competitive in terms of FLOPs.

6 Comparison of the Performance of the Smoothness Indicators

In this section, we present numerical tests in two dimensions of the classic and the
new smoothness indicators to assess the quality of our approximation. The critical
property (1.1) of a smoothness indicator is that it can identify a shock or contact
discontinuity in the solution. That is, when the solution is smooth, its smoothness
indicator should be small and tend to zero as Dh2 +O(h3) as h → 0. When the so-
lution has a jump discontinuity, the smoothness indicator should be relatively large
and remain essentially constant as h → 0. In our case, we already know that σJS has
these properties, so we are merely checking that its approximation, σP, maintains the
properties.

The test solution is taken to be u(x,y)= 2(1+cos(2πx))exp(xy−y)+J(x), where
the term J(x) can be used to impose a jump. It is a multiple of the Heaviside function
(0 for x < 0 and 1 for x > 0), and the multiple is taken to be 0 for a smooth solution,
and two discontinuous solutions use 1.0 for a full jump and 0.1 for a mild jump.

The test solution u(x,y) is approximated on 19 different stencils. The first set
of 9 stencils are based on polygonal meshes (of triangular and quadrilateral ele-
ments) and shown in Figure 6.1. StencilPoly19 has 19 elements and supports poly-
nomial approximation of degree 4. We also consider 7 substencils. The larger sub-
stencils are identified as StencilPoly19-9, StencilPoly19-7a, StencilPoly19-7b, and
StencilPoly19-6. These have 9, 7, 7, and 6 elements, respectively, and each supports
quadratic approximations. The smallest stencils, StencilPoly19-3a, StencilPoly19-3b,
and StencilPoly19-3c, all have 3 elements and support linear approximation. Finally,
StencilPoly17 is a distortion of StencilPoly19, but it has only 17 elements and still
supports polynomial approximation of degree 4. The unrefined maximal element di-
ameter of these stencils is about h0 = 0.06.

The second set of 4 stencils are based on the notion of a sectorial stencil [16], as
depicted in Figure 6.2. The top element defines the sector, and normally one would
target that element, although we will give results for all the elements as possible target

14 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

StencilPoly19-9

−
0.06

−
0
.04

−
0.02

0
.00

0.02

0
.04

0
.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08 StencilPoly19-7a

−
0
.06

−
0
.04

−
0
.02

0.00

0
.02

0.04

0.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08 StencilPoly19-7b

−
0.06

−
0
.04

−
0.02

0
.00

0
.02

0
.04

0
.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08 StencilPoly19-6

−
0
.06

−
0
.04

−
0
.02

0.00

0
.02

0.04

0.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

StencilPoly19-3a

−
0.06

−
0
.04

−
0.02

0
.00

0.02

0
.04

0
.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08 StencilPoly19-3b

−
0
.06

−
0.04

−
0
.02

0.00

0
.02

0.04

0.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08 StencilPoly19-3c

−
0.06

−
0
.04

−
0.02

0
.00

0.02

0
.04

0
.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08 StencilPoly17

−
0
.06

−
0
.04

−
0
.02

0
.00

0.02

0
.04

0
.06

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

Fig. 6.1: Unrefined StencilPoly19 with its substencils (shaded in gray) and Sten-
cilPoly17. The maximal element diameter is about h0 = 0.06.

elements. StencilSect16 is the full stencil, and it has 16 elements which support poly-
nomial approximation of degree 4. Its substencils are shaded in gray. The substencils
are identified as StencilSect10, StencilSect6, and StencilSect3. They have 10, 6, and
3 elements and support polynomial approximation of degree 3, 2, and 1, respectively.
The maximal element diameter is about h0 = 0.075.

StencilSect10

StencilSect16

−
0
.12

−
0
.09

−
0.06

−
0
.03

0.00

0
.03

0
.06

0
.09

0
.12

0.15

−0.12

−0.09

−0.06

−0.03

0.00

0.03

0.06

0.09

0.12 StencilSect6

−
0.12

−
0
.09

−
0
.06

−
0
.03

0
.00

0
.03

0
.06

0.09

0
.12

0
.15

−0.12

−0.09

−0.06

−0.03

0.00

0.03

0.06

0.09

0.12 StencilSect3

−
0
.12

−
0
.09

−
0.06

−
0
.03

0.00

0
.03

0
.06

0
.09

0
.12

0.15

−0.12

−0.09

−0.06

−0.03

0.00

0.03

0.06

0.09

0.12

Fig. 6.2: Unrefined StencilSect16 and its substencils (shaded in gray). The maximal
element diameter is about h0 = 0.075.

The last 6 stencils are based on simple rectangular meshes. Stencil3x3, Sten-
cil3x5, and Stencil5x5 are meshes of 3×3, 3×5, and 5×5 square elements centered
about (0,0) with side length h0 = 0.1 for the first two and h0 = 0.04 for the third
stencil. These 3 stencils support approximation by polynomials of degree 2, 2, and 4,
respectively. The final 3 stencils are simply the previous three crosshatched from
the lower left corner to the upper right corner forming two triangles for each square.
These triangular stencils support approximation by polynomials of degree 4, 5, and 8,

An Approximation to the Classic Polynomial Smoothness Indicator 15

respectively. These meshes do not resolve the jump, because it appears at x = 0, in
the middle of some elements and outside the rest.

Each of the 19 stencils is fairly coarse, but we rescale them. For each rescaled
refinement level L = 0,1,2,3,4, we divide each stencil point by a factor of 2, so
hL = h0/2L and the stencil shrinks about the center point (0,0). The jump at x = 0
appears fixed under refinement.

For each of the 19 stencils, we approximate the test solution u(x,y), with or with-
out a jump, by its element averages (2.1), and then compute its stencil polynomial for
a select target element. This then gives σJS and σP for the target element. This process
is repeated on each of the 4 refinement levels, for each possible target element in the
stencil, and for each of the 3 values for the jump. In total, we have 7680 tests, so we
give detailed results for only a few cases and summarize the rest of the results.

6.1 Overview of the results.

In this section, we give an overview of our results. We begin by showing a small
fraction of the raw data. Table 6.1, shows the results for the StencilPoly19 and Sten-
cilPoly17 tests using the single target element defined as the most central one depicted
in Figure 6.1. We see good agreement between the two smoothness indicators. When
u is smooth, the smoothness indicators converge to zero as O(h2) for h → 0 (i.e., as
the refinement level increases). When u has a jump, the smoothness indicators remain
approximately constant as h → 0.

Ideally, the ratios σP/σJS would be one, and we see that they are approximately
one. When u is smooth, the ratios converge to one as h → 0. When u is discontinuous,
a ratio σP/σJS > 1 might be advantageous, as the larger σP will tend to bias a WENO
reconstruction away from the stencil better than σJS.

Table 6.1: The smoothness indicators for StencilPoly19 and StencilPoly17 using the
center element as the target. Shown are the results for the smooth and the two discon-
tinuous test solutions, on each refinement level.

StencilPoly19, center target StencilPoly17, center target
u level σJS σP σP/σJS σJS σP σP/σJS

Smooth 0 2.194e-02 2.217e-02 1.011 3.164e-02 3.238e-02 1.023
1 4.354e-03 4.377e-03 1.005 5.923e-03 5.993e-03 1.012
2 1.020e-03 1.022e-03 1.003 1.360e-03 1.368e-03 1.006
3 2.509e-04 2.512e-04 1.001 3.329e-04 3.338e-04 1.003
4 6.252e-05 6.256e-05 1.001 8.285e-05 8.296e-05 1.001

Jump 0 3.951e+00 4.028e+00 1.019 2.662e+01 3.071e+01 1.154
1.0 1 3.909e+00 3.986e+00 1.020 2.655e+01 3.064e+01 1.154

2 3.900e+00 3.977e+00 1.020 2.652e+01 3.062e+01 1.155
3 3.897e+00 3.975e+00 1.020 2.652e+01 3.062e+01 1.155
4 3.896e+00 3.974e+00 1.020 2.652e+01 3.062e+01 1.155

Jump 0 6.421e-02 6.509e-02 1.014 3.044e-01 3.449e-01 1.133
0.1 1 4.421e-02 4.494e-02 1.017 2.737e-01 3.145e-01 1.149

2 4.027e-02 4.102e-02 1.018 2.674e-01 3.083e-01 1.153
3 3.932e-02 4.008e-02 1.019 2.658e-01 3.068e-01 1.154
4 3.907e-02 3.983e-02 1.020 2.654e-01 3.063e-01 1.154

16 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

In Table 6.2, we show the results for the StencilSect16 and StencilSect6 tests
using the single target element defined as the topmost one depicted in Figure 6.2.
We see generally good agreement between the two smoothness indicators, but not as
good as in the previous tests. When u is smooth, the smoothness indicators converge
to zero as O(h2) for h → 0. The ratios σP/σJS are approximately one, but show some
deviation for the coarsest stencil of the StencilSect16 test.

When u has a jump, the smoothness indicators remain approximately constant as
h → 0. The ratios σP/σJS are less than but close to one. However, the value of σP is
significantly greater than its value when u is smooth (especially for the finer stencils).

Table 6.2: The smoothness indicators for StencilSect16 and StencilSect6 using the top
element as the target. Shown are the results for the smooth and the two discontinuous
test solutions, on each refinement level.

StencilSect16, top target StencilSect6, top target
u level σJS σP σP/σJS σJS σP σP/σJS

Smooth 0 2.153e-01 2.911e-01 1.352 2.399e-01 2.609e-01 1.088
1 2.806e-02 3.250e-02 1.158 2.918e-02 3.092e-02 1.060
2 5.428e-03 5.772e-03 1.063 5.464e-03 5.623e-03 1.029
3 1.265e-03 1.298e-03 1.026 1.266e-03 1.282e-03 1.013
4 3.118e-04 3.155e-04 1.012 3.118e-04 3.136e-04 1.006

Jump 0 6.604e+03 5.196e+03 0.787 2.263e+01 1.946e+01 0.860
1.0 1 6.620e+03 5.187e+03 0.783 1.999e+01 1.690e+01 0.846

2 6.626e+03 5.185e+03 0.783 1.938e+01 1.629e+01 0.840
3 6.627e+03 5.185e+03 0.782 1.925e+01 1.614e+01 0.838
4 6.628e+03 5.185e+03 0.782 1.922e+01 1.610e+01 0.838

Jump 0 6.408e+01 5.321e+01 0.830 7.496e-01 7.333e-01 0.978
0.1 1 6.555e+01 5.205e+01 0.794 2.957e-01 2.705e-01 0.915

2 6.609e+01 5.189e+01 0.785 2.136e-01 1.864e-01 0.873
3 6.624e+01 5.186e+01 0.783 1.962e-01 1.673e-01 0.853
4 6.627e+01 5.185e+01 0.782 1.926e-01 1.625e-01 0.844

Perhaps it is easier to understand the results in a log-plot. Figure 6.3 shows the
results for a possible WENO application, which might combine the stencil polyno-
mials on StencilPoly19 and its substencils targeting the center element in Figure 6.1.
The bottom sets of data (i.e., the bottom two lines) show the case when u is smooth.
We see a near perfect agreement between the two smoothness indicators in the plots.
Moreover, (1.1), i.e., σ = Dh2 +O(h3), with D given by (3.3) is seen to hold, since
the y-intercepts (or x-intercepts) agree between the tests and the second order rate of
convergence is evidenced by the data following a line of slope −2. The top and mid-
dle sets of data are for the cases where u has jump 1.0 and 0.1, respectively. For either
jump discontinuity, the two indicators remain unchanged as the stencil is refined, i.e.,
σ =O(1), at least beyond refinement level 0. The two smoothness indicators are also
in excellent agreement. Interestingly, some of the results show an inability to detect
the mild shock on refinement level 0, and the results for StencilPoly19-6 show that
σJS does not detect the mild shock, while σP does detect it. Overall, one should expect
WENO schemes using either of the two smoothness indicators to perform similarly.

An Approximation to the Classic Polynomial Smoothness Indicator 17

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-9

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-7a

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-7b

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-6

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-3a

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-3b

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-3c

JS

P

Fig. 6.3: StencilPoly19 and its substencils smoothness indicators for the smooth
(lower line) and the two jump solutions (top line jump 1.0, middle line jump 0.1)
for the center target element.

Similar results appear in Figure 6.4 for StencilSect16 and its substencils. The tar-
get element here is the topmost element in Figure 6.2. We note that neither smooth-
ness indicator detects the mild shock on StencilSect3 at refinement levels 0 and 1.
However, σJS and σP continue to agree in these cases, and (1.1), (3.3) hold.

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

16

lo
g

2

StencilSect16

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

16

lo
g

2

StencilSect10

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

16

lo
g

2

StencilSect6

JS

P

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

16

lo
g

2

StencilSect3

JS

P

Fig. 6.4: StencilSect16 and its substencils smoothness indicators for the smooth
(lower line) and the two jump solutions (top line jump 1.0, middle line jump 0.1)
for the center target element.

The results in Figures 6.3–6.4 are typical of what one observes in the data set. In
Figure 6.5, we show some of the more extreme results. The test using StencilPoly19-9
shows a case where the two smoothness indicators differ in their asymptotic values for
the jump tests. Moreover, there is no detection of the mild shock for refinement levels
0 and 1. The StencilPoly19-7b test actually shows that the smoothness indicators
(which agree) suggest that the case of the mild jump is smoother than the smooth
solution at refinement level 0. The two StencilPoly17 tests again show that the two
smoothness indicators can differ in their asymptotic values for the jump tests. The
first shows σP/σJS < 1 while the second shows σP/σJS > 1.

The test using Stencil3x5Triangles shows some deviation between the two smooth-
ness indicators for the smooth solution on refinement level 0. The Stencil3x3Triangles
test shows the two smoothness indicators differing in their asymptotic values for the
jump cases, but agreeing on the coarser levels. The Stencil5x5 test shows a case where
the classic smoothness indicator considers the mild jump as smoother than the smooth

18 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-9

JS

P

Target (−0.036,−0.023)

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly19-7b

JS

P

Target (−0.039,0.028)

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly17

JS

P

Target (0.034,−0.022)

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

StencilPoly17

JS

P

Target (−0.040,0.033)

0 1 2 3 4

Refinement Level

-20

-10

0

10

20

30

lo
g

2

Stencil3x5Triangles

JS

P

Target (−0.121,0.221)

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

Stencil3x3Triangles

JS

P

Target (0.079,0.021)

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

12

lo
g

2

Stencil5x5

JS

P

Target (−0.080,0.040)

0 1 2 3 4

Refinement Level

-16

-12

-8

-4

0

4

8

lo
g

2

Stencil3x5

JS

P

Target (0.100,0.200)

Fig. 6.5: Smoothness indicators for the smooth (lower line) and the two jump solu-
tions (top line jump 1.0, middle line jump 0.1). These are some of the more extreme
results. The stencil and center of the unrefined target element is given for each plot.

solution, but σP gives the correct ordering. Finally, the test using Stencil3x5 shows a
case where the smoothness indicators have difficulty in detecting the jumps. The mild
jump is not detected by either smoothness indicator on refinement levels 0–3, and the
full jump is not detected on refinement level 0. Moreover, the classic smoothness
indicator fails to detect the jump on refinement level 1.

These results show that the the classic smoothness indicator does not always de-
tect the jumps as well as we might have hoped. However, the collective years of expe-
rience of researchers in WENO methods shows that the classic smoothness indicator
works well in practice. What we have seen here is that the approximate smoothness
indicator σP behaves very similarly to the classic one, and so is in fact a very good
approximation.

6.2 Relative errors.

Let us now show the entire data set in summary form. The results presented are the
maximum (or worst case) of the relative errors between σJS and σP over all possible
target elements in the stencil, i.e.,

relative error = max
E

|σE
JS −σE

P |
σE

JS
,

where σE is the smoothness indicator with target element E in the stencil.
The results for the polygonal stencils StencilPoly19, its substencils, and Sten-

cilPoly17 appear in Table 6.3. The exception is that StencilPoly19-3(a,b,c) has no
error and so is not shown. That there is no error follows from (3.9). When r = 1,
|α| = |β | = |γ| = 1 and so ηα,β = 0 when α ̸= β . There are no cross terms in the
sum, and so σJS = σP.

An Approximation to the Classic Polynomial Smoothness Indicator 19

Table 6.3: Maximum relative errors over all possible target elements for Sten-
cilPoly19 and its substencils and for StencilPoly17. The results for StencilPoly19-
3(a,b,c) are exact (no errors), and so not shown.

level
0
1
2
3
4

StencilPoly19, Jump
0.0 1.0 0.1

0.155 1.433 1.314
0.078 1.513 1.239
0.038 1.532 1.466
0.018 1.536 1.525
0.009 1.538 1.538

StencilPoly19-9, Jump
0.0 1.0 0.1

0.036 1.607 0.404
0.026 1.888 0.368
0.017 1.940 1.095
0.010 1.960 1.638
0.005 1.968 1.847

StencilPoly19-7a, Jump
0.0 1.0 0.1

0.230 0.170 0.079
0.082 0.190 0.158
0.023 0.196 0.185
0.009 0.198 0.188
0.003 0.199 0.195

level
0
1
2
3
4

StencilPoly19-7b, Jump
0.0 1.0 0.1

0.298 0.238 0.263
0.126 0.210 0.293
0.046 0.203 0.210
0.018 0.201 0.203
0.008 0.200 0.201

StencilPoly19-6, Jump
0.0 1.0 0.1

0.135 1.124 0.790
0.078 1.012 1.260
0.037 0.975 1.133
0.017 0.961 1.038
0.008 0.956 0.993

StencilPoly17, Jump
0.0 1.0 0.1

0.115 0.272 0.064
0.071 0.320 0.168
0.029 0.336 0.270
0.013 0.340 0.315
0.007 0.342 0.332

We see low relative errors when u is smooth, at least for the finer levels of refine-
ment. In fact, the convergence is O(h), as we should expect from (1.1) and (3.3).
When u is not smooth, the relative errors do not vary much, indicating that the
smoothness indicators do not change value as the mesh is refined.

The results for the sectorial stencils StencilSect16 and its substencils appear in
Table 6.4, except StencilSect3 is exact and not shown. We see behavior similar to
that for the polygonal stencils.

Table 6.4: Maximum relative errors over all possible target elements for StencilSect16
and its substencils, except StencilSect3.

level
0
1
2
3
4

StencilSect16, Jump
0.0 1.0 0.1

0.352 0.590 0.658
0.158 0.582 0.605
0.063 0.581 0.585
0.026 0.579 0.581
0.012 0.579 0.580

StencilSect10, Jump
0.0 1.0 0.1

0.531 0.216 0.159
0.148 0.231 0.191
0.051 0.234 0.225
0.020 0.235 0.233
0.009 0.235 0.235

StencilSect6, Jump
0.0 1.0 0.1

0.115 0.272 0.064
0.071 0.320 0.168
0.029 0.336 0.270
0.013 0.340 0.315
0.007 0.342 0.332

The results for the rectangular and crosshatched triangular stencils appear in Ta-
bles 6.5–6.6. These results are consistent with the previous. However, the triangular
meshes show more error for the coarsest stencils.

6.3 Comparison for smooth solutions.

Both smoothness indicators have a large and nearly constant value as h → 0 when
there is a jump in the solution. Although the value of σJS and σP may not agree,
the jump has been identified and WENO methods should work well with either the
classic smoothness indicator or its approximation.

20 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

Table 6.5: Maximum relative errors over all possible target elements for the rectan-
gular stencils.

level
0
1
2
3
4

Stencil3x3, Jump
0.0 1.0 0.1

0.065 0.632 0.109
0.082 0.991 0.236
0.078 0.239 0.423
0.050 0.054 0.315
0.026 0.013 0.114

Stencil3x5, Jump
0.0 1.0 0.1

0.112 0.675 0.157
0.139 1.021 0.298
0.128 0.251 0.471
0.079 0.057 0.319
0.041 0.014 0.117

Stencil5x5, Jump
0.0 1.0 0.1

0.476 0.684 1.210
0.207 0.452 1.070
0.098 0.393 0.554
0.046 0.379 0.418
0.022 0.375 0.385

Table 6.6: Maximum relative errors over all possible target elements for the triangular
stencils.

level
0
1
2
3
4

Stencil3x3tri, Jump
0.0 1.0 0.1

0.510 0.633 0.458
0.249 0.703 0.899
0.115 0.636 0.821
0.056 0.615 0.668
0.028 0.610 0.623

Stencil3x5tri, Jump
0.0 1.0 0.1

1.087 0.036 0.054
0.418 0.033 0.034
0.190 0.033 0.033
0.090 0.033 0.033
0.042 0.033 0.033

Stencil5x5tri, Jump
0.0 1.0 0.1

0.474 1.550 1.550
0.210 1.550 1.550
0.098 1.550 1.550
0.046 1.550 1.550
0.022 1.550 1.550

In this section we concentrate on the way the smoothness indicators approximate
a smooth solution by plotting the ratio σP/σJS versus the refinement level. Shown in
Figures 6.6–6.7 are results for every possible target element.

0 1 2 3 4

Refinement Level

0.8

0.9

1

1.1

1.2

1.3

P
/

J
S

StencilPoly19

0 1 2 3 4

Refinement Level

0.8

0.9

1

1.1

1.2

1.3

P
/

J
S

StencilPoly19-9

0 1 2 3 4

Refinement Level

0.8

0.9

1

1.1

1.2

1.3

P
/

J
S

StencilPoly19-7a

0 1 2 3 4

Refinement Level

0.8

0.9

1

1.1

1.2

1.3

P
/

J
S

StencilPoly19-7b

0 1 2 3 4

Refinement Level

0.8

0.9

1

1.1

1.2

1.3

P
/

J
S

StencilPoly19-6

0 1 2 3 4

Refinement Level

0.7

1

1.3

1.6

P
/

J
S

StencilSect16

0 1 2 3 4

Refinement Level

0.7

1

1.3

1.6

P
/

J
S

StencilSect10

0 1 2 3 4

Refinement Level

0.7

1

1.3

1.6

P
/

J
S

StencilSect6

Fig. 6.6: StencilPoly19 and StencilSect16 and their substencils (except the linear
polynomial substencils). Smoothness indicator ratio σP/σJS plotted versus the refine-
ment level for the smooth solution (no jump). Shown are results for every possible
target element.

Overall, the results show that there is some scatter in the ratios, but only for
coarser levels of refinement.

An Approximation to the Classic Polynomial Smoothness Indicator 21

0 1 2 3 4

Refinement Level

0.8

1

1.2

1.4

1.6

1.8

2

P
/

J
S

Stencil3x3

0 1 2 3 4

Refinement Level

0.8

1

1.2

1.4

1.6

1.8

2

P
/

J
S

Stencil3x5

0 1 2 3 4

Refinement Level

0.8

1

1.2

1.4

1.6

1.8

2

P
/

J
S

Stencil5x5

0 1 2 3 4

Refinement Level

0.8

1

1.2

1.4

1.6

1.8

2

P
/

J
S

Stencil3x3Triangles

0 1 2 3 4

Refinement Level

0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

P
/

J
S

Stencil3x5Triangles

0 1 2 3 4

Refinement Level

0.8

1

1.2

1.4

1.6

1.8

2

P
/

J
S

Stencil5x5Triangles

0 1 2 3 4

Refinement Level

0.8

0.9

1

1.1

1.2

1.3

P
/

J
S

StencilPoly17

Fig. 6.7: Rectangular and triangular stencils (left) and StencilPoly17 (right). Smooth-
ness indicator ratio σP/σJS plotted versus the refinement level for the smooth solution
(no jump). Shown are results for every possible target element.

6.4 Comparison of the run-time.

We close our direct comparison of the two smoothness indicators by giving as as-
sessment of the computational costs. In Table 6.7, we report the average CPU time
of the classic smoothness indicator, implemented using base polynomials (σJS-base
computed using (3.7)) and polynomial coefficients (σJS-coef computed using (3.10),
but in symmetric form), and its approximation (σP computed using (4.2)). We also
show the speedup (ratio of the time for the minimum of the two classic smoothness
indicator times versus the polynomial smoothness indicator time). We report these
numbers for each of our stencils. Each number is the average of 10 runs. Each run to-
tals the time for 3 evaluations (no, full, and mild jumps), 5 levels of mesh refinement,
and the use of each stencil element as a target element.

Except for the evaluation of the stencils of 3 elements, the classic smoothness
indicator is more efficiently computed using ηα,β and the polynomial coefficients.
We find a significant improvement in CPU time with our new smoothness indicator
for all but one of the tests (where it is equivalent to evaluating σJS using the base
polynomials). Overall, the cost of computing our new smoothness indicator based on
the square of the polynomial coefficients is on average almost 6 (5.771) times faster
than the classic smoothness indicator in these tests. Moreover, if we omit the results
for the linear polynomials, the average increases to about 7 (6.926).

To put the timing results into context, the tests of this section and the next one are
run on an 8 core Apple Mac mini with an M2 chip (maximum clock speed of 3.495
GHz). The code itself is written in C++ and compiled using the GNU compiler with
optimization level 2.

22 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

Table 6.7: CPU time for computing the smoothness indicators (microseconds).

Number Polynomial Time for Time for Time for
Stencil of elements degree σJS-base σJS-coef σP Speedup

Poly17 17 4 0.537 0.419 0.051 8.216

Poly19 19 4 0.664 0.421 0.054 7.796
Poly19-9 9 2 0.264 0.121 0.040 3.025
Poly19-7a 7 2 0.241 0.184 0.053 3.472
Poly19-7b 7 2 0.249 0.194 0.057 3.404
Poly19-6 6 2 0.223 0.226 0.066 3.379
Poly19-3a 3 1 0.079 0.082 0.050 1.580
Poly19-3b 3 1 0.067 0.068 0.041 1.634
Poly19-3c 3 1 0.079 0.083 0.079 1.000

Sect16 16 4 0.484 0.425 0.054 7.870
Sect10 10 3 0.371 0.365 0.072 5.069
Sect6 6 2 0.227 0.226 0.070 3.229
Sect3 3 1 0.077 0.081 0.050 1.540

3x3 9 2 0.353 0.169 0.054 3.130
3x5 15 2 0.600 0.107 0.031 3.452
5x5 25 4 1.126 0.414 0.050 8.280

3x3Triangles 18 4 0.599 0.424 0.052 8.154
3x5Triangles 30 5 1.601 0.796 0.072 11.056
5x5Triangles 50 8 5.922 4.873 0.200 24.365

7 Application to Hyperbolic Conservation Laws

We consider the computational efficiency of the smoothness indicators when applied
to solving scalar conservation laws in two space dimensions, i.e., to{

ut(x, t)+∇ · f(u;x, t) = 0, t > 0, x ∈ Ω ,

u(x,0) = u0(x), x ∈ Ω ,
(7.1)

where the domain Ω ⊂ R2, u : Ω × (0,∞) → R is the solution, and f : R× Ω ×
(0,∞) → R2 is the flux function. For simplicity, we use periodic boundary condi-
tions. We choose three relatively standard test problems. We give the computational
time required to compute the solutions, with the only difference in the runs being
the choice of smoothness indicator and whether an explicit or implicit time stepping
is used. We also show that the two smoothness indicators give comparable results.
Recall that the tests are run on an Apple Mac mini with an M2 chip.

Our stencils are defined by rings (see [2,31,22,32,4]). For each target element E
in the mesh, our ML-WENO reconstructions uses a large stencil which is a ring 1.5
stencil. It is the union of E and every element sharing an edge or vertex with E, and
every element sharing an edge with these elements. We also use many ring 1 small
stencils. A small stencil about element F consists of the union of F and every element
sharing an edge or vertex with F . The reconstruction for E uses the large stencil about
E and every small stencil that contains E.

An Approximation to the Classic Polynomial Smoothness Indicator 23

In the tests, the multilevel WENO (ML-WENO) reconstruction [4] is used be-
cause of its flexibility in solving problems in multiple space dimensions. The actual
number of elements in each stencil varies depending on the mesh. As an illustra-
tion, a uniform mesh of hexagons would have a ring 1.5 large stencil of 19 cells, and
the ring 1 small stencils would each have 7 cells. A uniform mesh of quadrilaterals
would have a ring 1.5 large stencil of 21 cells, and the ring 1 small stencils would
each have 9 cells. These large and small stencils would be expected to support stencil
polynomials of degree 4 and 2, respectively. In the notation of WENO schemes, we
would denote these as ML-WENO(5,3) reconstructions. However, as discussed in [4],
a lower order approximation may be obtained for some stencils, either because they
are actually smaller than expected, or they simply do not support stencil polynomi-
als that give accurate approximation. Hence, technically, we use ML-WENO(5,4,3,2)
reconstructions in these tests, although the reconstructions are ML-WENO(5,3) over
most of the domain.

To be specific about the computations performed, we define the ML-WENO re-
construction R(x) for the target element E. For its jth stencil, denote by Pj(x) the
stencil polynomial of degree r j, σ j the smoothness indicator, and ω̃ j the nonlinear
weight. Then

ω̂ j =
1

(σ j +0.01h2)r j
, ω̃ j =

ω̂ j

∑k ω̂k
, R(x) = ∑

j
ω̃ j Pj(x). (7.2)

As shown in [4], for all x ∈ E,

|u(x)−R(x)| ≤Chrmax , (7.3)

where rmax = maxℓ{rℓ : u is smooth on the ℓth stencil}. That is, rmax is the highest
order of accuracy obtained by stencil polynomials for which their stencils do not
contain a shock in the solution.

Timing results would be similar using multilevel reconstructions of type WENO
with Adaptive Order (WENO-AO) [8,5,7], and also using reconstructions of type
Central WENO (CWENO), [25], which is a two-level WENO-AO reconstruction. We
use the classic weighting procedure [20], but other weightings such as Z-weighting
[12] would give similar results.

Time integration is accomplished using a third order, strong stability preserving
Runge-Kutta method. We give results for both an explicit method, using the stan-
dard SSP3 Runge-Kutta time integrator, and an implicit method, using the standard
DirkSSP23 (diagonally implicit 2 stage, third order accurate) Runge-Kutta time inte-
grator.

7.1 Linear Advection

The first test problem is due to LeVeque [24] and uses the linear flux function f(x,y)=(
(0.5− y)u,(x−0.5)u

)
, which gives a rotating flow on Ω = (0,1)2. The initial con-

24 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

dition consists of a slotted disk, a cone, and a smooth hump, defined by

r0 = 0.15, rH =
√

(x−0.25)2 +(y−0.50)2,

rC =
√

(x−0.50)2 +(y−0.25)2, rD =
√
(x−0.50)2 +(y−0.75)2

u0(x,y) = (rD ≤ r0)
[
1− (y < 0.75)(0.45 < x)(x < 0.55)

]
+(rC ≤ r0)(1− rC/r0)+(rH ≤ r0)0.25(1+ cos(πrH/r0)),

(7.4)

wherein we use the convention that a true logical comparison evaluates to 1, and a
false one evaluates to 0. This problem is extremely difficult to solve accurately, due
especially to the sharp contact discontinuities of the slotted disk.

A polygonal mesh is used that has 18,858 vertices and 10,000 elements. Some
elements have as many as 10 edges. It can be seen in [4]. The solution is computed
up to the time of one revolution, which is t = 2π . The explicit method, SSP3, uses
2080 timesteps (∆ t ≈ 0.003021), for a CFL number close to 1. The implicit method,
DirkSSP23, uses a nominal 520 timesteps (∆ t ≈ 0.012083), although the time step
is cut when Newton’s method has difficulty solving the nonlinear Runge-Kutta equa-
tions. This happens only rarely, so the CFL number is close to 4 most of the time.

Table 7.1: Timings for the rotating flow, linear advection problem. Given are the
CPU total run time, the time for the time steps themselves, and the time to compute
the smoothness indicators, for both explicit and implicit timestepping.

SSP3, 2080 steps DirkSSP23, 520 steps
time (sec) time (sec)

total time steps σ total time steps σ

σJS-base 453.90 380.53 98.07 1665.50 1592.18 60.01
σJS-coef 350.06 344.11 60.94 2358.25 2352.27 115.50

σP 302.97 299.23 13.83 1474.12 1470.37 15.76

The timing results appear in Table 7.1. For the explicit method, the use of σP
is clearly more efficient than using σJS-coef (σJS computed using the polynomial
coefficients), and both these are much more efficient than using σJS-base (σJS com-
puted using the base polynomials). For the implicit method, the use of σP is more
efficient than using σJS-base, and both these are much more efficient than using σJS-
coef. These observations are consistent with the computational cost estimates of Sec-
tions 5.1–5.2.

The exact solution is known for this problem, since it returns to the initial condi-
tion after one revolution. The discrete L1

h-errors and L∞
h -errors are given in Table 7.2

(σJS-base and σJS-coef give the same results up to rounding error). Interestingly, σP
gives a solution that is a bit more accurate. The norm of the difference between
the discrete solutions is also given. These show that there is very little difference
in the discrete solutions, and significantly less than the approximation error. That is,
it makes little difference whether σJS or σP is used in the computations in terms of
the quality of the solution.

The final solutions for the four runs are depicted in Figure 7.1.

An Approximation to the Classic Polynomial Smoothness Indicator 25

Table 7.2: Assessment of the errors for the rotating flow, linear advection problem.

explicit implicit
L1

h-norm L∞
h -norm L1

h-norm L∞
h -norm

Solution error using σJS 1.97e-02 6.45e-01 1.97e-02 6.45e-01
Solution error using σP 1.87e-02 6.42e-01 1.87e-02 6.42e-01

Difference of the discrete solutions 2.15e-03 1.34e-01 2.15e-03 1.34e-01

0 0.2 0.4 0.6 0.8 1

σJS, explicit σP, explicit σJS, implicit σP, implicit

Fig. 7.1: Final solution for the rotating flow, linear advection problem.

7.2 Burgers Equation

The second test problem uses the nonlinear Burgers flux f(u) = (u2/2,u2/2) on the
domain Ω = (0,1)2. The smooth initial condition is u0(x,y) = sin2(πx) sin2(πy). In
this test, shocks form in the solution.

A 100×100 uniform mesh is distorted by moving the internal vertices randomly
up to a factor of 0.2 times the unperturbed mesh spacing. Because of the regularity
of the mesh, the reconstructions are of type ML-WENO(5,3). Numerical solutions
are computed to time t = 0.4, well after the shock has formed. The explicit timestep-
ping uses 200 steps at ∆ t = 0.002, for a CFL number close to 1, and the implicit
timestepping uses 40 steps at ∆ t = 0.01, for a CFL number close to 5.

The timing results appear in Table 7.3. They are fully consistent with the theoret-
ical estimates of Sections 5.1–5.2.

Table 7.3: Timings for the Burgers problem. Given are the CPU total run time, the
time for the time steps themselves, and the time to compute the smoothness indica-
tors, for both explicit and implicit timestepping.

SSP3, 200 steps DirkSSP23, 40 steps
time (sec) time (sec)

total time steps σ total time steps σ

σJS-base 74.42 31.47 13.41 132.82 89.86 6.28
σJS-coef 27.68 24.75 6.66 96.71 93.76 10.05

σP 21.68 19.93 1.53 87.54 85.84 1.49

The norm of the difference between the discrete solutions is given in Table 7.4.
The results on the left show that there is very little difference between the discrete

26 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

solutions whether σJS or σP is used in the computations, whichever timestepping is
used. Moreover, these differences are comparable to other discretization errors. As
seen on the right of Table 7.4, similar values are observed for the difference between
using explicit and implicit timestepping, for a fixed choice of σ .

Table 7.4: Solution differences for the Burgers problem. Comparisons are made be-
tween the solutions computed using σJS and σP for explicit and implicit timestepping
(results on the left), and comparisons between the explicit and implicit timestepping
for the given smoothness indicator (results on the right).

quantity L1
h-norm L∞

h -norm
∥uExplicit

σJS −uExplicit
σP ∥ 9.62e-05 2.58e-02

∥uImplicit
σJS −uImplicit

σP ∥ 9.85e-05 2.61e-02

quantity L1
h-norm L∞

h -norm
∥uExplicit

σJS −uImplicit
σJS ∥ 2.88e-05 1.02e-02

∥uExplicit
σP −uImplicit

σP ∥ 2.98e-05 1.02e-02

The final solutions for the four runs are depicted in Figure 7.2. No discernable
difference appears.

0 0.2 0.4 0.6 0.8 1

σJS, explicit σP, explicit σJS, implicit σP, implicit

Fig. 7.2: Final solution for the Burgers problem.

7.3 Buckley-Leverett Flux with Gravity

For the final test problem, we consider the nonconvex Buckley-Leverett flux, modi-

fied to incorporate gravity, so f(u) =
u2

u2 +(1−u)2

(
1

1−5(1−u)2

)
. In this test [21,

13,15], the domain Ω = [−1.5,1.5]2 and

u0(x,y) =

{
1 if x2 + y2 ≤ 0.5,
0 otherwise.

(7.5)

Shocks and rarefactions form and propagate across the domain.
Time is advanced to t = 0.5. For the explicit time stepping, we used a 200×200

element square mesh and 250 time steps ∆ t = 0.002, which gives CFL number 1. For

An Approximation to the Classic Polynomial Smoothness Indicator 27

the implicit time stepping, we used a 120× 120 element square mesh and 50 time
steps ∆ t = 0.01, which gives CFL number 3. These meshes give ML-WENO(5,3)
reconstructions.

The timing results appear in Table 7.5. They are fully consistent with the theoret-
ical estimates of Sections 5.1–5.2.

Table 7.5: Timings for the Buckley-Leverett with gravity problem. Given are the CPU
total run time, the time for the time steps themselves, and the time to compute the
smoothness indicators, for both explicit and implicit timestepping.

SSP3, 250 steps, 2002 mesh DirkSSP23, 50 steps, 1202 mesh
time (sec) time (sec)

total time steps σ total time steps σ

σJS-base 373.68 194.39 69.49 313.78 252.20 15.45
σJS-coef 169.84 156.13 33.79 256.49 252.44 23.79

σP 140.50 131.41 7.76 237.10 234.77 3.59

The norm of the difference between the discrete solutions is given in Table 7.6.
There is only a small difference between the discrete solutions using σJS or σP,
whether explicit or implicit timestepping is used.

Table 7.6: Solution differences for the Buckley-Leverett with gravity problem, com-
puted using σJS and σP, for both explicit and implicit timestepping.

quantity L1
h-norm L∞

h -norm
∥uExplicit

σJS −uExplicit
σP ∥ 4.10e-03 8.85e-02

∥uImplicit
σJS −uImplicit

σP ∥ 6.30e-03 7.12e-02

The final solutions for the four runs are depicted in Figure 7.3. No discernable
difference appears.

0 0.2 0.4 0.6 0.8 1

σJS, explicit σP, explicit σJS, implicit σP, implicit

Fig. 7.3: Final solution for the Buckley-Leverett with gravity problem.

28 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

8 Summary and Conclusions

The classic smoothness indicator σJS can be implemented using either the base poly-
nomials (3.4) or directly using the polynomial coefficients (3.8). Both require a dou-
ble sum over either the elements in the stencil of the polynomial coefficients. The
latter implementation was exploited to define an approximate smoothness indicator
σP (4.2), described as the smoothness indicator based on the polynomial coefficients
squared, requiring only a single sum over the coefficients.

The smoothness indicators were proven in Lemmas 3.1 and 4.1 to satisfy the ap-
propriate asymptotic relation (1.1) when the solution is smooth. Moreover, the con-
stant D was shown to be fixed according to (3.3).

Theoretical estimates were presented for the full set of computational costs re-
quired in implementation for solving temporal partial differential equations in mul-
tiple space dimensions. For explicit timestepping methods, computations based on
first computing the polynomial coefficients and then using σP was clearly the most
efficient, followed by computing the polynomial coefficients and using σJS computed
using these coefficients. A distant third was the case of computing using σJS from the
base polynomials.

Theoretical computational cost estimates for implicit methods, however, showed
a different trend. It was not completely clear which was most efficient, using σP or
σJS computed from the base polynomials. The least efficient was the case of using
σJS computed from the polynomial coefficients.

A large number of computational tests involving single stencils were preformed.
Analysis of the results were perhaps complicated by the fact that σJS does not always
detect a shock as well as we might have wished, at least for coarser stencil meshes.
Nevertheless, the test results showed that σP is a remarkably accurate approximation
of σJS, especially for finer stencil meshes. The two smoothness indicators track each
other quite well in the case where the test solution is smooth (at least when the mesh
is not too coarse). In the cases where the test solution has a full jump discontinuity
of 1.0 and a mild jump discontinuity of 0.1, the two smoothness indicators did not
always agree closely. However, they both had large values and remained essentially
constant under stencil mesh refinement, as required by the asymptotics (1.1). In terms
of computational time, σP was significantly more efficient to compute.

Application was made to solving hyperbolic conservation laws for three standard
test problems using both explicit and implicit timestepping. The CPU times for the
runs agreed with the theoretical cost estimates. In fact, we found that in these tests,
computing the polynomial coefficients and then using σP was always the most effi-
cient, and sometimes significantly so, whether using explicit and implicit timestep-
ping. The quality of the solutions was also assessed, and it was seen that results using
σJS or σP were very comparable.

We conclude that σP is a good approximation to σJS in isolation. Within WENO
schemes, these two smoothness indicators perform similarly in terms of the quality
of the solution. However, σP is significantly more computationally efficient.

An Approximation to the Classic Polynomial Smoothness Indicator 29

A Some Remarks on Horner’s Method for Evaluation of a Polynomial.

Perhaps Horner’s method is the most efficient algorithm to compute the value of
a polynomial and possibly some or all of its derivatives. Consider the polynomial
p(t) = ∑

n
i=0 ai t i in one dimension.

Algorithm A.1 Horner’s method for evaluation of a polynomial
Input x ∈ R, polynomial p(t) = ∑

n
i=0 ai t i

q = an
for i = n−1,n−2, ...,0 do

q = ai +qx
end for
Output q = p(x)

The algorithm takes only the coefficients as input, so the memory transfer require-
ments are small. The number of floating point operations is given by 2n.

Generalization to higher order derivatives is straightforward, and given in Algo-
rithm A.2 (see also [11,10]).

Algorithm A.2 Horner’s method for evaluation of a polynomial and all its deriva-
tives

Input x ∈ R, polynomial p(t) = ∑
n
i=0 ai t i

P(d) = 0 for d = 0,1, ...,n
for i = n,n−1, ...,0 do

for d = n− i,n− i−1, ...,1 do
P(d) = P(d)x+d P(d −1)

end for
P(0) = P(0)x+ai

end for
Output P(d) = p(d)(x) for d = 0,1, ...,n

The number of floating point operations is given by

n

∑
i=0

(n−i

∑
i=0

3+2
)
=

n

∑
i=0

(
3(n− i)+2

)
=
(3

2 n+2
)
(n+1). (A.1)

For completeness, we provide a proof that indeed P(d) = p(d)(x).

Proof Proceed by induction on n. The case n = 0 is trivial, giving only P(0) = a0 =
p(x).

If the result holds for n− 1, one can show that it holds for n ≥ 1 using the fac-
torization p(t) = q(t) t +a0, where q(t) = ∑

n−1
i=0 ai+1 t i. The algorithm applied to q(t)

results in the derivatives P(d) = q(d)(x). For clarity, we rewrite the algorithm for
q ∈ Pn−1, with a change in index j = i+1 as follows.

P(d) = 0 for d = 0,1, ...,n−1
for j = n, ...,1 do

30 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

for d = n− j,n− j−1, ...,1 do
P(d) = P(d)x+d P(d −1)

end for
P(0) = P(0)x+a j

end for
To treat p(x), the algorithm continues by setting P(n) = 0 and taking j down to 0.
The extra loop for j = 0 results in P(0) = p(x) by the usual Horner’s algorithm and

P(d) = P(d)x+d P(d −1) = q(d)(x)x+d q(d−1)(x) = p(d)(x),

for d = 1, ...,n. ⊓⊔

Recursion over the variables can be used to handle polynomials in d > 1 dimen-
sions. Specifically, for

p(x) = ∑
|α|≤n

cα xα , (A.2)

we rearrange the sum in terms of the last component. Let α = (α ′,αd) and x =
(x′,xd). Then

p(x) =
n

∑
αd=0

(
∑

|α ′|≤n
cα(x′)α ′

)
xαd

d . (A.3)

and recursion commences on the inner sum.
The operation counts can be computed recursively as well. Let F(n,d) denote the

number of FLOPs to compute a polynomial (and possibly its derivatives) of degree n
in d dimensions. Then

F(n,d) = F(n,1)+
n

∑
k=0

F(k,d −1). (A.4)

For polynomial evaluation alone, F(n,1) = 2n. Induction and the Hockey-Stick com-
binatorial identity can be used to show that

F(n,d) = 2
(
N(n,d)−1

)
, (A.5)

where N(n,d) =
(

n+d
d

)
is the number of coefficients.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

An Approximation to the Classic Polynomial Smoothness Indicator 31

References

1. Abedian, R., Adibi, H., Dehghan, M.: A high-order weighted essentially non-oscillatory (WENO)
finite difference scheme for nonlinear degenerate parabolic equations. Computer Physics Communi-
cations 184, 1874–1888 (2013)

2. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implemen-
tation. J. Comput. Phys. 114, 45–58 (1994)

3. Aràndiga, F., Baeza, A., Belda, A.M., Mulet, P.: Analysis of WENO schemes for full and global
accuracy. SIAM J. Numer. Anal. 49(2), 893–915 (2011)

4. Arbogast, T., Huang, C.S., Tian, C.: A finite volume multilevel WENO scheme for multidimen-
sional scalar conservation laws. Comput. Methods Appl. Mech. Engrg. 421(116818) (2024). DOI
10.1016/j.cma.2024.116818

5. Arbogast, T., Huang, C.S., Zhao, X.: Accuracy of WENO and adaptive order WENO reconstruc-
tions for solving conservation laws. SIAM J. Numer. Anal. 56(3), 1818–1847 (2018). DOI
10.1137/17M1154758

6. Arbogast, T., Huang, C.S., Zhao, X.: Finite volume WENO schemes for nonlinear parabolic problems
with degenerate diffusion on non-uniform meshes. J. Comput. Phys. 399(108921) (2019). DOI
10.1016/j.jcp.2019.108921

7. Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes
with adaptive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020). DOI
10.1016/j.jcp.2019.109062

8. Balsara, D.S., Garain, S., Shu, C.W.: An efficient class of WENO schemes with adaptive order. J.
Comput. Phys. 326, 780–804 (2016)

9. Borges, R., Carmona, M., Costa, B., Don, W.: An improved weighted essentially non-oscillatory
scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

10. Burrus, C.S., Fox, J.W., Sitton, G.A., Treitel, S.: Horner’s method for evaluating and deflating poly-
nomials. DSP Software Notes 26, Rice University (2003)

11. Carnicer, J., Gasca, M.: Evaluation of multivariate polynomials and their derivatives. Math. Comp.
54(189), 231–243 (1990)

12. Castro, M., Costa, B., Don, W.: High order weighted essentially non-oscillatory WENO-Z schemes
for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

13. Christov, I., Popov, B.: New non-oscillatory central schemes on unstructured triangulations for hyper-
bolic systems of conservation laws. J. Computational Physics 227, 5736–5757 (2008)

14. Friedrich, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on
unstructured grids. J. Comput. Phys. 144, 194–212 (1998)

15. Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear con-
servation laws. Journal of Computational Physics 230, 4248–4267 (2011). DOI
https://doi.org/10.1016/j.jcp.2010.11.043

16. Harten, A., Chakravarthy, S.R.: Multi-dimensional ENO schemes for general geometries. Tech. Rep.
91–76, Institute for Computer Applications in Science and Engineering, NASA Langley Research
Center, Hampton, Virginia (1991). Contract No. NAS1-18605

17. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes I. SIAM J. Numer. Anal.
24(2), 279–309 (1987)

18. Huang, C., Chen, L.L.: A simple smoothness indicator for the WENO scheme with adaptive order. J.
Comput. Phys. 352, 498–515 (2018)

19. Huang, C.S., Arbogast, T., Tian, C.: Multidimensional WENO-AO reconstructions using a simplified
smoothness indicator and applications to conservation laws. J. Sci. Comput. 97(8) (2023). DOI
10.1007/s10915-023-02319-x

20. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126,
202–228 (1996)

21. Karlsen, K.H., Brusdal, K., Dahle, H., Evje, S., Lie, K.A.: The corrected operator splitting approach
applied to a nonlinear advection-diffusion problem. Comput. Methods Appl. Mech. Eng. 167(3–4),
239–260 (1998)

22. Kas̈er, M., Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. Jour-
nal of Computational Physics 205, 486–508 (2005)

23. Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO
scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018)

32 T. Arbogast, C.-S. Huang, C. Tian, and G. M. Gray

24. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM.
J. Numer. Anal. 33(2), 627–665 (1996)

25. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws.
Math. Model. Numer. Anal. 33, 547–571 (1999)

26. Liu, H., Jiao, X.: WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for
finite volume methods on unstructured meshes. J. Comput. Phys. 314, 749–773 (2016)

27. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115,
200–212 (1994)

28. Liu, Y., Shu, C.W., Zhang, M.: High order finite difference WENO schemes for nonlinear degenerate
parabolic equations. SIAM Journal on Scientific Computing 33(2), 939–965 (2011)

29. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyper-
bolic conservation laws. Tech. Rep. ICASE Report no. 97–65, National Aeronautics and Space Ad-
ministration, Langley Research Center, Hampton, Virginia (1997)

30. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing
schemes. J. Comput. Phys. 77, 439–471 (1988)

31. Sonar, T.: On the construction of essentially non-oscillatory finite volume approximations to hyper-
bolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection.
Comput. Methods Appl. Mech. Engrg. 140, 157–181 (1997)

32. Tsoutsanis, P.: Stencil selection algorithms for WENO schemes on unstructured meshes. J. Comput.
Phys. 475, 108840 (2023)

