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A B S T R A C T

We develop a general framework for solving scalar conservation laws using finite volume
weighted essentially non oscillatory (WENO) techniques on general computational meshes in
multiple space dimensions. We address two fundamental issues. First, polynomial approxima-
tions on general stencils of mesh cells can be of poor quality, even for what appear to be
geometrically nice stencils. We present a robust and efficient procedure for producing accurate
stencil polynomial approximations. Bad stencils are identified by considering the condition
number of the linear system used to define the stencil polynomial. Second, we develop a novel
and efficient finite volume, multilevel WENO (ML-WENO) reconstruction that is flexible enough
to be applied effectively in a variety of settings and with essentially any reasonable set of
stencils. It combines stencil polynomial approximations of various degrees with a nonlinear
weighting biasing the reconstruction away from both inaccurate oscillatory polynomials of high
degree (i.e., those crossing a shock or steep front) and smooth polynomials of low degree,
thereby selecting the smooth polynomial(s) of maximal degree of approximation. We conduct
numerical tests showing poor quality mesh stencils, the behavior of the reconstruction for both
smooth and discontinuous functions, and applications to scalar conservation laws.

1. Introduction

We consider numerical schemes for solving scalar hyperbolic conservation laws

𝑢𝑡(𝐱, 𝑡) + ∇ ⋅ 𝐟 (𝑢; 𝐱, 𝑡) = 0, 𝑡 > 0, 𝐱 ∈ 𝛺, (1)

where the domain 𝛺 ⊂ R𝑑 , 𝑑 ≥ 1 is an integer, 𝑢 ∶ 𝛺 × (0,∞) → R, and 𝐟 ∶ R × 𝛺 × (0,∞) → R𝑑 . We are interested in the case of
multiple space dimensions, 𝑑 ≥ 2.

Weighted essentially non-oscillatory (WENO) schemes for solving (1) in one space dimension [1–3] have proven quite effective in
practice; moreover, they work well on rectangular meshes for 𝑑 ≥ 2. Finite difference WENO schemes are particularly problematic in
multiple space dimensions, so we concentrate on finite volume schemes on possibly unstructured meshes. In this paper, we address
two challenging issues that make finite volume WENO schemes difficult to implement effectively on unstructured meshes.
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First, it is a challenge to define good mesh stencils in multiple space dimensions (see, e.g., [4–9]). Given a stencil of 𝐾 cells,
he cell averages of the stencil polynomial 𝑃 should agree with the cell averages of the solution 𝑢. If 𝑃 has degree 𝑟 − 1, it has

𝑁𝑟 =
(

𝑟 − 1 + 𝑑
𝑑

)

coefficients, which may not match 𝐾. This can be resolved by using a least squares fitting technique [4]. It is

known that the approximation error is of order 𝑟 in the mesh spacing ℎ when the solution is smooth [10]; that is, that

|𝑃 (𝐱) − 𝑢(𝐱)| ≤ 𝐶ℎ𝑟, (2)

for some constant 𝐶. Even though it is well defined, the stencil polynomial may not give a good approximation of the solution 𝑢,
since 𝐶 can be large.

In this paper, we do not discuss the best strategy for defining stencils; rather, given a stencil, we determine the degree of the
polynomial that should be used on the stencil. The strategy we propose here is to attempt to use a polynomial of maximal degree
𝑟−1 on the stencil, so 𝑁𝑟 ≤ 𝐾 < 𝑁𝑟+1. We will present a theoretical analysis resulting in a simple criterion (see (10) below) involving
he condition number of the least squares fitting technique to determine whether the polynomial provides a good approximation of
he solution 𝑢. If not, we reduce 𝑟 by 1 and try again. At worst, the strategy will terminate with a constant polynomial.

A second challenge is to reconstruct the solution in a flexible way. We would like to be able to use any number and arrangement
f stencils, and to allow the stencil polynomials to be of any degree, including constant polynomials. For example, constants would
e especially useful in solving (1) near the boundary of the domain, 𝜕𝛺, when a shock or steep front is entering into the domain,
nd only a single layer of mesh cells provides accurate approximation of the solution (see, e.g., [11]). Conversely, near the outflow
oundaries it would be useful to include additional high order stencil polynomials.

Classic WENO reconstructions [12] require special linear weights; consequently, they are too inflexible to be used on unstructured
eshes. WENO reconstructions with adaptive order (WENO-AO), also called central or compact WENO schemes (CWENO) [13–
6] were developed to allow arbitrary weighting, and these naturally extend to multiple space dimensions. When one combines
olynomials of exactly two different degrees, the reconstructions are considered to be two-level. WENO-AO reconstructions are
aturally two-level, and in fact require a single large stencil supporting a high degree polynomial and many small stencils supporting
olynomials of the same low degree. Extension to multiple levels (i.e., reconstructions using polynomials of various degrees) has
een defined [14,15], but in a recursive manner that requires a hierarchical set of stencils.

There is by now an extensive literature on multi-resolution WENO techniques. These seem to have originated in the work of
arten [17–19], and they were later adapted to WENO schemes (see, e.g., [20–26]). Like WENO-AO, these methods require a
ierarchical set of stencils that can be described as a nested set of central spatial stencils. As stated in [24], ‘‘Generally speaking, the
ain objective of using the multi-resolution technique is to focus the computational effort mainly in the small regions containing

trong discontinuities’’. Our objective is quite different. We desire to define a flexible reconstruction so that it can be applied
ffectively in a variety of settings and with essentially any reasonable set of stencils.

In recent work of Semplice and Visconti [27], an adaptive order CWENO-type reconstruction is defined in one space dimension.
n their approach, the stencils do not need to be hierarchically arranged. They envision a three level reconstruction with a large
‘central’’ stencil supporting a high degree polynomial, many stencil polynomials of intermediate degree, and some low degree
olynomials, which may simply be the constant polynomial. The low order polynomials use linear weights that the authors call
nfinitesimally small, meaning that they are proportional to the mesh spacing to an appropriate power.

In this paper, we develop novel multilevel WENO (ML-WENO) reconstructions suitable for use in multiple space dimensions
sing unstructured computational meshes. Our multilevel reconstruction seamlessly weights the stencil polynomial approximations
f various degrees (including constant polynomials) to bias away from oscillatory polynomials and smooth polynomials of low
egree, thereby selecting the smooth polynomial(s) of maximal degree of approximation.

The paper is organized as follows. In the next section, we discuss the selection of stencil polynomials and their approximation
roperties. In Section 3, we define our ML-WENO reconstruction and explore its theoretical properties. Section 4 is devoted to a
omputational investigation of the ML-WENO reconstruction in isolation. Section 5 shows the performance of the stencil selection
rocedure and the ML-WENO reconstructions when applied to solving scalar conservation laws with either periodic or nonperiodic
oundary conditions. Finally, a summary of our results and conclusions appear in the last section, as well as suggestions for future
ork.

. Selection of the stencil polynomials

We begin by making precise some of the terms and notation we use in the multidimensional setting. A cell or element 𝐸 ⊂ R𝑑 is
bounded, closed subset that is homeomorphic to a closed ball (i.e., the closure of its interior is the cell and the interior is simply

onnected), such as a polytope. Let the domain 𝛺 ⊂ R𝑑 and ℎ > 0 be given. Let ℎ be a quasiuniform mesh of cells that tesselate 𝛺
such that ℎ𝐸 = diam(𝐸) ≤ ℎ = max𝐸′∈ℎ ℎ𝐸′ for each cell 𝐸 ∈ ℎ.

By saying that the cells tesselate the domain, we mean that their union is the closure of 𝛺 and they intersect only on their
boundaries. Recall that as ℎ → 0+, we write

𝑓 (ℎ) = 𝛩(ℎ) ⟺ 𝑐1ℎ ≤ |𝑓 (ℎ)| ≤ 𝑐2ℎ, (3)

for positive constants 𝑐1 and 𝑐2 when ℎ > 0 is sufficiently small. Quasiuniformity of the mesh means that ℎ𝐸 = 𝛩(ℎ) uniformly as
+

2

ℎ → 0 .
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A mesh stencil 𝑆 = {𝐸1, 𝐸2,… , 𝐸𝐾} is a subset of cells of ℎ such that their union 𝛺𝑆 = ∪𝐾
𝑘=1𝐸𝑘 is a closed, bounded subset that

s homeomorphic to a closed ball. The cell averages of 𝑢 ∶ 𝛺 → R, the solution, are

𝑢̄𝐸 = 1
|𝐸|

∫𝐸
𝑢(𝐱) 𝑑𝐱 ∀𝐸 ∈ ℎ. (4)

We denote the space of polynomials of degree 𝑟 ≥ 0 in 𝑑 variables by P𝑟.

2.1. Stencil polynomials

Given a stencil 𝑆 of the mesh and an index 𝑟 ≥ 1, our goal is to define an associated stencil polynomial 𝑃 ∈ P𝑟−1. To increase the
numerical stability of the computations, we need to represent the polynomial in a way that is independent of the mesh spacing ℎ.
Several authors address this issue to handle mesh anisotropy (see, e.g., [9,10,28,29]). However, we have assumed quasiuniform
meshes here, so we use a simple scaling and represent 𝑃 as

𝑃 (𝐱) =
∑

|𝛼|<𝑟
𝑐𝛼

(𝐱 − 𝐱𝑆
ℎ𝑆

)𝛼
, (5)

here 𝐱𝑆 is the center of 𝛺𝑆 =
⋃

𝐸∈𝑆 𝐸 ⊂ R𝑑 , ℎ𝑆 = max{ℎ𝐸 ∶ 𝐸 ∈ 𝑆}, and 𝛼 is a 𝑑-dimensional multi-index.
In the finite volume context, we require that the ‘‘mass’’ of 𝑢 be preserved for each 𝐸 ∈ 𝑆,

1
|𝐸|

∫𝐸
𝑃 (𝐱) 𝑑𝐱 = 𝑢̄𝐸 , (6)

which leads directly to the linear system

𝐴𝐜 = 𝐮 (7)

for the vector of polynomial coefficients 𝐜 = (𝑐𝛼) given the vector of solution averages 𝐮 = (𝑢̄𝐸 ) on the stencil, i.e., only for 𝐸 ∈ 𝑆.

The matrix 𝐴 is 𝐾 × 𝑁 where 𝑁 =
(

𝑟 + 𝑑 − 1
𝑑

)

is the number of coefficients and 𝐾 ≥ 𝑁 is the number of cells in the stencil.

The linear system is generally overdetermined, i.e., 𝐾 > 𝑁 , so we need to find the least squares solution by solving the normal
equations 𝐴𝑇𝐴𝐜 = 𝐴𝑇 𝐮. We have just defined a linear projection operator 𝜋𝑆 taking 𝑢 to 𝜋𝑆𝑢 = 𝑃 as given in (5).

However, it is not enough to merely define the polynomial 𝑃 . We also require that it approximates the solution accurately. To
be precise, each stencil under consideration 𝑆 = 𝑆(𝑟) must have an index 𝑟 ≥ 1 such that its associated stencil polynomial 𝑃 ∈ P𝑟−1
satisfies

|𝛼𝑢(𝐱) −𝛼𝑃 (𝐱)|

≤

{

𝐶 ℎ𝑟−|𝛼| if 𝑢 is smooth on the stencil,
𝐶 otherwise,

∀𝐱 ∈ 𝐸 ∈ 𝑆(𝑟), (8)

for some constant 𝐶 > 0 independent of the mesh as ℎ → 0+, where 𝛼 is partial differentiation of order 𝛼 and |𝛼| ≤ 𝑟.
The Bramble–Hilbert Lemma [30,31] tells us that 𝑃 will approximate 𝑢 and its derivatives provided that two conditions hold.

First, 𝜋𝑆 must preserve polynomials, which it clearly does. Second, 𝜋𝑆 must be a bounded operator, which it will be as long as the
matrix 𝐴𝑇𝐴 is well conditioned and the mesh is quasiuniform.

We propose finding the compact singular value decomposition (SVD) and the singular values 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑀 > 0 of 𝐴, i.e.,

𝐴 = 𝑈𝛴𝑉 𝑇 , 𝛴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠1 0 ⋯ 0
0 𝑠2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑀

⎤

⎥

⎥

⎥

⎥

⎦

. (9)

The condition number of the least squares matrix 𝐴𝑇𝐴 is infinite if 𝑀 < 𝑁 (i.e., if the system is singular and cannot be solved) and
(𝑠1∕𝑠𝑁 )2 otherwise (i.e., 𝑀 = 𝑁). In double precision floating point arithmetic, to maintain accuracy we would require that

(𝑠1∕𝑠𝑁 )2 < 𝜅max, with perhaps 𝜅max = 1e+8. (10)

If this condition fails, we should reject the approximation 𝑃 .
In the case of a rejected 𝑃 , one could add cells to the stencil, but it is unclear how one might do this efficiently, reliably, and

automatically in more than one space dimension. Instead, we propose to reduce the order of the approximation (𝑟 is replaced by
𝑟 − 1) and try again. Note that if we drop order to 𝑟 = 1 (so 𝑃 ∈ P0 is a constant), we will have a 1 × 1 nonsingular matrix 𝐴𝑇𝐴
with condition number 1, and so our algorithm will terminate.

In practice, one generally evaluates the stencil polynomial on some target cell 𝐸0 ∈ 𝑆. In this case, it is important to add a
constraint to the least squares solution [4]. We require that 𝑃 satisfy the ‘‘mass’’ constraint exactly on 𝐸0 ∈ 𝑆. We can write this as

1 𝑃 (𝐱) 𝑑𝐱 = 𝑢̄𝐸0
⟺ 𝛽 ⋅ 𝐜 = 𝑢̄𝐸0

, (11)
3

|𝐸0| ∫𝐸0
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where 𝛽𝑇 is the row of 𝐴 corresponding to cell 𝐸0. Let 𝐞0 denote the standard unit vector that is one for cell 𝐸0 and zero otherwise.
Then the constraint is

𝛽 ⋅ 𝐜 = 𝑢̄𝐸0
= 𝐞0 ⋅ 𝐮, 𝛽 = 𝐴𝑇 𝐞0. (12)

The constrained problem is
[

𝐴𝑇𝐴 𝛽
𝛽𝑇 0

](

𝐜
𝜆

)

=
(

𝐴𝑇 𝐮
𝑢̄𝐸0

)

. (13)

This is easily solved in terms of the unconstrained least squares solution of (7),

𝐜̂ = 𝐵𝐮, 𝐵 = (𝐴𝑇𝐴)−1𝐴𝑇 = 𝑉 𝛴−2𝑉 𝑇𝐴𝑇 = 𝑉 𝛴−1𝑈𝑇 , (14)

and the vector

𝛼 = (𝐴𝑇𝐴)−1𝛽 = 𝐵𝐞0. (15)

The result is

𝐜 = 𝐜̂ + 1
𝛽 ⋅ 𝛼

(

𝑢̄𝐸0
− 𝛽 ⋅ 𝐜̂

)

𝛼. (16)

This can be rearranged into

𝐜 = 𝐷0𝐮, 𝐷0 = 𝐵 + 𝛼
𝛽 ⋅ 𝛼

(

𝐞𝑇0 − 𝛽𝑇𝐵
)

. (17)

2.2. Details of determining the stencil polynomials

We recap the procedure of the previous section. There is a stencil polynomial 𝑃 = 𝑃 𝑟
𝑆,𝐸0

for each stencil 𝑆 and each target cell 𝐸0
that will be used, and each is defined by its degree 𝑟−1 and coefficients 𝐜. Our goal is to find the set of all stencil polynomials defined
over the entire mesh in the context of a time-stepping loop. We separate the steps that are linked only to the (fixed) computational
mesh from those that also involve the time dependent solution data. We describe the algorithm that we use in our computer code
and simply note that other choices could be made in the implementation.

Before beginning the time-stepping loop, we need to precompute quantities involving only the computational mesh. These
quantities will not change during the time-stepping (unless the mesh changes within the loop, in which case these steps need to be
repeated). We first compute the mass preservation matrix  for the entire mesh. That is, for cell 𝐸 and monomial 𝐱𝛼 , we compute

𝐸,𝛼 = 1
|𝐸|

∫𝐸
𝐱𝛼 𝑑𝐱. (18)

ormally 𝐸 is a polytope and can be divided into simplices. The integral can then be computed exactly using quadrature over each
implex.

For each mesh stencil 𝑆 that we use, we fix a desired polynomial degree 𝑟 − 1. The mass preservation matrix 𝐴 = 𝐴𝑟
𝑆 in (7) is

xtracted from  according to the cells in the stencil 𝑆 and degree 𝑟 − 1. This is not a simple process because the polynomial is
xpanded as in (5) for the given degree 𝑟 − 1. The Binomial Theorem needs to be employed to evaluate 𝐴𝑟

𝑆 , i.e.,

(𝐴𝑟
𝑆 )𝐸,𝛼 = 1

|𝐸|
∫𝐸

(𝐱 − 𝐱𝑆
ℎ𝑆

)𝛼
𝑑𝐱 (19)

= 1
|𝐸|ℎ|𝛼|𝑆

∫𝐸

∑

𝛽≤𝛼

(

𝛼
𝛽

)

𝐱𝛼−𝛽𝑆 𝐱𝛽 𝑑𝐱

= 1
ℎ|𝛼|𝑆

∑

𝛽≤𝛼

(

𝛼
𝛽

)

𝐱𝛼−𝛽𝑆 𝐸,𝛽 .

Once 𝐴𝑟
𝑆 is determined, its compact SVD, 𝐴𝑟

𝑆 = 𝑈𝛴𝑉 𝑇 is computed. If the normal matrix (𝐴𝑟
𝑆 )

𝑇 (𝐴𝑟
𝑆 ) is singular or badly

onditioned, we reject the polynomial, replace 𝑟 by 𝑟 − 1, and try again, starting from extracting a new 𝐴𝑟
𝑆 from  (using the

educed 𝑟). The process will terminate with 𝑟 ≥ 1, which is the index representing the highest possible polynomial degree that
rovides accurate numerical approximation on the stencil.

For each stencil 𝑆, we store in computer memory 𝐴𝑟
𝑆 and the matrix 𝐵𝑟

𝑆 = 𝑉 𝛴−2𝑉 𝑇 (𝐴𝑟
𝑆 )

𝑇 = 𝑉 𝛴−1𝑈𝑇 . These matrices depend
nly on the stencil 𝑆 and 𝑟, but not on whatever target cell we choose later. Note that the vector 𝛽 in (12) is merely a row of 𝐴𝑟

𝑆
nd 𝛼 in (15) is a column of 𝐵𝑟

𝑆 .
Depending on what strategy we choose later, at this stage we can also compute and store the matrix 𝐷0 = 𝐷𝑟

𝑆,𝐸0
in (17) for

ll the required 𝐞0, i.e., for all the target cells 𝐸0 that will be used with the stencil 𝑆. At this point, we could clear the memory
ssociated with .

We now enter the time-stepping loop and compute quantities that depend on the solution data, i.e., on 𝐮. We can choose one of
wo strategies.

The first strategy is appropriate only for explicit time stepping. It reduces the amount of computer memory required when
𝑟

4

ultiple target cells 𝐸0 are used for each stencil, because we do not precompute the matrices 𝐷𝑆,𝐸0
above. Within the time stepping
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Fig. 1. A stencil of 6 cells that leads to a singular matrix when 𝑟 = 3.

Fig. 2. A stencil of 15 cells that leads to a badly conditioned matrix when 𝑟 = 5.

Table 1
Approximation of 2(1 + cos(2𝜋𝑥)) exp(𝑥𝑦 − 𝑦) on refined stencils congruent to the
one depicted in Fig. 2 using 𝑟 = 5 and 𝑟 = 4. The target cell is the center one,
and the average 𝐿1-error is computed on this cell.

Refinement 𝑟 = 5,P4 𝑟 = 4,P3

level 𝐿1-error Rate 𝐿1-error Rate

0 4.124e+07 – 5.697e−06 –
1 1.291e+06 5.00 3.550e−07 4.00
2 4.036e+04 5.00 2.218e−08 4.00
3 1.261e+03 5.00 1.386e−09 4.00
4 3.947e+01 5.00 8.658e−11 4.00

loop and for the given stencil 𝑆, we use the precomputed 𝐵𝑟
𝑆 to compute the vector 𝐜̂ = 𝐵𝑟

𝑆𝐮𝑆 , where 𝐮𝑆 is the restriction of the
solution averages in 𝐮 to the cells of 𝑆. For each target cell, then, (16) gives the vector of coefficients of the polynomial 𝑃 𝑟

𝑆,𝐸0
on 𝑆

for target cell 𝐸0.
The second strategy is appropriate for either explicit or implicit time stepping, and it uses the precomputed matrices 𝐷𝑟

𝑆,𝐸0
. Within

the time stepping loop and for the given stencil 𝑆 and target cell 𝐸0, we compute the vector of coefficients of the polynomial 𝑃 𝑟
𝑆,𝐸0

using (17) (i.e., 𝐜 = 𝐷𝑟
𝑆,𝐸0

𝐮𝑆 ). Note that 𝐷𝑟
𝑆,𝐸0

is the derivative of the stencil polynomial with respect to the cell averages. This
derivative is needed in Newton’s method to solve the nonlinear problem that arises in implicit methods.

2.3. Examples of bad stencils

It is not difficult to find poor stencils for a given value of 𝑟. We depict in Fig. 1 a stencil of six cells that leads to a singular
matrix 𝐴 when 𝑟 = 3 (note that dimP2 = 6). The 4 × 4 square stencil of 16 cells with side length 0.25 does not support accurate
approximation by a polynomial of degree 4 (𝑟 = 5), despite the fact that dimP4 = 15. The extreme singular values are 𝑠1 = 2.656
and 𝑠16 = 4.061e−17, and the condition number (𝑠1∕𝑠15)2 is 3.292e+33. In Fig. 2, we depict a stencil of 15 cells that also has a large
condition number when 𝑟 = 5. The extreme singular values are in fact 𝑠1 = 4.174 and 𝑠15 = 3.391e−17, so the condition number
(𝑠1∕𝑠15)2 is 1.515e+34. From the geometric layout of the stencils, it is not obvious to the authors that any of them would perform
so poorly.

When we drop the index of the stencil in Fig. 2 to 𝑟 = 4, the extreme singular values are 𝑠1 = 4.106 and 𝑠10 = 0.114, so the condition
number is only (𝑠1∕𝑠10)2 = 1303.97. We report in Table 1 a study of the accuracy and convergence rate of the approximations using
𝑟 = 5 and 𝑟 = 4. The diameter of the initial stencil is about 0.14, and each refinement level shrinks the mesh by a factor of 2. The
average 𝐿1-error is computed on the target cell, which is the center one. We see that the 4th degree polynomial is unacceptably
inaccurate, even though it shows 5th order convergence (as the theory predicts [10]). The 3rd order polynomial shows good accuracy
and 4th order convergence.

Consider now 𝑟 = 3 and the stencil of 6 square cells given by the meshpoints (0.1𝑖, 0.1𝑗) for 𝑖 = 0, 1, 2, 3 and 𝑗 = 0, 1, 2. Clearly the
matrix 𝐴𝑇𝐴 is singular. However, if we perturb the point (0.2, 0.1) to (0.2, 0.1+ 𝜃) for small 𝜃 > 0, the problem is no longer singular.
To the naked eye, however, there is little difference in the stencils for 𝜃 = 1e−2, 1e−4, and 1e−8, so we would not expect any of
these stencils to perform acceptably.
5
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Table 2
Approximation of 2(1+cos(2𝜋𝑥)) exp(𝑥𝑦−𝑦) for 𝑟 = 3 on refined stencils given by the initial meshpoints (0.1𝑖, 0.1𝑗)
for 𝑖 = 0, 1, 2, 3 and 𝑗 = 0, 1, 2, (𝑖, 𝑗) ≠ (2, 1) and (0.2, 0.1 + 𝜃). The condition number 𝜅 is given, as well as the
average 𝐿1-error computed on the lower middle (target) cell centered at (0.15, 0.05).

𝜃 = 1e−2 𝜃 = 1e−4 𝜃 = 1e−8
Refinement 𝜅 = 3.18312e+07 𝜅 = 3.13172e+11 𝜅 = 3.13121e+19

level 𝐿1-error Rate 𝐿1-error Rate 𝐿1-error Rate

0 1.455e−00 – 1.452e+02 – 1.452e+06 –
1 4.803e−01 1.60 4.799e+01 1.60 4.799e+05 1.60
2 7.745e−02 2.63 7.740e+00 2.63 7.743e+04 2.63
3 1.064e−02 2.86 1.064e+00 2.86 1.065e+04 2.86
4 1.385e−03 2.94 1.384e−01 2.94 1.378e+03 2.95

We show in Table 2 a study of the condition number and approximation rates of these stencils for the aforementioned 𝜃. We
ee third order convergence for all stencils, but only the stencil using 𝜃 = 0.01 could be considered to give an accurate stencil
olynomial. This stencil is also the only one with condition number meeting our requirement 𝜅 < 1e+8.

.4. Stencil polynomial smoothness indicators

The measure of smoothness of 𝑢(𝐱) on the stencil 𝑆(𝑟) = {𝐸1, 𝐸2 … , 𝐸𝐾} with respect to the target cell 𝐸0 ∈ 𝑆(𝑟) is defined by
a smoothness indicator 𝜎. The classic way to define 𝜎 is due to Jiang and Shu [6,12]. We use this smoothness indicator, for which
constant polynomials are naturally assigned 𝜎 = 0.

Any smoothness indicator must satisfy that for some 𝐷 ≥ 0, as ℎ → 0+,

𝜎 =

{

𝐷ℎ2 + (ℎ3) if 𝑢 is smooth on the stencil,
𝛩(1) if 𝑢 has a jump discontinuity on the stencil.

(20)

nfortunately, any reasonable definition of 𝜎 would give a value that is not necessarily bounded below when there is a jump
iscontinuity in 𝑢, i.e., we have merely 𝜎 = (1) in this case. To obtain (20) rigorously, we would need to make an assumption,
or example, that the discontinuity is bounded away from the boundaries of the cells [15]. Fortunately, this issue does not cause
roblems when solving conservation laws.

. ML-WENO reconstructions

Our proposed selection of accurate stencil polynomials leads to a possible reduction in the polynomial degree. This would be
nacceptable for standard WENO and WENO-AO reconstructions, both of which require exactly two levels of approximation. We
ow develop a new multilevel WENO (ML-WENO) reconstruction which will be able to combine stencil polynomials of any order,
ncluding constant polynomials.

.1. The reconstruction

Given a target cell 𝐸0 ∈ ℎ, select a nonempty collection of stencils 𝑆(𝑟𝓁 )
𝓁 ∋ 𝐸0, 𝓁 = 0, 1,… , 𝐿. Each stencil has its polynomial

𝑃𝓁 ∈ P𝑟𝓁−1 approximating 𝑢, as in (8). Let the linear weights 𝜔𝓁 > 0 be chosen, one for each stencil. These weights can be chosen
arbitrarily, and they need not sum to one. The reconstruction of 𝑢 on 𝐸0 for the collection of stencils is then

𝑅(𝐱) =
∑

𝓁

𝜔̃𝓁 𝑃𝓁(𝐱), 𝐱 ∈ 𝐸0, (21)

where 𝜔̃𝓁 is the 𝓁-th nonlinear weight, which we now define (these nonlinear weights will be positive and sum to one).
We begin by choosing parameters 𝜖 > 0 and 𝑠 ≥ 1∕2 (for example, take 𝜖 =1e−2 or 1e−4 and 𝑠 = 1). We then scale each linear

weight to define

𝜔̂𝓁 =
𝜔𝓁

(𝜎𝓁 + 𝜖ℎ20)
𝑠𝑟𝓁+𝜂𝓁

, (22)

here 𝜂𝓁 = 𝜂(𝑟𝓁) must be chosen as a nonnegative, nondecreasing function of 𝑟𝓁 . We normally take 𝜂𝓁 = 0 for all 𝓁; however in
ome cases, nonvanishing 𝜂𝓁 is useful to prevent overly biasing to the stencils for constant and linear polynomials when the solution
s smooth, so, e.g., one might take

𝜂(𝑟𝓁) = 𝜂𝓁 =

⎧

⎪

⎨

⎪

1, if 𝑟𝓁 = 1,
3, if 𝑟𝓁 = 2, (23)
6
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We finally define the nonlinear weights through normalization as

𝜔̃𝓁 =
𝜔̂𝓁

∑

𝑘 𝜔̂𝑘
. (24)

We reiterate that it is often sufficient to take 𝜂𝓁 = 0 rather than using (23) in the weighting procedure. When we need to make
he distinction clear, we will denote the reconstruction as ML1-WENO when 𝜂𝓁 = 0, and as ML2-WENO when we use (23). The
ffect of using nonzero 𝜂𝓁 can be understood as a preprocessing step, in which we scale each linear weight according to the formula

𝜔̌𝓁 =
𝜔𝓁

(𝜎𝓁 + 𝜖ℎ20)
𝜂𝓁

=

{

𝛩(ℎ−2𝜂𝓁 ) if 𝑢 is smooth on the stencil,
𝛩(1) if 𝑢 has a jump on the stencil.

(25)

That is, we de-emphasize the constant and linear weights by a power of ℎ when the solution is smooth. Our ML2-WENO procedure
is somewhat like what Semplice and Visconti do in their adaptive order reconstruction [27] when they directly scale the low order
polynomial weight(s) by a power of ℎ.

Although not necessary, we could normalize these weights 𝜔̌𝓁 to define the intermediate nonlinear weights as

𝜔̄𝓁 =
𝜔̌𝓁

∑

𝑘 𝜔̌𝑘
. (26)

This is essentially equivalent to the usual WENO-AO weighting procedure, and results in biasing the weights to avoid stencils
containing discontinuities, without overly biasing to the stencils for constant and linear polynomials. We would then finish the
reconstruction by applying ML1-WENO (i.e., with 𝜂𝓁 = 0 ∀𝓁) starting from the intermediate nonlinear weights (26) in place of the
linear ones. The result is exactly the same as (24) described above.

We remark that instead of using ML2-WENO, it is often simpler to prescribe smaller linear weights to the constant and linear
stencil polynomials. In fact, we do this in applications to scalar conservation laws (see Section 5).

3.2. The ML-WENO reconstruction error

In this section we consider the accuracy of the ML-WENO reconstruction under the assumption that either 𝑢 is smooth or that 𝑢
has a jump discontinuity on some, but not all, of the stencils. Among other things, this means that we view 𝑢 as being smooth on
the target cell 𝐸0. Because we constrain the local averages to be correct on 𝐸0, 𝑃𝓁 = 𝑢̄𝐸0

when 𝑟𝓁 = 1 regardless of the behavior of
𝑢 on the rest of its stencil. We therefore view the stencil as {𝐸0} when 𝑟𝓁 = 1.

To analyze the error in the reconstruction (21), we need to consider the many possibilities of where 𝑢 might be discontinuous.
We find it convenient to divide the stencil indices into disjoint subsets as follows. For 𝑟 ≥ 2, let

Smooth(𝑟) = {𝓁 ∶ 𝑟𝓁 = 𝑟 and 𝑢 is smooth on 𝑆(𝑟𝓁 )
𝓁 }, (27)

Jump(𝑟) = {𝓁 ∶ 𝑟𝓁 = 𝑟 and 𝑢 has a jump discontinuity on 𝑆(𝑟𝓁 )
𝓁 }, (28)

and let Smooth(1) = {𝓁 ∶ 𝑟𝓁 = 1}, Jump(1) = ∅. We tacitly assume that there are no other possibilities, so
⋃

𝑟

(

Smooth(𝑟) ∪ Jump(𝑟)
)

= {0, 1,… , 𝐿}.

We also tacitly assume that ⋃𝑟 Smooth(𝑟) is not empty.
We shall prove that the reconstruction is accurate on the target cell 𝐸0 to order

𝑟max = max
{

𝑟 ∶ Smooth(𝑟) ≠ ∅
}

≥ 1. (29)

This is the index of the best (maximal 𝑟) stencil approximation that avoids the discontinuities in 𝑢. We further define the sets of
indices

SM = Smooth(𝑟max), SL =
⋃

𝑟<𝑟max

Smooth(𝑟), Jmp =
⋃

𝑟
Jump(𝑟). (30)

3.2.1. The effect of the scaling
We begin by estimating the effect of the scaling in (22).

Lemma 3.1. If ℎ0 = 𝛩(ℎ), (20) holds, and for some power 𝑡 > 0,

𝜔̂𝓁 =
𝜔𝓁

(𝜎𝓁 + 𝜖ℎ20)
𝑡
, (31)

then

𝜔̂𝓁 =

⎧

⎪

⎨

⎪

𝜔𝓁

(𝐷 + 𝜖)𝑡
ℎ−2𝑡0

(

1 + (ℎ)
)

if 𝓁 ∈ SM ∪ SL,

𝛩(1) if 𝓁 ∈ Jmp.
(32)
7
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We interject that in the proofs of this section, we will make use of well-known results from asymptotic theory (see, e.g., [32]).
pecifically, when 𝑟 ≥ 𝑡, 𝑎 > 0, and 𝑏 > 0,

𝑎
𝑏ℎ𝑡 + (ℎ𝑟)

= 𝑎ℎ−𝑡

𝑏
(

1 + (ℎ𝑟−𝑡)
)

, (33)

𝑎
𝑏ℎ−𝑟 + (ℎ−𝑡)

= 𝑎ℎ𝑟

𝑏
(

1 + (ℎ𝑟−𝑡)
)

. (34)

Proof. If 𝓁 ∈ SM ∪ SL, then using (20) and (33), we see that

𝜔̂𝓁 =
𝜔𝓁

(𝜎𝓁 + 𝜖ℎ20)
𝑡
=

𝜔𝓁

((𝐷 + 𝜖)ℎ20 + (ℎ3))𝑡

= 𝜔𝓁

( ℎ−20
𝐷 + 𝜖

(

1 + (ℎ)
)

)𝑡
=

𝜔𝓁

(𝐷 + 𝜖)𝑡
ℎ−2𝑡0

(

1 + (ℎ)
)

as claimed. If 𝓁 ∈ Jmp, then 𝑟𝓁 > 1 and 𝜎𝓁 = 𝛩(1), so 𝜔̂𝓁 = 𝜔𝓁

(𝜎𝓁+𝜖ℎ20)
𝑡 = 𝛩(1), and the proof is complete. □

3.2.2. The effect on the nonlinear weights

Lemma 3.2. Let 𝑟max be defined by (29), and let 𝜂max = 𝜂(𝑟max). If ℎ0 = 𝛩(ℎ) and (20) holds, then

𝜔̃𝓁 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔𝓁
∑

𝑘∈SM
𝜔𝑘

(

1 + (ℎ)
)

if 𝓁 ∈ SM,

𝛩(ℎ2[𝑠(𝑟max−𝑟𝓁 )+(𝜂max−𝜂𝓁 )]) if 𝓁 ∈ SL,
𝛩(ℎ2(𝑠𝑟max+𝜂max)) if 𝓁 ∈ Jmp.

(35)

We remark that for 𝓁 ∈ SM, the relative proportion of the linear weights is maintained by the nonlinear weights.

Proof. Using Lemma 3.1 with 𝑡 = 𝑠𝑟𝓁 + 𝜂𝓁 , the denominator of (24) is
∑

𝓁

𝜔̂𝓁 =
∑

𝓁∈SM
𝜔̂𝓁 +

∑

𝓁∈SL
𝜔̂𝓁 +

∑

𝓁∈Jmp
𝜔̂𝓁

=
∑

𝓁∈SM

𝜔𝓁

(𝐷 + 𝜖)𝑠𝑟max+𝜂max
ℎ−2(𝑠𝑟max+𝜂max)
0

(

1 + (ℎ)
)

+
∑

𝓁∈SL
𝛩(ℎ−2(𝑠𝑟𝓁+𝜂𝓁 )) +

∑

𝓁∈Jmp
𝛩(1)

=
∑

𝓁∈SM

𝜔𝓁

(𝐷 + 𝜖)𝑠𝑟max+𝜂max
ℎ−2(𝑠𝑟max+𝜂max)
0 + (ℎ1−2(𝑠𝑟max+𝜂max)),

ince when 𝓁 ∈ SL, 𝑟𝓁 ≤ 𝑟max − 1, 𝜂𝓁 ≤ 𝜂max, and 𝑠 ≥ 1∕2. Using this result, (34) implies that

𝜔̃𝓁 =
𝜔̂𝓁

∑

𝑘
𝜔̂𝑘

=
𝜔̂𝓁

∑

𝑘∈SM

𝜔𝑘
(𝐷 + 𝜖)𝑠𝑟max+𝜂max

ℎ2(𝑠𝑟max+𝜂max)
0

(

1 + (ℎ)
)

.

or any case of 𝓁, Lemma 3.1 gives the order of 𝜔̂𝓁 , and the result follows. □

.2.3. A bound for the overall reconstruction error

heorem 3.3. Let 𝑅(𝐱) be the reconstruction (21). If ℎ0 = 𝛩(ℎ) and (8) and (20) hold, then there is a constant 𝐶 > 0 such that for any
∈ 𝐸0,

|𝑢(𝐱) − 𝑅(𝐱)| ≤ 𝐶ℎ𝑟max , (36)

here 𝑟max is defined by (29).

roof. Since the nonlinear weights are positive and sum to 1, we have for 𝐱 ∈ 𝐸0 that the reconstruction error is

|𝑢(𝐱) − 𝑅(𝐱)| =
|

|

|

|

∑

𝓁

𝜔̃𝓁
(

𝑢(𝐱) − 𝑃𝓁(𝐱)
)|

|

|

|

(37)

≤
∑

𝓁∈SM
𝜔̃𝓁|𝑢(𝐱) − 𝑃𝓁(𝐱)| +

∑

𝓁∈SL
𝜔̃𝓁|𝑢(𝐱) − 𝑃𝓁(𝐱)| +

∑

𝓁∈Jmp
𝜔̃𝓁|𝑢(𝐱) − 𝑃𝓁(𝐱)|.

Combining this with Lemma 3.2 and the polynomial approximation error (8), we obtain

|𝑢(𝐱) − 𝑅(𝐱)| ≤
∑

𝛩(1)(ℎ𝑟max ) +
∑

𝛩(ℎ2[𝑠(𝑟max−𝑟𝓁 )+(𝜂max−𝜂𝓁 )])(ℎ𝑟𝓁 )
8
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Fig. 3. Stencils used in the tests of the reconstructions. The large stencil has 19 cells, and the top row shows the four small stencils used in the two-level tests.
The multilevel tests include also the three tiny stencils shown in the bottom row as well as the constant (single cell) stencil. The central cell is the target cell.
The colored lines show where the test function may jump, but we only show the lines when they do not intersect the stencil.

+
∑

𝓁∈Jmp
𝛩(ℎ2(𝑠𝑟max+𝜂max))(1)

= (ℎ𝑟max ) +
∑

𝓁∈SL
(ℎ𝑟max+(2𝑠−1)(𝑟max−𝑟𝓁 )+2(𝜂max−𝜂𝓁 )) + (ℎ2(𝑠𝑟max+𝜂max))

= (ℎ𝑟max ),

hich is the desired result. □

The theoretical optimal choice of 𝑠 would be 1∕2, but this would require in general the computation of square roots. In practice,
= 1, 2, 3,… is more efficient; moreover, it gives additional bias in 𝑅 to the best approximations 𝑃𝓁 for 𝓁 ∈ SM. We generally use
= 1.

.3. Some remarks on alternative linear weight scalings

As the above theory shows, the key is to obtain nonlinearly scaled weights that satisfy (32), at least up to the value of the
onstant. There are many alternate scalings that satisfy this property. One might define

𝜔̂𝓁 =
𝜔𝓁

𝜎𝑠𝑟𝓁+𝜂𝓁𝓁 + 𝜖ℎ2(𝑠𝑟𝓁+𝜂𝓁 )0

, (38)

which is very similar to the scaling we used.
For some constant 𝐷̄ > 0, one might define

𝜔̂𝓁 = 𝜔𝓁

(

𝜎𝓁 + 2𝐷̄ℎ0
𝜎𝓁 + 𝐷̄ℎ20

)𝑠𝑟𝓁+𝜂𝓁
. (39)

For this form of the scaling, the theoretical optimal choice of 𝑠 is 𝑠 = 1 (rather than 𝑠 = 1∕2), and additional bias in 𝑅 to the best
approximations 𝑃𝓁 for 𝓁 ∈ SM is accomplished by taking a large 𝐷̄ (say 10). We do not find this choice to work well when solving
conservation laws.

4. Numerical tests of the ML-WENO reconstruction

In this section, we perform numerical tests of the performance of ML-WENO reconstructions. The test function to be reconstructed
is 𝑢(𝑥, 𝑦) = 2(1 + cos(2𝜋𝑥))𝑒𝑥𝑦−𝑦, with possibly the addition of a unit jump term. Two sets of tests are conducted. The first set uses
only two-levels of reconstructions (combining one degree 4 and several quadratic polynomials), so we can compare the results to
the usual WENO-AO (5,3) reconstruction. The second set uses four levels. In all the tests, we take 𝜖 =1e−2 and 𝑠 = 1.

An initial large stencil of 19 cells is chosen along with several smaller stencils, as depicted in Fig. 3. The cells are fairly coarse
with a diameter of about ℎ = 0.04. The colored lines show where the test function may jump. The stencils are refined by contraction
about the origin (by a factor of two for each successive level). The position of a jump is similarly scaled, so that the jump position
appears fixed as we refine.
9
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Fig. 4. Two-level reconstruction convergence results for the smooth (bottom set of data) and discontinuous (top set of data) test function. The discrete 𝐿1-error
versus 2 to the power of the refinement level is given on a log–log plot.

Fig. 5. Multilevel reconstruction convergence results in the four scenarios. The discrete 𝐿1-error versus 2 to the power of the refinement level is given on a
log–log plot.

4.1. Two-level reconstructions

We begin with a test of traditional two-level reconstruction comparing all three methods: ML1-WENO(5,3), ML2-WENO(5,3),
and WENO-AO(5,3) using equal linear weights for each stencil. As shown in the top row of Fig. 3, there is one large and four small
stencils that support accurate approximation by polynomials of degree 4 (i.e., 𝑟large = 5) and 2 (i.e., 𝑟small = 3). The number of cells
in the five stencils are 19, 9, 7, 7, and 6, respectively. A single unit jump may be added to the solution, as depicted in the upper
two right stencils, which do not see the jump. The jump cuts the other three stencils.

We display the convergence results for the reconstructions in Fig. 4. We see fifth order convergence when function 𝑢 is smooth
(bottom set of data), at least until rounding error degrades the results. The solid line shows the (optimal) convergence order of
the large stencil polynomial. Clearly the two ML-WENO methods bias almost completely to this stencil polynomial, at least on fine
meshes, while the WENO-AO does so only approximately.

When the jump is added to 𝑢, we see third order convergence in Fig. 4 (top set of data). Here, the solid line shows the (essentially
optimal) convergence order of the average of the two stencil polynomials not crossing the jump. All reconstructions bias almost
perfectly to these two stencil polynomials.

4.2. Multilevel reconstruction

We now turn to the second set of tests which uses all four levels of stencil polynomials. As shown in Fig. 3, to the large and
small stencils, we have added three tiny stencils of three cells each that support accurate approximation by polynomials of degree 1
(i.e., 𝑟tiny = 2) and we add the single target cell stencil for approximation of degree 0 (i.e., 𝑟constant = 1). We also use linear weights
equal to about 0.125 for each stencil except the constant, which has linear weight of about 0.125e−4.

We may add unit jumps to the solution, as depicted in the four right stencils of Fig. 3. In the following scenarios, we would
expect to see the convergence rates:

∙ 1 with the blue and green jumps (only the constant stencil);
∙ 2 with the blue jump (one tiny stencil, but avoid the constant stencil);
∙ 3 with the red jump (two small stencils, but avoid one tiny and constant stencil);
∙ 5 with no jump (avoid all the small, tiny, and constant stencils).

Except for the first case, all the other cases have suitable stencils giving good but nonoptimal convergence. We would denote our
multilevel reconstructions as ML1-WENO(5,3,2,1) and ML2-WENO(5,3,2,1).

In Fig. 5, we present our results. The solid line shows the (essentially optimal) convergence order of (the average of) the
stencil polynomials not crossing the jump. We indeed see the expected convergence rates, at least until rounding error degrades the
10

convergence. It is worth noting that the coarser meshes show a bit more error than fine meshes.
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d

Fig. 6. Nonlinear weights of the dominant stencil(s) in the four scenarios versus the base 10 log of 2 to the power of the refinement level. The linear weights
are all about 0.125, except for the constant stencil, which has linear about weight 0.125e−4.

In Fig. 6, we show nonlinear weights for the dominant stencil polynomial(s) in the four scenarios. The nonlinear weights are
close to one, except for the quadratic case, which has two dominant stencil polynomials with nonlinear weights summing almost to
one. Clearly, the correct stencils are being selected by the nonlinear weights, although the coarser meshes do so only approximately
compared to the finer meshes. In the first and second scenarios with low order dominant stencil polynomials, ML2-WENO shows
a bit better behavior than ML1-WENO on coarse meshes. The final two scenarios for which the dominant stencil polynomial is a
quadratic or greater, ML2-WENO does not improve the overall accuracy much, since ML1-WENO is already sufficiently accurate.

5. Application to scalar conservation laws

We apply the ML-WENO reconstruction to solve the conservation law

𝑢𝑡(𝐱, 𝑡) + ∇ ⋅ 𝐟 (𝑢; 𝑥, 𝑡) = 0, 𝐱 ∈ 𝛺, 𝑡 > 0, (40)

𝑢(𝐱, 0) = 𝑢0(𝐱), 𝐱 ∈ 𝛺, (41)

where the vector flux function 𝐟 (𝑢; 𝑥, 𝑡) and initial condition 𝑢0(𝐱) are given. Let 𝜈 denote the outer unit normal vector to 𝜕𝛺. We
can specify an inflow Dirichlet boundary condition

𝑢(𝐱, 𝑡) = 𝑢𝐷(𝐱, 𝑡), 𝐱 ∈ 𝜕𝛺, 𝑡 > 0, when 𝐟 (𝑢) ⋅ 𝜈 < 0, (42)

for some specified 𝑢𝐷(𝐱, 𝑡), or an inflow flux boundary condition

𝐟 (𝑢; 𝐱, 𝑡) ⋅ 𝜈 = 𝑓𝐵(𝐱, 𝑡), 𝐱 ∈ 𝜕𝛺, 𝑡 > 0, when 𝐟 (𝑢) ⋅ 𝜈 < 0, (43)

for some specified flux 𝑓𝐵(𝐱, 𝑡), or a periodic boundary condition (if 𝛺 is suitable).
The semidiscrete finite volume approximation is

𝑢̄𝐸,𝑡 +
1
|𝐸|

∫𝜕𝐸
𝑓 (𝑢−, 𝑢+) 𝑑𝑠(𝐱) = 0, (44)

where 𝑢− and 𝑢+ are left and right limits of the approximate solution at the interface 𝜕𝐸, given by our ML-WENO reconstruction of
the cell averages 𝑢̄𝐸 . We incorporated a numerical flux 𝑓 , such as the Lax–Friedrichs one,

𝑓 (𝑢−, 𝑢+; 𝐱, 𝑡) = 1
2
[

(𝐟 (𝑢−; 𝐱, 𝑡) + 𝐟 (𝑢+; 𝐱, 𝑡)) ⋅ 𝜈𝐸 − 𝛼LF(𝑢+ − 𝑢−)
]

, (45)

where 𝜈𝐸 is the outer unit normal vector to 𝜕𝐸 and

𝛼LF = max
𝑢

‖

‖

‖

𝜕𝐟∕𝜕𝑢‖‖
‖

(46)

is the maximum wave speed.
Time is discretized at the time levels 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ and a Runge–Kutta time integrator is employed. In the sequel, we

compute 𝑢̄𝑛𝐸 ≈ 𝑢̄𝐸 (𝑡𝑛) for each 𝑛 > 0.

5.1. Features of the numerical tests

In the rest of Section 5, we present some numerical results in two space dimensions to illustrate the performance of ML-WENO
in solving conservation laws. For simplicity, we write 𝐱 = (𝑥1, 𝑥2) = (𝑥, 𝑦). In all cases, unless otherwise noted, the reconstructions
(21) use 𝜖 = 0.01, 𝑠 = 1, and the (unnormalized) linear weights 1 for all stencils, except 1e−4 for constant stencils.

There are many ways to define mesh stencils. In this paper, we take stencils defined by rings (see [5,7,9,10]). Given a cell 𝐸,
𝑆0 = {𝐸} is its ring 0 stencil. If to 𝑆0 we add every cell sharing an edge with 𝑆0, we have 𝑆1∕2, its 1/2-ring stencil (which is 𝐸
plus its von Neumann neighborhood). If we add to 𝑆0 every cell that shares at least one vertex with 𝑆0, we have 𝑆1, the full ring 1
stencil (𝐸 plus its Moore neighborhood). We may continue this process from 𝑆1 to define the ring 3/2 and 2 stencils, and so on to
efine rings greater than 2. As an illustration, on a rectangular mesh with rectangular indexing, these stencils are

𝑆0 = {𝐸𝑖,𝑗}, 𝑆1∕2 = {𝐸𝑖,𝑗 , 𝐸𝑖−1,𝑗 , 𝐸𝑖+1,𝑗 , 𝐸𝑖,𝑗−1, 𝐸𝑖,𝑗+1},

𝑆1 = 𝑆1∕2 ∪ {𝐸𝑖−1,𝑗−1, 𝐸𝑖+1,𝑗−1, 𝐸𝑖−1,𝑗+1, 𝐸𝑖+1,𝑗+1},
11
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Table 3
Example 5.2.1, the smooth linear convergence test. ML1-WENO errors and convergence orders
(using 𝜎JS) and weights 1, 1, 1e−4.

𝐿1-norm 𝐿∞-norm

Scheme Mesh Error Order Error Order

ML1-WENO(5) 10 × 10 7.35e−03 – 2.07e−02 –
20 × 20 2.80e−04 4.71 7.90e−04 4.71
40 × 40 9.09e−06 4.95 2.58e−05 4.94
80 × 80 2.87e−07 4.99 8.13e−07 4.99
160 × 160 8.99e−09 5.00 2.55e−08 4.99

ML1-WENO(5,3) 10 × 10 2.00e−02 – 5.51e−02 –
20 × 20 2.48e−04 6.33 6.59e−04 6.39
40 × 40 8.77e−06 4.82 2.57e−05 4.68
80 × 80 2.84e−07 4.95 8.13e−07 4.98
160 × 160 8.96e−09 4.99 2.55e−08 4.99

ML1-WENO(5,3,1) 10 × 10 1.98e−02 – 5.27e−02 –
20 × 20 2.48e−04 6.32 6.59e−04 6.32
40 × 40 8.77e−06 4.82 2.57e−05 4.68
80 × 80 2.84e−07 4.95 8.13e−07 4.98
160 × 160 8.96e−09 4.99 2.55e−08 4.99

ML1-WENO(5,3,2) 10 × 10 1.98e−02 – 5.06e−02 –
20 × 20 2.48e−04 6.32 6.59e−04 6.26
40 × 40 8.77e−06 4.82 2.57e−05 4.68
80 × 80 2.84e−07 4.95 8.13e−07 4.98
160 × 160 8.96e−09 4.99 2.55e−08 4.99

ML1-WENO(5,2) 10 × 10 7.53e−02 – 3.01e−01 –
20 × 20 2.26e−03 5.06 5.39e−02 2.48
40 × 40 9.09e−06 7.96 2.63e−05 11.00
80 × 80 2.87e−07 4.99 8.13e−07 5.02
160 × 160 8.99e−09 5.00 2.55e−08 4.99

ML1-WENO(5,2,1) 10 × 10 7.54e−02 – 3.02e−01 –
20 × 20 2.26e−03 5.06 5.39e−02 2.49
40 × 40 9.09e−06 7.96 2.63e−05 11.00
80 × 80 2.87e−07 4.99 8.13e−07 5.02
160 × 160 8.99e−09 5.00 2.55e−08 4.99

with 1, 5, and 9 cells, respectively. Note that 𝑆1 is a 3 × 3 array of cells, and that 𝑆3∕2 would have 21 cells.
We can generalize this cell-based construction by taking a different starting point. An edge-based stencil about edge 𝑒 = 𝐸− ∩𝐸+

would use 𝑆0 = {𝐸−, 𝐸+}. The vertex-based stencil about vertex 𝐱 would start with 𝑆0 = {𝐸 ∈ ℎ ∶ 𝐱 is a vertex of 𝐸}. In particular,
the vertex-based stencil on a rectangular mesh about vertex 𝐱𝑖+1∕2,𝑗+1∕2 would be 𝑆0 = {𝐸𝑖,𝑗 , 𝐸𝑖+1,𝑗 , 𝐸𝑖,𝑗+1, 𝐸𝑖+1,𝑗+1}, which is a 2 × 2
array of cells suitable for linear polynomial approximation.

Unless otherwise stated, in all our computational tests we use the following collections of stencils. The collection of large stencils
is the set of cell-based ring stencils about each 𝐸 ∈ ℎ. We also use one or more collections of small stencils. Each such collection
will consist of either cell-, edge-, or vertex-based ring stencils, one for each cell, edge, or vertex in the mesh. For a given target cell
𝐸0 ∈ ℎ, the reconstruction uses the single large stencil about 𝐸0, as well as the union of all small stencils that contain 𝐸0. By reusing
the small stencils, we reduce the overall workload, since the SVD factorization (9) is computed only for the stencil, and not for the
target cell.

5.2. Numerical results for the linear equation

Let 𝐟 (𝑢) = 𝐚𝑢 for some vector 𝐚(𝐱) and 𝛺 = (0, 1)2. We impose periodic boundary conditions for these tests.

5.2.1. Smooth convergence rate
Take 𝐚 = (1, 1) and apply the initial condition 𝑢0(𝐱) = sin2(𝜋𝑥) sin2(𝜋𝑦), which is periodic. The true solution is 𝑢(𝐱, 𝑡) = 𝑢0(𝐱 − 𝐚𝑡).

We use uniform square meshes for these tests and various stencils. A fifth order Runge–Kutta method due to Ruuth and Spiteri [33]
is used, and the timestep about CFL = 0.7.

We show the results of our convergence study in Table 3. We show the errors measured in both the discrete 𝐿1- and 𝐿∞-norms.
(The discrete norms compare the cell averages.) In all cases the large stencil is the ring 1.5 stencil of the target cell. It has 21 cells,
and supports approximation to order 𝑟 = 5 (degree 4). The ML1-WENO(5) results can be considered as the base case. They use
only the large stencil polynomials centered around each cell and not a weighted reconstruction. The results show a clean fifth order
convergence rate, as expected.

The multilevel results use small stencils of degree 2 (𝑟 = 3) defined on stencils of 3 × 3 cells (cell-based ring 1 stencils), degree 1
(𝑟 = 2) defined on stencils of 2 × 2 cells (vertex-based ring 0 stencils), and degree 0 (𝑟 = 1) defined on a single cell (cell-based ring
12
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0 stencils). The reconstructions are either two-level, and use equal linear weights for every stencil, or three-level, in which case the
lowest level stencil polynomials have a relative linear weight of 1e−4 compared to the other stencils relative weights being 1.

The errors of ML1-WENO(5,3), ML1-WENO(5,3,1), and ML1-WENO(5,3,2) are nearly identical, and very similar to those of ML1-
WENO(5). The multilevel reconstructions properly select the highest order, large stencil polynomials. The inclusion of quadratic
stencil polynomials actually reduces the error very slightly on finer meshes. The three level results show no degradation from the
two-level results. The lowest level, whether it is 𝑟 = 1 or 𝑟 = 2, does not pollute the results because its relative linear weight is 1e−4.

The errors of ML1-WENO(5,2) and ML1-WENO(5,2,1) are nearly the same, and similar to those of ML1-WENO(5) on finer meshes.
The constant stencil polynomials have a relative linear weight of 1e−4, and so do not pollute the results for ML1-WENO(5,2,1). On
the coarse meshes (ℎ = 1∕10 and ℎ = 1∕20), the inclusion of linear polynomials results in some degradation of the errors, because
the smoothness indicator has some difficulty separating the fourth degree polynomials from the linear ones. As a consequence, the
ML2-WENO reconstruction does not help matters here. However, we can compensate by taking a smaller relative linear weight
for the linear stencil polynomials. If 1e−4 is used for both linear and constant polynomials, ML1-WENO(5,2,1) recovers the good
accuracy of ML1-WENO(5) on all the meshes. If we take a more moderate relative weight of 1e−2 for the linear polynomials, we
see respectable 𝐿1 errors of 4.48e−02 for the 10 × 10 meshes and 2.80e−04 for 20 × 20 meshes, and 𝐿∞-errors of 2.12e−01 and
1.18e−03, respectively.

To summarize, including linear and constant polynomials in the reconstruction on coarse meshes is somewhat delicate and must
be compensated for by adjusting the linear weights. If that is done, the ML1-WENO reconstruction is fully capable of biasing the
approximation to the large stencil polynomials and away from all the low order small stencil polynomials.

5.2.2. Handling discontinuities
For this and some of the other examples below, we use a polygonal mesh generated by a modification of the code PolyMesher [34]

with two smoothing iterations (the modification was made to create periodic meshes). Appearing in Fig. 7, it is a Voronoi mesh
with 18,858 vertices and 10,000 cells, with cells having up to 10 edges.

For each (target) mesh cell, we used the cell-based ring 1.5 large stencil and all overlapping small cell-based stencils of size 1
ring. The actual number of cells in each stencil varied depending on the local mesh. To give the reader a rough idea of the stencils
used, a uniform mesh of hexagons would have a large ring 1.5 stencil of 19 cells (and it would agree with the ring 2 stencil). The
small ring 1 stencils would each have 7 cells. The reconstructions would then use 1 large stencil polynomial with the target cell in
the center, and 7 small stencil polynomials that overlap the target cell.

There are 10,000 large stencils, each with a polynomial having desired degree 4. Two of these stencils produced condition
numbers in excess of 1e+8, and 85 other stencils were too small to support the desired polynomial degree 4, so our computer code
automatically reduced these stencil polynomials to degree 3. There are also 10,000 small stencils with desired polynomial degree 2,
but 196 of these stencils were too small and used polynomial degree 1. Therefore, the overall reconstruction technique is of type
ML1-WENO(5,4,3,2), although most often over the domain it is ML1-WENO(5,3).

Following [35], we take 𝐚(𝑥, 𝑦) = (0.5 − 𝑦, 𝑥 − 0.5) (a rotating flow) and an initial condition consisting of a slotted disk, a cone,
and a smooth hump:

𝑟0 = 0.15, 𝑟𝐻 =
√

(𝑥 − 0.25)2 + (𝑦 − 0.50)2,

𝑟𝐶 =
√

(𝑥 − 0.50)2 + (𝑦 − 0.25)2, 𝑟𝐷 =
√

(𝑥 − 0.50)2 + (𝑦 − 0.75)2

𝑢0(𝑥, 𝑦) = (𝑟𝐷 <= 𝑟0)
[

1 − (𝑦 < 0.75)(0.45 < 𝑥)(𝑥 < 0.55)
]

+ (𝑟𝐶 <= 𝑟0)(1 − 𝑟𝐶∕𝑟0) + (𝑟𝐻 <= 𝑟0)0.25(1 + cos(𝜋𝑟𝐻∕𝑟0)),

(47)

wherein we used the convention that a logical comparison that is true is 1 and false is 0. The projection of the initial condition onto
the polygonal mesh appears in Fig. 8.

We computed the solution to the problem to time 2𝜋 using 1000 timesteps and the standard SSP3 Runge–Kutta time integrator.
For comparison, results were also obtained for two WENO with Adaptive Order schemes [13,15,16], WENO-AO and WENOZ-AO,
which use classic and Z-weighting [36], respectively. The test is mildly unfair to these schemes, because the stencils do not organize
into two levels (i.e., they are not strictly WENO-AO(5,3) and WENOZ-AO(5,3)). Nevertheless, we can attempt to solve the problem
with these schemes, since the stencils usually give (5,3)-type reconstructions.

Overall, the three schemes handle the contact discontinuities and steep fronts of this problem very well, as shown in Fig. 9. On
the top row, we plot the computed solutions 𝑢̄, which are the average values of the computed solution on each cell. On the bottom
row, we plot the piecewise discontinuous reconstructed computed solution 𝑅(𝐱), which for 𝐱 ∈ 𝐸 ∈ ℎ is the reconstruction for
target cell 𝐸.

Perhaps the reader can see that the sharpest solution was obtained using ML1-WENO. The 𝐿1 and 𝐿∞ discrete norms of the error
are given in the second and third columns of

Table 4, which quantifies and confirms our observation. However, ML1-WENO exhibits significant undershoot and overshoot. We
rectify this using flux corrected transport [37,38]. Implementation of this remarkable algorithm is independent of the particulars
of the underlying numerical scheme, so there are no new ideas needed to combine flux correction with our scheme (or any other
scheme). All that is required is the flux from a low order scheme that satisfies the maximum principle. We start from the trivially
maximum principle preserving no-flux scheme (i.e., zero low order flux) and apply the flux correction algorithm to correct the
‘‘high order’’ SATh flux so that the scheme satisfies the maximum principle. We then iterate the process a few times by correcting
13
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Fig. 7. A polygonal mesh of 10,000 cells.

Fig. 8. Section 5.2.2. Initial condition projected onto the polygonal mesh of Fig. 7.

Fig. 9. Section 5.2.2. The finite volume solution (top row) and the reconstructed solution (bottom row) at time 2𝜋 (one revolution) using the mesh from Fig. 7.
From left to right are results for ML1-WENO, ML1-WENO (flux corrected), WENO-AO, and WENOZ-AO.

Fig. 10. Section 5.2.2. The reconstructed solution at time 2𝜋 (one revolution) using a 100 × 100 square mesh. From left to right are results for ML1-WENO,
ML1-WENO (flux corrected), WENO-AO, and WENOZ-AO.
14
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c

Table 4
Example 5.2.2. 𝐿1 and 𝐿∞ errors at the final time of the various methods on two types of meshes.
The last row reports the flux corrected results of ML1-WENO on the polygonal mesh.

Flux Corrected on
Polygonal Mesh Square Mesh Square Mesh

𝐿1-err 𝐿∞-err 𝐿1-err 𝐿∞-err 𝐿1-err 𝐿∞-err

ML1-WENO 1.82e−2 6.40e−1 1.86e−2 7.09e−1 1.89e−2 7.05e−1
WENO-AO 2.68e−2 7.18e−1 2.68e−2 7.54e−1 2.75e−2 7.53e−1
WENOZ-AO 2.37e−2 6.89e−1 2.39e−2 7.27e−1 2.46e−2 7.27e−1
ML1-WENO (FC) 1.88e−2 6.39e−1 × × × ×

Table 5
Section 5.3.1. 𝐿1 and 𝐿∞ errors at the final time using
ML1-WENO(5,3) on randomly perturbed rectangular meshes.

Mesh 𝐿1-norm 𝐿∞-norm

Error Order Error Order

30 × 10 3.01e−2 — 3.07e−1 —
60 × 20 1.48e−2 1.024 2.96e−1 0.053
120 × 40 7.68e−3 0.946 3.05e−1 −0.043
240 × 80 3.83e−3 1.004 2.91e−1 0.068

Fig. 11. Section 5.3.1. The 30 × 10 mesh.

again the SATh flux using the previously corrected flux each iteration (see, e.g., [39]). The overall 𝐿1 error increases slightly, but
now the solution satisfies the global maximum principle.

For a completely fair test of the two WENO-AO schemes, we also show the result of this test on a 100 × 100 uniform square
mesh, which has the same number of cells as the polygonal mesh. All schemes approximate the solution using the same large and
small stencil polynomials of degree 4 and 2, respectively, so they are all two-level reconstructions of (5,3)-type. The results appear
in Fig. 10 and Table 4, where we see behavior similar to that observed using the polygonal mesh. In this test, all three schemes
would benefit from flux corrected transport.

5.3. Numerical results for nonlinear equations

We continue with a few tests of nonlinear fluxes, concentrating on the ability of the scheme to handle shocks and rarefactions.

5.3.1. Simple Riemann shock and rarefaction
Let 𝐟 (𝑢) = (𝑢2∕2, 𝑢2∕2) be the Burgers flux function. We test a Riemann shock and rarefaction in this example by taking the initial

ondition 𝑢0(𝑥, 𝑦) equal to 1 in the strip 0.5 < 𝑥 < 1.5 and 0 elsewhere within the domain 𝛺 = (0, 3) × (0, 1). The true solution is

𝑢(𝑥, 𝑦, 𝑡) =

⎧

⎪

⎨

⎪

⎩

0, 𝑥 < 0.5, 𝑥 ≥ 0.5𝑡 + 1.5,
(𝑥 − 0.5)∕𝑡, 0.5 ≤ 𝑥 < 𝑡 + 0.5,
1, 𝑡 + 0.5 ≤ 𝑥 < 0.5𝑡 + 1.5,

(48)

valid up to time 𝑡 = 2.0, when the trailing rarefaction reaches the leading shock.
We use logically rectangular meshes, each given by randomly perturbing the vertices by a factor of 0.28 times the unperturbed

mesh spacing ℎ. The 30 × 10 mesh is depicted in Fig. 11. The reconstruction for each target mesh cell used the ring 1.5 large stencil
and all cell-based small stencils of size 1 ring that overlap the target cell.

We computed the ML1-WENO(5,3) solution to time 2 using the standard SSP3 Runge–Kutta time integrator with time step
𝛥𝑡 = 0.25ℎ. The 𝐿1 and 𝐿∞ discrete norms of the error at the final time are given in Table 5. As expected, we see order 1 convergence
in 𝐿1 (and no 𝐿∞ convergence) due to the presence of the shock. The solution appears nonoscillatory in Fig. 12.

5.3.2. Shock formation from a smooth initial condition
We use the Burgers flux 𝐟 (𝑢) = (𝑢2∕2, 𝑢2∕2) on (0, 1)2, the smooth initial condition 𝑢0(𝑥, 𝑦) = sin2(2𝜋𝑥) sin2(2𝜋𝑦), and periodic

boundary conditions. The mesh depicted in Fig. 7 is used, and 𝛥𝑡 = 0.001 (about CFL 0.66). The reconstructions are the same as
those used in Section 5.2.2, and so are of type ML-WENO(5,3) over most of the domain.
15

The results are shown in Fig. 13. We see a clean shock formation, and essentially no undershoot.
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Fig. 12. Section 5.3.1. The reconstructed solution on the 240 × 80 perturbed mesh at times 0.5, 1.5, and 2.0. (The rarefaction and shock meet at time 2.0.)

Fig. 13. Section 5.3.2, shock formation. The (nearly) ML-WENO(5,3) reconstructed solution on the mesh from Fig. 7 using 𝛥𝑡 = 0.001 (about CFL 0.66).

Fig. 14. Section 5.3.3, Burgers. From left to right we show the full mesh, the reconstructed solution, and the finite volume solution at time 0.5.

5.3.3. Complex interaction of Riemann shocks and rarefactions
We present two test cases involving the complex interaction of shocks and rarefactions. Both cases use the standard SSP3 Runge–

Kutta time integrator. The reconstructions use the ring 1.5 large stencils and the cell-based ring 1 small stencils as before (targeting
reconstructions of the desired type WENO(5,3)).

For the first case, again take the Burgers flux 𝐟 (𝑢) = (𝑢2∕2, 𝑢2∕2), and impose the Riemann problem defined in [40]:

𝑢0(𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.5, 𝑥 < 0.5, 𝑦 < 0.5,
0.8, 𝑥 > 0.5, 𝑦 < 0.5,
−0.2, 𝑥 < 0.5, 𝑦 > 0.5,
−1.0, 𝑥 > 0.5, 𝑦 > 0.5.

(49)

We use periodic boundary conditions on the domain [−0.5, 1.5]2, but we only report results on the region on interest [0, 1]2.
Polymesher [34] with two smoothing iterations gave the 2002 cell and 75,921 vertex polygonal mesh used in the simulations (the
mesh has about 104 cells in the region of interest). Only one stencil polynomial (which happened to be posed on a large stencil) had
its degree lowered due to a condition number being greater that 1e+8, and some stencils ended up being smaller than desired, so
overall the reconstruction is of type WENO(5,4,3,2). We used a time step 𝛥𝑡 = 0.002, which is about 2/3 of the CFL limit (0.00315).
The full mesh and solution at time 0.5 appear in Fig. 14.
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Fig. 15. Section 5.3.3, Buckley–Leverett with gravity. The reconstructed solution at times 0, 0.1, 0.3, and 0.5, computed using a 200 × 200 cell square mesh.

For the second test case, we consider the nonconvex Buckley–Leverett flux, modified to incorporate gravity, so 𝐟 (𝑢) =
𝑢2

𝑢2 + (1 − 𝑢)2

(

1
1 − 5(1 − 𝑢)2

)

. In this test [41–43], the initial condition is zero over the domain [−1.5, 1.5]2 except that it is one

in the circle 𝑥2 + 𝑦2 ≤ 0.5. We used a 200 × 200 cell square mesh, giving reconstructions of (5,3)-type, and a time step 𝛥𝑡 = 0.002,
which is about half the CFL limit (0.00410). The results at times 0, 0.1, 0.3, and 0.5 appear in Fig. 15.

For both tests, the results are of similar quality to what one sees in the literature; moreover, they are nearly identical to results
we obtained using the WENO-AO and WENOZ-AO reconstructions.

5.4. Handling boundary conditions

High order finite volume and finite difference methods require wide stencils, which can be difficult to manage near the boundary
of the domain while maintaining high order accuracy. Various approaches have been developed to address this challenge. Many
involve using ghost cells or points outside the boundary so as to treat the reconstructions near the boundary as if they were in the
interior of the domain [11]. For example, in the inverse Lax–Wendroff procedure [44], one substitutes normal derivatives of the
solution with tangential and time derivatives using the partial differential equation in an iterative way to impose precise values for
the ghost cells or points.

Semplice, Travaglia, and Puppo [11] describe how to handle the problem using the adaptive order reconstruction of Semplice
and Visconti [27], which they can apply to rectangular Cartesian meshes. In a similar manner, the flexibility of the ML-WENO
reconstruction allows us to tackle the difficulties in a direct way, independent of the complexity of the governing partial differential
equations and intricacies of the geometry of the boundary. In this section we illustrate how one might impose inflow and outflow
boundary conditions numerically without the use of ghost cells; that is, we restrict our reconstruction stencils to interior cells.

In finite volume methods, we must use the boundary condition to determine the numerical flux on the boundary. The first step
is to determine whether a boundary is inflow or outflow. One can compute the reconstruction of the solution on the boundary (from
the inside), call it 𝑢𝐵 . If 𝐟 (𝑢𝐵) ⋅ 𝜈 > 0, no boundary condition is imposed and the flux is simply 𝐟 (𝑢𝐵) ⋅ 𝜈. Otherwise, the inflow flux
boundary condition (43) fixes the numerical flux directly as 𝑓𝐵 . The inflow Dirichlet boundary condition (42) has its flux defined
by (45), using the boundary value 𝑢𝐷 and 𝑢𝐵 substituting the right and left limits 𝑢+ and 𝑢−, ordered so 𝑢𝐷 is outside the domain.

The key to the above strategy is to have accurate reconstructions near the boundary. It is likely that stencils are constructed
in a way that some would cross the boundary (which we do not allow), and so they become smaller than expected. Therefore,
our ML-WENO reconstructions will use reduced order stencil polynomials near the boundary, resulting in degraded accuracy of
the numerical solution. However, ML-WENO gives us the flexibility to add stencils of the desired size that span back into the
domain. This is especially needed at outflow boundaries, and inflow boundaries when the solution remains smooth. For example,
an ML-WENO(5,3) reconstruction may revert to ML-WENO(3,2) near the boundary, so we would add an additional fifth order stencil
polynomial to the reconstruction to rehabilitate it to ML-WENO(5,3,2).

In the case of an inflow Dirichlet boundary, there may be a discontinuous inflow shock wave. In that case, we require a swift
response inside the domain to align with the specified Dirichlet value. We therefore add an extra constant stencil polynomial to
the inflow boundary to accommodate the potential discontinuity. Since a constant approximation has only order one accuracy, one
could further take a refined mesh near the boundary to improve the accuracy, but we do not do so here.

We present below two examples. The first handles a free outflow boundary, and the second handles an inflow Dirichlet boundary
condition that generates an incoming shock wave.

5.4.1. Free outflow at the boundary
For the outflow example, we test linear transport of a sine wave traveling diagonally across the domain (0, 1)2. Our true solution

is exactly controllable at the inflow boundaries, having value zero there:

𝑢(𝑥, 𝑦, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

sin6
(𝑥 − 0.1 − 𝑡

0.8
𝜋
)

sin6
( 𝑦 − 0.1 − 𝑡

0.8
𝜋
)

, 0.1 + 𝑡 ≤ 𝑥 ≤ 0.9 + 𝑡,

0.1 + 𝑡 ≤ 𝑦 ≤ 0.9 + 𝑡,
0, otherwise.

(50)
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Fig. 16. Section 5.4.1, free outflow. The effective polynomial degree of the reconstructions computed on 80 × 80 mesh at time 0.4.

Table 6
Example 5.4.1, free outflow. Errors and convergence rates on rectangular meshes using ML1-WENO, adding 5th
order stencils to reconstructions near the boundary in no, one, or two layers into the domain.

No Layers One Layer Two Layers

Mesh size 𝐿∞(𝐿1)-err Rate 𝐿∞(𝐿1)-err Rate 𝐿∞(𝐿1)-err Rate

20 × 20 4.41e−03 – 4.35e−03 – 4.26e−03 –
40 × 40 1.19e−04 5.21 1.13e−04 5.27 1.05e−04 5.34
80 × 80 5.05e−06 4.67 4.07e−06 4.80 3.82e−06 4.78
160 × 160 2.17e−07 4.54 1.32e−07 4.95 1.25e−07 4.93
250 × 250 2.99e−08 4.44 1.43e−08 4.98 1.36e−08 4.97

On the left and bottom sides, we impose the constant zero inflow condition. We have taken the sine wave to the 6th power in order
to achieve a smooth connection between the sine wave peak and the constant zero region.

We use a rectangular mesh of 𝑁 × 𝑁 cells. We computed the overall ML1-WENO solution to time 0.4 using the fifth order
Runge–Kutta time integrator due to Ruuth and Spiteri [33] with time step 𝛥𝑡 = 0.4ℎ.

The usual ML1-WENO(5,3) reconstruction drops to ML1-WENO(3,2) on the layer of (target) cells next to the boundary. At the
same time, ML1-WENO(5,3) drops to ML1-WENO(4,3) on the next layer of cells away from the boundary. We consider three cases.
First, we add no additional stencils (i.e., ‘‘no layers’’), so the reconstructions are technically ML1-WENO(5,4,3,2), although they are
ML1-WENO(5,3) in the interior of the domain. Second, we add additional fifth order stencils to the reconstructions for cells next
to the outflow boundary (i.e., ‘‘one layer’’). For each target cell next to the boundary, we add a single ring 2.5 stencil centered
around the cell one layer inside the domain. Except near the outflow corner at (1,1), they have 33 cells, and each supports accurate
approximation by a fourth degree (fifth order) stencil polynomial, even in the corner. Third, we use these same additional fifth
order stencils in reconstructions but for target cells next to and one cell inside the outflow boundary (i.e., ‘‘two layers’’).

The effective polynomial degree of the reconstructions can be defined for each target cell as

𝑝eff =
∑

𝓁

𝜔̃𝓁 𝑟𝓁 − 1. (51)

It is shown in Fig. 16, where we see good approximation (degree 4) over the middle of the domain for all three cases. The
approximation near the inflow boundary matters not in this test. Near the outflow boundary, the no layer case drops to degree 2
while the other two cases are degree 4. Both the no layer and one layer cases, however, are only degree 3 in the layer of cells that
are one cell inside the outflow boundary.

A reduced effective degree leads to a poorer approximation of the outflow flux. In
Table 6 we show the maximum over time of the discrete 𝐿1 error. In the no layer case, we see a one half order loss of the

convergence rate, i.e., order 4.5. In this test, we do not see a degradation of convergence in the one layer case, although the error
is a bit greater than that in the two layer case.

In Fig. 17, we see the error distribution over the domain. The solution has a peak that propagates to the outflow corner, and
so the error concentrates there. The error caused by the loss of reconstruction accuracy near the outflow boundary in the no layers
case is evident, while the other two cases show good approximation there. We remark that the error near the outflow boundary
eventually propagates out of the computational domain, and so does not pollute the solution in the interior of the domain in this
test.

5.4.2. Inflow Dirichlet boundary conditions
For the inflow example, we use the Burgers-like equation 𝑢𝑡 + 𝑢3𝑢𝑥 = 0 with the flux 𝐟 (𝑢) = (𝑢4∕4, 0) in the domain (0, 1)2. The

Dirichlet boundary condition on the left boundary (𝑥 = 0) is the continuous function

𝑢𝐷(0, 𝑦, 𝑡) =

{

sin2(2𝜋𝑦), 𝑦 ≤ 0.25, 𝑦 ≥ 0.75,
(52)
18

1, 0.25 < 𝑦 < 0.75,



Computer Methods in Applied Mechanics and Engineering 421 (2024) 116818T. Arbogast et al.
Fig. 17. Section 5.4.1, free outflow. Error distribution computed on 80 × 80 mesh at time 0.4. The error near the outflow boundary is notably diminished by
incorporating additional stencils.

Fig. 18. Section 5.4.2, inflow propagation of nonlinear shock wave. The ML-WENO(5,4,3,2,1) reconstructed solution on the 80 × 80 rectangular mesh at time
0.8.

Fig. 19. Section 5.4.2, inflow propagation of nonlinear shock wave. On the left, we show the results of the ML-WENO(5,4,3,2,1) reconstructed solution at ten
evenly spaced times from 0.08 to 0.8. On the right we show the ML-WENO(5,4,3,2) reconstructed solution at times 0.04 and 0.075. This solution goes unstable
and the computer program returns NaN after time 0.075.

and the right boundary is a free outflow boundary. The top and bottom boundaries are Dirichlet with value zero. We test a shock
wave traveling into the computational domain by setting the initial condition 𝑢0(𝑥, 𝑦) = 0.

We use a rectangular mesh with 80 × 80 cells. We compute the solution to the final time 0.8 using the same fifth order Runge–
Kutta time integrator as before [33] and set the time step to be 𝛥𝑡 = 0.4ℎ (𝛥𝑡 = 0.005, CFL = 0.4). We use the same set of stencils
used in the outflow problem, which results in an overall ML-WENO(5,4,3,2) reconstruction that is ML-WENO(5,3) over most of the
domain, and drops to ML-WENO(4,3) and ML-WENO(3,2) near the boundaries.

The ML-WENO(5,4,3,2,1) solution is shown in Fig. 18. It uses the usual set of stencils augmented with extra single cell stencils
(constant polynomials) near the inflow boundary to resolve the incoming shock wave. The result is as we should expect, since the
Rankine–Hugoniot shock speed in the 𝑥-direction near the boundary is 𝑢3𝐷∕4, which is sin6(2𝜋𝑦)∕4 for 𝑦 ≤ 0.25 and 𝑦 ≥ 0.75.

On the left of Fig. 19, we show the shock wave traveling into the domain at ten evenly spaced times from 0.08 to 0.8. The wave
enters with a sharp profile and very little overshoot (a small amount can be observed at time 0.16).

We compare our results to those using the ML-WENO(5,4,3,2) reconstruction, which has not been supplemented with constant
polynomials near the inflow boundary. The results are shown on the right of Fig. 19. We see significant overshoot as the shock wave
enters the domain. It is so severe that the solution goes well outside the expected range [0, 1], and the maximum numerical wave
speed greatly exceeds the presumed speed of one used within the Lax–Friedrichs numerical flux, so it does not stabilize the solution
after time 𝑡 = 0.075. The computer program returns the IEEE code for Not a Number (NaN) at the next time step. Adding additional
19
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constant stencils near the inflow boundary significantly reduces the overshoot caused by linear reconstruction of a sharp front and
thereby allows the numerical flux to stabilize the solution.

We remark that the high power in the flux function is needed to see this dramatic result. Both schemes perform well if Burger’s
quation is used with these boundary and initial conditions. Nonetheless, it should be clear that the flexibility to add constant
tencils near the boundary is a distinct advantage of ML-WENO reconstructions.

. Summary and conclusions

We presented a general framework for solving scalar conservation laws using finite volume WENO techniques on general
omputational meshes in multiple space dimensions.

As the numerical results showed in Section 2.3, it is difficult, and perhaps impossible, to relate the geometry of a general mesh
stencil to the quality of the (finite volume) stencil polynomial approximation defined on it. However, based on the Bramble–Hilbert
Lemma, we were able to give an algebraic condition (10) that ensures the uniform error bound (8).

We suggested a practical algorithm to deal with bad stencils. If the condition (10) is not met, we keep the same stencil but reduce
he order of the polynomial approximation. The algorithm will terminate at worst with a constant polynomial.

We then developed a multilevel WENO (ML-WENO) reconstruction (21) that was flexible enough to handle stencil polynomials
f various degrees. The key is to scale the linear weights according to (22) before normalizing (24).

Lemmas 3.1–3.2 quantified the effect of the true solution and its smoothness indicator on the size of the weights. The nonlinear
eights for both inaccurate oscillatory polynomials of higher degree (i.e., those crossing a shock or steep front) and smooth
olynomials of lower degree are biased to zero, thereby allowing selection of the smooth polynomial(s) of maximal degree of
pproximation 𝑟max (defined in (29)). The rates of bias are sufficient to lead us to the desired convergence result Theorem 3.3.
e performed some numerical tests, which confirmed and illustrated the ability of the reconstruction to approximate accurately

oth smooth and discontinuous functions.
We saw good results when applying ML-WENO to the approximation of scalar conservation laws. We tested smooth solutions and

roblems with shocks and rarefactions. We also illustrated the flexibility of ML-WENO by using it to impose boundary conditions.
Preliminary application of ML-WENO to the Euler system of gas dynamics shows reasonable results, especially if ML2-WENO

s used. However, some problems show excessive numerical diffusion, so we expect that some modifications are needed to handle
ystems of conservation laws. This is the subject of future work.
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