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Abstract. The finite volume, self-adaptive theta (SATh) scheme was defined in Arbogast and
Huang, A self-adaptive theta scheme using discontinuity aware quadrature for solving conservation
laws, IMA J. Numer. Anal. (2022). The scheme evolves both the local space and space-time averages
of the solution in time with an implicitly defined theta parameter. Here, the scheme is extended
to unstructured meshes in multiple space dimensions, general numerical flux functions, and higher
(formally second) order using WENO reconstructions. Theoretical results apply to the one space
dimension, upstream weighted case. It is shown that the scheme is stable provided only that the theta
parameter is bounded below by θmin = 0; moreover, the scheme is L-stable for the linear problem. In
the case of a monotone solution, SATh is total variation diminishing (TVD) and maximum principle
preserving (MPP). These results generalize those known previously with the assumption that θmin =
1/2. Numerical tests for problems with contact discontinuities, shocks, and rarefactions show that
SATh performs better than finite volume schemes using backward Euler time stepping. Moreover,
SATh gives solutions about as sharp as when using Crank-Nicolson time stepping, but SATh is non-
oscillatory. In fact, SATh combined with a Lax-Friedrichs numerical flux appears to be TVD and
MPP. The caveat is that if θmin = 0 is used, then the solution needs to be monotone or sufficiently
resolved. That is, the numerical results show that SATh is non-oscillatory if θmin = 1/2, but if
θmin = 0 and the solution is not monotone, it can develop oscillations. The higher order SATh
scheme converges to order two and compares favorably with CN, but is less oscillatory.
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1. Introduction. A hyperbolic conservation law posed on Rd, d ≥ 1, for the
scalar function u(x, t) can be written in terms of the flux function f(u) ∈ Rd as

(1.1) ut +∇ · f(u) = 0, u(x, 0) = u0(x), x ∈ Rd, t > 0.

The law describes the fundamental principles of conservation and transport of phys-
ical quantities in a wide range of dynamic systems. There are difficulties associated
with solving these problems that must be dealt with carefully in the development of
numerical methods, especially that the solution may develop shocks.

Finite volume schemes inherently preserve certain physical properties like con-
servation due to their integral form, while also doing well to capture shocks in the
solution. Perhaps the simplest finite volume approximation of (1.1) uses backward
Euler (BE) time-stepping combined with upstream weighting for spatial stability. This
is a low order accurate scheme with excessive numerical diffusion. Physically relevant
shocks, contact discontinuities, and steep fronts are diffused over time. Despite this
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shortcoming, BE is used because it is unconditionally stable and is maximum prin-
ciple preserving (MPP) [7, 4, 9, 5]. These desirable numerical properties make BE a
viable low order scheme. Moreover, it can be used in combination with a high order
scheme to improve the quality of the solution, e.g., to reduce spurious oscillations by
way of flux-limiting or flux corrected transport (FCT) [3, 11, 6].

One can reduce the numerical diffusion of the BE scheme by instead resorting
to the theta time-stepping method. For parameter θ, the method blends the implicit
backward Euler (θ = 1) and explicit forward Euler (θ = 0) time-stepping. The implicit
Crank-Nicolson (CN) method results when θ = 1/2. The finite volume scheme can be
viewed as a flux limiting method with the limiting parameter θ. However, it is only
conditionally stable and violates the maximum principle when θ < 1.

In order to improve the low order accurate BE scheme, two of the current authors
presented a discontinuity aware quadrature (DAQ) rule and used it to develop an
implicit self-adaptive theta (SATh) scheme in [1]. This finite volume scheme uses the
theta time-stepping method, but with an implicitly defined theta parameter given in
terms of the local space and space-time averages of the solution. It is proved in [1]
that as long as one restricts θ ≥ θmin = 1/2, the finite volume approximation of (1.1)
in one space dimension using SATh time-stepping combined with upstream weighting
(SATh-up) is unconditionally stable in terms of the discretization parameters for
monotone flux functions. Moreover, when the true solution is monotone (increasing
or decreasing), the upstream weighted scheme is MPP and the numerical solution is
total variation bounded (TVB) as well as total variation diminishing (TVD). It was
also observed computationally, but not proven, that the scheme using a Lax-Friedrichs
numerical flux satisfies the same properties.

In this paper, further theoretical and numerical studies on the SATh scheme are
presented. The scheme is extended to multiple space dimensions on unstructured
meshes. General numerical flux functions are incorporated, as long as they can be
split into right and left going waves.

In one space dimension using monotone flux functions, SATh-up is shown here
to be theoretically stable with only the restriction that θ ≥ θmin = 0. This result
is quite surprising, because the theta time stepping method itself is unstable when
θ < 1/2. Moreover, the scheme applied to the linear equation is L-stable, i.e., it is
linearly L-stable. Our proof relies on an algebraically equivalent formulation of the
scheme that is more symmetric. Under the relaxed restriction θmin = 0, the SATh-up
scheme continues to be MPP, TVB, and TVD when the true solution is monotone.

Numerical tests are presented for problems with contact discontinuities, shocks,
and rarefactions. When the true solution is monotone, comparisons will show that
the SATh scheme using θmin = 0, which is denoted SATh0, gives better solutions than
when using the original θmin = 1/2, denoted SATh1/2. The SATh solutions are less
diffusive than those of BE and generally comparable to CN, but without oscillation.
SATh1/2 behaves similarly for problems with nonmonotone solutions; unfortunately,
SATh0 does not. Oscillations can develop in the SATh0 solutions, presumably because
θ < 1/2 does not provide enough damping to suppress them.

The SATh scheme is extended to using spatially higher order upwind values of
the solution, which results in a formally second order accurate scheme in space and
time away from discontinuities. Numerically speaking, the higher order SATh scheme
compares favorably with CN, but is less oscillatory.

In the next section, the self-adaptive theta scheme is recalled and then extended
to general meshes in multiple dimensions and to general numerical flux functions. The
relaxed stability properties of SATh0-up are proved in §3; that is, it is shown that it is
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sufficient to take θmin = 0 and that the scheme is linearly L-stable. Next, §4, discusses
the MPP, TVB, and TVD properties of SATh0-up for monotone solutions. Numerical
results are presented in §5 and §6 for problems posed in 1D and 2D spatial domains,
respectively. These sections compare the numerical solutions of SATh0, SATh1/2, BE,
and CN. In §7, the implications of using high order spatial reconstructions are shown.
Finally, §8 ends the paper with a summary of results, conclusions, and some open
questions.

2. Formulation of the Self-Adaptive Theta Scheme. Partition time 0 =
t0 < t1 < t2 < · · · and define ∆tn+1 = tn+1 − tn and tn+1/2 = (tn + tn+1)/2.

2.1. Discontinuity Aware Quadrature (DAQ). The SATh scheme is based
on the discontinuity aware quadrature (DAQ) rule derived in [1], which is reviewed
briefly here. To approximate the integral of a function g(t, v(t)) in time over [tn, tn+1],
the rule uses only the information

vn = v(tn), vn+1 = v(tn+1), and ṽn+1 =
1

∆tn+1

∫ tn+1

tn
v(t) dt.

The basic assumptions is that that there is a single shock passing through the
interval [tn, tn+1]. This situation is approximated by taking v(t) to be a piece-wise
constant function on [tn, tn+1] with only two values, i.e., vn and vn+1, changing at τ ,
the time of the shock. Therefore,

(2.1) ṽn+1 =
1

∆tn+1

[
(τ − tn)vn + (tn+1 − τ)vn+1

]
,

which gives τ . We should write τ = τn+1, but the superscript is suppressed for easier
reading. The DAQ rule approximation is

(2.2) QD
(
g(v)

)
=

∫ τ

tn
g(t, vn) dt+

∫ tn+1

τ

g(t, vn+1) dt ≈
∫ tn+1

tn
g(t, v(t)) dt.

The formulation should mirror the one parameter family of theta methods, so
define

(2.3) θ = 1− τ − tn

∆tn+1
=
ṽn+1 − vn

vn+1 − vn
,

i.e., τ = (1 − θ)∆tn+1 + tn. Then the DAQ rule (2.2), when applied to G(u(t))w(t)
for weight function w(t), becomes

QD
(
G(v)w

)
= ∆tn+1

{
G(vn)

∫ 1−θ

0

w(s∆tn+1 + tn) ds(2.4)

+G(vn+1)

∫ 1

1−θ

w(s∆tn+1 + tn) ds

}
.

The rule is accurate to order O(∆t2) when there is a discontinuity [1, Theorem
3.3]), and O(∆t3) when the solution is smooth [1, Theorem 3.4].

2.2. The SATh Scheme. Let the region of interest be partitioned into a com-
putational mesh of cells or elements E. The skeleton set Γ = ∪E∂E consists of facets
e (a point in 1D, an edge in 2D, etc.). Each facet is the intersection of two adjacent
elements, e = E− ∩ E+ and has a unit normal νe = νE− pointing from E− to E+.
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The cell average of u over mesh element E at time t is given by

(2.5) ūE(t) =
1

|E|

∫
E

u(x, t) dx.

Similarly, the space-time cell average of u over E × [tn, tn+1] is given by

(2.6) ˜̄un+1
E =

1

∆tn+1|E|

∫ tn+1

tn

∫
E

u(x, t) dx dt.

We will later abuse notation by using these same symbols for the approximations of
these averages.

Begin by multiplying (1.1) by a test function w(t), averaging in space over E,
and applying the divergence theorem. Then integrate in time over [tn, tn+1] and
apply integration by parts to obtain the weak form∫ tn+1

tn

dūE(t)

dt
w(t) dt = ūn+1

E w(tn+1)− ūnEw(t
n)−

∫ tn+1

tn
ūE(t)w

′(t) dt(2.7)

= − 1

|E|

∫ tn+1

tn

∫
∂E

f(u(x, t)) · νE dS(x)w(t) dt

= − 1

|E|

∫ tn+1

tn

∑
e⊂∂E

∫
e

F̂e

(
u−e (x, t), u

+
e (x, t)

)
νe · νE dS(x)w(t) dt,

wherein has been introduced the numerical flux function F̂e(u
−
e , u

+
e ) ≈ f(u) · νe for

facet e = E−∩E+. Here u−e and u+e are the interface values of u on e taken as the trace
from E− and E+, respectively. These interface values will later be approximations. To
apply the DAQ rule later, the numerical flux will need to be split into unidirectional
waves, which is to say

(2.8) F̂e(u
−
e , u

+
e ) = F̂+

e (u−e ) + F̂−
e (u+e )

where (F̂+
e )′(u) ≥ 0 and (F̂−

e )′(u) ≤ 0.
The SATh scheme in multiple space dimensions is given below in (2.9)–(2.12).

Consider the test function w(t) = 1 in (2.7) and apply the DAQ rule (2.4) to each
piece of the numerical flux (2.8) see that

ūn+1
E = ūnE − ∆tn+1

|E|
∑
e⊂∂E

νe · νE
∫
e

[
(1− θ−e )F̂

+
e (un,−e ) + θ−e F̂

+
e (un+1,−

e )(2.9)

+ (1− θ+e )F̂
−
e (un,+e ) + θ+e F̂

−
e (un+1,+

e )
]
dx.

The test function w(t) = (tn+1 − t)/∆tn+1 leads similarly to

˜̄un+1
E = ūnE − ∆tn+1

2|E|
∑
e⊂∂E

νe · νE
∫
e

[(
1− (θ−e )

2
)
F̂+
e (un,−e ) + (θ−e )

2F̂+
e (un+1,−

e )

(2.10)

+
(
1− (θ+e )

2
)
F̂−
e (un,+e ) + (θ+e )

2F̂−
e (un+1,+

e )
]
dx.
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The definition of θ in (2.3) results in
(2.11)

θ±e = θn+1,±
e =

max

(
θmin,

ũn+1,±
e − un,±e

un+1,±
e − un,±e

)
if |un+1,±

e − un,±e |
> ϵ
(
|ũn+1,±

e − un,±e |+ 1
)
,

θ∗ otherwise,

where ũn+1,±
e is the trace of the time average of u on e. The restriction θ±E ≥ θmin

is the stability constraint. The theory and numerical examples will illuminate when
θmin = 0 or θmin = 1/2 is the appropriate choice. The parameter θ∗ should be
set to 1/2 or possibly 1. The parameter ϵ ≥ 0 is a small parameter (say 1e-6 in
practice) needed to avoid division by zero and numerical instability. We remark that
previously in [1], ϵ was used in place of ϵ

(
|˜̄un+1

j − unj | + 1
)
. This scaled version can

reduce numerical instability, especially in the Newton solution procedure.
We generally use simple constant values to approximate the cell boundary inter-

face values u±e and ũ±e , i.e.,

(2.12) u±e = ūE± and ũ±e = ˜̄uE± ,

where e = E−∩E+. However, the implications of using high order spatial reconstruc-
tions is discussed in §7.

2.3. The SATh-up and SATh-LF schemes in 1D. To aid the reader, here
is expressed the SATh scheme for the one space dimension equation

(2.13) ut + f(u)x = 0, x ∈ R, t > 0.

Define a computational mesh by grid points · · · < xi−1/2 < xi+1/2 < xi+3/2 < · · ·
with grid cells Ei = [xi−1/2, xi+1/2] of length ∆xi = xi+1/2−xi−1/2. The cell subscript
Ei will be denoted simply as i. Given a quantity ψ that depends on space and/or time,
denote ψn

i+1/2 = ψ(xi+1/2, t
n) (and similarly when ψ is composed with u, ψn

i+1/2 =

ψ(u(xi+1/2, t
n))). The scheme (2.9)–(2.10) simplifies to

ūn+1
i = ūni − ∆tn+1

∆xi

{
F̂+,n
i+1/2 + θ−i+1/2

(
F̂+,n+1
i+1/2 − F̂+,n

i+1/2

)
(2.14)

+ F̂−,n
i+1/2 + θ+i+1/2

(
F̂−,n+1
i+1/2 − F̂−,n

i+1/2

)
− F̂+,n

i−1/2 + θ−i−1/2

(
F̂+,n+1
i−1/2 − F̂+,n

i−1/2

)
− F̂−,n

i−1/2 + θ+i−1/2

(
F̂−,n+1
i−1/2 − F̂−,n

i−1/2

)}
,

˜̄un+1
i = ūni − ∆tn+1

2∆xi

{
F̂+,n
i+1/2 + (θ−i+1/2)

2
(
F̂+,n+1
i+1/2 − F̂+,n

i+1/2

)
(2.15)

+ F̂−,n
i+1/2 + (θ+i+1/2)

2
(
F̂−,n+1
i+1/2 − F̂−,n

i+1/2

)
− F̂+,n

i−1/2 + (θ−i−1/2)
2
(
F̂+,n+1
i−1/2 − F̂+,n

i−1/2

)
− F̂−,n

i−1/2 + (θ+i−1/2)
2
(
F̂−,n+1
i−1/2 − F̂−,n

i−1/2

)}
.

Using simple constant values on the cell boundary interfaces (2.12) results in

(2.16) u−j+1/2 = ūj , u+j+1/2 = ūj+1, ũ−j+1/2 = ˜̄uj , and ũ+j+1/2 = ˜̄uj+1,



6 T. Arbogast, C.-S. Huang, and D. King

and in this case θ−j+1/2 = θ+j−1/2 = θj . Moreover, θ as given by (2.11) becomes

(2.17) θj = θn+1
j =

max

(
θmin,

˜̄un+1
j − ūnj

ūn+1
j − ūnj

)
if |ūn+1

j − ūnj |
> ϵ
(
|˜̄un+1

j − unj |+ 1
)
,

θ∗ otherwise.

The Lax-Friedrichs stabilized numerical flux will be used. It can be split as

(2.18) F̂±
j+1/2 =

1

2

[
f(u∓j+1/2)± αLFu

∓
j+1/2

]
,

where αLF = maxu |f ′(u)| is the maximum wave speed. We denote the scheme as
SATh-LF when using this numerical flux.

The upstream weighted numerical flux will also be used, assuming the waves are
traveling to the right so f ′(u) ≥ 0. It is split as

(2.19) F̂+
j+1/2 = f(u−j+1/2) and F̂−

j+1/2 = 0.

Then (2.14)–(2.15) gives the SATh-up scheme

ūn+1
i = ūni − ∆tn+1

∆xi

[
(1− θi)f̄

n
i + θif̄

n+1
i − (1− θi−1)f̄

n
i−1 − θi−1f̄

n+1
i−1

]
,(2.20)

˜̄un+1
i = ūni − ∆tn+1

2∆xi

[
(1− θ2i )f̄

n
i + θ2i f̄

n+1
i − (1− θ2i−1)f̄

n
i−1 − θ2i−1f̄

n+1
i−1

]
.(2.21)

3. Stability of SATh0. It is shown in [1] that, under a mild monotonicity condi-
tion on the flux function, the SATh-up scheme in 1D, (2.20)–(2.21), is unconditionally
stable in terms of the discretization parameters, provided one takes the lower bound
θmin = 1/2 in (2.17). We present a different proof that shows that in fact one may
require only θmin ≥ 0 to achieve stability.

The SATh-up scheme (2.20)–(2.21) is algebraically equivalent to (2.20) and (2.21)
minus one half of (2.20), which is

˜̄un+1
i =

1

2
(ūni + ūn+1

i ) +
∆tn+1

2∆xi

[
θi(1− θi)(f̄

n
i − f̄n+1

i )(3.1)

− θi−1(1− θi−1)(f̄
n
i−1 − f̄n+1

i−1 )
]
.

For the theoretical results, assume that ϵ = 0 in the definition of θ, (2.17).

Theorem 3.1. Assume that f ′(u) ≥ 0 and ϵ = 0 in (2.17). If θmin = 0, then the
upstream weighted scheme (SATh-up) in 1D is unconditionally stable for the nonlinear
problem and unconditionally L-stable for the linear problem.

3.1. Proof of Linear L-Stability of SATh0-up (and SATh0-LF). We will
begin by showing that the SATh0-up scheme is L-stable when applied to the linear
problem, for which f(u) = αLFu. Observe that the upstream weighted and Lax-
Friedrichs numerical fluxes coincide for the linear problem.

The SATh-up scheme (2.20) and (3.1) applied to the linear problem is

ūn+1
i = ūni − λ̂

[
˜̄un+1
i − ˜̄un+1

i−1

]
,(3.2)

˜̄un+1
i =

1

2

(
ūn+1
i + ūni

)
+
λ̂

2

[
θi(ū

n+1
i − ˜̄un+1

i )− θi−1(ū
n+1
i−1 − ˜̄un+1

i−1 )
]
,(3.3)
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where λ̂ = αLF∆t
n+1/∆xi > 0 and ϵ = 0 in (2.17). Following [1], view the scheme in

matrix form, Aξn+1 = Bξn, using the variables

(3.4) ξn =
(
. . . , ūni−1, ˜̄u

n
i−1, ū

n
i , ˜̄u

n
i , . . .

)T
.

The matrices A and B are block 2×2 lower triangular. The eigenvalues of the matrix
A−1B are the eigenvalues of A−1

d Bd, where the subscript d indicates the diagonal
blocks. It is straightforward to see that the i-th blocks are

Ad =

[
1 λ̂

− 1
2 (1 + λ̂θ) 1 + λ̂

2 θ

]
and Bd =

[
1 0

1/2 0

]
,

where the subscript i has been repressed for readability. Assuming θ ≥ θmin = 0, the
determinant of Ad is nonzero, since

(3.5) |Ad| = 1 +
λ̂

2
(1 + θ) +

λ̂2

2
θ > 0.

Thus, Ad is invertible and

A−1
d =

1

|Ad|

[
1 + λ̂

2 θ −λ̂
1
2 (1 + λ̂θ) 1

]
so that A−1

d Bd =
1

|Ad|

[
1− λ̂

2 (1− θ) 0

1 + λ̂
2 θ 0

]
.

The eigenvalues of A−1
d Bd are 0 and

(3.6) µ =
1− λ̂

2 (1− θ)

1 + λ̂
2 (1 + θ) + λ̂2

2 θ
.

In order to conclude that our new formulation is L-stable for the linear problem,
it must be shown that the absolute value of the eigenvalues are bounded by unity and
tend to zero as the step size goes to infinity. This need only be shown for the non-zero
eigenvalue. To see that |µ| ≤ 1 when θ ≥ θmin = 0, note that the lower bound −1 ≤ µ
is equivalent to

−1− λ̂

2
(1 + θ)− λ̂2

2
θ ≤ 1− λ̂

2
(1− θ) ⇐⇒ 0 ≤ 2 + λ̂θ +

λ̂2

2
θ,

which holds true, and the upper bound µ ≤ 1 is equivalent to

1− λ̂

2
(1− θ) ≤ 1 +

λ̂

2
(1 + θ) +

λ̂2

2
θ ⇐⇒ 0 ≤ λ̂+

λ̂2

2
θ,

which also holds. We conclude that |µ| ≤ 1 and the scheme is unconditionally stable

to rounding error. Moreover, the scheme is L-stable because µ → 0 as λ̂ → ∞, since
µ is quadratic in λ̂ in the denominator and linear in λ̂ in the numerator. In fact, one
can see that these two conditions and (3.5) hold if merely

(3.7) θ ≥ θmin ≥ −4

λ̂(2 + λ̂)
.

This lower bound tends to zero as λ̂ → ∞. Since we have assumed that ϵ = 0 in
(2.17), and preferring a uniform lower bound, we simply take θmin = 0 in practice.
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3.2. Proof of Nonlinear Stability of SATh0-up. We now analyze the sta-
bility properties of the SATh0-up scheme applied to the nonlinear problem. The
following analysis is done under a mild monotonicity condition on the flux function,
namely, that f ′(u) ≥ 0.

For a flux f , define the parameter ψ by

(3.8) ψ =


f(ūn+1)− f(ūn)

αLF(ūn+1 − ūn)
, if |ūn+1 − ūn| > 0,

ψ∗, otherwise,

for ψ∗ ∈ [0, 1]. Note that when f ′(u) ≥ 0 and αLF = maxu |f ′(u)|, the bound 0 ≤
ψ ≤ 1 holds. Observe that if the linear flux function f(u) = αLFu is substituted, then
ψ = 1, regardless of the denominator when ψ∗ = 1 is taken.

Reformulating (2.20) and (3.1) in terms of ψ gives

ūn+1
i = ūni − λ

[
f̄n+1
i − αLF

(
ūn+1
i − ˜̄un+1

i

)
ψi(3.9)

− f̄n+1
i−1 + αLF

(
ūn+1
i−1 − ˜̄un+1

i−1

)
ψi−1

]
,

˜̄un+1
i =

1

2

(
ūn+1
i + ūni

)
+
λαLF

2

[
θn+1
i

(
ūn+1
i − ˜̄un+1

i

)
ψi(3.10)

− θn+1
i−1

(
ūn+1
i−1 − ˜̄un+1

i−1

)
ψi−1

]
,

where λ = ∆tn+1/∆xi.
In order to express the scheme in matrix form, rearrange the definition of ψi to

get a third equation, namely,

(3.11) f̄n+1
i − αLFū

n+1
i ψi = f̄ni − αLFū

n
i ψi.

Our system Aξn+1 = Bξn now uses the variables

(3.12) ξn =
(
. . . , ūni−1, f̄

n
i−1, ˜̄u

n
i−1, ū

n
i , f̄

n
i , ˜̄u

n
i , . . .

)T
.

The matrices A and B are block 3×3 lower triangular. The eigenvalues of the matrix
A−1B are the eigenvalues of A−1

d Bd, where the subscript d indicates the diagonal
blocks.

It is straightforward to see that the i-th blocks are

Ad =

 1− λαLFψ λ λαLFψ

−αLFψ 1 0

− 1
2 (1 + λαLFψθ) 0 1 + λ

2αLFψθ

 and Bd =

 1 0 0

−αLFψ 1 0
1
2 0 0

 ,
where the subscript i has been repressed for readability. Note that the determinant
of Ad is positive; that is, with λ̂ = λαLF,

(3.13) |Ad| = 1 +
λ̂

2
ψθ +

λ̂

2
ψ(1 + λ̂ψθ) > 0,

since θ ≥ θmin ≥ 0 and ψ ∈ [0, 1]. Hence, Ad is invertible and

A−1
d =

1

|Ad|


1 + λ̂

2ψθ −λ(1 + λ̂
2ψθ) −λ̂ψ

αLFψ(1 +
λ̂
2ψθ) (1− λ̂ψ)(1 + λ̂

2ψθ) +
λ̂
2ψ(1 + λ̂ψθ) −λ̂αLFψ

2

1
2 (1 + λ̂ψθ) −λ

2 (1 + λ̂ψθ) 1

 .
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Now

A−1
d Bd =

1

|Ad|

1 −λ(1 + λ̂
2ψθ) 0

0 |Ad|µ∗ 0

1 −λ(1 + λ̂ψθ) 0

 ,
where

µ∗ =
(1− λ̂ψ)(1 + λ̂

2ψθ) +
λ̂
2ψ(1 + λ̂ψθ)

|Ad|
.

The eigenvalues of A−1
d Bd are µ = 0, 1, and µ∗. The nontrivial eigenvalue is well-

defined, because |Ad| > 0, and can be expressed as

(3.14) µ∗ =
(1− λ̂ψ)(1 + λ̂

2ψθ) +
λ̂
2ψ(1 + λ̂ψθ)

|Ad|
=

|Ad| − λ̂ψ(1 + λ̂
2ψθ)

|Ad|
.

First, we show that the absolute value of (3.14) is bounded by unity so that the
scheme is stable up to rounding error. Begin with the evident upper bound,

µ∗ ≤ 1 ⇐⇒ |Ad| − λ̂ψ
(
1 +

λ̂

2
ψθ
)
≤ |Ad| ⇐⇒ −λ̂ψ

(
1 +

λ̂

2
ψθ
)
≤ 0,

which holds since λ̂, ψ, and θ are all non-negative. Now, the lower bound,

−1 ≤ µ∗ ⇐⇒ 0 ≤ 2|Ad| − λ̂ψ
(
1 +

λ̂

2
ψθ
)
,

is less obvious. To show that the inequality holds, expand the right-hand side to see

2|Ad| − λ̂ψ
(
1 +

λ̂

2
ψθ
)
= 2
(
1 +

λ̂

2
ψθ
)
+ λ̂ψ

(
1 + λ̂ψθ

)
− λ̂ψ

(
1 +

λ̂

2
ψθ
)

= 2 + λ̂ψθ +
1

2
(λ̂ψ)2θ,

which is clearly non-negative. It is concluded that the scheme is unconditionally stable
for θmin = 0.

Furthermore, substituting (3.13) into (3.14) and taking the limit gives

lim
λ→∞

µ∗ = lim
λ→∞

|Ad| − λ̂ψ(1 + λ̂
2ψθ)

|Ad|
= 1− lim

λ→∞

λ̂ψ(1 + λ̂
2ψθ)

1 + λ̂
2ψθ +

λ̂
2ψ(1 + λ̂ψθ)

= 0,

However, the unit eigenvalue prevents us from concluding that SATh0-up is L-stable
for the nonlinear problem.

4. Satisfaction of the maximum principle in a monotone setting. The
SATh-up scheme was proven in [1, Theorem 5.2] to satisfy the maximum principle
in a monotone flow setting when θmin = 1/2. This restriction was taken in that
paper because it was assumed to be the requirement for stability. As has now been
shown, stability is assured with only θmin = 0. A careful reading of the proof of [1,
Theorem 5.2] shows that with only minor changes, the result continues to hold when
θmin = 0. We now state the result.
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Theorem 4.1. Suppose that f is strictly monotone increasing, and suppose that
in the definition (2.17) of θ, ϵ = 0 and θmin ≥ 0. Pose the SATh-up scheme on a finite
interval with a boundary condition on the left, i.e., let ūn0 be given for all n. If the
boundary and initial conditions of the flow satisfy the monotone decreasing property

(4.1) ūn0 ≤ ūn+1
0 ∀n ≥ 0 and ū0i ≤ ū0i−1 ∀i ≥ 1,

then the scheme satisfies the maximum principle,

(4.2) ūni ≤ ūn+1
i ≤ ūn+1

i−1 ∀n ≥ 0, i ≥ 1.

Moreover, in the monotone increasing case,

(4.3) ūn0 ≥ ūn+1
0 ∀n ≥ 0 and ū0i ≥ ū0i−1 ∀i ≥ 1,

then

(4.4) ūni ≥ ūn+1
i ≥ ūn+1

i−1 ∀n ≥ 0, i ≥ 1.

Also obtained are the two corollaries derived from this result in [1]. Recall that
the total variation is

(4.5) TV(ūn) =

∞∑
i=1

|ūni−1 − ūni |.

We state the result [1, Corollary 5.4] as follows, and the proof holds verbatim.

Corollary 4.2. Assume the hypotheses of Theorem 4.1 and that for some con-
stant M ≥ 0, |un0 | ≤ M and |u0i | ≤ M for all n ≥ 0 and i ≥ 0. Then TV(ūn) ≤ 2M ,
so the SATh-up is total variation bounded (TVB) for θmin ≥ 0. Moreover, if also
ūn+1
0 = ūn0 for all n ≥ 0 (i.e., oscillation is not introduced at the boundary), then the

scheme is total variation decreasing (TVD), meaning

(4.6) TV(ūn+1) ≤ TV(ūn).

The other corollary [1, Corollary 5.3] is seen to hold for θmin ≥ 0 after a careful
reading of the proof. In fact, the result can be generalized a bit, as we now state.

Corollary 4.3. Assume the hypotheses of Theorem 4.1 and that θ∗ ∈ [θmin, 1]
in (2.17). If ˜̄un+1

0 satisfies the monotonicity property that it lies between ūn0 and ūn+1
0

∀n ≥ 0, then θi = θn+1
i ∈ [θmin, 1] ∀n ≥ 0, i ≥ 1. Moreover, ˜̄un+1

i lies between ūni
and ūn+1

i ∀n ≥ 0, ∀i ≥ 1.

Proof. A hypothesis has been removed for the final result regarding ˜̄un+1
i , so only

this part of the corollary requires attention. The proof for a monotone increasing flow
is similar to that for a monotone decreasing flow, so consider only for the latter case.
Assume (4.1), so that also (4.2) and f̄ni ≤ f̄n+1

i ≤ f̄n+1
i−1 hold (since f is monotone

increasing). First consider the case that ūn+1
i ̸= ūni . Since

1 ≥ θi ≥
˜̄un+1
i − ūni
ūn+1
i − ūni

,

infer the bound ˜̄un+1
i ≤ ūn+1

i . The other bound is proved by contradiction. Suppose
that ˜̄un+1

i < ūni . Then θi = θmin. From (2.21), conclude that

˜̄un+1
i = ūni − λ

2

[
(f̄ni − f̄ni−1) + θ2min(f̄

n+1
i − f̄ni )− θ2i−1(f̄

n+1
i−1 − f̄ni−1)

]
,
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wherein one should recall that λ = ∆tn+1/∆xi. Since (f̄n+1
i−1 − f̄ni−1) ≥ 0, estimate

˜̄un+1
i ≥ ūni − λ

2

[
(f̄ni − f̄ni−1) + θ2min(f̄

n+1
i − f̄ni )− θ2min(f̄

n+1
i−1 − f̄ni−1)

]
= ūni − λ

2

[
(1− θ2min)(f̄

n
i − f̄ni−1) + θ2min(f̄

n+1
i − f̄n+1

i−1 )
]

≥ ˜̄uni ,

since (f̄ni − f̄ni−1) ≤ 0 and (f̄n+1
i − f̄n+1

i−1 ) ≤ 0, and a contradiction has been drawn.

This establishes that ūni ≤ ˜̄un+1
i ≤ ūn+1

i when ūn+1
i ̸= ūni .

In case ūn+1
i = ūni , also f̄

n+1
i = f̄ni , and (2.20)–(2.21) reduce to

ūn+1
i = ūni − λ

[
(f̄ni − f̄ni−1)− θi−1(f̄

n+1
i−1 − f̄ni−1)

]
,

˜̄un+1
i = ūni − λ

2

[
(f̄ni − f̄ni−1)− θ2i−1(f̄

n+1
i−1 − f̄ni−1)

]
.

The expression in square brackets in the first of these two equations must vanish, and
in fact each of its two terms must vanish, since it is a sum of two non-positive terms.
Therefore the second equation reduces to ˜̄un+1

i = ūni = ūn+1
i .

5. Numerical Investigation in 1D. This section is devoted to an investi-
gation of the numerical performance of the SATh scheme in one space dimension.
Comparisons are made between four schemes, all using the same spatial discretiza-
tion but differing in their time stepping. They are SATh0 (with the stability bound
θmin = 0), SATh1/2 (with the stability bound θmin = 1/2), backward Euler (BE), and
Crank-Nicolson (CN). Because SATh requires the solution of both ū and ˜̄u, while BE
only solves for ū, we take twice as many BE time steps as SATh. In other words,
in this section BE always uses half the CFL number stated for SATh and CN. The
computational mesh will be uniform of spacing h = ∆x = 1/m > 0.

In this section, the schemes use constant values on the cell boundary interfaces
(2.16). Either the upstream (2.19) or Lax-Friedrichs (2.18) numerical fluxes will be
used. Although there is no theory for the Lax-Friedrichs stabilized scheme, we will
see that it satisfies the results obtained by the upstream weighted scheme. It is
mentioned in [1] that the values of ϵ and θ∗ in (2.17) have little effect on the solution
of the SATh1/2 schemes. We take ϵ = 10−6 and θ∗ = 1/2, unless explicitly stated
otherwise.

The nonlinear problem is solved for wi = ūn+1
i − ūni and vi = ˜̄un+1

i − ūni , since θi
is defined by their ratio vi/wi. It can sometimes be difficult or impossible to solve the
nonlinear equations defining the SATh scheme. In the case of a high CFL number, the
Jacobian matrix may have an extreme condition number or become singular. In other
cases, poor Newton convergence may be due partly to the difficulty of handling the
case where ū does not change, so that θ is poorly and nonsmoothly defined in (2.17).
We do not use any special version of Newton’s method to handle the nonsmooth
nonlinearity. However, it can be useful to incorporate a damped Newton update to
facilitate convergence. A damping factor around 0.75 or 0.85 seems to work well. In
other words, each Newton iteration uses only 0.75 or 0.85 times the predicted Newton
step update. In addition, as we remarked earlier, the factor multiplying ϵ in (2.17)
improves the Newton convergence.

5.1. Linear Transport. First consider the linear problem; that is,

(5.1) ut + ux = 0, L0 < x < L1, t > 0,
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with unit speed αLF = 1. The Lax-Friedrichs and upstream weighted schemes are the
same for the linear problem (up to rounding error).

5.1.1. A Contact Discontinuity in a Monotone Solution. The first test is
for a contact discontinuity. Let L0 = −0.1, L1 = 0.9, u(L0, t) = 1, u(L1, t) = 0, and
let the initial condition be a step function, i.e.,

(5.2) u0(x) =

{
1, x < 0,

0, x > 0.

The true solution is u(x, t) = u0(x− t), and it remains monotone decreasing.
Figure 5.1a shows the true solution and computed solutions of BE, CN, SATh0,

and SATh1/2 at time t = 0.5 using ∆x = 1/160 and ∆t = 1/32; that is, with a
moderate CFL number of 5 (2.5 for BE using ∆t = 1/64). All schemes conserve
mass up to rounding error, so all these schemes have the discontinuity in the correct
location. The two SATh solutions compare favorably to CN, although CN oscillates
unacceptably. The BE solution shows excessive numerical diffusion.
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(a) CFL 5, ∆x = 1/160, ∆t = 1/32.
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(b) CFL 10, ∆x = 1/160, ∆t = 1/16.
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(c) CFL 10, ∆x = 1/320, ∆t = 1/32.
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(d) CFL 20, ∆x = 1/320, ∆t = 1/16.

Fig. 5.1: Linear problem (5.1) with discontinuous initial condition (5.2) at t = 0.5.
Shown are the solutions and θ for SATh0-up and SATh1/2-up, using ϵ = 10−6 and
θ∗ = 1/2. Also shown are the CN and BE solutions (BE uses half the CFL) and the
true solution (in green).

Compared to SATh1/2-up, the solution for SATh0-up displays less numerical dif-
fusion due to its ability to use θ values less than one half. These values are also
shown in the figure, and the two schemes have similar θ values except near the front
at x = 0.5. SATh0-up generates values of θ below 1/2 near the front, resulting in
a sharpening of the solution compared to SATh1/2-up. To the right of the front the
solution is constant, resulting in θ = θ∗ for both schemes. To the left of the front,
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the solution is essentially constant, and ideally θ = θ∗ would result. However, θ is
computed using very small differences in the solution. In this example, values above
1/2 result in a region from about x = 0.2 or x = 0.1 to the front. If a somewhat larger
value is taken for ϵ (rather than 1e-6), this region decreases.

Before continuing, note that the profile of the BE solution in Figure 5.1 is sym-
metric on either side of the true contact discontinuity at x = 0.5, since the scheme
is stabilized with linear numerical diffusion. The SATh1/2-up scheme has a similar
symmetry, even though it is an inherently nonlinear scheme. On the other hand, the
SATh0-up solution is asymmetric about x = 0.5. With ∆x = 1/160 but an increased
CFL from 5 to 10, the effect is noticeably exacerbated, as shown in Figures 5.1a–5.1b.
However, increasing resolution to ∆x = 1/320 while keeping CFL 10 reduces the effect
nicely, as shown in Figure 5.1c. Figure 5.1d shows the effect for the finer resolution
but CFL 20.

The observant reader may notice that in Figure 5.1d, the SATh0-up scheme gen-
erates a value of θ > 1. This is not a violation of Corollary 4.3 for two reasons.
First, the corollary does not account for rounding error. Second, ϵ ̸= 0 in (2.17),
since taking ϵ = 0 generally causes numerical problems associated to defining θ when
its denominator is nearly zero. Nonetheless, the SATh-up schemes provide ū and ˜̄u
values that satisfy the maximum principle. Moreover, the total variation remains 1
for all the schemes except CN.
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(a) θmin=−∞, θ∗=0, CFL 2.5, ∆x=1/160.
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(b) θ∗ = 0, CFL 2.5, ∆x = 1/160.

Fig. 5.2: Linear problem (5.1) with discontinuous initial condition (5.2) at t = 0.5,
using ∆x = 1/160 and CFL 2.5. Shown are the solutions and θ for SATh-up, using
ϵ = 10−6 and θ∗ = 0, taking θmin = −∞, 0, or 1/2. Also shown are the CN and BE
solutions (BE uses half the CFL) and the true solution (in green).

The new stability bound is essentially sharp. This can be seen in Figure 5.2a,
where we attempt to solve the unconstrained problem using θmin = −∞. The
SATh−∞-up solution using θ∗ = 1/2 shows no difficulties, since the solution is com-
puted without trying to make θ < 0. However, if we change θ∗ = 0, we see the
results in the figure. The SATh−∞-up solution appears to go unstable ahead of the
discontinuity, where some of the values of θ are negative.

In Figure 5.2b, we see that both SATh0-up and SATh1/2-up have values of θ that
oscillate behind the discontinuity. This is due to the facts that θ∗ = 0 and the solution
is constant in that region, so θ is poorly defined because its denominator is nearly
zero. Taking θ∗ = 1/2 avoids this numerical difficulty.
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5.1.2. A Nonmonotone Sine Wave. Now consider (5.1) with L0 = 0, L1 = 1,
using the smooth initial condition

(5.3) u0(x) =
1 + sin(2πx)

2
, 0 < x < 1,

and periodic boundary conditions. The true solution u(x, t) = u0(x− t) is obviously
not monotone.

All schemes (BE, CN, SATh0-up, and SATh1/2-up) are stabilized with upstream
weighting and use equivalent space discretization, which limits the convergence order
to one. Convergence results are shown in Tables 5.1–5.2, and all four schemes give
first order accuracy for a moderate CFL (4, except 2 for BE) and a high CFL (10,
except 5 for BE). BE exhibits the most error, while the two SATh-up schemes are
fairly comparable to CN. Moreover, the errors for SATh0-up are a bit smaller than
the errors for SATh1/2-up.

BE CN SATh0-up SATh1/2-up
m L1

h-error order L1
h-error order L1

h-error order L1
h-error order

80 9.77e-02 0.74 3.71e-02 0.93 3.75e-02 0.97 3.87e-02 1.05
160 5.36e-02 0.87 1.91e-02 0.96 1.91e-02 0.97 1.93e-02 1.00
320 2.81e-02 0.93 9.67e-03 0.98 9.68e-03 0.98 9.72e-03 0.99
640 1.44e-02 0.97 4.87e-03 0.99 4.87e-03 0.99 4.88e-03 0.99
m L∞

h -error order L∞
h -error order L∞

h -error order L∞
h -error order

80 1.54e-01 0.74 5.82e-02 0.93 6.10e-02 1.10 7.89e-02 0.97
160 8.43e-02 0.87 2.99e-02 0.96 3.06e-02 0.99 3.86e-02 1.03
320 4.42e-02 0.93 1.52e-02 0.98 1.54e-02 0.99 1.86e-02 1.06
640 2.26e-02 0.97 7.65e-03 0.99 7.73e-03 1.00 8.92e-03 1.06

Table 5.1: Nonmonotone sine wave linear transport error and convergence order at
t = 0.5 using CFL 4, m = 1/∆x cells, and ∆t = 4h (except BE uses ∆t = 2h).

BE CN SATh0-up SATh1/2-up
m L1

h-error order L1
h-error order L1

h-error order L1
h-error order

80 1.63e-01 0.55 5.56e-02 1.41 5.51e-02 1.25 6.53e-02 1.27
160 9.76e-02 0.74 2.22e-02 1.33 2.18e-02 1.34 2.36e-02 1.47
320 5.36e-02 0.86 1.01e-02 1.13 9.85e-03 1.15 1.03e-02 1.20
640 2.81e-02 0.93 4.93e-03 1.04 4.89e-03 1.01 4.96e-03 1.05
m L∞

h -error order L∞
h -error order L∞

h -error order L∞
h -error order

80 2.56e-01 0.55 8.73e-02 1.41 1.49e-01 1.67 1.37e-01 0.90
160 1.53e-01 0.74 3.48e-02 1.33 5.51e-02 1.44 6.63e-02 1.05
320 8.42e-02 0.86 1.59e-02 1.13 2.25e-02 1.29 3.05e-02 1.12
640 4.42e-02 0.93 7.74e-03 1.04 9.49e-03 1.25 1.37e-02 1.15

Table 5.2: Nonmonotone sine wave linear transport error and convergence order at
t = 0.5 using CFL 10, m = 1/∆x cells, and ∆t = 10h (except BE uses ∆t = 5h).

Some of the solutions are shown in Figure 5.3. The results for moderate CFL 4 in
Figure 5.3a are perhaps what would be expected from the convergence data. This is
also true of the results for BE, CN, and SATH1/2-up at the high CFL 10 in Figure 5.3b.
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The solution of SATh0-up in Figure 5.3b exhibits an unfortunate feature in this
nonmonotone setting. A clear oscillation appears in θ behind the extrema in the
solution at around x = 0.2 and 0.7, resulting in a jagged variation in the solution.
The Newton procedure of the numerical solution appears to be converged, and a
smaller ϵ does not help. Figure 5.3c shows the solutions at time t = 1.5, and the
profiles of the schemes’ solutions are nearly identical to that at t = 0.5, except for
some reduction in the total variation. The SATh0-up solution is not unstable and its
oscillation does not grow with time. Refinement of the mesh while maintaining CFL
10 yields a better profile for all schemes, as shown in Figure 5.3d, and especially for
SATh0-up. This is consistent with the convergence rate already observed in Table 5.2.
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(a) CFL 4, ∆x = 1/160, ∆t = 1/40, t = 0.5.
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(b) CFL 10, ∆x = 1/160, ∆t = 1/16, t = 0.5.
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(c) CFL 10, ∆x = 1/160, ∆t = 1/16, t = 1.5.
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(d) CFL 10, ∆x = 1/320, ∆t = 1/32, t = 0.5.

Fig. 5.3: Linear problem (5.1) with initial condition (5.2) and periodic boundary
conditions. Shown are the solutions and θ for SATh0-up and SATh1/2-up, using
ϵ = 10−6 and θ∗ = 1/2. Also shown are the CN and BE solutions (BE uses half the
CFL) and the true solution (in green).

5.2. Nonlinear Transport: Burgers Equation. Next consider Burgers’ equa-
tion with flux function f(u) = u2/2, that is, the equation

(5.4) ut + uux = 0, L0 < x < L1, t > 0.

Going forward in this section, the more versatile Lax-Friedrichs numerical flux (2.18)
is used. All test problems in this subsection have true solutions between −1 and 1,
so αLF = 1.

5.2.1. A Riemann Shock. The first test is a Riemann shock with L0 = −0.1,
L1 = 0.9, u(L0, t) = 1, u(L1, t) = 0, and the initial condition (5.2). The solution is
monotone decreasing.

A comparison of the schemes using Lax-Friedrichs numerical fluxes in given in
Figure 5.4 using CFL 10 and both ∆x = 1/40 and ∆x = 1/160. One immediately



16 T. Arbogast, C.-S. Huang, and D. King

notices that the spreading of the profiles of the solutions are all relatively symmet-
ric about the shock. This was not the case in Section 5.1.1, where especially the
solution of the SATh0-up scheme applied to the linear problem exhibited an signif-
icantly asymmetric profile. The difference is likely due to the fact that shocks are
self-sharpening.
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(a) CFL 10, ∆x = 1/40, ∆t = 1/4.
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(b) CFL 10, ∆x = 1/160, ∆t = 1/16.

Fig. 5.4: Burger’s equation with Riemann initial condition (5.2) at time t = 1 using
CFL 10 (BE uses half the time-step). The true solution is shown in green.

The SATh0-LF and SATh1/2-LF schemes have significantly less numerical diffu-
sion compared to BE. They predict the shock about as well as or better than CN,
which oscillates unacceptably. Behind the shock, SATh0-LF and SATh1/2-LF have
similar profiles. Ahead of the shock, SATh0-LF is sharper than SATh1/2-LF and also
CN. This is due to the fact that SATh0-LF is able to and does use θ < 1/2 in this
problem. At both resolutions, the SATh0-LF, SATh1/2-LF, and BE schemes remain
stable and monotone. No oscillation is observed in the solution and the total variation
remains 1.

5.2.2. A Riemann Rarefaction. Consider Burger’s equation (5.4) with a Rie-
mann rarefaction, for which we take L0 = 0, L1 = 1, u(L0, t) = 0, u(L1, t) = 1, and
u(x, 0) = 1. For this test, the solution is monotone increasing.

The results at time t = 0.5 and CFL 10 are shown in Figure 5.5 using ∆x = 1/40
and ∆x = 1/160. Note that only 2 time steps are taken in the former case, and 8 in
the latter, to get to time 0.5. As in previous examples, CN may oscillate unacceptably
and BE is the most diffused. The SATh0-LF and SATh1/2-LF solutions appear fairly
sharp while remaining stable and monotone. In this example, SATh0-LF outperforms
all the schemes, including CN, in maintaining the rarefaction profile.

5.2.3. Shock Formation in a Nonmonotone Sine Wave. Finally, we simu-
late shock formation by taking the initial condition

(5.5) u0(x) = sin(2πx), 0 < x < 1,

and imposing periodic boundary conditions. This problem requires the Lax-Friedrichs
numerical flux, since mass moves to the right for x < 0.5 and to the left for x > 0.5.
The shock forms at time t = 1/(2π) ≈ 0.1592.

Consider first a fixed mesh with ∆x = 1/80 and various ∆t. Results at time
t = 0.2 after the shock has formed appear in Figure 5.6. Overall BE is the most
diffusive. The two SATh-LF schemes give a sharp shock profile comparable to CN.
SATh0-LF gives the sharpest shock.
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(a) CFL 10, ∆x = 1/40, ∆t = 1/4.
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(b) CFL 10, ∆x = 1/160, ∆t = 1/16.

Fig. 5.5: Burger’s Riemann rarefaction wave at time t = 0.5 using CFL 10 (BE uses
half the time-step). The true solution is shown in green.
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(a) CFL 2, ∆t = 0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.4

-1

-0.6

-0.2

0.2

0.6

1

1.4

(b) CFL 4, ∆t = 0.05
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(c) CFL 8, ∆t = 0.1
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(d) CFL 16, ∆t = 0.2

Fig. 5.6: Burger’s equation with smooth initial condition sin(2πx) at time t = 0.2
using ∆x = 1/80 and various ∆t (BE uses half the time-step).

In this nonmonotone setting, except for CFL 2, SATh0 exhibits a jagged profile
similar to what was observed for the linear problem in Section 5.1.2. The jaggedness
worsens as the CFL number increases. The solution for CFL 2 is clean, CFL 4 has
slight wiggles, CFL 8 has noticeable wiggles, and CFL 8 has a pronounced kink.
Clearly SATh0-LF is neither TVD nor MPP in this case when the CFL number is too
large.

Next consider time evolution of the solution to the final time t = 0.4 using CFL 10
and two resolutions, ∆x = 1/150 (so ∆t = 1/15) and ∆x = 1/600 (so ∆t = 1/60).
The total variations of the computed solutions are shown in Figure 5.7. We see that
BE and SATh1/2-LF are TVD at both resolutions, but CN and SATh0-LF are only
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TVD for the finer resolution.

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

(a) CFL 10, ∆x = 1/150, ∆t = 0.4/6
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(b) CFL 10, ∆x = 1/600, ∆t = 0.4/24

Fig. 5.7: Burger’s equation with smooth initial condition sin(2πx). Total variation to
time t = 0.4.

In Figure 5.8, one can see the shock develop at the lower resolution. The jagged
profile of the SATh0-LF solution is apparent, but it dies out by time t = 0.4. As in
the case of the linear problem, a refined mesh removes the jagged profile. The results
of the finer resolution are given in Figure 5.9.
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(a) Step 2, t = 0.1333
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(b) Step 3, t = 0.2000
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(c) Step 4, t = 0.2667
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(d) Step 6, t = 0.4000

Fig. 5.8: Burger’s equation with smooth initial condition sin(2πx) using CFL 10,
∆x = 1/150, and ∆t = 0.0667 = 0.4/6 (BE uses half the time-step).

5.3. Nonlinear Transport: Buckley-Leverett Equation. Finally, consider
the Buckley-Leverett equation with flux function

(5.6) f(u) =
u2

u2 + (1− u)2
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(a) Step 8, t = 0.1333
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(b) Step 12, t = 0.2000
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(c) Step 16, t = 0.2667
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(d) Step 24, t = 0.4000

Fig. 5.9: Burger’s equation with smooth initial condition sin(2πx) using CFL 10,
∆x = 1/600, and ∆t = 0.0167 = 0.4/24 (BE uses half the time-step).

on the interval 0 < x < 1, for which αLF = 2 when u ∈ [0, 1]. Impose the initial
condition (5.2). The solution maintains a monotone decreasing profile with a shock
and a trailing rarefaction wave. The transition between them appears at the value of
u where f ′(u) = f(u)/u, which is about 0.707.

The results at time t = 0.5 appear in Figure 5.10 for CFL 10 using both ∆x = 1/40
and ∆x = 1/160. The true solution (plotted in green) is computed using simple
forward Euler time-stepping and ∆x = ∆t = 1/4000. Interestingly, CN provides the
worst and most diffuse profile, and it oscillates behind the shock. BE is more diffusive
than the two SATh-LF schemes, which give remarkably good solutions. Of these two,
SATh0-LF provides the sharper solution.
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(a) CFL 10, ∆x = 1/40, ∆t = 1/4.
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(b) CFL 10, ∆x = 1/160, ∆t = 1/16.

Fig. 5.10: Buckley-Leverett equation with Riemann initial condition (5.2) at time
t = 0.5 using CFL 10 (CFL 5 for BE). The true solution is shown in green.
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6. Numerical Investigation in 2D. In any number of space dimensions, the
algorithms (SATh0, SATh1/2, backward Euler (BE), and Crank-Nicolson (CN)) can
use arbitrary meshes. Two types of meshes are used here. First are logically rectangu-
lar meshes of quadrilaterals generated from uniform meshes by randomly perturbing
the vertices by a factor of 0.25 times the unperturbed mesh spacing. Second are
general meshes of polygons in two space dimensions generated by (a slightly mod-
ified version of) the software package PolyMesher [10] using only three smoothing
iterations.

In these tests, all the schemes use constant values on the cell boundary interfaces
(2.12) and the Lax-Friedrichs numerical flux. This flux is defined on facet e = E+∩E−

by (2.8) and

(6.1) F̂±
e (u∓e ) = f(ūE∓) · νe ± αLF ūE∓ ,

where the maximum wave speed αLF = 1 in our tests, except the last one which uses
αLF = 2.5. The parameters are set as ϵ = 10−6 and θ∗ = 1/2.

The time step ∆t is taken as a fixed constant for these tests. Rarely, the Newton
procedure does not converge to a relative tolerance of 1e-5 (1e-4 for the tests of
Section 6.2.1). In those cases, the time step is completed by using two sub-steps with
half the original value of ∆t.

Again, the equations are solved for the differences wE = ūn+1
E − ūnE and vE =

˜̄un+1
E − ūnE . In some cases, using a damped Newton update with damping factor

around 0.75 after the first several unmodified iterations can help the SATh schemes
to converge. We also impose a maximum allowable derivative of θE with respect to
vE and wE set at 1e+6.

6.1. Linear Transport in 2D: Transport of a Squared Sine Wave. Con-
sider first the linear transport equation

(6.2) ut + ux + uy = 0, 0 < x < 1, 0 < y < 1, t > 0,

on a periodic domain with an initial condition given by a squared sine wave. The
exact solution to this problem is

(6.3) u(x, y, t) = sin2(π(x− t)) sin2(π(y − t)).

We use a periodic mesh of 12,170 vertices and 6400 polygonal elements having
up to 9 sides. (It has as many elements as a mesh of 80 × 80 squares.) The mesh is
depicted in Figure 6.1.

Solutions are computed up to time t = 1.0, which gives a transport of exactly
one period. The time step ∆t = 0.025 gives the CFL number 3.982 on the mesh.
The initial condition and solutions to BE, CN, SATh1/2, and SATh0 are displayed
in Figure 6.3. We see excessive and asymmetric smearing for BE. The other three
low order methods give generally good and very similar results. The computed errors
measured in the discrete L1

h and L∞
h norms are given in Table 6.1, and these confirm

our observations.

6.2. Nonlinear Transport in 2D: Burgers Equation. Consider next the
nonlinear Burgers equation

(6.4) ut + uux + uuy = 0, L0 < x < L1, L2 < y < L3, t > 0,

with some initial and boundary conditions yet to be imposed.
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Fig. 6.1: Periodic polygonal mesh
of 6400 elements on [0, 1]2.

Fig. 6.2: Nonperiodic polygonal
mesh of 6400 elements on [0, 1]2.

(a) t = 0 (b) BE (c) CN (d) SATh1/2 (e) SATh0
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Fig. 6.3: Linear transport in 2D with a squared sine wave initial condition (see (6.3))
at time t = 1.0 (one period) using ∆t = 0.025, which is CFL 3.982.

Table 6.1: Linear transport in 2D with a squared sine wave initial condition. Errors are
computed from the exact solution (6.3) at time t = 1.0 (one period) using ∆t = 0.025
(CFL 3.982). Errors are measured in the discrete L1

h and L∞
h norms.

BE CN SATh1/2 SATh0
L1
h 1.32e-01 6.21e-02 6.38e-02 6.23e-02

L∞
h 4.31e-01 2.21e-01 2.37e-01 2.21e-01

6.2.1. Burgers Transport of a Squared Cosine Wave in 2D. For the first
test of Burgers equation, use the domain (0, 1)2 and impose periodic boundary con-
ditions. Take a squared cosine initial condition

(6.5) u(x, y, 0) = cos2(πx) cos2(πy).

We use the periodic 6400 polygonal element mesh depicted in Figure 6.1 and used
in the previous section for the linear equation. Recall that this mesh is akin to an
80× 80 mesh. The time step is ∆t = 0.025 (CFL 3.982). The simulation is run to a
time after which a shock has developed in the solution.

The solutions z = u(x, y, t) for the four schemes are plotted in Figure 6.4. We see
that each has a considerably sharpened shape by time t = 0.25, and a sharp shock
has developed by time t = 0.5. BE shows more numerical diffusion than the other
three schemes, which show results similar to each other.
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(a) BE (b) CN (c) SATh1/2 (d) SATh0

Fig. 6.4: Burgers transport in 2D with a squared cosine initial condition (6.5) at times
t = 0.25 (top) and t = 0.5 (bottom) using ∆t = 0.025, which is CFL 3.982.

6.2.2. A 1D Riemann Shock and Rarefaction in 2D. Let the domain be
(0, 3)× (0, 0.1) and the initial contition be

(6.6) u(x, y, 0) =

{
1, 0.5 < x < 1.5,

0, elsewhere.

A trailing rarefaction wave and a leading shock in the x-direction results, with the
exact solution

(6.7) u(x, y, t) =


0, x < 0.5, x ≥ 0.5t+ 1.5,

(x− 0.5)/t, 0.5 ≤ x < t+ 0.5,

1, t+ 0.5 ≤ x < 0.5t+ 1.5,

up to time t = 2 when the rarefaction reaches the shock.
We solve this problem on meshes of quadrilaterals given by distorting the mesh

points of a uniform mesh randomly up to 0.25 times the undistorted mesh spacing.
Numerical results for this problem on the 240× 8 mesh appear in Figure 6.5 at time
t = 1.0 using ∆t = 0.05 (the CFL number is 6.913). The results for BE are diffused
more than the others, and CN results exhibit overshoots near the leading shock. The
two SATh results are clean.

Errors as measured in the discrete L1 norm and the orders of convergence appear
in Table 6.2 for the four schemes in terms of the unperturbed mesh spacing. The
distortion of the mesh causes the CFL number to increase with h. Nevertheless, the
convergence order is seen to be one for this problem. BE has the most error and CN
the least, but the two SATh schemes have errors close to CN.

6.2.3. A Flooding Scenario in 2D. Burgers equation is posed on the domain
(0, 1)2 and the initial condition is taken to be u(x, y, 0) = 0. The boundary condition
is given on the inflow sides and taken to be u(0, y, t) = u(x, 0, t) = 1. There is no
boundary condition along the outflow sides (1, y, t) and (x, 1, t). In this scenario, fluid
has an initial discontinuity at the inflow sides of the boundary which evolves into a
flood advancing diagonally into the domain.
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(a) BE (b) CN

(c) SATh1/2 (d) SATh0

Fig. 6.5: Burgers Riemann shock and rarefaction in 1D at time t = 1.0 using ∆t =
0.05, which is CFL 6.913.

Table 6.2: Burgers Riemann shock and rarefaction in 1D at time t = 1.0. Errors in
the L1

h norm for various distorted quadrilateral meshes with unperturbed spacing h
and ∆t = 4h.

BE CN SATh1/2 SATH0

1/h CFL error order error order error order error order
40 6.577 5.97e-02 — 3.33e-02 — 3.78e-02 — 3.82e-02 —
80 6.913 3.84e-02 0.64 2.04e-02 0.71 2.27e-02 0.74 2.24e-02 0.77

160 7.241 2.20e-02 0.80 1.09e-02 0.90 1.22e-02 0.90 1.20e-02 0.90
320 7.530 1.31e-02 0.75 5.78e-03 0.92 6.15e-03 0.99 6.12e-03 0.97

The problem is solved on the nonperiodic polygonal mesh of 6400 elements with
up to 9 sides depicted in Figure 6.2. We use a time step of ∆t = 0.025 (CFL 4.281).
The solution is shown in Figure 6.6, at times t = 0.375 and t = 1.0. We see that
the BE result is more diffused than that from the other three schemes, that the CN
result exhibits overshoot along the line x = y. The two SATh schemes produce results
comparable to CN, but with no overshoot. To see this more clearly, the solutions are
shown in profile in Figure 6.7.

6.3. Nonlinear Transport in 2D: Buckley-Leverett Equation with Grav-
ity. Finally, consider the Buckley-Leverett equation with vector flux function

(6.8) f(u) =
u2

u2 + (1− u)2

(
1

1− 5(1− u)2

)
on the domain (−1.5, 1.5)2. The usual Buckley-Leverett flux has been modified in the
y-direction to model the effects of gravity. Because this flux function is nonconvex,
the problem is quite challenging and there is less theory regarding the behavior of the
numerical schemes.

For the numerical results, we take αLF = 2.5. The solution should remain between
0 and 1, which makes the maximum wave speed a bit over 3.3. However, we do not
use a local Lax-Friedrichs flux, so the full maximum wave speed results in excessively
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Fig. 6.6: Burgers flooding scenario in 2D at times t = 0.375 (top) and t = 1.0 (bottom)
using ∆t = 0.025, which is CFL 4.281.

(a) BE (b) CN (c) SATh1/2 (d) SATh0

Fig. 6.7: Burgers flooding scenario in 2D at time t = 1.0 using ∆t = 0.025, which is
CFL 4.281. Profile of the solution showing overshoot for CN but not for the others.

smoothed solutions. The value αLF = 2 leads to some oscillation in the solution, but
the value we take αLF = 2.5 gives nonoscillatory solutions.

Tests are conducted using a quadrilateral mesh of 160 × 160 elements and time
step ∆t = 0.0125, giving CFL 3.144. Results at t = 0.5 are given in Figure 6.8. Again,
the BE results show more numerical diffusion, and the CN and SATh results are fairly
comparable, and similar to results seen in the literature.

7. A Higher Order Scheme. We return to the 1D equation. As noted in
§2.1, the discontinuity aware quadrature rule is third order in the case of smooth
functions [1]. We should postulate second order accuracy of the SATh scheme over
time. However, Tables 5.1–5.2 clearly show first order convergence. This is due at
least partly to the fact that the DAQ theory assumes θ is unrestricted, but θ ≥ θmin

is required in the numerical scheme. However, θ is restricted only occasionally, and so
a convergence above one is still to be expected. A more prevalent issue is the use of
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Fig. 6.8: Buckley-Leverett Equation with gravity in 2D at time t = 0.5 using ∆t =
0.0125, which is CFL 3.144. Shown are the contour plot of the solutions, and the 3D
plot and x and y cross-sections of the solution.

constant cell boundary interface values (2.12), which limits the spatial accuracy to first
order everywhere. To justify our postulate, we show the convergence rate in terms of
∆t for the problem of Section 5.1.2 calculated using ∆t = ∆x1/2 in Table 7.1. Second
order convergence in time is seen for CN, SATh0-up, and SATh1/2-up. Moreover, the
SATh0-up solutions are non-oscillatory in this test.

This observation motivates the use of higher order interface values. Within the
schemes (SATh and CN), in this section we use a weighted essentially non-oscillatory
(WENO) reconstruction in space to define the interface values. We use a standard
WENO(3,2) reconstruction [8], but a WENO-AO(3,2) reconstruction [2] behaves sim-
ilarly.

We remark that SATh-LF schemes have issues with Newton convergence at higher
CFLs when high order WENO reconstruction is used. We found that using damped
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CN SATh0-up SATh1/2-up
m CFL L1

h-error order L1
h-error order L1

h-error order
32 2 8.31e-02 1.37 8.57e-02 1.42 8.74e-02 1.39

128 4 2.37e-02 1.81 2.38e-02 1.85 2.42e-02 1.86
512 8 6.12e-03 1.95 6.10e-03 1.96 6.16e-03 1.97
2048 16 1.54e-03 1.99 1.53e-03 1.99 1.55e-03 2.00
m CFL L∞

h -error order L∞
h -error order L∞

h -error order
32 2 1.30e-01 1.33 1.33e-01 1.34 1.50e-01 1.23

128 4 3.71e-02 1.81 3.80e-02 1.81 4.88e-02 1.62
512 8 9.61e-03 1.95 1.10e-02 1.80 1.53e-02 1.67
2048 16 2.42e-03 1.99 3.17e-03 1.79 5.01e-03 1.61

Table 7.1: Nonmonotone sine wave linear transport error and convergence order at
t = 0.5 using m = 1/∆x cells and ∆t = ∆x1/2. The convergence rate reported is in
terms of ∆t.

Newton and limiting the derivative of θ can be used to improve the convergence
behavior.

7.1. Higher Order Linear Transport. As in Section 5.1.2, consider first the
linear equation (5.1) with L0 = 0, L1 = 1, using the nonmonotone sine wave smooth
initial condition (5.3) and periodic boundary conditions.

Convergence results for CFL 4 using the upstream numerical flux are shown in
Table 7.2. The three schemes (CN, SATh0-up, and SATh1/2-up WENO) give overall
second order accuracy in the L1

h norm. SATh1/2-up has a convergence rate a bit
below the other schemes due to its restriction θ ≥ θmin = 1/2. The two schemes CN
and SATh0-up appear to be second order in the L∞

h norm, but SATh1/2-up WENO
converges at about only order 1.3 due to a slight flattening of the extrema. CN has
the least error, and the SATh0-up WENO solutions exhibit wiggles for the lower
resolutions. Similar results for CFL 10 appear in Table 7.3; although, the SATh0-up
WENO solution is oscillatory at these resolutions.

CN WENO SATh0-up WENO SATh1/2-up WENO
m L1

h-error order L1
h-error order L1

h-error order
160 2.04e-03 1.97 4.52e-03 1.82 3.82e-03 1.83
320 5.16e-04 1.98 9.45e-04 2.26 1.04e-03 1.87
640 1.29e-04 1.99 1.90e-04 2.31 2.79e-04 1.90

1280 3.24e-05 2.00 4.14e-05 2.20 7.35e-05 1.93
m L∞

h -error order L∞
h -error order L∞

h -error order
160 3.23e-03 1.95 1.60e-02 1.52 1.50e-02 1.27
320 8.11e-04 1.99 6.73e-03 1.25 6.07e-03 1.30
640 2.02e-04 2.01 1.73e-03 1.96 2.41e-03 1.33

1280 5.05e-05 2.00 5.05e-04 1.78 9.64e-04 1.32

Table 7.2: Nonmonotone sine wave linear transport error and convergence order at
t = 0.5 using CFL 4, m = 1/∆x cells, and ∆t = 4∆x. The schemes use WENO(3,2)
reconstruction of the interface values.
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CN WENO SATh1/2-up WENO
m L1

h-error order L∞
h -error order L1

h-error order L∞
h -error order

160 1.25e-02 1.91 1.97e-02 1.91 1.91e-02 1.36 4.62e-02 1.18
320 3.19e-03 1.98 5.03e-03 1.97 5.58e-03 1.77 1.96e-02 1.24
640 8.01e-04 1.99 1.26e-03 2.00 1.52e-03 1.87 8.00e-03 1.29
1280 2.01e-04 2.00 3.15e-04 2.00 4.20e-04 1.86 3.22e-03 1.31

Table 7.3: Nonmonotone sine wave linear transport error and convergence order at
t = 0.5 using CFL 10, m = 1/∆x cells, and ∆t = 10∆x. The schemes use WENO(3,2)
reconstruction of the interface values.

7.2. Burgers Equation: Higher Order Shock Formation. Now consider
Burgers equation (5.4) for x ∈ (0, 1) with the smooth initial condition (5.3) and
periodic boundary conditions. For this problem, the shocks form at time t = 1/π ≈
0.318, before which the solution is smooth, albeit nonmonotone.

The Lax-Friedrichs numerical flux is used. Tests using CFL 4 and a uniform
mesh up to time t = 0.25 give the convergence results in Table 7.4. The CN and
SATh0-LF WENO schemes appear to have second order convergence in the L1

h norm,
and SATh1/2-LF WENO has nearly the same convergence. In the L∞

h norm, CN
appears to maintain second order convergence, but the SATh schemes perhaps drop to
order 1.5. The afore-mentioned difficulties with SATh0-LF appear when using WENO
reconstructions: the solution shows oscillation behind the steep front, which improves
as the resolution increases. The problem also worsens as the CFL is increased.

CN WENO SATh0-LF WENO SATh1/2-LF WENO
m L1

h-error order L1
h-error order L1

h-error order
160 3.69e-03 1.56 2.33e-03 1.58 3.25e-03 1.53
320 1.07e-03 1.79 6.30e-04 1.89 1.01e-03 1.69
640 2.81e-04 1.93 1.64e-04 1.95 2.94e-04 1.78
1280 7.11e-05 1.98 4.16e-05 1.98 8.45e-05 1.80
m L∞

h -error order L∞
h -error order L∞

h -error order
160 1.71e-02 1.36 9.08e-03 1.46 1.69e-02 1.23
320 5.45e-03 1.65 3.24e-03 1.49 5.45e-03 1.63
640 1.51e-03 1.85 1.05e-03 1.63 1.51e-03 1.86
1280 3.88e-04 1.96 3.38e-04 1.63 5.98e-04 1.33

Table 7.4: Burgers’ equation (5.4) with periodic initial condition (5.3) at time t = 0.25,
before shocks develop, using CFL 4 andm = 1/∆x cells. The schemes use WENO(3,2)
reconstructions.

Solutions are shown in Figure 7.1 at times t = 0.25, before the shocks form, and
t = 0.4, after the shocks have formed. The resolution is sufficient that the SATh0-LF
WENO solution does not wiggle noticeably. All three schemes perform well at time
t = 0.25, but CN WENO oscillates unacceptably immediately behind the shock at
time t = 0.4.

8. Summary, Conclusions, and Open Problems. We presented further the-
oretical and numerical studies on the self-adaptive theta (SATh) scheme [1] for solving
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(a) CFL 4, ∆x = 1/320, t = 0.25
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Fig. 7.1: Burger’s equation (5.4) with periodic initial condition (5.3) at time t = 0.25
(before the shock forms) and 0.4 (after the shock forms) using CFL 4 andm = 1/∆x =
320 mesh cells. The schemes use WENO(3,2) reconstructions. The true solution is
shown in green on the left, but it is covered by the approximate solutions.

scalar conservation laws. We extended the scheme to unstructured meshes in multiple
space dimensions, to numerical flux functions that can be split into right and left going
waves, and to a higher order scheme by using WENO reconstructions for obtaining
the values of the solution on the cell interfaces. An open problem is to properly define
the scheme for systems of equations.

Theoretical results were given for problems in one space dimension with monotone
increasing fluxes. The results in [1] made the assumption that θmin = 1/2. These
results were generalized here to allow θmin = 0. If the SATh scheme uses the upstream
numerical flux and ϵ = 0 in (2.17), it was shown that the scheme is stable for any
θmin ≥ 0 and L-stable for the linear problem (Theorem 3.1). Furthermore, if the
flux is strictly monotone increasing and the true solution is monotone (and θmin ≥
0), then the SATh solution ū remains monotone and the scheme is TVB and TVD
(Theorem 4.1 and Corollary 4.2); moreover, θ and ˜̄u are well behaved (Corollary 4.3).

Numerical tests in one space dimension were presented. It was noted that it can
be difficult to solve the system of equations defining the SATh scheme using Newton’s
method. An open problem is to find a way to improve the convergence behavior.

Test problems with contact discontinuities, shocks, and rarefactions showed the
behavior of SATh compared to finite volume schemes using backward Euler (BE) and
Crank-Nicolson (CN) time stepping. As in [1], it was seen that SATh1/2 performs
better than the theory predicts. The SATh1/2 solutions were less diffusive than those
of BE and less oscillatory than those of CN while being about as sharp. Moreover,
SATh1/2-LF (i.e., SATh using a Lax-Friedrichs numerical flux) appears to be TVD and
MPP. An major open problem is to prove this conjecture, as well as that SATh1/2-
LF is stable. When the true solution is monotone, it was seen that SATh0 is an
improvement over SATh1/2.

However, it was discovered that using θmin = 0 can be problematic when applied to
problems outside the bounds of the theory. In particular, SATh0-LF solutions became
oscillatory when the spatial resolution was too low, and thus the MPP and TVD
properties failed to hold. This observation suggests that one should use θmin = 1/2
in multiple space dimensions and in one space dimension unless the true solution is
known to be monotone (or the resolution can be made sufficiently fine).

Numerical tests in two space dimensions showed that BE is more diffusive than
the other three schemes. The results for CN, SATh1/2-LF, and SATh0-LF were of
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similar accuracy. However, CN may show oscillation and violation of the maximum
principle in some problems. SATh1/2-LF and SATh0-LF showed no oscillation in the
tests conducted here (but the 1D tests demonstrate that at least SATh0-LF does not
satisfy the maximum principle in general).

The higher order SATh scheme was seen to converge to order two and compare
favorably with CN, and SATh1/2-LF proved to be less oscillatory than CN.
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