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Abstract. Tracer transport is governed by a convection-diffusion problem modeling mass conser-
vation of both tracer and ambient fluids. Numerical methods should be fully conservative, enforcing
both conservation principles on the discrete level. Locally conservative characteristics methods con-
serve the mass of tracer, but may not conserve the mass of the ambient fluid. In a recent paper by the
authors [A fully mass and volume conserving implementation of a characteristic method for trans-
port problems, SIAM J. Sci. Comput., 28 (2006), pp. 2001–2022], a fully conservative characteristic
method, the Volume Corrected Characteristics Mixed Method (VCCMM), was introduced for poten-
tial flows. Here we extend and apply the method to problems with a solenoidal (i.e., divergence-free)
flow field. The modification is a computationally inexpensive simplification of the original VCCMM,
requiring a simple adjustment of trace-back regions in an element-by-element traversal of the domain.
Our numerical results show that the method works well in practice, is less numerically diffuse than
uncorrected characteristic methods, and can use up to at least about eight times the CFL limited
time step.

Key words. advection-diffusion, characteristics, local conservation, ELLAM, cellular flow,
divergence-free flow, convection-enhanced diffusion

1. Introduction. We consider the numerical approximation of a convection-
diffusion problem in a solenoidal field. The problem is a type of cellular flow. In the
two-dimensional domain Ω = [0, 1]× [0, 1], we seek φ(x, t) = φ(x, y, t) as the solution
to

φt + u · ∇φ−∇ · α∇φ = Fφ for x ∈ Ω, t > 0,(1.1)

φ(x, 0) = φ0(x) for x ∈ Ω,(1.2)

with a periodic boundary condition, where α(x) ≥ α∗ > 0 and the vector field u(x)
is itself periodic over Ω and solenoidal (i.e., divergence-free):

(1.3) ∇ · u = 0 for x ∈ Ω, t > 0.

The equations model convective transport of a tracer φ in an ambient fluid with
velocity u (the term u · ∇φ) subject to diffusion (the term −∇ · α∇φ) and reactions
(the term Fφ), all in the periodic cell Ω. Note that the tracer φ itself has no effect
on the flow u.

This problem arises in many applications. It is used as a simple model in the
study of vortices in an incompressible fluid, and, more generally, to model diffusion of
passive tracers in a periodic flow [12, 14, 18, 19, 20]. Two practical examples include
simulation and modeling of combustion [24] and magnetohydrodynamics (MHD) [5,
9, 15, 25].
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Periodicity of φ and u arise in the applications, but, in fact, the numerical algo-
rithm described herein does not require periodicity. Our algorithm would be formu-
lated the same if we assumed no-flow boundary conditions (u · ν = 0 and α∇φ · ν = 0
on ∂Ω). However, for ease of exposition, we retain the periodicity assumptions.

Lagrangian moving mesh methods have been developed for problems like (1.1)–
(1.3) for a number of years (see, e.g., [6, 26]). Similar to moving mesh methods,
characteristic Eulerian-Lagrangian methods [2, 8, 11] have been applied to convection-
diffusion problems since at least the 1980’s. Recently, Liu, Tavener, and Chen [17]
applied a characteristic ELLAM scheme to the MHD problem. Such methods use
operator splitting to separate the problem into transport, reaction, and diffusion steps.
They use an Eulerian-Lagrangian framework, treating transport and reaction terms
in a Lagrangian frame but diffusion in an Eulerian. We discuss mainly the transport
step in this paper. The advantage of these methods is that large time steps can be
used, since no CFL constraint arises for numerical stability of the transport part. This
leads to approximations with less numerical diffusion than competing methods such
as Godunov’s method (see, e.g., [1]).

To maintain physical consistency of the numerical solution, the specific charac-
teristic method used must in some way satisfy the local mass conservation principle
numerically. Otherwise, loss or creation of mass over time will quickly destroy the
solution. Such conservative characteristic methods have been known since the early
1990’s [2, 8]. However, it was recently pointed out by the authors [1] that it is critical
to conserve locally the mass of both the transported fluid and the ambient fluid. We
call such a method fully conservative.

Currently, the only fully conservative method, one that maintains the local mass
conservation principles of both tracer and ambient fluids, is the volume corrected
characteristics-mixed method (VCCMM) [1]. It is a modification of the ELLAM
scheme called the characteristics-mixed method (CMM) [2], and it was developed and
applied to problems with a potential (i.e., nonsolenoidal) velocity field u. Very briefly,
VCCMM computes the transport part of the problem on the computational mesh over
a time step in three main steps. Step 1 is to trace (approximately) each mesh element
E backward in time from the advanced time level to the previous time level along the
characteristics or streamlines of the flow. Step 2 is then to correct the volume of the
trace-back elements Ě so each agrees with the volume of E (of course maintaining
the property that the entire corrected trace-back mesh tessellates space). Finally,
Step 3 is to sum the tracer mass in each Ě at the previous time level. This mass
is assumed transported to the original mesh element E at the advanced time level.
Note that Step 3 ensures local mass conservation of the tracer. Because the volume
of the trace-back element is corrected in Step 2, the sum of ambient and tracer mass
is conserved, and so the overall VCCMM conserves locally the mass of both fluids.
Step 2 is absent from the original CMM.

In this paper, we adapt and apply the VCCMM to our model problem (1.1)–(1.3).
Because the velocity u is not potential, the algorithm presented in [1] requires a mild
modification, as described in the next section. In Section 3, we present three numerical
examples that illustrate the method and show its advantages. Namely, we can use
large time steps, and we observe less numerical diffusion for the fully conservative
scheme as compared to one conserving only the tracer mass. Finally, our conclusions
are noted in Section 4.

2. The numerical method. Suppose we have a sequence of time levels 0 =
t0 < t1 < · · · at which we wish to compute the solution. We work over the time step
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tn to tn+1. We use a standard operator splitting technique [10] to decompose the
problem (1.1) in time into the following three main steps.
Transport step. Given φ at time tn, we solve for φ1 over the time step

(2.1) φt + u · ∇φ = 0,

using our modified VCCMM. We give the details later in this section.
Reaction step. Given φ1, we solve for φ2 over the time step

(2.2) φt = Fφ.

This is a standard ordinary differential equation at each fixed x ∈ Ω. We may use
several micro-time steps in the solution. Almost any reasonable numerical technique
can be used here, so we will discuss it no further.
Diffusion step. Given φ2, we solve for φ at time tn+1 over the time step

(2.3) φt −∇ · α∇φ = 0.

This is an elliptic partial differential equation. There are many techniques available
to solve it. However, in keeping with our concerns for the transport step, a locally
mass conservative method should be used. As a very incomplete list, these include,
for example, mixed finite element methods [7, 22], finite volume methods [3, 23],
and discontinuous Galerkin methods [4, 15, 21]. Any reasonable locally conservative
method can be used here, so we do not discuss it further.

2.1. Characteristics and local mass conservation for transport. The
characteristics of (2.1) describe the curves on which φ is constant. The character-
istic trace-back x̌(t) = x̌(x; t) passing through (x, tn+1) satisfies the (time backward)
differential equation

dx̌
dt

= u(x̌, t)), tn ≤ t ≤ tn+1,(2.4)

x̌(tn+1) = x.(2.5)

Let the domain Ω be partitioned into a set T of elements (i.e., subdomains that
tessellate space). Let E ∈ T be an element, and define the space-time trace-back
region of E from time tn+1 back to tn as

E =
{

(x̌, t) ∈ Ω× [tn, tn+1] : x̌ = x̌(x, t) for x ∈ E
}
.

Note that E = E ∩ {tn+1} and we define the trace-back region as

(2.6) Ě =
{
x̌ ∈ Ω : x̌ = x̌(x, tn) for x ∈ E

}
= E ∩ {tn}.

We tacitly use the periodicity of the problem in the above definitions (i.e., if x̌ traces
to ∂Ω, it re-enters periodically). We remark in passing that, in the case of no-flow
(u · ν = 0) or even outflow (u · ν > 0) boundary conditions, we never trace to ∂Ω, so
these conditions cause no difficulty for the method. We refer the interested reader to
[1] for handling more general inflow boundary conditions.

Because of the spatial divergence-free condition (1.3), we can rewrite (2.1) as the
space-time divergence

(2.7) φt + u · ∇φ = ∇x,t ·
(φu
φ

)
= 0.
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Noting that no mass transports across the streamlines, integration over E and applica-
tion of the divergence theorem to (2.7) leads to our local mass conservation principle
for φ [2]. It is

(2.8)
∫

E

φ(x, tn+1) dx =
∫

Ě

φ(x, tn) dx,

which is the basis for our transport method.
However, the ambient fluid is also conserved, and thus also the total fluid; that

is, (1.3) itself is

(2.9) ∇x,t ·
(u

1

)
= 0.

A similar computation leads to the local volume conservation principle [1]

(2.10) |E| = |Ě|,

where |S| =
∫

S
dx is the volume (i.e., area) of a domain S.

2.2. VCCMM for transport. We begin the transport step by defining our
computational mesh T that tessellates space. Unfortunately, given a mesh element
E ∈ T , it is not possible to trace points accurately according to (2.4)–(2.5), nor is it
possible to fully resolve the boundary of the trace-back element Ě of E. Therefore,
in practice, one approximates Ě by Ẽ, in which one traces approximately, say, only
the vertices and midpoints of E, and simply defines Ẽ to be a polygon connecting the
points.

The collection of Ẽ continue to tessellate space, and the locally mass conservative
method is to advance the tracer concentration in time according to the mass constraint
(2.8). We approximate φ(x, tn) over the mesh by a piecewise constant function φn.
We begin by projecting the initial condition into the mesh to give φ0 and then, given
φn, defining on E

(2.11) φn+1
E |E| =

∫
Ẽ

φn(x) dx.

The problem is now manifest: Most likely the volume constraint (2.10) fails for
Ẽ, i.e., |E| 6= |Ẽ|. Since Ẽ is only approximately Ě, we are at liberty to correct the
volume error by perturbing the points defining Ẽ, so that indeed

(2.12) |Ẽ| = |Ě| = |E|.

We remark that in practice, one can improve the accuracy of the method by
postprocessing the piecewise constant function φn into a piecewise linear function
prior to computing the integral in (2.11). Slope limiting may be necessary to avoid
creating artificial local extrema (see, e.g., [2]). However, this was not done in the
numerical results that follow.

2.3. VCCMM volume adjustment. As we will see in the next section, even
small volume errors tend to build up into large errors over many time steps. In
subsurface transport problems, in which the velocity is a potential flow arising from
the application of Darcy’s law, the initial, uncorrected volume errors are very large,
and concentrated at the locations of the injection wells (for example, these errors
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can be as large as 200% [1]). Therefore, the original VCCMM algorithm contained
a complex adjustment strategy involving three steps. (1) First, one traces particles
forward out of the injection wells, and adjusts the volume of the region affected. (2)
Second, between the wells, starting adjacent to the injection wells and moving towards
the production wells, entire layers or rings of elements are adjusted so as to have the
correct volume. Assuming the trace-back layer edge closest to an injector has been
adjusted, the points on the far edge are adjusted simultaneously. These trace-back
points are adjusted in the direction of the flow field, so that no bias is introduced
into the direction of the overall flow. (3) Finally, the error within an adjusted layer
of elements is now small, and individual elements are adjusted to have the correct
volume by traversing the layer and adjusting the position of the midpoints.

On the other hand, solenoidal or divergence-free flows do not concentrate the
volume errors. Numerical examples shown in the next section show volume errors more
on the order of ±1e–3%. Therefore, a complex volume adjustment is not needed, and
only something akin to step (3) is required. That is, we need only a simple element-
by-element adjustment, leaving the vertices unperturbed and adjusting the locations
of the midpoints. The only question is to decide the element adjustment order.
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Fig. 2.1. Examples of column-wise (left) and row-wise (right) adjustment strategies on a simple
rectangular grid, wherein we show the original grid rather than the traceback mesh. The numbers
give the element volume adjustment order, and the arrows show the midpoint that is adjusted (the
arrow pointing out is the one adjusted for that element).

Perhaps the simplest strategy is to adjust the midpoints of each element in
column-wise or row-wise fashion, as depicted in Fig. 2.1, where the original rather
than the traceback mesh is shown for ease of visualization. Consider, for example
column-wise adjustment. We begin on the bottom left element (Element 1 in the
figure) by adjusting the top boundary midpoint (between Elements 1 and 2) so that
the element volume (of Element 1) is correct. We then proceed upwards to the next
element (Element 2) and adjust its top boundary midpoint until we reach the top of
the domain. This top element is not yet adjusted for volume balance. Instead, we
move to the next right column and repeat (for Elements 3 to 4, 5 to 6, and then 7 to
8). Finally, we adjust the right-hand side midpoints of the top row, starting from the
left and working right (Elements 9 to 11). Note that the final element (Element 12)
needs no adjustment, since the outer boundary condition (periodicity) implies that we
maintain global volume conservation. This simple adjustment procedure often works
very well and produces no systematic bias, since the initial volume errors observed
are so small. The row-wise adjustment is similar. Obviously there are other, equally
simple adjustment strategies that one might apply.

However, in some examples a systematic bias may result. The reason is that in
some examples the volume errors tend to build up in the last few elements. This is
especially true when large time steps are used, since the volume errors tend to be
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larger in that case. The goal is to traverse the domain in such a way that volume
errors tend to cancel along the way. That is, we do not want to choose an element
ordering that first treats Ẽ that are mostly too big, followed by elements mostly too
small. The first too big Ẽ will push its volume into the next Ẽ, making it even larger,
which must in turn be pushed into the next Ẽ, and so forth, until finally the too small
elements are encountered.

We will see a staircase-like diagonal element-by-element adjustment in the next
section (Example 1 with a large time step, used also in the other two examples with
large time steps—see Fig. 3.7). One traverses the domain from the bottom-left to the
upper-right corner along 45 degree lines from the bottom-left to the top-right.

3. Some numerical results. In this section we show by numerical examples
that the volume correction step is a critical component in Lagrangian approximation
of convection in a solenoidal field. Our examples apply to the equations (1.1)–(1.2).
Recall that in all cases Ω = [0, 1]× [0, 1]. Except in one case, we turn off the reaction
and diffusion, i.e., we set F = 0 and α = 0, so we see only pure transport of the
tracer.

We use rectangular grids for ease of implementation, though this is not necessary.
All the ideas extend to unstructured triangular meshes, and even to more general
arbitrary nonconforming tessalations of the domain into elements (although the ele-
ments should probably be convex or nearly so). The only difficulty perhaps is to find
an efficient trace-back tracking algorithm (see, e.g., [13, 16]).

The basic Lagrangian methods found in the literature have no volume adjustment.
A prototypical example is the Characteristics Mixed Method (CMM) [2], which we
take as the baseline in our numerical results. We compare these to the VCCMM,
which is the same method as CMM except for the addition of the volume correction
step of Section 2.3. Thus our numerical results are strictly comparable, and show only
the effect of volume conservation.

3.1. Example 1. For our first numerical example, We define u by

u =
(−0.1 + 50 sin(2πx) cos(2πy)
−50 cos(2πx) sin(2πy)

)
,

which is divergence-free and gives rise to the flow shown in Fig. 3.1. The initial
condition is

(3.1) φ(x, y, 0) =

{
2, 0.3 < x < 0.7 and 0.3 < y < 0.7,
1, otherwise,

which has a high concentration in a small square of width 0.4 in the center of the
domain (0, 1)2.

We use a spatial grid of 256× 256 and time step ∆t = 1e–4, which is 2.56 times

the CFL time step, defined as
h

2umax
, where h is the grid spacing and umax is the

maximal speed of the velocity u. The initial, uncorrected volume error is depicted in
Fig. 3.2 and varies from ±1.72e–3%. The scheme without volume adjustment, CMM,
is subject to this volume error. The simple correction algorithm of Section 2.3 reduces
these errors to the order of rounding error. Although the volume error is small in this
problem, the error does build up over time, as can be seen in Fig. 3.3, which compares
the tracer concentration φ for CMM and VCCMM. Our numerical data is summarized
in Table 3.1.
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Fig. 3.1. Ex. 1: The velocity field, with
the region occupied initially by the higher tracer
concentration value.

Fig. 3.2. Ex. 1: Initial, uncorrected volume
errors using spatial mesh 256 × 256 and ∆t =
1e–4. The variation is from ±1.72e–3%.

Fig. 3.3. Ex. 1: Tracer on 256 × 256 grid
for CMM (left) and VCCMM (right) at time 0.3
(3000 steps, top) and 0.4 (4000 steps, bottom).

Fig. 3.4. Ex. 1: Tracer on 512 × 512 grid
for CMM (left) and VCCMM (right) at time 0.3
(6000 steps, top) and 0.4 (8000 steps, bottom).

Table 3.1
Numerical data for various cases of Example 1.

Initial Adjustment Depicted
1/h ∆t ∆t/CFL Volume Error Pattern in Figure(s)
256 1.0e–4 2.56 ±1.72e–5 column-wise 3.3
512 0.5e–4 2.56 — column-wise 3.4
256 3.0e–4 7.69 ±15.5e–5 diagonal 3.5, 3.6
512 1.5e–4 7.69 — diagonal 3.5

It is clear that there is a big difference between the two methods. The results
using a 512 × 512 grid and half the original time step (∆t = 0.5e–4) is shown in
Fig. 3.4. The two methods’ results are not nearly so dissimilar, and they indicate
that VCCMM is more accurate. In fact, VCCMM on the coarser grid (Fig. 3.3) has
similar resolution as CMM on the finer grid (Fig. 3.4). Therefore we conclude that
VCCMM is the better scheme, since it produces accurate answers in lower resolution
computations.

A careful examination of Fig. 3.4 shows that, in the case of the CMM, tracer
fills the center of the flow cells due to a larger numerical diffusion instigated from
the volume errors. This phenomenon is lessened when a finer grid is used, but not
completely removed.

So far our time steps are relatively small, i.e., 2.56 times the CFL condition. We
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next increase the time step by a factor of 3 to 7.69 times of the CFL condition. We
show these results in Fig. 3.5. On the left is VCCMM with a 256 × 256 grid and
∆t = 3e–4, which should be compared to the right side of Fig. 3.3 with the same grid
and ∆t = 1e–4. On the right is VCCMM with a 512×512 grid and ∆t = 1.5e–4, which
is comparable to the right side of Fig. 3.4 with ∆t = 0.5e–4. We see less numerical
diffusion when we can take a longer time step.

Fig. 3.5. Ex. 1: VCCMM tracer on 256 ×
256 grid with ∆t = 3e–4 (left) and on 512× 512
grid with ∆t = 1.5e–4 (right) at times 0.3 (top)
and 0.4 (bottom).

Fig. 3.6. Ex. 1: Evolution of the tracer
concentration at early times on a 256×256 grid.
Shown are steps 10, 30, 60, and 80 with ∆t =
3e–4. Colors vary from 1.06 (blue) to 1.94 (red).
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Fig. 3.7. A staircase-like diagonal element-by-element adjustment strategy from the bottom-left
to the upper-right corner on a simple rectangular grid, wherein we show the original grid rather than
the traceback mesh. The numbers give the element volume adjustment order, and the arrows show
the midpoint that is adjusted (the arrow pointing out is the one adjusted for that element).

In this set of numerical tests on the 256 × 256 grid, the maximun volume errors
grow from 1.72e–3% to about 1.55e–2% when we raise the time step from 1e–4 to 3e–4.
Although the volume error is still very small, a straight-forward row-wise horizontal
then vertical element-by-element adjustment (see Section 2.3, i.e., Fig. 2.1) does not
work. The reason is that the volume errors tend to build up in the last few elements.
In this example, we instead used a staircase-like diagonal element-by-element adjust-
ment from the bottom-left to the upper-right corner, as mentioned in Section 2.3 (see
Fig. 3.7). In this method, we use a diagonal adjustment pattern from the bottom or
left side of the domain until we reach the right or top of the domain. We then adjust
the top row and right-most column.
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From the volume error plot (Fig. 3.2), it is easy to see the reason why we needed
this adjustment strategy. If we adjust element-by-element in a horizontal strip, the
error builds up at the very last element of the row, since the volume errors have the
same sign along each x-strip (as does each y-strip, by the way). However, if we look
at 45 degree angle strips, the volume errors take alternate signs, and they balance
themselves along the strips. Therefore, the volume errors tend not to accumulate in
the very last element, and we are able to use our relatively large time step.

Finally, it is instructive to note the level of detail that the method captures.
Fig. 3.6 shows four snapshots of this problem at steps 10, 30, 60, and 80 with timestep
∆t = 3e–4 on a 256 × 256 grid. Note the very low level of numerical diffusion that
the fully conservative method is subject to.

3.2. Example 2. We next consider a problem with four eddies in its velocity
field, taken from Weiss [25] and considered also in [17, 26]. We note that the particular
ELLAM method they use is not fully conservative, so it should suffer from the same
volume error problem as CMM does. The velocity u is defined by

u1(x, y) =
sin(4πx)

4π
(
2y(1− y)2 − 2y2(1− y)

)
,

u2(x, y) = − cos(4πx) y2(1− y)2,

and it is depicted by Fig. 3.8. We use the initial condition

φ(x, y, 0) =

{
2, 0.3 < y < 0.7,
1, otherwise.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 3.8. Ex. 2: The velocity field, showing
its four eddies, with the region occupied initially
by the higher tracer concentration value.

Fig. 3.9. Ex. 2: Initial, uncorrected volume
errors for 128 × 128 mesh and ∆t = 0.1. The
variation is from −0.887e–3% to 1.09e–3%.

Our numerical data is summarized in Table 3.2. For a spatial grid of 128 ×
128 and time step ∆t = 0.1, which is the 1.6 times the CFL time step, the initial
volume error (see Fig. 3.9) is at the magnitude of 1.09e–3%, which, even though very
small, is significant over many steps. Fig. 3.10 shows a comparison of the uncorrected
CMM and the fully conservative VCCMM (using simple column-wise adjustment)
concentration at step 3000, i.e., time 300. On the left-hand side we plot in color the
VCCMM concentration between 1.10 (blue) and 1.54 (red). Corresponding contour
lines are plotted on the right-hand side for both VCCMM (in red) and CMM (in
black). As can be seen easily, the red ovals (VCCMM) are much smaller than the
black ovals (CMM), so VCCMM exhibits less numerical diffusion.

We next attempt to lengthen the time step. We use the same spatial grid of
128 × 128, but now the time step ∆t = 0.5, which is 8 times of the CFL condition.
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Table 3.2
Numerical data for various cases of Example 2.

Initial Adjustment Diffusion Depicted
1/h ∆t ∆t/CFL Volume Error Pattern α in Figure(s)
128 0.1 1.6 ±1.0e–5 column-wise 0 3.10
128 0.5 8.0 ±30.e–5 diagonal 0 3.12, 3.13
128 0.5 8.0 ±30.e–5 diagonal 0.01 3.14Red -- VCCMM

Black -- CMM

Fig. 3.10. Ex. 2: At time 300, (left) the VCCMM tracer concentration, and (right) correspond-
ing concentration contours for VCCMM (in red) and CMM (in black).

The maximum initial volume errors grow from 1e–3% to about 3e–2% (see Fig. 3.11).
As before, a staircase-like diagonal type of element-by-element adjustment removes
the volume error easily.

Fig. 3.11. Ex. 2: Initial, uncorrected vol-
ume errors for 128 × 128 mesh and ∆t = 0.5.
The variation is from −1.66e–2% to 2.77e–2%.

10 1.68E+00
9 1.61E+00
8 1.54E+00
7 1.47E+00
6 1.40E+00
5 1.33E+00
4 1.26E+00
3 1.19E+00
2 1.12E+00
1 1.05E+00

Red --dt = 0.5
Black --dt = 0.1

Fig. 3.12. Ex. 2: VCCMM contours for
∆t = 0.1 (black) and ∆t = 0.5 (red) at t = 300,
i.e., using 3000 and 600 time steps, respectively.

In Fig. 3.12, the black concentration contours use the previous ∆t = 0.1, which
takes 3000 steps to time t = 300, while the red contours are for ∆t = 0.5, which takes
only 600 steps to the final time. One can see easily that the the red ovals (∆t = 0.5)
are much smaller than the black ovals (∆t = 0.1), so again we see less numerical
diffusion whenever we can take a larger time step.

Finally, we consider the problem with nonzero physical diffusion, i.e., (1.1) with
α = 0.01. Compared to Fig. 3.10 (left), the physical diffusion in Fig. 3.14 is apparent,
especially near the bottom and top of the domain, i.e., at y = 0 and y = 1.

3.3. Example 3. Lastly, we show a numerical example with a time-dependent
vector field. We modify u from Example 1 to

(3.2) u =
(−0.1 + 50 sin

(
2πx+ 0.4 cos(50t)

)
cos(2πy)

−50 cos
(
2πx+ 0.4 cos(50t)

)
sin(2πy)

)
,

and we use the same initial condition (3.1) as in Example 1.
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Fig. 3.13. Ex. 2: Evolution of the tracer
concentration at early times on a 128×128 grid.
Shown are steps 10, 30, 60, and 80 with ∆t =
0.5. Colors vary from 1.06 (blue) to 1.94 (red).

Fig. 3.14. Ex. 2: VCCMM tracer con-
centration at time 300 with physical diffusion
α = 0.01 (on a 128× 128 grid with ∆t = 0.5).

Fig. 3.15. Ex. 3: Tracer on 256× 256 grid
for CMM (left) and VCCMM (right) at time 0.3
(3000 steps, top) and 0.4 (4000 steps, bottom).

Fig. 3.16. Ex. 3: Tracer on 512× 512 grid
for CMM (left) and VCCMM (right) at time 0.3
(6000 steps, top) and 0.4 (8000 steps, bottom).

In Fig. 3.15, we see clear differences between CMM and VCCMM (with simple
column-wise adjustment) using a 256 × 256 grid and ∆t = 1e–4. Refinement to
a 512 × 512 grid and ∆t = 5e–5 in Fig. 3.16 shows that VCCMM gives the more
accurate result, and that with CMM, the tracer fills the cells due to larger numerical
diffusion.

Finally, we note that we also ran relatively large time steps for this problem.
The staircase-like diagonal adjustment procedure (Section 2.3 and Fig. 3.7) worked
well in removing any volume error; however, a time shift was necessary. For the
time-independent problem (Example 1), the adjustment starts at element (1,1) on a
domain n × n, n = 256 or 512, proceeds to the line containing (2,1) and (1,2), and
then to the line (3,1), (2,2), and (1,3), etc. Now for the time-dependent problem, the
contours, and so also the volume errors, shift a bit to the right in time, as can be seen
in Figs. 3.15 and 3.16. Thus we need to take the starting point for the adjustment
algorithm at (a, 1), where the offset a, 1 ≤ a ≤ n, depends on time. From (3.2), we
see that a should be the solution of 2π(a− 1)/n+ 0.4 cos(50t) = 0.
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4. Conclusions. In this paper, we have described the Volume Corrected Char-
acteristics Mixed Method (VCCMM) [1], which enforces local mass conservation of
both the tracer and ambient fluids in transport problems with a velocity governed
by a potential. A simple modification was presented to extend the definition of the
VCCMM to solenoidal flows. The modification is actually a simplification of the orig-
inal VCCMM, requiring adjustment of trace-back regions Ẽ in an element-by-element
traversal of the domain, so that each Ẽ has the volume of the original mesh element E.
Often a simple column-wise or row-wise adjustment suffices, but in other cases a bet-
ter ordering is necessary. The traversal path should be chosen so that local volume
errors tend to cancel along the way.

Our numerical results show that the method works well in practice, and better
than uncorrected characteristic methods, such as the Characteristics Mixed Method
(CMM) [2], which are more numerically diffuse than corrected versions. In fact, the
corrected algorithm on a coarse grid can attain a similar level of resolution as the
uncorrected algorithm on a fine grid.

The main advantage of characteristic methods is that, in principle, one may use
large time steps. This has the effect of reducing mesh projection errors, and ultimately
reducing numerical diffusion. However, the volume error grows with the time step.
In uncorrected characteristic methods, one cannot use too large a time step before
the numerical diffusion due to volume nonconservation degrades the solution. The
volume correction step rectifies this difficulty in practice, and we showed examples
using up to eight times the CFL limited time step.

There are many locally mass conservative characteristic methods available that
only conserve the tracer mass. Our results show that they can benefit from the
computationally inexpensive local volume correction adjustment procedure presented
here.

5. Acknowledgments. The authors thank Professor James Nolen for helpful
discussions regarding the applications of this work.
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