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A DISCRETIZATION AND MULTIGRID SOLVER FOR A
DARCY-STOKES SYSTEM OF THREE DIMENSIONAL

VUGGY POROUS MEDIA∗

TODD ARBOGAST† AND MARIO SAN MARTIN GOMEZ†

Abstract. We develop a finite element discretization and multigrid solver for a Darcy-Stokes
system of three dimensional vuggy porous media, i.e., porous media with cavities. The finite ele-
ment method uses low order mixed finite elements in the Darcy and Stokes domains, and special
transition elements near the Darcy-Stokes interface to allow for tangential discontinuities implied by
the Beavers-Joseph boundary condition. We design a multigrid method to solve the resulting sad-
dle point linear system. The intertwining of the Darcy and Stokes subdomains makes the resulting
matrix highly ill-conditioned. The velocity field is very irregular, and its discontinuous tangential
component at the Darcy-Stokes interface makes it difficult to define intergrid transfer operators. Our
definition is based on mass conservation and the analysis of the orders of magnitude of the solution.
The coarser grid equations are defined using the Galerkin method. A new smoother of Uzawa type is
developed based on taking an optimal step in a good search direction. Our algorithm has a measured
convergence factor independent of the size of the system, at least when there are no disconnected
vugs. We study the macroscopic effective permeability of a vuggy medium, showing that the influ-
ence of vug orientation, shape, and, most importantly, interconnectivity determine the macroscopic
flow properties of the medium.

Key words. Darcy-Stokes, vuggy porous medium, Beavers-Joseph boundary condition, mixed
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1. Introduction. We consider the computational simulation of a fluid within
a vuggy porous medium Ω. This is a porous medium with large void inclusions or
cavities (also called vugs). We envision these vugs to be spread throughout the rock,
so they have a major effect on the flow and transport properties of the medium.

The fluid in the porous matrix, Ωd ⊂ Ω, obeys the Darcy law for the velocity
ud = u|Ωd

and the pressure pd = p|Ωd
, which is

−µK−1ud + ∇pd = g in Ωd, (1.1)

where µ is the fluid viscosity, K is the permeability of the porous medium, and g is
a force term such as gravity. The free fluid in the vuggy inclusions, Ωs = Ω \ Ω̄d,
obeys the Stokes equations. That is, combined with conservation on Ω, and with
(us, ps) = (u, p)|Ωs

,

−2µ∇ ·Dus + ∇ps = g in Ωs, (1.2)

∇ · u = f in Ω, (1.3)

where D denotes the symmetric gradient, i.e., Dv is the matrix such that (Dv)ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

, and f is an external source or sink (i.e., the effects of wells). On the
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interface Γ = Ω̄s ∩ Ω̄d between the two regions, the fluid obeys the principle of mass
flux continuity, continuity of normal stress, and the special Beavers-Joseph-Saffmann
boundary condition on the tangential stress [6, 25, 19], which are

us · ν = ud · ν on Γ, (1.4)

2µν ·Dus · ν = ps − pd on Γ, (1.5)

2ν ·Dus · τk = −αK−1/2us · τk on Γ, k = 1, 2, (1.6)

where α is the Beavers-Joseph-Saffman constant, τ1 and τ2 denote two orthogonal
unit tangent vectors to the interface Γ, and ν is the outer unit normal vector to ∂Ωs
(and later to ∂Ω). Note that (1.6) allows for a discontinuity in the tangential velocity.
Finally, on the outer boundary,

u · ν = uN on ΓN ⊂ ∂Ω, (1.7)

p = pD on ΓD,d = ∂Ω ∩ ∂Ωd \ Γ̄N , (1.8)

p− 2µν ·Du · ν = pD on ΓD,s = ∂Ω ∩ ∂Ωs \ Γ̄N , (1.9)

u · τk = 0 on ∂Ω ∩ ∂Ωs, k = 1, 2, (1.10)

where uN and pD are given. Let ΓD = ΓD,d ∪ ΓD,s = ∂Ω \ Γ̄N .
Numerical techniques have been developed for the treatment of Darcy-Stokes

systems, using different finite elements in the two regions (see, e.g., [26, 17, 14, 20, 13,
22, 16, 12]). In Arbogast and Brunson [2], a single set of element basis functions apply
equally well to the Darcy and Stokes regions, and so apply naturally to the case when
the two subdomains are intertwined, as occurs in a vuggy medium. Specially modified
transition elements are used to account for discontinuities in the tangential velocity
of the solution. These finite elements were defined for two dimensional domains; we
extend them to three dimensions in this paper, and so define a finite element method
for approximating the solution to our problem (1.1)–(1.10).

By restricting to the basis finite elements, these discrete equations result in a
symmetric system of linear equations of saddle-point form

[

A B
Bt 0

] [

u
p

]

=

[

g
f

]

, (1.11)

abusing the notation a bit in that the symbols g, f , and p are used in two different
ways, although no confusion should arise. Because the flow is described by different
equations in the vugs and in the porous matrix, and both subdomains are intertwined,
the resulting matrix is highly oscillating and hence, ill-conditioned.

In [2], an inexact Uzawa algorithm was used to solve (1.11), but it required
a good preconditioner to converge at a reasonable rate. The authors noted that
on a 2-D rectangular grid, the x and y components of the solution partition A as

A =

[

Axx Axy
Ayx Ayy

]

, and so they took A−1 ≈

[

A−1
xx 0
0 A−1

yy

]

. This preconditioner turned

out to be very effective, but quite expensive to compute, since it still required factoring
two matrices of half size. The use of a simpler preconditioner considerably reduced
the rate of convergence to intolerable levels.

In this paper, we design a multigrid solver for (1.11). It is well known that
a system with highly oscillating coefficients poses serious challenges, since the lack
of regularity of the solution makes it difficult to define multigrid prolongation and
restriction operators.
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Operator-dependent interpolation has been proposed for the diffusion equation
(Ωd = Ω, and no Stokes region appears) with a jumping coefficient K [1, 28]. In these
works, the irregularity of −K/µ implies a discontinuity of the gradient of the solution
p, but the product of these two terms, the velocity flux u, should be continuous. The
prolongation operator is designed to preserve the continuity of this flux. Still, from
one point to another in the domain, the equation changes only because the coefficient
changes. Our case is more complicated, because the differential operator itself changes
dramatically depending on the subdomain Ωs or Ωd, and for vuggy systems, these two
subdomains intertwine in complex ways.

Another tool used to deal with varying coefficients is algebraic multigrid [24, 27],
in which geometric grids are not considered at all. The starting point is a linear
system and all the arguments come from the analysis of the structure of the matrix.
We did not follow this approach because of the physical nature of our problem. As
explained below, our definition of the prolongation operator is based on an interpre-
tation of coarse grid quantities as average fluxes on coarse grid edges, the use of mass
conservation, and the analysis of the relative orders of magnitude of the fluxes in the
Darcy and Stokes subdomains.

The choice of multigrid smoother is also quite important. Standard Uzawa
smoothing is not very robust. We develop a new Uzawa smoother that works well for
our problem. It is based on taking an optimal step in a good search direction. We
prove that the coarse grid equations at all levels are well posed and show numerically
that our algorithm has a measured convergence factor independent of the size of the
system, at least when there are no disconnected vugs. Our method is also suitable
for parallelization, which we plan to do in the future.

We then use our solver to investigate by simulations the macroscopic flow prop-
erties of vuggy porous media. Flow properties had been previously studied in the
two dimensional case in [3, 11]. We confirm and extend these computational results
in three dimensions by considering straight vug channels, constricted vug channels,
meandering vug channels, and disconnected vugs. Our three dimensional numerical
studies show that the orientation, shape, and, most importantly, the interconnectivity
of the vugs determine the macroscopic effective permeability of the medium.

A brief outline of the paper follows. In §2, we present our finite element method for
three dimensional domains. In §3, we present our multigrid solver for the discretized
system. Most importantly, we define our prolongation operators motivated by physical
principles, present our new Uzawa smoother, and verify that our procedure is well
defined. In §4, we present some numerical tests of the multigrid solver, showing that
it works well in practice. Finally, in §5, we present our study of effective permeabilities
of vuggy media.

2. Discretization of the differential system. We rewrite the system as a
variational problem (for more details, the interested reader may consult, e.g., [20, 4,
2]). First some notation. Let L2(ω) = {f :

∫

ω
|f(x)|2 dx < ∞} denote the usual

Lebesgue space of square integrable functions on the domain ω, let Hk(ω) denote
the Sobolev space of functions in L2(ω) with distributional derivatives up to order k
in L2(ω), and denote the usual Hilbert space of vector-valued functions H(div, ω) =
{v ∈ (L2(ω))3 : ∇ · v ∈ L2(ω)}. We need the function spaces

Vψ = {v ∈ H(div,Ω) : vs = v|Ωs
∈ (H1(Ωs))

3, v · ν = ψ on ΓN ,

and v · τk = 0 on ∂Ωs ∩ ∂Ω, k = 1, 2},

W = L2(Ω) (W = L2(Ω)/R if ΓN = ∂Ω).



4 T. ARBOGAST and M. SAN MARTIN GOMEZ

We let (·, ·)ω denote various L2(ω) inner products, depending on the arguments. For
scalar functions, (ψ1, ψ2)ω =

∫

ω ψ1(x)ψ2(x) dx. When these are vectors, we have
(ψ1, ψ2)ω = (ψ1 · ψ2, 1)ω =

∑

i(ψ1,i, ψ2,i)ω, and when these are matrices, we have
(ψ1, ψ2)ω = (ψ1 : ψ2, 1)ω =

∑

i,j(ψ1,ij , ψ2,ij)ω .
The variational formulation of the boundary value problem (1.1)–(1.10) is to find

velocity u ∈ VuN
and pressure p ∈ W , such that, for all v ∈ V0 and w ∈ W ,

2µ(Du, Dv)Ωs
+

2
∑

k=1

µ(αK−1/2us · τk,vs · τk)Γ

+ µ(K−1u,v)Ωd
− (p,∇ · v)Ω = (g,v)Ω − (pD,v · ν)ΓD

,

(2.1)

(∇ · u, w)Ω = (f, w)Ω. (2.2)

2.1. The three dimensional finite elements. Discretization of (2.1)–(2.2)
is achieved using a standard Stokes finite element space [5, 15], modified to allow
discontinuities of the tangential component of the velocity along the Darcy-Stokes
interface. To do this, we must assume that both Ωs and Ωd are unions of rectangles,
so Γ does not cut any element. We define our elements in three dimensions, which
are a generalization of the elements presented in [2] for two dimensional domains.

Let E = (−a, a) × (−b, b) × (−c, c) be a reference rectangular element in R
3. On

this element, the pressure is approximated by a constant.
To define the velocity approximation, we concentrate on x-velocity components,

the other components being analogous. Let Qi,j,k(E) be the space of polynomials
defined on E of degree i in x, j in y, and k in z. Let B±

x be the “bubble” polynomials
on E of the form

B±
x (x, y, z) =

9

8ab2c2
(x ± a)(y2 − b2)(z2 − c2).

On each unmodified element, the x-velocity is approximated in the space

V xE,s = Q1,1,1(E) + span{B−
x , B

+
x },

i.e., trilinears augmented with the span of the two bubble functions.
The choice of finite element basis is critical to the sequel. We have 10 degrees of

freedom for each Cartesian direction. We choose the value at each of the 8 corners of
the three dimensional rectangle as a degree of freedom,

v(±a,±b,±c).

We also choose the average flux per unit area through the faces perpendicular to the
given Cartesian direction, i.e.,

1

4bc

∫ b

−b

∫ c

−c

v(±a, y, z) dz dy.

The nodal basis includes B±
x , since

B+
x (±a,±b,±c) = 0 and

1

4bc

∫ b

−b

∫ c

−c

B+
x (x, y, z) dz dy =

{

0 if x = −a,

1 if x = a;

that is, B+
x is the function whose average flux per unit area through the face x = a

is 1, and the rest of its degrees of freedom are equal to 0 (i.e., its corner values and
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average flux through face x = −a). The function B−
x is similar, but the roles of the

two faces are interchanged. The rest of the nodal basis is given by

v±a,±b,±c(x, y, z) =
1

8abc
(x± a)(y ± b)(z ± c) −

9

32ab2c2
(x± a)(y2 − a2)(z2 − b2),

which are the functions in V xE,s with all degrees of freedom equal to 0 except for the
value at corner (±a,±b,±c), which is 1. In terms of the 10 nodal basis functions,
then, the unmodified space is

V xE,s = span{v−a,−b,−c, va,−b,−c, v−a,b,−c, va,b,−c,

v−a,−b,c, va,−b,c, v−a,b,c, va,b,c, B
−
x , B

+
x }.

This element was defined and analyzed in [5] for Darcy flow.
The standard elements need to be modified near the Darcy-Stokes interface Γ to

allow for tangential discontinuities in the velocity. We accomplish this be removing
corner degrees of freedom. However, we do not merely remove basis functions; rather,
we must reduce the dimension of the polynomial space. Moreover, to reduce the size
of the overall system as much as possible, we remove all unnecessary corner degrees
of freedom in the Darcy domain.

If E is a Stokes element, i.e., E ⊂ Ωs, then we need to apply the symmetric
gradient to u and v, so we need to approximate by a continuous finite element.
Therefore we keep all corner degrees of freedom in the Stokes elements. However, if
E is a Darcy element, i.e., E ⊂ Ωd, we do not necessarily need the corner degrees
of freedom. In fact, we only need them when fluid flows from a Darcy region into a
Stokes region (i.e., normal to Γ).

For Darcy elements strictly away from Γ, we use elements without corner degrees
of freedom. These are the standard lowest order Raviart-Thomas finite elements [21,
10, 23]. The x-component basis functions are

R±
x (x, y, z) =

1

8abc
(x± a),

which are functions whose average flux per unit area through face x = ±a is 1 and
average flux through face x = ∓a vanishes. The Raviart-Thomas space has these 2
degrees of freedom, and in terms of its nodal basis, it is

V xE,d = Q1,0,0 = span{R−
x , R

+
x }.

A transition element E is a Darcy element that abuts a Stokes element at Γ. If
two elements abut along the x-direction, the x-component of the transition space is
a mixture of V xE,s and V xE,d. In terms of its nodal basis, we define

V xE,± = span{v±a,−b,−c, v±a,b,−c, v±a,−b,c, v±a,b,c, R
∓
x , B

±
x },

which has 6 degrees of freedom: 2 average face flux degrees of freedom at x = −a and
x = a, and 4 corner degrees of freedom at x = ±a (and y = −b, b and z = −c, c). In
other words, we remove the corner degrees of freedom on face x = ∓a, and replace
the bubble function by the Raviart-Thomas function.

We thus have 4 types of finite elements for x-components, as illustrated in Fig. 2.1,
and analogous elements for y- and z-components. This results in 12 vector valued
finite elements overall, which are

VE,α,β,γ = V xE,α, × V yE,β, × V zE,γ,,
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� �

� �

× ×

V xE,s

× ×

V xE,d

�

�

× ×

V xE,+

�

�

× ×

V xE,−

Fig. 2.1. The degrees of freedom for the 4 types of elements for x-velocities. The times symbol,
×, represents the average face flux, and the quarter circles represent corner values. The first is used
on Ωs, while all four may be used on Ωd.

where α, β, and γ are one of s, d, or ±, having from 6 to 30 degrees of freedom.

Remark 2.1. In [2], in two dimensions, several more transition elements were
defined. In each coordinate direction, there are 16 types, because one is allowed to
keep 0, 1, 2, 3, or all 4 corner degrees of freedom. (Up to symmetry, then, there
are seven types of elements.) Here we have disallowed such freedom, and required
the finite element to have 0, 4, or all 8 corner degrees of freedom (so as to reduce the
number of corner degrees of freedom as much as possible). Because the case of 4 corner
degrees of freedom requires them to all lie on the same face normal to the coordinate
direction, we have only 4 types of elements (or, up to symmetry, only 3 types). This
considerably simplifies the computer coding exercise. Of course, one could define the
additional finite elements if one wished to allow more flexibility as in [2].

2.2. The finite element method. Let us assume now that Ω ⊂ R
3 and that

both Ωs and Ωd are unions of rectangles. Let Th be a rectangular, conforming finite
element partition of Ω with maximal mesh size h, such that each element is within
Ωs or Ωd. We easily define

Wh = span{wE : E ∈ Th} ⊂W,

where wE is simply the characteristic function of the element E (i.e., 1 on the element
and 0 elsewhere).

We define now a nodal basis for our velocity finite element space Vh ⊂ V. It is
somewhat difficult to describe it, however, so we will define x-components first. For
E ∈ Th, let (if they exist), E− be the element immediately to the left, and E+ the
element to the right (in the x-direction). Then the x-component of vh ∈ Vh satisfies

vxh|E ∈



















V xE,s if E ⊂ Ωs, or E ⊂ Ωd and E− ∪E+ ⊂ Ωs,

V xE,+ if E ⊂ Ωd, E− ⊂ Ωd, and E+ ⊂ Ωs,

V xE,− if E ⊂ Ωd, E− ⊂ Ωs, and E+ ⊂ Ωd,

V xE,d otherwise.

This way, we have corners on Darcy elements only when they abut Stokes elements
on Γ. We have similar rules for y- and z-components. Alternatively, one can view
the construction as follows. Use VE,s on Stokes elements, VE,d on Darcy elements,
and add in corner degrees of freedom on Darcy elements from VE,− or VE,+ when
necessary, i.e., when flow travels from Darcy to Stokes, or vice versa.

Now the definition of Vh ⊂ V0 is clear: we choose our local elements as above,
and match corner and face degrees of freedom. Normal components are always con-
tinuous, so Vh ⊂ H(div; Ω). Moreover, since we maintain corner degrees of freedom
in the Stokes domain, Vh ⊂ H1(Ωs), as required. By imposing the outer boundary
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conditions, i.e., by removing normal degrees of freedom on ΓN and all tangential de-
grees of freedom, we have our space. Further, Vh,uN

is given by setting the normal
degrees of freedom appropriately.

For our finite element method, we seek uh ∈ Vh,uN
and ph ∈ Wh such that, for

all vh ∈ Vh and wh ∈Wh,

2µ(Duh, Dvh)Ωs
+

2
∑

k=1

µ(αK−1/2uh,s · τk,vh,s · τk)Γ

+ µ(K−1uh,vh)Ωd
− (ph,∇ · vh)Ω = (g,vh)Ω − (pD,vh · ν)ΓD

(2.3)

(∇ · uh, wh)Ω = (f, wh)Ω. (2.4)

By restricting to the basis finite elements, these discrete equations result is a sym-
metric system of linear equations of saddle-point form (1.11), where

Ai,j = 2µ(Dvjh, Dvih)Ωs
+

2
∑

k=1

µ(αK−1/2vjh,s · τk,v
i
h,s · τk)Γ

+ µ(K−1vjh,v
i
h)Ωd

,

(2.5)

Bi,j = −(wjh,∇ · vih)Ω, (2.6)

gi = (g,vih)Ω − (pD,v
i
h · ν)ΓD

, (2.7)

fi = −(f, wih)Ω. (2.8)

Since Γ is restricted to grid lines, at least one of the three terms that appear in
the formula for Ai,j vanishes. To make a rough estimate of the order of magnitude of
these terms, note that in the CGS unit system, µ ≈ 10−2, α ≈ 1 and K ≈ 10−10. For
our finite elements, the derivatives of vih ∼ h−1, so in dimension d,

µ(Dvjh, Dvih)Ωs
∼ µhd−2 ∼ 10−2hd−2,

µ(αK−1/2vjh,s · τ,v
i
h,s · τ)Γ ∼ µαK−1/2hd−1 ∼ 103hd−1,

µ(K−1vjh,v
i
h)Ωd

∼ µK−1hd ∼ 108hd.

These would be comparable if h ∼ 10−5 cm; however, one would not normally expect
such a fine grid, since this would be below the pore scale (of perhaps 10−2 cm) and
Darcy’s law would not be expected to hold. Rather, h ∼ 1 cm is expected, so there
are large variations in the sizes of the matrix elements of A, and one should expect
that the linear system (1.11) is very ill-conditioned.

The condition number of matrix A for different systems is shown in Table 2.1.
The domain is 8 cm × 8 cm × 4 cm and the mesh size is h = 1 cm. We include five
cases: (1) a Darcy domain with uniform permeability of 1md, (2) a heterogeneous
Darcy domain with a permeability variation of 4 orders of magnitude, (3) a Stokes
domain (using only a 4 cm cube domain), (4) a Darcy-Stokes system with a hetero-
geneous Darcy subdomain with an isolated vug, and (5) a Darcy-Stokes system with
a heterogeneous Darcy subdomain and a connected vug. Notice the large condition
number of matrix A for vuggy systems, and how much larger it is than for both simply
heterogeneous porous media and pure Stokes systems.

2.3. Convergence of the finite element method. An optimal order conver-
gence result for the two dimensional version of (2.3)–(2.4) was proved in [2]. All the
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Table 2.1

Condition number of matrix A for different types of systems.

Type of system Matrix size Condition number
Darcy homogeneous 896 × 896 9.9124e+03
Darcy heterogeneous 896 × 896 8.3731e+05

Stokes only 615 × 615 2.1497e+07
Darcy-Stokes (isolated vug) 968 × 968 3.7116e+11

Darcy-Stokes (connected vug) 998 × 998 6.8248e+11

arguments can be readily extended to the three dimensional case (see also [5]), and
we have the following theorem. For the notation, ‖ · ‖m,l denotes the usual norm in
the Sobolev space Hm(Ωl), for m = 1, 2 and l = s, d, and ‖ · ‖0,l is the L2(Ωl) norm.
Also, PW : L2(Ω) →Wh denotes the L2 projection operator.

Theorem 2.1. Assume that the solution (u, p) and data of (2.1)–(2.2) is suffi-
ciently smooth so that all the norms that appear below are finite. Then, there is a
constant C such that

‖u− uh‖1,s + ‖u− uh‖0,d + ‖p− ph‖0

≤ Ch(‖g‖1,d + ‖u‖2,s + ‖u‖1,d + ‖p‖1,s + ‖p‖1,d + ‖pD‖1,ΓD
).

(2.9)

Moreover, PW∇ · uh = PW f .

3. A multigrid solver for the discretized system. For ease of exposition,
we present this part of the work in two dimensions, although it easily generalizes to
three dimensional flows. For a detailed treatment of multigrid methods, we refer the
reader to [28, 9, 18]. In the next subsection, which the experts can skip, we present
the main ideas of multigrid.

3.1. A review of multigrid. Suppose we want to solve the system

Lhx = b, (3.1)

where matrix Lh represents the discretized version of a partial differential operator
with certain boundary conditions, and x and b are the finite element basis coefficients
of functions defined on a certain grid Gh with mesh size h.

Most iterative methods efficiently reduce the high frequency components of the
error x − xn, where xn is the approximation to x obtained after the nth iteration.
However, they do not remove the low frequency components. If we try to solve (3.1)
using such a smoothing procedure, we will observe that, after a number of iterations,
the reduction in the magnitude of the error becomes very small. In order to overcome
this difficulty, we need a better method to eliminate the slow components of the error.
We observe that the notion of high frequency or low frequency for a function defined
on a grid depends on the mesh size. A grid function which is “slow” relative to a grid
with mesh size h becomes a relatively faster signal when restricted to a subgrid with
mesh size 2h.

Suppose now that we apply a number of smoothing iterations and obtain an
approximation xh to the exact solution x of (3.1). If y solves the residual equation

Lhy = rh = b− Lhxh, (3.2)

then xh + y = x is the exact solution of (3.1). We also know that high frequency
components have been removed from the error x− xh, so y = x − xh should contain
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only slow components (relative to grid Gh). Thus, we “solve” (3.2) on a coarser grid
with mesh size, say, 2h. Let G2h be such a grid. We need to define some version of
the operator Lh for grid G2h. Denote this new operator by L2h. We also need to
define the right hand side for the new equation. To this end we define a restriction
operator R2h

h . The residual equation posed on grid G2h reads

L2hy2h = R2h
h rh, (3.3)

where the unknown y2h is obviously a function defined on grid G2h.
Once we solve equation (3.3), we need to add this coarse-grid correction to xh, but

first, we need to prolongate y2h to a function defined on Gh. Define a prolongation
operator P h2h, and then a better approximation to x should be given by

x′h = xh + P h2hy2h.

It turns out that we do not need to solve (3.3) exactly, we just need an approximate
solution. Therefore we can now follow the same steps we did before: we first apply
a number of smoothing iterations on G2h and then we solve the residual equation on
G4h and so on, until we reach a sufficiently coarse grid, where an exact solver can be
applied inexpensively.

According to the discussion above, in order to design a multigrid algorithm we
need to specify: (1) the type of cycle, (2) the grid coarsening strategy, (3) the inter-
grid transfer operators (restriction and prolongation operators), (4) the coarse grid
operators, and (5) the smoothing procedure. We will now explain our choices. The
most important aspect is choosing the smoother and prolongation operators.

3.2. Cycle type and coarsening strategy. For the type of cycle, we use
V-cycles, since we found a better balance between the convergence rate and the com-
putational work for these types of schemes than for W-cycles.

For simplicity, we tacitly assume that Th is a uniform square grid of spacing h.
Let GM = Th denote the finest grid. Actually, GM denotes the nodal points where
the solution (u, p) = (ux, uy, p) of (1.11) is defined (see Fig. 3.1). Then GM = GMx ∪
GMy ∪GMp , where GMx , GMy , GMp are subgrids of GM where ux, uy, and p are defined,
respectively. (Although the degrees of freedom corresponding to the fluxes are defined
on edges, we will identify an edge with its midpoint, as the figure shows. Also, we
identify each cell where the pressure is defined with its center point.) More precisely,
GMx consists of the corner points {(ih, jh)} and the edge points

{

(ih, (j + 1/2)h)
}

.

Similarly, GMy contains {(ih, jh)} and
{

((i+1/2)h, jh)
}

, and GMp is
{

((i+1/2)h, (j+

1/2)h)
}

.
Let GM−1, ..., G0 denote a sequence of successively coarser grids constructed from

GM as follows. First, GM−1 is obtained from GM by removing the corner points, so
GM−1 also has mesh size h. We also have GM−1 = GM−1

x ∪ GM−1
y ∪ GM−1

p , where

GM−1
x and GM−1

y are obtained from GMx and GMy , respectively, by removing the

corners, and GM−1
p = GMp .

Given grid Gk, k = M − 1,M − 2, ..., 1, each cell of grid Gk−1 consists of 4
neighboring cells of grid Gk, so we coarsen the grid by doubling the mesh size. In the
same way we had for Gk, for each cell of Gk−1 we have a grid point at the center of the
cell where pressure is defined and the midpoint of each edge where velocity fluxes are
defined (see Fig. 3.2). For every k = M,M−1, ..., 0, we haveGk = Gkx∪G

k
y∪G

k
p , where

the definitions of these non-nested subgrids of Gk are now obvious from the previous
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GM

e e e

e e e

e e e

× ×

× ×

6
h
?

=

GMx

e e e

e e e

e e e

+

GMy

e e e

e e e

e e e

+

GMp

× ×

× ×

Fig. 3.1. The finest grid GM = GM
x ∪ GM

y ∪ GM
p . Velocities in the x- and y-direction are

defined at corners of elements. Average fluxes are defined on edges. Pressure is constant on each
element.

Gk

× ×

× ×

-�
hk

-

Gk−1

×

-�
hk−1 = 2hk

Fig. 3.2. Grid coarsening for k = M − 1, M − 2, ...,1.

discussion. That is, for k < M , hk = 2M−k−1h and Gkx is
{

(ihk, (j + 1/2)hk)
}

, Gky is
{

((i+ 1/2)hk, jhk)
}

, and Gkp is
{

((i+ 1/2)hk, (j + 1/2)hk)
}

.
Notice that this coarsening strategy preserves the cell structure of the finest grid

(except for the corners), which allows us to think of the unknown quantities defined
on coarser grids as cell pressures and edge average fluxes per unit length. This way
of thinking will guide us in the design of the prolongation and restriction operators.

3.3. Intergrid prolongation operators. For each k = M,M − 1, ..., 0, let V kx ,
V ky , and V kp denote the set of real valued functions defined on grids Gkx, G

k
y , and Gkp,

respectively, and let V k = V kv × V kp , where V kv = V kx × V ky . We need to define the
prolongation

P k : V k−1 → V k, k = 1, 2, ...,M − 1. (3.4)

We will define P k in such a way that P k(u, p) = (P kv u, P
k
p p), where P kv : V k−1

v → V kv
and P kp : V k−1

p → V kp . In matrix notation, P k will be block diagonal,

P k =

[

P kv 0
0 P kp

]

, (3.5)

so that prolongation does not mix velocities and pressures.
We need to distinguish cases k = M and k < M .

3.3.1. Definition of the prolongation when k = M . Since GMp = GM−1
p , we

simply set PMp to be the identity operator on VM−1
p = VMp .

Now let u ∈ VM−1
v , and let PMv u = w = (wx, wy) ∈ VMv be defined as follows.

Recall that GM−1
v comes from GMv by deleting the corners. We let PMv be the identity
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on the face degrees of freedom. That is, if t = (ih, (j + 1/2)h) ∈ GMx \GMy (i.e., not a

corner point), then we set wx(t) = ux(t). Similarly, if t = ((i+1/2)h, jh) ∈ GMy \GMx ,
then we set wy(t) = uy(t).

For a corner t = (ih, jh) ∈ GMx ∩GMy , we have two possibilities. If the 4 elements
that share the corner t are Stokes elements, i.e., they are contained in Ωs, then we do
not expect to find jumps in the solution. We recall that the order of the interpolation
should be at least the order of the differential operator minus 1 [9], so we use linear
interpolation. Thus we define

wx(ih, jh) =
1

2

(

ux(ih, (j − 1/2)h) + ux(ih, (j + 1/2)h)
)

,

wy(ih, jh) =
1

2

(

uy((i− 1/2)h, jh) + uy((i+ 1/2)h, jh)
)

.

The second possibility is that at least one of the four elements that has t as a
corner is a Darcy element, in which case we simply set

wx(t) = wy(t) = 0.

We remark that, based on the physical considerations of a simple model problem in the
next subsection, the tangential velocity on the Darcy-Stokes interface is approximately
104 times smaller than the flux per unit length in the Stokes domain (see (3.7) below).
Based on this argument, if, say, the top 2 elements were Stokes, we should have set,
say, wx(t) = 10−4ux(ih, (j+1/2)h). However, in practice we saw very little difference
between this and simply taking wx(t) = 0.

3.3.2. Physical considerations and element edge classification. The cor-
rect design of the prolongation operators for k < M turns out to be an important
factor in obtaining a convergent multigrid algorithm. From a physical point of view,
the problem is that the medium contains vug channels that support very high flow
rates. This makes prolongation difficult. In order to gain some insight about the
orders of magnitude of the velocity on the Stokes and Darcy subdomains, we analyze
at the following simple model case. Consider a Darcy-Stokes system that consists of
a channel of width l limited above and below by a porous medium (see Fig. 3.3). The
flow in the channel satisfies the Stokes equation, and the flow in the porous medium
obeys Darcy’s law.

lStokes

Darcy

Darcy

Fig. 3.3. A Darcy-Stokes system with a central channel limited by porous rock.

Assume that we have a constant pressure gradient, −δp, in the x-direction, that
the flow is stationary, and that the channel is infinitely long in the x-direction, so
that the velocity field does not depend on the x-coordinate. (Although the action of
the prolongation operator we will construct is local, these assumptions and our model
case will prove useful for our purposes.) Let u(y) denote the velocity of the fluid in
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the x-direction. The Stokes equation for the velocity field in the channel and the
Beavers-Joseph-Saffman boundary condition take the form

−µu′′(y) − δp = 0,

u′(0) = αK−1/2u(0),

u′(l) = −αK−1/2u(l),

and the solution is

u(y) =

(

−
1

2µ
y2 +

l

2µ
y +

lK1/2

2µα

)

δp.

The average velocity in the channel is ūs =
1

l

∫ l

0

u(y) dy =

(

lK1/2

2µα
+

l2

12µ

)

δp.

On the other hand, Darcy’s law implies that ud =
K

µ
δp. Thus, the ratio of average

Stokes to Darcy flow is

ūs
ūd

=
l

2αK1/2
+

l2

12K
≈

l2

12K
≈ 108, (3.6)

assuming α ≈ 1, K ≈ 10−10 cm2 and l ≈ 0.3 cm. Moreover, the velocity on the

interface is u(0) = u(l) =
lK1/2

2µα
δp, so

ūs
u(0)

= 1 +
lα

6K1/2
≈

lα

6K1/2
≈ 104. (3.7)

That is, the flow in the Stokes channel dominates, being about 108 times larger than
that in the porous medium and 104 times larger than the velocity on Γ.

However, this large difference in velocities are not expected when the vugs do
not form channels. Such disconnected vugs, i.e., a region of adjacent Stokes elements
completely surrounded by Darcy elements, must be treated more like the Darcy region.
We thus classify the edges on each grid according to the magnitude of the flux that
we expect to observe.

We begin on the finest grid GM. If an edge is shared by at least one Darcy
element, then we expect the flow through this edge to be relatively small, and we say
that this is a D-edge. If an edge is shared by two Stokes elements, then it may be
part of a channel, with relatively large flow, or it may be within a disconnected vug.
So we first label every edge that has two adjacent Stokes elements as an S-edge. Then
we run a few smoothing iterations on the finest-grid, which will be enough for us to
get an idea of the order of magnitude of the flux through every edge. If after a few
smoothing iterations, the flux through an S-edge is “small” (less than, say, 10−1 times
the expected channel flow), then we relabel it as an S-d-edge.

On coarser grids Gk (k < M − 1), if an edge contains at least one finest-grid edge
of type S, then we label it as an edge of type S. If an edge is not of type S and it
contains at least one finest grid edge of type S-d, then we say that it is an S-d-edge.
Finally, an edge on a coarser grid which consists only of finest-grid D-edges will be a
D-edge. In this way, we obtain an estimate of the global channeling behavior of the
medium, which we will exploit in the prolongation.
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3.3.3. Definition of the prolongation when k < M . We now consider the
case k < M . To prolongate the pressure, if q ∈ V k−1

p , we set the finer grid pressures
equal to the coarse grid pressure; that is, we define (see Fig. 3.4)

P kp q(cℓ) = q(c), ℓ = 1, 2, 3, 4, (3.8)

where cℓ ∈ {((i±1/2)hk, (j±1/2)hk)} and c = (ihk, jhk). The mapping P kp is clearly
injective.

Gk−1
p

×
c

-
P kp

Gkp

×

×

×

×

c3 c4

c1 c2

(j − 1)hk

jhk

(j + 1)hk

(i− 1)hk ihk (i+ 1)hk
(j − 1)hk

jhk

(j + 1)hk

(i− 1)hk ihk (i+ 1)hk

Fig. 3.4. Pressure prolongation from Gk−1
p to Gk

p, k < M . The pressure in each of the 4 finer
cells is set equal to the pressure in the coarser-grid cell.

Let u = (ux, uy) ∈ V k−1
v and let P kv u = w = (wx, wy) ∈ V kv . According to

Fig. 3.5, u is defined on the coarser-grid edges e1, e2, e3, and e4, and we should define
w on the finer-grid edges {ei±}i=1,...,6.

Gk−1
v

e1

e2

e3 e4 -
P kv

Gkv

(j − 1)hk

jhk

(j + 1)hk

(i− 1)hk ihk (i+ 1)hk
(j − 1)hk

jhk

(j + 1)hk

(i− 1)hk ihk (i+ 1)hk

e1− e1+

e5− e5+

e2− e2+

e3−

e3+

e6−

e6+

e4−

e4+

Fig. 3.5. Velocity prolongation for k < M . If w = P k
v u, then u is defined on e1, e2, e3, and

e4, and w is defined on {ei±}i=1,...,6.

We first define wx on the coarse grid boundaries e4± = ((i + 1)hk, (j ± 1/2)hk),
using only ux on e4 = ((i+1)hk, jhk) for consistency between elements. If we assume
that u and w approximately describe average fluxes, then

2hkux(e4) ≈ hk
(

wx(e4+) + wx(e4−)
)

.

According to the discussion in the previous subsection, the orders of magnitude of
wx(e4+) and wx(e4−) should be in the ratio

wx(e4+)

wx(e4−)
≈ φ4 = φ(e4+, e4−),
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where

φ(ε1, ε2) =











































1 if ε1 and ε2 are edges of the same type,

h2
k

12K
≈ 108 if ε1 is an S-edge and ε2 is a D-edge or S-d-edge,

12K

h2
k

≈ 10−8 if ε1 is an D-edge or S-d-edge and ε2 is a S-edge,

10 if ε1 is an S-d-edge and ε2 is an D-edge,

0.1 if ε1 is an D-edge and ε2 is an S-d-edge.

(3.9)

The latter two cases might be set to 1, but empirically we found that the above choice
gave good practical results, although convergence is not particularly sensitive to this
choice. We therefore define

wx(e4+) =
2

1 + φ−1
4

ux(e4) and wx(e4−) =
2

1 + φ4
ux(e4).

We similarly define wx(e3±), wy(e1±), and wy(e2±). That is, in general,

wx(ε±) =
2

1 + φ(ε∓, ε±)
ux(ε) and wy(ε±) =

2

1 + φ(ε∓, ε±)
uy(ε). (3.10)

Note that (3.10) implies that P kv is injective. Since P kp is also injective, P k itself is
injective.

We now define our prolongation in the interior of the course element at e5± =
((i±1/2)hk, jhk) and e6± = (ihk, (j±1/2)hk) (see Fig. 3.5). Let e6 denote the union of
edges e6− and e6+. If there are no sources inside the element, then an approximation
of the total flux through e6 is given by the average of the fluxes that enter the element
through edges e3, e2− and e1−, and exit the element through edges e1+, e2+, and e4.
Let ux(e6) denote this flux, which is then

ux(e6) =
1

4

[

2ux(e3) + wy(e1−) − wy(e2−) + 2ux(e4) + wy(e2+) − wy(e1+)
]

. (3.11)

We now use (3.10) to distribute the flux over the finer edges. Similarly, we define

uy(e5) =
1

4

[

2uy(e1) + wx(e3−) − wx(e4−) + 2uy(e2) − wx(e3+) + wx(e4+)
]

, (3.12)

and then wy(e5±) from (3.10).
In summary, our prolongation operator is designed to prolongate fluxes in a phys-

ically appropriate way. As we noted, the difficulty is that vuggy media tend to contain
Stokes channels with high flow rates. Our prolongation tries to recognize this fact.
Initial smoothing identifies the channels. High fluxes in Stokes channels across coarse
edges are prolongated in such a way that they are biased to the side containing the
Stokes elements, and away from Darcy elements. This preserves the channeling struc-
ture throughout the multigrid procedure and improves convergence.

3.4. Restriction and coarse-grid operators. We need to define the analog of
(1.11) for each grid. One possible choice is to consider the finite element space associ-
ated to the corresponding elements or cells. However, it has the serious disadvantage
that the functions of these finite element spaces are continuous in the interior of every
element. A discontinuity on a segment of the Darcy-Stokes interface contained in the
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interior of an element would not be allowed on coarser grids. Therefore, we will use
the so called Galerkin coarse grid approximation, where the discrete operator for level
k is recursively given by

Lk = (Rk)tLk+1P
k+1, k = M − 1,M − 2, ..., 0, (3.13)

where LM is given by (1.11) and Rk is the intergrid restriction operator.
To maintain symmetry of the coarse-grid operators, we set

Rk = (P k+1)t : V k+1 → V k, k = M − 1,M − 2, ..., 0. (3.14)

Lemma 3.1. Let LM be the matrix of system (1.11), and set AM = A and
BM = B, where A and B are given by (2.5)–(2.6). For each k = M − 1, ..., 0, let Lk
be the discrete operator given by (3.13). Then Lk, k = M,M − 1, ..., 0, has the form

Lk =

[

Ak Bk

(Bk)t 0

]

, (3.15)

where Ak is symmetric and positive definite. Moreover, when k < M ,

Ak = (P k+1
v )tAk+1P k+1

v , (3.16)

Bk = (P k+1
v )tBk+1P k+1

p . (3.17)

Proof. Because prolongation (3.5) does not mix velocities and pressures, it is easy
to compute successively from (3.13) that

Lk = (P k+1)tLk+1P
k+1

=

[

(P k+1
v )t 0
0 (P k+1

p )t

] [

Ak+1 Bk+1

(Bk+1)t 0

] [

P k+1
v 0
0 P k+1

p

]

=

[

Ak Bk

(Bk)t 0

]

,

as claimed, with (3.16)–(3.17) holding. Clearly (2.5) shows that A = AM is positive
definite. Since P kv is injective, Ak is also positive definite for each k = M − 1, ..., 0.

3.5. Smoothing procedure. The difficulty in finding a good smoother for
(1.11) is that the system, as we saw earlier, is extremely ill-conditioned. We present
here a new smoother that has worked well for our problem. In order to abbreviate the
notation, we explain the smoothing procedure for the finest grid. Because of (3.15),
everything is valid for coarser grids, except for minor differences that we will mention
below.

Suppose we have computed an approximation (un, pn) to the solution (u, p) of sys-
tem (1.11), and we want to compute a better approximation (un+1, pn+1) by smooth-
ing the error. The first step of our method is to find the directions along which we
should modify (un, pn). In other words, we try to find optimal vectors ψ and φ to
define (un+1, pn+1) as

un+1 = un + βψ,

pn+1 = pn + αφ,
(3.18)

for appropriate values of α and β that will be determined in the second step of our
procedure.
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If ψ and φ are “good directions,” it is reasonable that they should approximate
the errors ψ = u − un and φ = p − pn, and therefore can be obtained by computing
an approximate solution of

[

A B
Bt 0

] [

ψ
φ

]

=

[

rn

sn

]

, (3.19)

where rn and sn are the residuals

rn = g −Aun −Bpn, (3.20)

sn = f −Btun. (3.21)

We obtain an approximate solution of (3.19) using the Uzawa algorithm [7, 8].
Let Â−1 be a preconditioner, or approximate inverse, of A, such as given by taking
Â = diag(A) (i.e., Â is diagonal and Âii = Aii for all indexes i). Also let C−1 be
a preconditioner for BtA−1B, such as C = diag(BtÂ−1B) (we return to this choice
near the end of this subsection). Then Uzawa iterations, indexed by ℓ, are given by

ψℓ+1 = ψℓ + aÂ−1(rn −Aψℓ −Bφℓ), (3.22)

φℓ+1 = φℓ + bC−1(Btψℓ+1 − sn), (3.23)

where a, b > 0 are damping parameters. We generally obtained good results with
a = b between 0.4 and 0.8. We note that if Â−1 and C−1 were exact preconditioners,
the scheme would converge in very few iterations. We perform a number L of Uzawa
iterations starting with ψ0 = 0 and φ0 = 0, and set ψ = ψL and φ = φL. The value
for L is problem dependent. We obtained good results with L between 5 and 40 for
the problems we solved.

Once we have computed ψ and φ, the second step of our smoothing procedure is
to find optimal values for α and β in (3.18). We search for the values of α and β that
minimize the residuals corresponding to the (n + 1)th iteration. More precisely, we
minimize

R = wu|r
n+1|2 + wp|s

n+1|2,

where wu = 1/(1 + |un|2) and wp = 1/(1 + |pn|2) are weights used to normalize the
residuals. Notice that (3.18) implies

rn+1 = rn − αBφ− βAψ,

sn+1 = sn − βBtψ,

so α and β will be the solutions of the pair of linear equations

wu(r
n − αBφ− βAψ) ·Bφ = 0,

wu(r
n − αBφ− βAψ) ·Aψ + wp(s

n − βBtψ) · Btψ = 0.

The determinant of the matrix is

D =
wp
wu

|Bφ|2|Btψ|2 > 0,

so

α =
1

D

{(

wp
wu

|Btψ|2 + |Aψ|2
)

rn · Bφ−Aψ ·Bφ

(

rn · Aψ +
wp
wu

sn ·Btψ

)}

, (3.24)

β =
1

D

{

− (Bφ ·Aψ)(rn ·Bφ) + |Bφ|2
(

rn ·Aψ +
wp
wu

sn ·Btψ

)}

. (3.25)



A DISCRETIZATION AND SOLVER FOR A DARCY-STOKES SYSTEM 17

We summarize our smoothing procedure. Given an approximation (un, pn), we
first find directions ψ and φ by running a few Uzawa iterations for system (3.19). Then
we compute α and β using formula (3.24)–(3.25), and finally we define (un+1, pn+1)
as given by (3.18).

We suggested above a simple diagonal preconditioner C−1 = (diag(BtÂ−1B))−1

for BtA−1B, which is efficient to apply but not very effective for our highly ill-
conditioned system. We can improve this preconditioner by applying it in a Jacobi
type iteration. That is, when we wish to solve BtA−1Bv = w for v, we compute it
from several iterations (generally from 5 to 40) of

vm+1 = vm + (diag(BtÂ−1B))−1(w −BtÂ−1Bvm), (3.26)

which is still quite efficient, since we use Â in place of A. That is, we precondition
BtÂ−1B with (diag(BtÂ−1B))−1 in a Jacobi iteration.

Regular Uzawa sometimes does not smooth our Darcy-Stokes system when ei-
ther the original or modified preconditioner for BtA−1B is used. However, our
two step Uzawa procedure is much more robust. It sometimes smooths when C =
diag(BtÂ−1B), and generally always smooths (for appropriate choices of parameters)
when the Jacobi type C−1 is used. That is, our two step Uzawa procedure is valuable
when we do not have a very good preconditioner for BtA−1B, which is necessarily
true for the three dimensional Darcy-Stokes system.

As we mentioned above, since the coarser grid systems also have a saddle point
structure (see (3.15)), our smoothing method is valid for every grid by replacing A by
Ak and B by Bk. However, for the sake of efficiency, we apply the following minor
modifications to the preconditioners, since it is inefficient to compute the diagonal of
Ak for each level. If k < M is the grid level, instead of using Âk = diag(Ak), we use

Âk =





mxI 0 0
0 myI 0
0 0 mzI



 ,

where, if we let Akx be the block of Ak corresponding to degrees of freedom in the
x-direction, then

mx = max
i

|Ax,ii|,

and similarly for the other blocks.
At every grid level, we stop performing smoothing iterations after we have per-

formed at least a few (such as 4) iterations and when either the smoothing rate, given
by the ratio between the l2 norms of the residuals corresponding to two consecutive
iterations, becomes larger than a prefixed value, or the norm of the residual becomes
small enough. In our cases, the tolerance for the smoothing rate was 0.98 and the er-
ror tolerance for the residual norm was approximately 10−2. As we explained in §3.1,
when we stop the pre-smoothing, we move to the immediately coarser grid to find
an approximate solution of the residual equation. When we stop post-smoothing, we
prolongate our solution to the immediately finer grid and add it to the approximate
solution that we have at this level.

3.6. Simplification of Bk. In this subsection, we show that the action of the
operators (Bk)t, k = M,M − 1, ..., 0 are easily implemented, because they have a
simple divergence structure made clear below.
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Let wjh : Ω → R be the basis function equal to 1 on element Ej and 0 elsewhere.

Let vi,eh be the basis function with unit average flux on edge ei, and let vi,Ch be the
basis function with value 1 at corner Ci. Now the entries of matrix B (see (2.6)) have
the form

Bij = BMij = −(wjh,∇ · vi,ξh )Ej
= −(wjh,v

i,ξ
h · ν)∂Ej

=











−h if ξ = e and Ej is located to the left of or below ei,

h if ξ = e and Ej is located to the right of or above ei,

0 otherwise.

(3.27)

That is, Bt is a matrix of negative divergence type, in that it is constructed as

Btu(c) = −h
(

u(e2) − u(e1) + u(e4) − u(e3)
)

, (3.28)

where (see Fig. 3.6) c = ((i + 1/2)h, (j + 1/2)h), e1 = ((i + 1/2)h, jh), e2 = ((i +
1/2)h, (j + 1)h), e3 = (ih, (j + 1/2)h), and e4 = ((i+ 1)h, (j + 1/2)h).

GM

×
c

jh

(j + 1/2)h

(j + 1)h

ih
(i+ 1/2)h

(i+ 1)h

e1

e2

e3 e4

Fig. 3.6. A typical cell of grid GM .

Now

BM−1
ij =

∑

m,k

(PMv )miBmk(P
M
p )kj =

∑

m

(PMv )miBmj ,

has the same form as (3.27), since PMp is the identity and PMv merely removes corners.

That is, BM−1 is obtained from B by removing the identically vanishing rows that
correspond to corner points of the finest grid, and so (3.27) holds for BM−1, and
(BM−1)t : VM−1

v → VM−1
p is again the negative discrete divergence operator.

We have that (Bk)t : V kv → V kp is the negative discrete divergence operator for

k = M and k = M−1, so let k ≤M −1 and u ∈ V k−1
v . Using the notation in Fig. 3.7

and the definitions of the matrices (3.17) and prolongation operators (3.8) and (3.10),
we have by induction that

(Bk−1)tu(c) = (P kp )t(Bk)tP kv u(c)

=

4
∑

i=1

(Bk)tP kv u(ci)

= −hk
[

P kv u(e2−) + P kv u(e2+) − P kv u(e1−) − P kv u(e1+)

− P kv u(e3−) − P kv u(e3+) + P kv u(e4−) + P kv u(e4+)
]

= −hk−1

(

u(e2) − u(e1) − u(e3) + u(e4)
)

,

(3.29)
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wherein we have used that the terms corresponding to internal edges in Fig. 3.7
cancel out because the contributions from the two elements that share each edge have
opposite signs, and also that 2hk = hk−1. Thus, we conclude that (Bk)t : V kv → V kp
is the negative discrete divergence operator for all k = M,M − 1, ..., 0.

×c
× ×

× ×

c1 c2

c3 c4

e1− e1+

e2− e2+

e3−

e3+

e4−

e4+

e1

e2

e3 e4

(j − 1)hk

jhk

(j + 1)hk

(i− 1)hk ihk (i+ 1)hk

Fig. 3.7. Finer grid Gk within coarser grid Gk−1.

Remark 3.1. In general, it is not possible to construct Ak more simply than as
given recursively in (3.16). However, we have shown that, in the natural basis of §2.1,
each (Bk)t is easily constructed as a negative discrete divergence, and, conversely,
each Bk is a discrete gradient. We used this observation to write a simpler and more
efficient computer code to implement the multigrid procedure.

3.7. Solvability. We now prove that the coarse-grid operators Lk given by (3.13)
are nonsingular.

Theorem 3.2. Assume the hypotheses of Lemma 3.1. If ΓD 6= ∅, then the system

Lkx = c (3.30)

has a unique solution x ∈ V k for any c ∈ V k, for k = M,M−1, ..., 0. If ΓD = ∅, then
(3.30) has a unique solution x = (u, p) up to p being restricted to the space V kp /R.

Proof. Since Lk is a square, finite dimensional linear system, existence and unique-
ness of a solution is equivalent to uniqueness at c = 0. In that case, for x = (u, p), we
have that

xtLkx =

[

utAku+ utBkp
pt(Bk)tu

]

=

[

0
0

]

,

which implies that utAku = 0, since utBkp = pt(Bk)tu = 0. Since Ak is symmetric,
positive definite by Lemma 3.1, we have u = 0. Then Lk(0, p) = 0 implies that
Bkp = 0.

We proceed with a standard argument. Consider the auxiliary elliptic problem

∇ · ψ = p in Ω,

ψ = −∇φ in Ω,

φ = 0 on ΓD,

ψ · ν = 0 on ΓN .

The lowest order Raviart-Thomas [21, 10] finite element discretization on grid Gk

gives a saddle point system with our discrete divergence matrix Bk. If ΓD 6= ∅, there
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Fig. 4.1. Left: A Darcy-Stokes system obtained from Fig. 4.3 by removing disconnected vugs.
Darcy elements are in black, and Stokes in white. Right: Fluid velocity obtained with our multigrid
algorithm. Arrows indicate the direction of the flow, and gray tones indicate speed (darker being
greater).

is a unique solution, so we have a (discrete) function ψh such that (Bk)tψh = p. Then
p · p = (Bk)tψh · p = ψh · Bkp = 0, and p = 0 follows. If ΓD = ∅, the problem is well
posed for p ∈ V kp /R, and again in this case we can conclude that p = 0.

4. Numerical tests of the multigrid solver. We illustrate the performance
of our multigrid method by computing the flow for a few two dimensional problems.
In this section, we use a relatively poor smoother compared to that presented in §3.5.
We simply use an unmodified Uzawa smoother and take C = diag(BtÂ−1B). This
emphasizes the multigrid procedure itself, and allows us to assess its value in solving
(1.11) as opposed to the effectiveness of the smoother.

First, we consider the Darcy-Stokes system shown in the left of Fig. 4.1. Boundary
conditions are determined by setting pD = 1 on the left and lower edges, and pD = 0 on
the other two edges. Obviously, matrix A in (1.11) depends on the spatial arrangement
of the Darcy and Stokes subdomains. The more intertwined they are, the more
irregular the coefficients of A will be. This example is clearly very intertwined and
has a connected vug network.

The right of Fig. 4.1 shows the velocity field that we obtained. The stopping
criterion used was that the scaled difference between two consecutive smoothing it-
erations on the finest grid be smaller than 10−12. Notice the large jumps in the flux
per unit length between different regions. The fluxes in the porous matrix and in
the disconnected vugs have values between 10−7 and 10−5, while the fluxes in the
connected vugs are in the range of several hundreds (up to about 400). As mentioned
in §3.3, taking into account the very different orders of magnitude of the Darcy and
Stokes flows is crucial in order to obtain a convergent multigrid algorithm. In fact, if
we run our multigrid code with different values for parameter φ(ε1, ε2) (see (3.9) and
(3.10)), we observe that non-physical values make the algorithm diverge.

In most cases where a multigrid algorithm is investigated, the continuous differ-
ential problem to be solved is independent of the discretization of the domain. For
example, we might want to solve Laplace’s equation with appropriate boundary con-
ditions. In order to analyze the convergence factor, the method that is being studied
is tested for a set of domain discretizations. In our case, things are different because
equation (2.1) depends on the spatial arrangement of the Darcy and Stokes subdo-
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Fig. 4.2. Left: A Darcy-Stokes system obtained by combining 4 replicas of the system shown
in Fig. 4.1 and rescaling. Darcy elements are in black, and Stokes in white. Right: Fluid velocity
obtained with our multigrid algorithm. Arrows indicate the direction of the flow, and gray tones
indicate speed (darker being greater).

Table 4.1

Measured convergence factors and averaged convergence factors for different discretizations of
the system of Figs. 4.1–4.2.

h = 1/16 h = 1/32 h = 1/64 h = 1/128
ρn 0.03780 0.04591 0.03908 0.03862
ρ̃n 0.03901 0.04569 0.03379 0.03662

mains. Therefore, to study the convergence factor, we need to consider decreasingly
smaller values of h for the same type of system, i.e., one with a similar vug structure.
To achieve this effect, we combine 4 replicas of systems with mesh size h like the one
shown in Fig. 4.1, and then rescale to obtain a system with mesh size h/2, as depicted
in Fig. 4.2. We then repeat this process to obtain a family of systems with the same
pattern of Darcy-Stokes intertwining and progressively smaller mesh sizes. Obviously,
the measured convergence factor will depend on the specific pattern of Darcy-Stokes
intertwining.

The measured convergence factor ρn and averaged convergence factor ρ̃n were
computed using the formulas

ρn =
‖rn‖

‖rn−1‖
and ρ̃n = (ρ2ρ3...ρn)1/(n−1),

where rn is the residual after the nth multigrid iteration and ‖ · ‖ denotes the discrete
l2 norm. The results shown in Table 4.1 correspond to the systems of Figs. 4.1
(h = 1/16) and 4.2 (h = 1/32) and two finer discretizations (h = 1/64 and h = 1/128).
The coarsest grid was 8× 8 elements. As the results show, the measured convergence
factor of our multigrid method is independent of the size of the system, or equivalently,
independent of the mesh size h.

An important feature of the vuggy media considered above is that they have
no disconnected vugs. An example of a system with disconnected vugs is shown in
Fig. 4.3, which has been obtained from that of Fig. 4.1 by adding six disconnected
vugs (i.e., by removing porous matrix material). Note that the solution is almost the
same as that of Fig. 4.1.
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Fig. 4.3. Left: A domain representing a vuggy porous medium. Darcy elements are in black,
and Stokes in white. Right: Fluid velocity obtained with our multigrid algorithm. Arrows indicate
the direction of the flow, and gray tones indicate speed (darker being greater).

The measured convergence factor for this disconnected vug system was only 0.59,
and, in general, it was not independent of the mesh size. Moreover, for some systems
with disconnected vugs, the convergence rate is very slow unless the coarsest grid is
sufficiently fine. This is not surprising, since it is well known that multigrid methods
for a system such as (1.11) which have both positive and negative eigenvalues require
a coarsest grid large enough in order for some components of the error to be elimi-
nated [9]. In general, the better smoother of §3.5 is needed to solve problems with
disconnected vugs.

5. A study of effective permeability properties of vuggy media. In this
section, we study the influence of the vug geometry on the macroscale flow properties
of the medium. The Darcy-Stokes system described by (1.1)–(1.10) can be considered
as a micromodel, since it takes into account all the details about the microscopic ge-
ometry of the medium and the interaction between the porous rock and the vugs, and
the equations are either based on first principles or strongly supported by experiments.
However, this micromodel is computationally expensive.

The macromodel derived in [4] is obtained from the micromodel, appropriately
scaled, using homogenization theory under certain mathematical assumptions. The
macroscopic model is given by a Darcy equation (i.e., an equation like (1.1) on the
entire domain Ω) with a computable effective macroscopic permeability tensor that
depends on the vug geometry. Although some of the mathematical assumptions used
in this derivation, such as the assumed periodicity of the medium geometry, are not
physically accurate, the theory is useful for justifying that the macroscale behavior of
the Darcy-Stokes system (1.1)–(1.10) is Darcy-like with an effective permeability.

The effective macroscopic permeability tensor, as given by homogenization theory,
was computed in [3] in two dimensional space. It provided an investigation into the
influence of the vug geometry on the flow properties of the medium. We perform a
similar investigation here in three dimensions, and arrive at a similar conclusion that
vug connectivity is the main factor influencing the macroscopic flow properties of a
vuggy medium. However, our computational analysis will be somewhat simpler, in
that we compute linear flows to approximate the effective permeability, rather than
imposing periodic boundary conditions as required in [4].

We estimate only the diagonal elements of the effective permeability tensor. To fix
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ideas, suppose we want to estimate the effective permeability in the x-direction, K̄1,1,
the formula being analogous for the other directions. Using our three dimensional
solver, we first compute the flow u = (u1, u2, u3) in the reference domain that results
from applying boundary conditions representing a constant pressure drop δp from left
to right in the x-direction, and imposing zero normal flow through the other four
faces parallel to the x-direction. We then compute the average flow in the x-direction
through the outflow face, fx, which is

u1,avg =
1

Area(fx)

∫

fx

u1(x, y, z) dy dz, (5.1)

where Area(A) is the area of the face. By mass conservation and the no-flow lateral
boundary conditions, u1,avg could be computed on the inflow face, or even taken as
the average of u1 over the entire domain. Finally, we define K̄1,1 from Darcy’s law

K̄1,1 = −µu1,avg/δp. (5.2)

We present several computational results that show the influence of the vug ge-
ometry on the effective permeability in three dimensional space. In each case, we
consider a small reference domain with a certain vug configuration. Four cases are
studied: a straight vug channel, a constricted vug channel, a meandering vug channel,
and disconnected vugs. An x-y cross-section of the four main domains studied are
depicted in Fig. 5.1, although we also consider a truly three dimensional meandering
vug channel in Fig. 5.2. In all cases, the reference domain Ω is a cubic sample with
dimensions 8 cm × 8 cm × 8 cm, the porous rock subdomain Ωd has permeability
K = 10md (except where noted), and the Beavers-Joseph coefficient α = 1. Gener-
ally, the vug channel’s cross section is a square of side length δ = 1 cm. Nonzero flow
results everywhere in the domain, but it is concentrated in the vug channel.

A. Straight. B. Constricted. C. Meandering. D. Disconnected.

Fig. 5.1. Cross-section of the four main test domains. The Darcy region is gray, and the Stokes
region is white.

5.1. Straight vug channel. Fig. 5.1A shows a two dimensional cross-section
of the three dimensional reference domain containing a horizontal channel. We first
examine the effective permeability for different vug apertures. The results are shown
in Table 5.1. The index j = 1 in K̄j,j corresponds to the horizontal or x-direction,
j = 2 and j = 3 correspond to the y- and z-directions, respectively. We observe that
connected Stokes flow paths produce a great increase in the effective permeability.
Even a channel with an aperture 2.5mm gives rise to an effective permeability 5 orders
of magnitude greater than the porous rock permeability. The values of K̄2,2 and K̄3,3

for the effective permeabilities in the y- and z-directions show that a disconnected
Stokes flow path has a minor effect on the effective permeability, since the flow is
limited by the porous matrix.
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Table 5.1

Computed effective permeabilities for a straight vug medium (K = 10 md).

δ (cm) K̄1,1 (md) K̄2,2 = K̄3,3 (md)

1 8.6498e+8 16.879
0.5 5.0856e+7 11.271
0.25 3.4560e+6 10.246

Table 5.2

Effect of matrix permeability on the effective permeability of a straight vug medium (δ = 1 cm).

K (md) K̄1,1 (md) K̄2,2 = K̄3,3 (md)

1 8.64979e+8 1.6896
10 8.64982e+8 16.879
100 8.64997e+8 168.50
1000 8.65104e+8 1685.1

We next changed the porous rock permeability K, while keeping the same vug
aperture δ = 1 cm. As shown in Table 5.2, the effect of the presence of the channel
on K̄1,1 is much more important than that of a high rock permeability. On the other
hand, since the flow in the y- and z-directions is basically determined by the porous
matrix, the value of the matrix permeability K has a strong effect on the effective
permeabilities K̄2,2 and K̄3,3.

5.2. Constricted vug channel. The aperture of a vug channel does not re-
main constant throughout its trajectory. Therefore, we analyze the effect of con-
stricted vugs on the effective permeability. Fig. 5.1B shows a cell with a central
vug that is constricted in the middle. The aperture of the vug is 1 cm × 1 cm.
The constricted part is 2 cm long and has cross section 2.5mm × 2.5mm. We
obtained K̄1,1 = 7.85507e+6md and K̄2,2 = K̄3,3 = 15.1971md. If we compare
this values with the effective permeabilities for the unconstricted vug configuration
(K̄1,1 = 8.64982e+8md, K̄2,2 = K̄3,3 = 16.879md), we conclude that even very lo-
calized constrictions have a major effect on the macroscopic properties of the flow.
Moreover, the value of K̄1,1 obtained for a 2 cm long constriction is of the same or-
der of magnitude as that obtained for a straight vug medium with channels 2.5mm
× 2.5mm (K̄1,1 = 3.4560e+6md, K̄2,2 = K̄3,3 = 10.246md). This confirms the
important effect of constrictions on effective permeability.

5.3. Meandering vug channels. Since natural vug channels tend to change
direction, we consider two meandering vug configurations. The first case is analogous
to the two dimensional case, since the meandering vug channel stays in the same
plane throughout its trajectory. In the second case, the channel does not remain in
the same plane.

The first case is illustrated in Fig. 5.1C. If a pressure gradient is applied in the x-
direction, the flow through the channel will be in the x- and z-directions. The channel
has cross section 1 cm × 1 cm. The effective permeabilities are K̄1,1 = 2.46928e+7md,
K̄2,2 = 16.967md, and K̄3,3 = 19.3631md. We notice that K̄1,1 is smaller and K̄3,3

is larger than those values obtained for the straight vug case (K̄1,1 = 8.64982e+8md,
K̄2,2 = K̄3,3 = 16.879md), as should be expected.

The second meandering configuration is shown in Fig. 5.2. Actually, the figure
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Table 5.3

Effect of vug disconnection by varying plug size on effective permeability.

plug length (cm) K̄1,1 (md) K̄2,2 = K̄3,3 (md)

1 38.54 16.92
0.5 50.63 17.01
0.25 88.69 17.27

depicts the flow velocity, which clearly shows both the location of the vug channel and
the fact that the flow is nonzero in the matrix rock. If a pressure gradient is applied in
the x-direction, the flow through the channel will be in the three spatial directions. We
obtain K̄1,1 = 1.64619e+6md, K̄2,2 = 18.465md, and K̄3,3 = 18.589md. The value
for K̄1,1 is lower than that for the previous meandering configuration and of the same
order of magnitude as that obtained for the constricted vug (K̄1,1 = 7.85507e+6md,
K̄2,2 = K̄3,3 = 15.1971md). Note also the increase in the effective permeabilities in
the y- and z-directions compared to the straight vug medium. These results show
that in three dimensions, the effect of meandering channels is more complex than in
the two dimensional case. Also, three dimensional meandering vugs and constricted
vugs may have similar effects on the flow properties of vuggy media.

Fig. 5.2. A meandering vug channel in three dimensional space. Depicted is the flow velocity,
which clearly shows the location of the vug channel.

5.4. Disconnected vugs. Flow experiments suggest that the degree of vug
connectivity varies throughout a vuggy porous medium and that it has a major effect
on the flow properties of the rock [29]. Lastly we consider a configuration where the
flow through a channel is completely interrupted by a small plug of porous rock. This
is depicted in Fig. 5.1D. The vug aperture is 1 cm × 1 cm and the plug length varies
from 2.5mm to 1 cm. The effective permeabilities are shown in Table 5.3. We notice
that even if the length of the plug is 2.5mm, the effective permeability is quite similar
to that of the porous rock. We had seen that a vug with a very small constriction
produces an effective permeability of about 1e+6md, indicating that connected and
disconnected vugs give rise to very different macroscopic flow properties. We conclude
that the degree of connectivity of the vugs is the most important factor influencing
the macroscopic flow properties of the medium.
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Overall, our three dimensional numerical studies have confirmed that the presence
of vugs, their orientation and shape, and most importantly, their interconnectivity,
determine the effective permeability and, therefore, the macroscopic flow properties
of the medium.
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