SPE 66375 (Revised)

A Two-Scale Numerical Subgrid Technique for Waterflood Simulations

Todd Arbogast, SPE, and Steven L. Bryant, Center for Subsurface Modeling, Texas Institute for Computational and

Applied Mathematics, The University of Texas at Austin

The original paper was prepared for presentation at the 16th SPE Sympo-
sium on Reservoir Simulation held in Houston, Texas, February 11-14, 2001.
This is a revised version for consideration for publication in the Society of
Petroleum Engineers Journal.

Summary

We present a two-scale numerical subgrid technique for sim-
ulating waterflooding. Local subgrid computations are com-
bined with a coarse grid computation to provide a fine scale
resolution of the solution. We use on the fine scale porosity,
relative and absolute permeabilities, the location of wells,
and capillary pressure curves. No explicit macroscopic co-
efficients nor pseudo-functions result. The method is sev-
eral times faster than solving the fine scale problem directly,
generally more robust, and yet achieves good results as it re-
quires no ad hoc assumptions at the coarse scale and retains
all the physics of the original multiphase flow equations.

Introduction

One of the more challenging problems in reservoir simulation
is to resolve all the pertinent scales in both the data and the
solution. Computational power limitations generally prevent
one from using as fine a grid as would be desired, especially
when multiple simulations for Monte-Carlo or other statisti-
cal analyses are required. There are two natural approaches
to address this limitation. One is to change the scale on
which the data are represented by some kind of averaging
procedure, and then to solve the problem on a coarse grid.
The other natural approach is to improve the resolution of
the numerical simulation on a coarse grid through some type
of subgrid technique. In either case, the desire is to change
from the fine scale on which the problem is defined to a
coarser scale by defining an appropriate coarse scale prob-
lem that captures in some way the fine scale details. Broadly
speaking, we might call either approach upscaling; however,
as is common in the petroleum industry, we will use the term
“upscaling” to refer to the former approach of finding aver-
aged parameters (such as permeability) suitable for use on
a coarse scale. In this paper we present an approach of the
latter, subgrid type.

There is a large and growing literature on upscaling tech-
niques. We will not attempt a literature review here (see,
e.g., the excellent review by Renard and de Marsily'); we
merely mention a few of the main techniques. Early tech-
niques involved in an essential way averaging or homogeniza-
tion of physical parameters such as permeability.>~* While

such upscaling techniques can be very effective for purely lin-
ear problems, they are less satisfactory for nonlinear prob-
lems. They suffer from the elementary observation that a
nonlinear function of an average is not the average of the
nonlinear function. For example, over a coarse grid-block,
the value of capillary pressure evaluated at the average satu-
ration is not at all the same as the average over the grid-block
of the capillary pressure.

More sophisticated upscaling techniques have been devel-
oped to circumvent the inadequacies of simple averaging,®:
including the development of renormalization techniques to
successively upscale to coarse levels, pseudo-functions, and
stochastic methods. Numerical subgrid techniques have also
been developed, including using modified finite element basis
functions” and explicit subgrid techniques that seek to im-
prove the resolution of the coarse solution after it has been
computed.

These techniques all attempt in some way to represent
fine scale information on coarse scales in an indirect way,
and sometimes require at least some information about the
nature of the flow that is expected under field management
conditions. Although most upscaling and subgridding tech-
niques are dynamic in that they respond to the changing
state of the reservoir, many do so through anticipation of the
possibilities. Often one needs some kind of closure assump-
tion such as the imposition of local boundary conditions, the
expected primary flow direction, or expected limits on cer-
tain parameters such as flow rates.

To handle the dynamic and sometimes unanticipated na-
ture of reservoir conditions, we present in this paper an im-
plicit numerical subgrid technique that allows us to finely
resolve the pressure equation even though we end up solving
the problem on a coarse grid. This technique is a locally
conservative variational multiscale method.® We also discuss
its implementation in a sequential two-phase waterflood re-
search simulator. We maintain a fully implicit (as opposed
to an explicit) coupling between the coarse and fine or sub-
grid scales, and we obtain a fine scale representation of the
reservoir state. As a consequence, we make use of the cap-
illary pressure and relative permeability curves directly and
accurately on the fine scale on which they are defined. No
pseudo-functions are needed, nor do any arise in our tech-
nique. Our technique allows us to handle fine scales in the
heterogeneous absolute permeability and porosity, the non-
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linear functions relative permeability and capillary pressure,
and even the fine scale position of wells.

The idea is to consider the simulation as defined on a fine
grid, and to de-refine this grid to form a reasonable coarse
grid over which we can compute the solution. We break the
solution into two parts, the coarse scale representation of the
solution plus the subgrid part. The subgrid part is defined
inside the coarse grid blocks. In order to be able to com-
pute it efficiently, it must involve only the coarse solution
itself and local information. Because of this computational
restriction and the need to maintain accuracy, we compute
the coarse scale Darcy velocity using a second order accurate
method. Thus, even though the coarse part of the velocity
has accuracy based on the coarse scale resolution H (the
diameter of a coarse grid block), the expected accuracy is
actually proportional to H2. Thus the coarse scale velocity
is accurate from the point of view of the subgrid-scale, for
which we use a more standard first order accurate method
such as cell-centered finite differences. The use of a low order
method for the solution on the subgrid scale is natural, since,
e.g., heterogeneities in the permeability are likely to produce
solutions with large spatial gradients. It is well-known that
higher order methods do not in general improve such solu-
tions much, and certainly not enough to justify the added
cost.

Because we insist on an implicit coupling between the
coarse and subgrid scales, there will be a mixture of these two
parts of our solution in the equations. Some kind of static
condensation or Schur complement technique is needed to
eliminate the subgrid unknowns from the equations. We do
this using a technique involving numerical Greens functions,
also called influence functions. This technique allows us to
treat the subgrid and coarse scales in completely separate
parts of the computer code. It is also relatively memory
efficient.

To maintain local mass conservation, our procedure is
based on mixed finite element methods.?!° It is known that
the lowest order Raviart-Thomas method,'* RT0, when com-
bined with numerical quadrature to evaluate some of the
integrals that arise, is the same as cell-centered finite differ-
ences. A similar method that gives higher order velocities
uses the finite element spaces defined in 2-D by Brezzi, Dou-
glas, and Marini,'? BDM1, and generalized in 3-D by Brezzi,
Douglas, Duran and Fortin,'® BDDF1.

The Numerical Subgrid Technique

In this section we present in some detail our two-scale nu-
merical subgrid technique, i.e., our locally conservative vari-
ational multiscale method, as applied to the pressure equa-
tion. Because of the need for a higher order accurate coarse
solution, we must present the technique in a finite element
context rather than a cell-centered finite difference context.

The pressure equation. In order to simplify the pre-
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sentation, we illustrate our ideas on the differential equations

aP+V-u=b, (1)
u=—-d(VP —¢), (2)

where a, b, ¢ and d are constants. The pressure equation is
an example of such a system, as we will see later.

The finite element basis functions. In a mixed
finite element method, finite element basis functions are used
to approximate both the pressure P and the Darcy velocity
u. The Darcy velocity is not defined from the pressure as
a simple finite difference involving nearby pressures; in fact,
it is defined from all the pressures in the reservoir, although
the nearby ones are the most important. That is, u is not
defined from P through a finite stencil or molecule, and so
the method does not reduce to finite differences. (However,
for RT0, we can approximate u as a finite stencil of the
pressures, and recover the usual 7 point stencil,!*!® or even
a 19-point stencil if the permeability is a full tensor.16)

Pressure basts functions. In both the RT0O and
BDDF1 (or BDM1) spaces, the pressure is approximated by
a piecewise discontinuous constant function. That is, the
pressure is approximated on each grid block by a constant
value, just like it is in cell-centered finite differences. Such
functions are linear combinations of simpler basis functions.
Let us number the coarse grid blocks 1,2, ..., N. For the ith
coarse grid block, there is a pressure basis function, call it
w;, which takes the value 1 on the block and 0 everywhere
else. Within each coarse grid block are similar subgrid-scale
basis functions. Suppose that there are M; fine grid blocks
in the ith coarse grid block. For each k = 1,2, ..., M;, we let
i be 1 on the kth subgrid block and 0 everywhere else.

In a finite element method, we approximate the pressure
in the finite element space; thus, defining both a coarse and
subgrid pressure, we have that for any point x in the reser-
voir,

N N M .

P(x) =YY B (x), (4)
i=1 k=1

P(x) = P(x) + P(x) , (5)

where the coefficients a; and ﬂ,’c are to be determined. Even
though our intent is to scale up to the coarse grid, we have
in fact a pressure value for each fine grid block, as illustrated
in Fig. 1.

Velocity basis functions. The velocity is a vector,
so the velocity basis functions are also vector functions. We
describe the basis functions as if the grid block was simply
the unit cube 0 <z <1,0<y <1,and 0 < z < 1. There
are 6 basis functions common to RT0 and BDDF1, which



SPE 66375

have a nonzero divergence. These are given by

{’1 = (1 —a:)el s

\NIQ = rey ,
v3=(1-yles,
vy =yes

\~/5 = (1 —Z)eg ,

‘76 = zes3 .

There is one function for each face of the grid block, and each
represents a unit flow either into or out of the block across
that face, and no flow across the other faces. For example v,
gives a unit flow into the block across the face z = 0, while
va gives a unit flow out of the block across x = 1.

The BDDF1 spaces have the 12 additional basis functions

Vi =(1-2)2y - Der + (y* —yes,

Vs =x(2y — Der + (y —y°)ez

Vo = (22 —x)e; + (1 —y)(2z — 1)ey ,

Vio = (z — 2%)ey + y(2z — 1)ey

Vi1 = (22 —2)e; + (1 — 2)(27 — 1)es
Vi2 = (z — 2%)ey + 2(22 — 1)es

Vi3 = (1 —2)(22 — 1)e; + (22 — 2)es ,

Via = 2(22 — 1e; + (2 — 2%)es

Vis = (1 —y)(2z — ey + (22 — 2)es ,
Vig = y(2z — ey + (2 — 2%)es
Vir = (y* —yles + (1 - 2)(2y — ey,
Vis = (y —y?)es + 2(2y — )es .

Each has vanishing divergence, so these basis functions rep-
resent no net flow. They merely redistribute flow across the
face from one side to the other. For example, the v; repre-
sents a redistribution of flow on the z = 0 face, by allowing
flow into the block on the y = 0 side and taking it back out
on the y = 1 side. The function v;3 is similar, except that
flow is redistributed in the z direction.

For an arbitrary rectangular grid block, we translate and
scale these functions. It should be noted that v; to vig must
be scaled so that the divergence remains zero. For example,
v7 becomes

Ve =(1—xz/hy)(2y/hy — 1)er + (yQ/hy —y)/hzez .

For consistency of flow, these basis functions are paired
across grid blocks. For example, two blocks that share an x
face would have v, on the left and v; on the right, or vg on
the left and v7 on the right. Thus there are 3 basis functions
per grid block face for BDDF1, and 1 for RT0. (In 2-D, the
RTO and BDM1 spaces are similar, except that only v; to
v4 and V7 to Vi arise.)
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In our subgrid approach, we need 3 BDDF1 basis func-
tions defined for each coarse grid block face. Call these basis
functions v;, j = 1,2,...,N’. Within coarse grid block 4,
we need RTO basis functions defined for each fine grid block
face, which we denote by vi, £ =1,2, ..., M/. Finally, defin-
ing both a coarse and subgrid velocity, we have that

v
a(x) = Z%“_’j(x) ; (6)
JN y

= Z V(%) (7)

=1

u(x) = a(x )+U( ) (8)

where the coefficients v; and & are to be determined.

As illustrated in Fig. 1, the velocity has 3 fluxes (2 in 2-D)
on each coarse grid block face representing flow between the
grid blocks that varies linearly over the face, and a single
constant, flux across fine grid block faces that lie within the
coarse grid blocks. Thus we have good resolution. It is the
special placement of these fluxes, i.e., these finite element
nodal values, that allows us to scale up to the coarse grid.

The direct finite element formulation. Multi-
ply each equation (1)—(2) by a finite element basis function,
which is called a test function, and integrate. Let w be any
of the w; or w, and v be any of the v; or vi. This results
in the equations

/andV+/V-ude:/bde, 9)

/d_lu-vdV:—/VP-vdV+/c-vdV
:/PV-vdV+/c-vdV, (10)

where we have made use of the divergence theorem to replace
—[VP -vdV by [PV -vdV, since there is no flow on
the external boundary of the reservoir. (If other boundary
conditions are used, certain boundary terms appear at this
stage, but otherwise no particular complications arise later).

Combining (9)-(10) with (3)-(5) and (6)—(8) results in
a fully implicit system of linear equations, a square matrix
problem of size N+, M; + N' + 3, M{, for the unknowns
@i, Bi, vj, and 6%, This system is too large to solve as for-
mulated, so we will not discuss its implementation. It has
nearly as many unknowns as the fine scale solution itself:
the same number of pressures, and as many velocity fluxes
within the coarse blocks. On the faces of the coarse blocks,
we have fewer velocity fluxes than one would have in a fine
scale solution, but these fluxes are higher-order accurate and
so give a good approximation of the velocity.

The system is actually underdetermined, since the pres-
sure basis functions sum to 1, i.e., Zk L Wi = w;. That is,
the decomposition of P into P and P is not unique. The
removal of this ambiguity depends on the nature of a. For
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each coarse block i, if a = 0 on the block, we cannot solve
our subgrid problems below as they are written. Instead,
we remove, say, the test function w = % and replace that
equation by the requirement that

/Pu‘;,»dV:O. (11)

If, however, a # 0 on the block, then we can solve our subgrid
problems below as written (i.e., we do not replace the w = w!
equation as above), and we require either (11) or instead

/alsu‘;idV:O, (12)

as we will make clear later. In both cases, however, we can
solve our equations, and the decomposition P = P + P is
unique.

Our goal now is to exploit our choice of basis functions
so that the system can be solved in smaller steps, with the
last step being the solution of a substantially reduced matrix
problem of size (N +N') x (N4 N') involving only the coarse
scale unknowns «a; and ;. That is, we scale up to the coarse
level. We emphasize that we are not changing the method
below, but merely describing how to obtain the solution. Our
solution technique requires 3 steps; no iteration is performed.

Numerical Greens Functions. The key is to use nu-
merical Greens functions, also known as influence functions.
The idea can be illustrated in a trivial example. Suppose we
want to solve ax+by+cz = d for x in terms of y and z, which
are not known. The solution is obviously z = (d—by —cz)/a.
We can arrive at this same result by solving three problems
that involve neither y nor z as follows. First set y = 2 =0
and solve azg = d. Next set the nonhomogeneous terms to
0 (i.e.,, d =0), set y = 1 and z = 0, and solve az; = —b.
Finally, set d = 0, y = 0, and z = 1 and solve azs = —c.
Then the solution is the combination of these simple solu-
tions: © = g + T1y + x22.

Note that 1 gives the influence of y on z (z; = dx/dy)
and x5 gives the influence of z on z (zo = Jz/0z). Alter-
natively, one can view z; as the response of the system to a
unit stimulus in y, that is, a Greens function, and similarly
for 25 and z.

This technique works even when x is a vector, a is a ma-
trix, and b, ¢, and d are vectors.

In our case, we apply the idea to each coarse grid block.
On the ith block, z refers to the subgrid unknowns 3 and
5@, and y and z refer to the coarse block unknowns «; and
all v; for which ¥; lives (i.e., is not zero) on the ith block.
We have arranged that there are very few such coarse block
unknowns.

The two-scale finite element formulation. We
begin by solving the subset of equations (9)—(10) for which
the test functions live on the subgrid scale. These subgrid
equations are coupled to the coarse scale. On coarse block i,

SPE 66375

the subgrid is affected only by the coarse coefficients a; and
the 18 7; for which ¥, lives on the block. Because of (11)-
(12), we have arranged the computation so that a;, i.e., the
coarse pressure P, does not affect the subgrid scale. Thus
only 18 parameters affect the subgrid scale, and we can de-
termine the influence of each through the numerical Greens
function approach.

Step 1: The subgrid problems. For coarse block
i, consider (9)—(10) with test functions w = 1w}, and v = v,.
In the numerical Greens function approach, we first solve
assuming the coarse scale information is set to zero. Solve
for

M;
=Z%ML (13)

Z 50 fo ) (14)

the equations represented by

/aﬁm, dv+/v-ﬁgwk, dv = /bwk, ., (15)
/d_ uO V[/
:/ng-oz,dv+/c-ez',dv. (16)

In matrix form, these equations are
M ‘
Zﬂa,k/ V+Z<s AR
k=1
Zéo[/d V[ V[/
:Zﬂé,k/w;v-vé,dwr/c-o;}dv. (18)
k=1

We then solve for the influence of each v; living on the
ith block. There are 18 such j. We solve for

M;
Pl =>"pi i}, (19)
k=1

M;
=> 8,9, (20)

(=1

the equations represented by
/aﬁjwz, dV + /v (Vi@ b dV =0, (21)

/d—l(v,- +15) - v dV = /Pjv-v@', dv . (22)
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In matrix form, we have

M;
Zﬂé’k/awkwk, dV+Z Z/V Vi, dV
k=1

—/v-vjuv;;, v, (23)

f/d V[ V[/

_Zﬁ]k/wkv Vi dV — /d Vv dV . (24)

We must insist that the normalization (11) applies to B,
and that (11) or (12) apply to each f’j, depending on whether
a = 0. This normalization is done before trying to solve the
equations if @ = 0 on the block; otherwise, it is done after
obtaining the solution.

We use a direct solver in this step, since there are multiple
right-hand sides (19 in all), and these problems are generally
small (at most the subgrid is perhaps 10 x 10 x 10). These
problems also parallelize trivially.

Once this step is complete, we then have the formal rep-
resentation of the subgrid solution on coarse block i as

=B+ Y P = z(ﬂmz% ok @)

J

a=di+ Y e =Y (531 + Zws;,& Wi (26
Thus

Bh=Box+ > Vibix (27)
J

8= 53,5 + Z’Yj 35 . (28)
J

We know every quantity above except the 7;, so these are
not yet computable. However, these formulas can be used in
the coarse scale equations to obtain a linear system for the
a; and y; only.

Step 2: The coarse problem. In the second step,
we solve the coarse problem, which is given by (9)—(10) with
the test functions which live on the coarse scale w = w; and
v = V. This system, when combined with (25)—(26), gives
a matrix problem for the o; and «y;. It is derived in detail in
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the Appendix. The system is

N N’
Zai/au’)iu’;i/ dV+Z’Yj/V -V Wy av
i=1 Jj=1
- / (b — aPp) wy dV (29)
NI
Z%‘{ /d_l(‘_fj +1y) - (v + 1) dV
=1

+ /apj pjl dV}

_Za,/w,v 2 dV+/(c—d Yag) - v dV (30)

=1

where, of course, Pj is P! and #; is i} whenever we integrate
over the ith coarse grid block.

If the subgrid scale influence functions are set to zero, this
is a coarse grid BDDF1 mixed finite element discretization
of the pressure equations representing conservation of mass
and Darcy’s law. With the influence functions, the coarse
equations represent a coarse grid conservation of mass and a
coarse grid Darcy law, with the matrix coefficients modified
by the subgrid-scale influence functions. Thus to implement,
one first develops a code to handle the BDDF1 method on
the coarse grid, and then modifies the integration routines
to solve (29)—(30).

Step 3: The fine scale solution. Finally, we con-

struct a fine scale representation of our solution by combining
the previous results to obtain

N
P=pP+ Y (Bi+ X uP)
=1 j
N M; ’ ) ) )
-y [aiwi sy (ﬁa,k n nyjﬁ;-,k) wz] e
i=1 k=1 j
N J
u= 1‘1+Z (ﬁg +Zyjﬁ§>
_Z’YJVJ+ZZ<OE+Z’YJ ;,z)%- (32)
J

i=1 (=1

In summary, in Step 1, we solve in parallel (17)—(18) and
(23)—(24), possibly modified as mentioned in (11) for solv-
ability, for each coarse grid block 7 for the coefficients of the
numerical Greens functions (or influence functions). We then
construct Pf, i}, P , and ﬁj- using (13)—(14), and normalize
by (11) or (12) if thls was not already done for solvability. In
Step 2, we solve the coarse equations (29)—(30) for the coarse
coefficients a; and ;. This gives part of our solution P and
u. Finally, in Step 3, we construct a fine scale representation
of our solution from (31)—(32). This is precisely the solution



6 T. ARBOGAST AND S.L. BRYANT

to (9)—(10). Further details of implementation can be found
in Arbogast.!”

Application to Two-Phase Incompressible, Im-
miscible Flow

We can easily adapt our subgrid technique to two-phase im-
miscible flow if the system is written as a pressure equation
coupled to a saturation equation. While our technique could
be adapted for a fully implicit system, we chose to develop
a research simulator that used a sequential approach. Thus
both the pressure and saturation equations are individually
fully implicit, but they are decoupled in time. We solve for
the pressure using the saturation at the previous time, up-
date the velocities, and then advance the saturation. Exten-
sions to three-phase black-oil simulation would be similar.

The formulation of the equations. We use the
standard two-phase flow equations; however, they are formu-
lated in a somewhat nonstandard way. This has no bearing
on the numerical subgrid technique, but we mention it for
completeness.

The global pressure formulation. The formula-
tion of the pressure equation that we use is due to Chavent.'8
When the fluids are incompressible, we can define a “global”
pressure P from one of the phase pressures and the satura-
tion S as

P=p,+ / ) g g (33)
S

A(s)

where A, (S) = Ky (S)/pw and Ao(S) = k. o(S)/ 1o are the
relative mobilities, and A\(S) = Ay (S) + Ao (S). Then

AVP = \yVPy + \,VP, ,

and, with u = u,, + u, being the total velocity, we have the
pressure equation

g—f—kv-u:q(P), (34)
w=—KS)(VP ~ p(S)es) - (35)

where ¢(P) = g, + g, represents the total flow of the wells
and the density is

Aw(S) Ao (S)

p(S) = A(S) Pw + A(S) Po -

(36)

With S being fixed in the equation to its value at the pre-
vious time step, this equation is the same as (1)—(2) if the
time derivative is replaced with a backward finite difference
and ¢(P) is an affine function. Generally one assumes the
rock compressibility is constant, so ¢ = ¢(P) is itself affine.
If ¢(P) is not affine, we linearize it in a Newton-Raphson
procedure to obtain an equation of the form (1)—(2).

The Kirchhoff saturation formulation. The
saturation equation is formulated so as to use a standard
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fractional flow, but with the diffusive terms modified with a
Kirchhoff transformation.'® That is, we have

008 ¥ = au(S) (37)
uy, = —KVQ(S) + ¢(u,S) (38)

where the “complementary” potential () and ¢ are given by

S
Q(S) = —/0 Aul@Ao() i) g

G (39)

[u — KXo(S)(po — puw)ges|.  (40)

In the sequential approach, we have already solved for u, and
we use its fine scale representation here. After replacing the
time derivative with a backward finite difference, and after
a Newton linearization, this equation is also of the form (1)—
(2).

We can adapt our subgrid idea to the saturation equa-
tion, and did so with a good deal of success.? However,
because the saturation equation is diagonally dominant, we
found that the time savings were marginal when using our
particular subgrid technique for the saturation part of the
solution. Moreover, in certain difficult problems,?! we found
that the use of a higher order method prevented us from sat-
isfying the maximum principle that requires the saturation
to lie between its residual and one minus the residual of the
other fluid. It is well known that such monotone methods
must necessarily be of the first order (if the method itself is
linear). Thus, we chose to solve the saturation equation on
the fine scale. For simplicity, we used one-point upstream
weighting.

Bottomhole pressure wells. All terms associated
with constant rate injection wells have been treated in our de-
scription of the subgrid technique, since ¢ is known and fixed.
Bottomhole pressure wells, as modeled by Peaceman,?? present
no difficulties either for the subgrid technique or for the
global pressure formulation. We have along the well at depth
level k,

Qu,k = —Kuw,k(Pw,k — Pren k) ,
Qo = —Ko,k(Pok — Pwell ;)
Pyenr, = Ppap + pweng(zx — zBup) ,

Prvell = Yk (Quw kP + Qo ,kPo)
we -
Zk(Qw,k + (Jo,k)

(41)

where the k,, and k, are given by Peaceman. Thus, using
(33),

Ak = Gu.k + o,k
= —(Kuw,k + ko) (Pe — PP — pweny(zi — 2BHP))
- K:w,ka(Sk) - h:o,kFO(Sk) ) (42)
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where

P, =P+ F,(S),

P,=P+F,(9),
F(S) =~ [ 5Py ds
Fw(S) = Fo(s) - PC(S) :

We found it convenient to use the numerical Greens func-
tion approach to solve the bottomhole pressure wells. We
let pwen be our influence parameter and solve for the pres-
sure with pywen set to 0, and then solve for the pressure again
with the nonhomogeneous terms set to 0 and pyen set to 1.
Inspection of (42) shows that both of these equations are lin-
ear in P, so they simply result in a modification of a and b
in (1)—(2). Finally a nonlinear iteration on (41) determines
pwell and completes the solution.

We have one additional pressure solve for each additional
bottomhole pressure well, so this technique is feasible only
for a small number of wells. This implementation of the
wells would not be practical in a full field simulation. In
the general case, we would need to include the well terms as
linearized for a Newton-Raphson procedure. Again, only a
and b need to be modified.

Due to the evolution of the simulator, we found it conve-
nient for the saturation equation to incorporate bottomhole
pressure wells in a somewhat unusual way. We took the total
injection rate as determined from the pressure equation and
divided it into the phases according to their relative mobility.

Simulations exploring the ability of the subgrid technique
to simulate near well behavior and using the Peaceman model
can be found in Arbogast.!” Very good agreement with fine
grid computations was found.

General Numerical Performance

Before presenting our reservoir simulation examples, we men-
tion a few general features of the subgrid method, and an
important modification.

Convergence rate for smooth solutions. We
tested the convergence rate of the method in Arbogast? by
solving the pressure equation (1)—(2) in cases for which the
solution is smooth and known. When the number of sub-
grid blocks per coarse block is held fixed, the errors in the
velocities display second order convergence. This is to be ex-
pected for the BDDF1 method, however the RT0 method is
only linearly convergent. Thus, the use of higher order coarse
elements is indeed sufficient to maintain accuracy, and in fact
this higher order is reflected in the subgrid computation.

Savings in computation time. The speed of the
subgrid method is difficult to quantify, as it depends on so
many factors. In our test cases, we used simply Jacobi pre-
conditioned conjugate gradients. It is well known that such
a solver is very easy to implement, but also that it does not
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perform particularly well. However, we have consistently ob-
served a reduction in the solution times of about a factor of
2 to 10 for our subgrid method compared to solving the fine
scale pressure equation with RTQ (which is essentially stan-
dard cell-centered finite differences). Since our method is
second order accurate compared to first order for RTO, this
is quite a savings in time. The savings in solution time com-
pared to solving the second order accurate fine scale BDDF1
is much more than a factor of 100 in most cases.

A more nearly optimal solver should close the timing gap
somewhat, so these reduction factors should not be taken too
literally. What is clear is that it is easier to precondition a
smaller, coarser system than a larger, finer one. This is due
partly to the reduced size, but also more importantly to the
reduction in condition number that an averaged or upscaled
problem exhibits. The performance of Jacobi preconditioned
conjugate gradients is very sensitive to the condition num-
ber, and thus we see good speedup for the two-scale system.
Even a more efficient solution strategy will benefit from the
improved condition number of the coarse problem compared
to the fine scale problem. We note in passing that if one
wanted to solve the fine scale problem, one could also use
our subgrid technique as a type of preconditioner. In that
case, perhaps one would be content with RT0 on the coarse
scale.

One additional remark about the computational speed
should be made. The two-scale subgrid method improves
data locality, so there is the potential to reuse more data
within high-speed memory caches than one might find in a
fine scale solution technique.

Average permeability in the coarse equation.
When solutions are not so smooth, it is possible that the
coarse flow is not quite of the proper magnitude. This is
due to using the fine scale permeability in the coarse equa-
tion (30), coefficient d. To remedy this, we can use an av-
eraged permeability d in place of d on the left-hand side of
the equality. That is, replace [d~ (v, + ;) - (vj + ;) dV
by [(d)='(¥%; +1;) - (¥; + ;) dV, but leave d alone in ev-
ery other term, especially in the subgrid equations. As we
will see in our two reservoir examples, this can bring about
an improvement in the overall performance of the subgrid
method.

A 3-D Numerical Example

In this section we present numerical results that demonstrate
the application of the subgrid method described above to
some simple test cases. We compare various subgrid com-
putations to a fine scale computation which we treat as the
true solution. We consider a rectangular domain 500m X
250m x 40m with a water injector and a single producer,
discretized into 1600 fine scale cells (20 x 10 x 8). We com-
pute on a 4 x 2 x 2 coarse grid, corresponding to a 100-fold
reduction in the number of cells. The porosity is assumed
constant at 0.25 and the permeability field is a realization of
a spatially correlated distribution derived from observations
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on an outcrop. A constant-rate injector fully penetrates the
reservoir at z = 100m, y = 75m, while a constant bottom-
hole pressure producer at x = 400m, y = 200m is completed
only in the upper 30m of the reservoir. Fig. 2 shows the
saturation distribution in a vertical plane containing the in-
jector and a horizontal plane at the bottom of the producer
after 0.22 PVI (pore volumes of water injected). The influ-
ence of zones of low permeability is evident in the “islands” of
high and low saturation. The subgrid solution (using the fine
scale permeabilities directly for coefficient d in (30)) captures
many of these small scale features, as illustrated in Fig. 3.
Fig. 4 compares the computed water-oil ratio (WOR) as a
function of PVI for several schemes for averaging the fine
scale permeabilities to obtain d in (30). The fine solution,
subgrid solution, and subgrid solutions with d in (30) given
by the arithmetic average, the harmonic average in the flow
direction and the arithmetic average in the direction perpen-
dicular to flow, and the one-third power average. The latter
seems to do the best job of capturing the behavior, though
it predicts slightly earlier water breakthrough.

An SPE Comparative Solution Example

Our second numerical example is based on the 2-D model
described in the 2001 SPE comparative solution project for
upscaling.?? The differences are relatively minor, and con-
sist mainly in not being able to set the bottomhole pressure
properly and setting gravity to zero. The latter was done
to avoid complications with the saturation solver, and not
due to the pressure equation. Thus our results, though not
strictly comparable, do show the potential of our numerical
subgrid technique for the pressure equation.

Fig. 5 shows the fine scale solution after 1000 days of in-
jection. The subgrid solution captures several of the water
channels on the left side of the domain and several of the by-
passed regions on the right side, Fig. 6. Using the root mean
square averaging scheme in the coarse part of the method
smears the saturation profiles, Fig. 7. The horizontal com-
ponent of the total velocity at 1000 days shows good quali-
tative agreement between the three computations as shown
in Figs. 8, 9, and 10. The straightforward subgrid approach
yields a slightly wider range of velocities than the true so-
lution, while the approach using average permeability in the
coarse equation yields a somewhat narrower range.

A 2-D Quarter Five-Spot Example

Our final example is taken from White and Horne.?* It is a
2-D quarter five-spot waterflood using the three value per-
meability field depicted in Fig. 11, reminiscent of a fluvial ge-
ological environment that is correlated over large distances.
The problem is posed on a 30 x 30 fine grid, and solved using
a 6 x 6 coarse grid with a 5 x 5 subgrid in each coarse block.
Note that this does a fairly good job of resolving the high
permeability channel. Thus, we also solve the problem on a
3 x 3 coarse grid with a 10 x 10 subgrid. The injection well
is at fine block (3, 3), and the production well is at fine block
(28,28). We use the simplified data of Table 1, designed so
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that nonuniformities in the flow are due primarily to the per-
meability variations and not to differences between the two
fluids.

We compare the 30 x 30 fine grid computation to the sub-
grid technique used with a coarse grid of size either 6 x 6 or
3 x 3. We also compare to 6 x 6 coarse simulations using
the harmonic-arithmetic coarse block average diagonal per-
meability (harmonic average in primary direction, followed
by arithmetic average in the cross direction on each block).
We use either standard RTO cell-centered finite differences
(used also for the fine grid computation), or the BDM1 sec-
ond order accurate discretization, since the latter is more
comparable to the subgrid method.

Results are summarized in Table 2. The maximum pres-
sure errors (assuming the fine solution is true) show that the
subgrid method is extremely accurate. These errors include
errors due to saturation errors and their subsequent affect
on the relative permeability. Breakthrough is predicted very
well with the subgrid method, and not so well when the av-
erage permeability is used. We show the complete producing
water cut curve in Fig. 12. The cumulative oil production,
shown in Fig. 13, also shows that the best results are achieved
when the subgrid technique is used. Overall, the harmonic-
arithmetic coarse block average diagonal permeability on a
6 x 6 grid compares well with the 3 x 3 subgrid method.

We show the saturation contours at 400 days for the fine
grid solution in Fig. 14, the subgrid method on both 6 x
6 and 3 x 3 coarse grids in Figs. 15 and 16, and a 6 x 6
coarse simulation using the harmonic-arithmetic coarse block
average diagonal permeability in Fig. 17 (the second order
method is similar, but maintains somewhat sharper fronts).
The subgrid method, even with a 3 x 3 coarse grid, does
a reasonably good job of resolving the key feature of the
problem: preferential flow through the channel.

Timing results are summarized in Table 3. The problem
is much too small to obtain representative timing results;
however, a few points are clear. First, the subgrid compu-
tations are a very small fraction of the total computation
time (except for the overly small 3 x 3 case). Moreover,
the subgrid part of the computation would scale linearly in
parallel, and could even be omitted in coarse blocks that
experience negligible saturation change, since the numerical
Greens functions only change when the relative permeability
changes. Second, the subgrid technique requires fine scale
integration to assemble the matrix. However, in larger prob-
lems, the time needed to solve the matrix problem is much
greater that the time to assemble the matrix, so this part of
the computation is not generally significant. Third, the time
to solve the coarse pressure problem, which normally domi-
nates the computation time, is much better for the subgrid
method as compared to the full fine grid computation (by a
factor of about 10 for the 6 x 6 simulation, and by a factor of
almost 100 for the 3 x 3 case). The coarse problem using an
average permeability is quite fast. For comparable size grids,
the difference in speed between the subgrid and average per-
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meability methods is due to the difference between using a
second or first order accurate method. However, the 6 x 6
average permeability method compares in accuracy with the
3 x 3 subgrid method, which is in fact somewhat faster in
solving the coarse grid problem. Fourth, the timings reflect
the fact that we chose to solve the saturation equation on
the fine grid for the subgrid methods.

Application to Traditional Upscaling

The White and Horne technique®* obtains coarse grid effec-
tive permeabilities from postprocessing a small number of
fine grid single-phase simulations. We could use their tech-
nique, combined with the subgrid technique, to obtain the
effective permeability on a coarse grid, for use in a traditional
reservoir simulator.

Conclusions

We presented a two-scale numerical subgrid approach, also
called a locally conservative multiscale variational method,
that decomposes the governing differential equations into a
coarse grid-scale operator that is coupled to a subgrid-scale
operator. The subgrid-scale problems can be solved inde-
pendently of the coarse grid approximation thanks to a nu-
merical Greens function technique. The global problem is
solved only at the coarse scale, and this solution is corrected
at the subgrid scale to obtain the fine scale representation of
the problem. In this way no explicit macroscopic coefficients
(e.g., effective permeabilities or pseudo-functions) arise, and
thus no assumptions about the physics or the expected flow
behavior are required.

We illustrated the implementation of this technique for the
flow of two immiscible, incompressible phases. For simplicity
the implementation is sequential, solving the flow equation
fully implicitly with saturation-dependent quantities evalu-
ated at the previous time step, then solving the saturation
equation fully implicitly and on the fine scale. We observed
a reduction in pressure solution times by a factor of 2 to 10
to almost 100 for small problems (larger problems should ex-
perience better speed-up). Moreover, we note that we obtain
second order accuracy while the fine scale solution used for
timing comparison is only first-order accurate. Good agree-
ment between the subgrid and fine scale solutions is observed
for test cases in which the coarse grid contains two orders of
magnitude fewer grid blocks. Using an appropriate average
of the fine scale permeabilities may improve the fidelity of
the subgrid solution under some conditions.

Nomenclature
BDDF1 = first order Brezzi-Douglas-Duran-Fortin mixed fi-

nite element function space
BDM1 = first order Brezzi-Douglas-Marini mixed finite el-
ement function space
dV = differential of volume, L3
e; = unit vector in the z-direction
ey, = unit vector in the y-direction
e3 = unit vector in the z-direction
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H = coarse grid block diameter, L
h = fine grid block diameter, L
h, = grid block length in the z direction, L
h, = grid block length in the y direction, L
h, = grid block length in the z direction, L
K = absolute permeability, L?
k. = relative permeability
M; = number of fine grid blocks in coarse grid block 4
/ = number of fine grid block faces internal to coarse
grid block i
N = number of coarse grid blocks
N' = 3 times the number of coarse grid block faces
P = pressure, m/Lt?
P. = capillary pressure, m/Lt?
@ = Kirchhoff “complementary” potential, 1/t
g = external well sources and sinks, 1/¢
= lowest order Raviart-Thomas mixed finite ele-
ment function space
= water (or gas) saturation
= Darcy velocity, L/t
velocity test function
velocity test function on the unit cube
pressure test function
spatial point, L
= spatial point, L
finite element coefficients of coarse pressure
finite element coefficients of subgrid pressure
finite element coefficients of coarse velocity
finite element coefficients of subgrid velocity
relative mobility, Lt/m
viscosity, m /Lt
density, m/L?
porosity
Subscripts and superscripts
1 = coarse grid block
j = coarse grid block face
k = subgrid block (or the depth index)
= subgrid block face

=
[en)
|

X B << g Wn
I

~

(z,y,2

ST > 2 W R
Il

o= oil
w = water (or gas)
Accents

= coarse scale function
= subgrid scale function
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Appendix—Derivation of the Coarse Prob-
lem

To scale up the problem (9)-(10) from the fine to the coarse
scale, we choose coarse scale test functions. It is easier to de-
scribe the derivation if our choice of test functions is actually
w =w; and v = vV + 0 , since it more readily results in a
symmetric problem with respect to the velocity unknowns.
Thus, using our coarse and subgrid decomposition (5) and
(8) and the numerical Greens functions as in (25)—(26), we
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have that
/a <P + 130 + Z’yﬂ%) Wy dV
J
+/V (l_l+ﬁ0 +Z’)/jﬁj> wy dV
J

= /bu’)i/ av, (A-1)
/d*l <u + G + Zyjﬁj> (v ) dV
J
= / <P+ B+ Z%‘PJ) V- (vj +uay)dV
+/c- (v +uy)dV . (A-2)
Note that in all cases
/wv-odv:o, (A-3)

since v has no flux external to the coarse block. Thus several
terms cancel above. For either normalization (11) or (12),

/apjwi/ dV =0,
50 (A-1) combined with (3) and (6) gives (29).

Next we note that (21), with test function w = P;, implies
that

/aﬁjlﬁjdv+/v-(vj, +uy) Pjdv =0,
SO
/ﬁjv (¥ + 1) dV = —/aﬁj Pydv. (A-4)
Similarly, (16) with test function v = @, yields
/d—lﬁo iy dV
:/Pov-ﬁj,dv+/c-ﬁj,dv.
Finally,
/Pov-vj, dv =0

by normalization (11). Combining (A-2)-(A—-6) results in
/dil <11 + Z’YjﬁJ) (Vy +uay)dV
J
+ Z%-/a]sj I:’j/ av
J
:/PV-{’j/dV'F/C'{’]‘/dV

- /d—lﬁo vy dV . (A-7)

A TWO-SCALE NUMERICAL SUBGRID TECHNIQUE FOR WATERFLOOD SIMULATIONS 11

Combining now (A-7) with (3) and (6) gives (30).
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Fig. 1. A 2-D example of a 12 x 12 fine grid decomposed into
a 3 x 3 coarse grid with 4 x 4 subgrids. The dots represent
the pressure values, one per fine grid block. The crosses rep-
resent the grid block face velocity fluxes. The circled crosses
apply to the coarse grid block faces, and represent linear flux
variation across the face. The other crosses represent con-
stant fluxes across the subgrid block faces internal to the
coarse blocks.

Fig. 2. Fine scale saturation distribution at 0.22 PVI for a
3-D waterflood example solved on a 20 x 10 x 8 grid, which
we take to be the true solution. Spatial correlation in the
permeability field gives rise to significant small scale hetero-
geneities in the saturation distribution.
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Fig. 3. Subgrid saturation distribution at 0.22 PVI for the
same example as in Fig. 2 solved on a 4 x 2 x 2 grid (using
a 5 x 5 x 4 subgrid in each coarse grid block). The subgrid
procedure captures much of the fine scale behavior.
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Fig. 4. Computed ratio of water production rate to oil pro-
duction rate (WOR) as a function of pore volumes water
injected (PVI) for a 3-D waterflood example. The fine scale
solution (heavy line) is taken to be the true solution. The
subgrid technique (dashed line) uses the fine scale permeabil-
ities directly in coefficient d in (30). The other cases replace
d with an average d in (30); the average is the arithmetic
(dash-dot), harmonic in flow direction and arithmetic in the
transverse direction (light line, lowest line near 0.2 PVI), or
one-third power average (medium line, highest line near 0.2
PVI).
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Fig. 5. Saturation distribution after 1000 days injection in a 2-D example based on the SPE comparative solution project.
The solution was obtained on a fine 100 x 20 grid.
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Fig. 6. Solution to the 2-D example of Fig. 5 after 1000 days injection obtained with the subgrid method on a 5 x 5 grid.
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Fig. 7. Solution to the 2-D example of Fig. 5 after 1000 days injection obtained on a 5 x 5 grid, using the root mean square
power average permeability in the subgrid method.
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x-velocity: 1E-09 1E-08 1E-07 1E-06 1E-05
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Fig. 8. Fine scale computation of the horizontal component of the total velocity after 1000 days injection in the 2-D example
of Fig. 5.

x-velocity: 1E-09 1E-08 1E-07 1E-06 1E-05

Fig. 9. Computation of the horizontal component of the total velocity after 1000 days injection in the 2-D example of Fig. 5,
computed on a 5 x 5 grid with the subgrid method.
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Fig. 10. Computation of the horizontal component of the total velocity after 1000 days injection in the 2-D example of Fig. 5,
computed on a 5 x 5 grid with the root mean square power average permeability in the subgrid method.
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Fig. 11. Permeability field for the quarter five-spot numerical example.

Table 1. Data for the 2-D quarter five-spot example.

Injection rate
Production rate
Qil viscosity, o
Water viscosity, fty,

100 BBL total
1.0 cp
1.0 cp

100 BBL water/day

fluid/day
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Qil relative permeability, k.,
Water relative permeability, k.,

[(0.8 — 5)/0.6]?
[(S - 0.2)/0.6]°

Initial water saturation, S 0.2

Porosity, ¢ 0.2

Areal dimensions 600 ft x 600 ft
Thickness 10 ft

Initial pressure, P 1000 psi
Capillary pressure, P, negligible
gravity negligible

rock compressibility negligible

Table 2. Summary of results for the 2-D quarter five-spot example.

Max. P Max. P Break- || Cum. BBL oil
Case error (psi) | error (psi) || through|| at 1000 days | % error
at 400 days | at 1000 days || (days) (in 1000’s)
30 x 30 Fine — — 290 46.8 —
6 x 6 Subgrid 3.6 3.9 290 49.7 6.2
3 x 3 Subgrid 23.7 24.7 310 96.2 19.9
6x6 Avg. K 56.6 53.4 246 58.1 24.0
6 x 6 Avg. K, order 2 52.3 49.1 246 57.0 21.8

Table 3. Single step timing results, in seconds, for the
quarter five-spot 2-D example.

Pressure
Case subgrid | coarse |coarse || Saturation
solution | assembly | solver || solution
30 x 30 Fine — 0.72 8.71 0.46
6 x 6 Subgrid 0.14 1.77 0.75 0.70
3 x 3 Subgrid 0.74 1.84 0.10 0.80
6x6Avg. K — 0.01 0.15 0.01
6 x 6 Avg. K, order 2 — 0.12 0.81 0.02

15
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Fig. 12. Producing water cut vs. time for the 2-D quarter

five-spot numerical example.
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Fig. 13. Cumulative oil production vs. time for the 2-D quar-

ter five-spot numerical example.

Fig. 14. Fine 30 x 30 saturation contours for the 2-D quarter

five-spot numerical example.
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Fig. 15. Subgrid 6 x 6 saturation contours for the 2-D quarter
five-spot numerical example.

Fig. 16. Subgrid 3 x 3 saturation contours for the 2-D quarter
five-spot numerical example.

Fig. 17. Average permeability coarse 6 x 6 saturation con-
tours for the 2-D quarter five-spot numerical example.



