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Abstract. We develop and analyze a mixed finite element method for the solution of an elliptic
system modeling a porous medium with large cavities, called vugs. It consists of a second order
elliptic (i.e., Darcy) equation on part of the domain coupled to a Stokes equation on the rest of the
domain, and a slip boundary condition (due to Beavers-Joseph-Saffman) on the interface between
them. The tangential velocity is not continuous on the interface. We consider a 2-D vuggy porous
medium with many small cavities throughout its extent, so the interface is not isolated. We use a
certain conforming Stokes element on rectangles, slightly modified near the interface to account for
the tangential discontinuity. This gives a mixed finite element method for the entire Darcy-Stokes
system with a regular sparsity pattern that is easy to implement, independent of the vug geometry,
as long as it aligns with the grid. We prove optimal global first order L2 convergence of the velocity
and pressure, as well as the velocity gradient in the Stokes domain. Numerical results verify these
rates of convergence, and even suggest somewhat better convergence in certain situations. Finally,
we present a lower dimensional space that uses Raviart-Thomas elements in the Darcy domain and
uses our new modified elements near the interface in transition to the Stokes elements.

Key words. mixed finite elements, Darcy-Stokes system, vuggy porous media, Beavers-Joseph
boundary condition, error estimates

1. Introduction. We consider the approximation of the equations governing the
flow of an incompressible fluid in a medium Ω ⊂ R2 composed of a porous material that
also contains relatively large cavities. Such cavities are called vugs in the geological
literature. They occur ubiquitously throughout, for example, most carbonate rock
formations. Although small, vugs can significantly increase both the effective porosity
and permeability of the medium.

Since only low Reynold’s number flow is to be expected, the system is governed
in the rock matrix Ωd ⊂ Ω by a second order elliptic equation representing Darcy’s
law and mass conservation, and in the vugs Ωs = Ω \ Ω̄d by the Stokes equation, with
the Beavers-Joseph-Saffman boundary condition [5, 21] on the interface between the
two regions Γ = ∂Ωd ∩Ωs. The system is difficult to approximate because the Darcy
and Stokes solutions have very different regularity properties and, more importantly,
the tangential velocity may be discontinuous on the Darcy-Stokes interface Γ.

Previous studies have developed numerical techniques appropriate to the case
where the porous medium and the open (vuggy) region are well separated [22, 14,
19]. However, these techniques are not so readily adapted to the case of a vuggy
medium, for which there is no distinct separation between the vuggy regions and
the porous rock, i.e., to the case where the vugs and porous matrix are essentially
intertwined everywhere. For example, Layton et al. [19] use a Lagrange multiplier
on the interface Γ to both aid in the approximation of the Beavers-Joseph-Saffman
boundary condition and to allow the use of existing Darcy and Stokes flow simulators
in a domain-decomposition (Ωd and Ωs) iterative technique. They also provide a
very thorough error analysis of their underlying method and the equations in general.
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However, this approach is not so useful when Γ is large, since the size of the Lagrange
multiplier space would preclude efficient solution.

The approach taken here is to design a finite element that is appropriate for both
the Stokes and Darcy regions of the domain. The rationale is that then an efficient
code can be written with little regard to the nature of the underlying equations, i.e.,
whether an element lies in Ωs or Ωd. For simplicity, we use conforming elements.
Since the Stokes equations are necessarily a saddle point system, we consider the
second order elliptic Darcy equations in mixed form. Stokes approximation requires
that the fluid velocities be approximated in (H1(Ω))2, which is more restrictive than
Darcy simulation requires. Mixed methods approximate velocities only in the space
H(div) = {u ∈ (L2)2 : ∇ · u ∈ L2} [20, 11]. This requires only the (weak) continuity
of normal velocity components, whereas Stokes requires both normal and tangential
components to be (weakly) continuous. We thereby restrict ourselves to using a finite
element appropriate for Stokes simulation that simultaneously works well for Darcy
simulation. We adopt the low order space due to Fortin [13]. This space, and higher
order generalizations, have been shown by Arbogast and Wheeler [3] to approximate
well second order elliptic systems. To approximate the combined Darcy-Stokes system,
since the tangential velocity may be discontinuous, this finite element space must be
modified near Γ, but the modification is relatively minor and easily handled in a
computer code. In principle, our results should extend to 3-D elements. Since this
has not been tested, we present only the 2-D case here.

The outline of the rest of the paper follows. In the next section, we state in
detail the governing equations and a mixed variational form suitable for finite element
approximation. In §3, we define our finite element spaces as a small modification of
the Fortin spaces, and then the finite element method follows immediately. In §4,
we present a π projection operator for the velocity and examine its properties. This
operator is used in §5, where we present an a priori error analysis. We show that the
method approximates both the true velocity and pressure to the optimal first order
in the standard energy norm. That is, the Stokes velocity error is measured in the
(H1)2 norm, the Darcy velocity error is measured in (L2)2, and the pressure error
is measured in L2. We present the results of several numerical experiments to verify
these rates of convergence in §6. Since these test cases lead to very ill-conditioned
linear systems, in §6 we also discuss our solution strategy. Finally, in the last section,
we consider a finite element space with lower total dimension, by replacing the Fortin
elements by Raviart-Thomas [20] elements on Darcy elements away from the Darcy-
Stokes interface.

We close the introduction with a remark about simulation of flow in vuggy media.
When the medium is large in extent, such as an aquifer or petroleum reservoir, it is not
reasonable to solve the Darcy-Stokes system over the entire domain for several reasons.
First, there is inadequate data regarding the geometry of the vugs over the many
square kilometer areal extent of the domain. Secondly, at the centimeter resolution
that would be required to resolve the vugs, the problem would be computationally
intractable. Finally, the data generated would be much too detailed to be of use in
engineering analyses, where only meter scale average flows would be used.

Recently, Arbogast and Lehr [2] derived from the micro-scale model of the next
section a macroscopic model using the mathematical theory of homogenization [6, 16,
17, 23]. The theoretical prediction is that Darcy flow results at the macro-scale. What
is important here is that an expression for the effective permeability is also derived.
This expression involves the solution of a Darcy-Stokes system on a representative
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cell involving the vug geometry (except that periodic boundary conditions must be
imposed). The numerical method of this paper is suitable for solving this cell problem,
and thereby allowing one to obtain effective permeabilities for vuggy media.

2. The Governing Equations. In all of Ω, denote the fluid velocity by u and
the pressure by p. We will often need to distinguish between these quantities on Ωs

or Ωd, and especially their traces on Γ. Thus let

us = u|Ωs
, ud = u|Ωd

, ps = p|Ωs
, and pd = p|Ωd

.

Let µ > 0 be the fluid viscosity, K ∈ L∞(Ω) the uniformly positive permeability
of the porous rock matrix, α > 0 the Beavers-Joseph slip coefficient, q ∈ L2(Ω) an
external source or sink term (satisfying the compatibility condition that its average
over Ω vanishes), and f ∈ (L2(Ω))2 a term related to body forces such as gravity. Let
ν be the outer unit normal to ∂Ω, and on Γ, let it be the outer unit normal to ∂Ωs.
Let τ be a unit tangent to Γ, and let D be the symmetric gradient, i.e., D(ψ) is the

matrix
1
2

(
∂ψi

∂xj
+
∂ψj

∂xi

)
. Then the governing equations are [5, 21, 18]

Vuggy region (Stokes equations)

−2µ∇ ·Du +∇p = f in Ωs , (2.1)
∇ · u = q in Ωs , (2.2)

Rock matrix (Darcy equations)

µK−1u +∇p = f in Ωd , (2.3)
∇ · u = q in Ωd , (2.4)

Interface

us · ν = ud · ν on Γ , (2.5)

2ν ·Dus · τ = −αK−1/2us · τ on Γ , (2.6)
2µν ·Dus · ν = ps − pd on Γ , (2.7)

Outer boundary

us = 0 on ∂Ω ∩ ∂Ωs , (2.8)
ud · ν = 0 on ∂Ω ∩ ∂Ωd . (2.9)

The interface conditions represent continuity of mass flux (2.5), the Beavers-Joseph-
Saffman condition on the tangential stress (2.6), and the continuity of normal stress
(2.7). Note that because we do not assume a vanishing divergence in (2.2), we must
pose (2.1) in terms of the symmetric gradient.

A suitable variational form is posed with the velocity u in the space

V = {v ∈ H(div; Ω) : vs = v|Ωs
∈ (H1(Ωs))2,v · ν = 0 on ∂Ω,v = 0 on ∂Ωs ∩ ∂Ω} ,

in which the outer boundary condition is imposed, and pressure p in the space
W = L2(Ω)/R. Note that the vector valued functions in V have (weakly) contin-
uous normal components on Γ [11], but that the tangential components need not
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agree. Let (·, ·) denote the L2(Ω), (L2(Ω))2 or (L2(Ω))2×2 inner product or duality
pairing, as appropriate. Also, (·, ·)`, ` = s, d, will be the same with Ω replaced by Ω`,
and 〈·, ·〉 will be the L2(Γ) inner product or duality pairing.

To derive the variational form, for v ∈ V, the left side of (2.1) is manipulated as

− 2µ(∇ ·Du,v)s + (∇p,v)s

= 2µ(Du, Dv)s − 2µ〈ν ·Dus,v〉 − (p,∇ · v)s + 〈ps,v · ν〉 ,

and the first interface term on the right is further manipulated as

−2µ〈ν ·Dus,v〉 = −2µ〈ν ·Dus · ν,v · ν〉 − 2µ〈ν ·Dus · τ,vs · τ〉
= −〈ps − pd,v · ν〉+ µ〈αK−1/2us · τ,vs · τ〉 ,

using the interface conditions (2.6)–(2.7). Thus (2.1) becomes

2µ(Du, Dv)s + µ〈αK−1/2us · τ,vs · τ〉 − (p,∇ · v)s + 〈pd,v · ν〉 = (f,v)s . (2.10)

Similarly, (2.3) is manipulated as

µ(K−1u,v)d + (∇p,v)d = µ(K−1u,v)d − (p,∇ · v)d − 〈pd,v · ν〉 = (f,v)d , (2.11)

since ν points into Ωd. Thus, the entire system (2.1)–(2.9) for (u, p) ∈ V×W becomes,
for test functions (v, w) ∈ V ×W ,

2µ(Du, Dv)s + µ〈αK−1/2us · τ,vs · τ〉
+ µ(K−1u,v)d − (p,∇ · v) = (f,v) , (2.12)

(∇ · u, w) = (q, w) . (2.13)

Note that (2.5) is implicit, and (2.8)–(2.9) are explicit, in the space V.

3. The Finite Element Space. We begin by recalling the definition of the
standard Stokes finite element space that we use [13, 3]. The finite element itself
is defined on a rectangle R = (0, a) × (0, b). On R, we approximate pressure as a
constant and the velocity in the space Vh(R) = Q1,2(R) × Q2,1(R), where Qi,j(R)
are the polynomials of degree i in x1 and degree j in x2 defined over R. The degrees
of freedom for v = (v1, v2) ∈ Vh(R) are the 8 corner values

vj(0, 0) , vj(a, 0) , vj(0, b) , vj(a, b) , j = 1, 2 , (3.1)

and the 4 edge average normal fluxes

−1
b

∫ b

0

v1(0, x2) dx2 ,
1
b

∫ b

0

v1(a, x2) dx2 ,

−1
a

∫ a

0

v2(x1, 0) dx1 ,
1
a

∫ a

0

v2(x1, b) dx1 . (3.2)

For purposes of implementation, the 4 edge degrees of freedom may be replaced by
the nodal values at the midpoints of the edges; however, for easier definition of the
space and for the analysis, we represent the degrees of freedom as above.

We assume henceforth that both Ωs and Ωd are unions of rectangles. Let Th

be a rectangular finite element partition of Ω, with h being the maximum element
diameter, so that each element R is in either Ωs or Ωd. Then Γ is a union of edges of
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Th. We tacitly assume that the aspect ratio of the rectangles does not degenerate as
h→ 0.

The standard Stokes finite element space is formed in the usual way. Let Wh ⊂W
consist of piecewise constant functions over Th. Let Ṽh = {v ∈ V ∩ C(Ω̄) : v|R ∈
Vh(R) for all R ∈ Th}, which is formed by piecing together the elements by matching
the degrees of freedom at corners and edges of the partition.

The elements of Ṽh must be modified near the Darcy-Stokes interface Γ, since in
general the tangential component of the velocity is not continuous there. We must
remove some of the corner degrees of freedom to allow for a discontinuous tangential
velocity component on Γ, and simultaneously reduce the size of the polynomial space
(but we must not degrade its approximation properties). We want to do this as
simply as possible, so that there are minimal changes to a finite element code using
the unmodified elements everywhere.
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Fig. 3.1. The 7 patterns (up to symmetries) around a corner point in the modified space Vh.
Here d represents a Darcy element, s is a Stokes element, and a heavy line is a part of Γ. For
x1 velocity components, a quarter circle in an element indicates that the corner basis function is
present over the element. The corner in Pattern 5 is called a checkerboard corner. The edge tick
marks indicate which edges may be used to define the corner value via the Scott-Zhang operator.

Around a corner point, exactly seven patterns arise, as depicted in Fig. 3.1. Mod-
ification is made in only three of the cases. For ease of exposition, we consider the
case of horizontal, x1-components only (x2-components are handled similarly). If two
Darcy elements share a vertical edge e and a corner on Γ, we remove the corner nodal
value (which disconnects the tangential velocity). We also reduce the polynomial
space by one degree on e. Thus Pattern 2 has two modified elements on top, while
Pattern 4 has its two lower elements modified.

Pattern 5 of Fig. 3.1 has alternating Stokes and Darcy elements around the corner,
so we call it a checkerboard corner. Such corner points are problematic, because the
entire horizontal interface is part of Γ, which means that the x1 velocity of the solution
on the top two elements is potentially discontinuous with that on the bottom. We
need to break the continuity, so we remove the corner nodal value systematically on,
say, the bottom Darcy and Stokes elements.
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Fig. 3.2. The 5 patterns (up to symmetries) around a corner point in the modified space Vh

on ∂Ω. Here d represents a Darcy element, s is a Stokes element, unspecified is either, and a heavy
line is a part of Γ. For x1 velocity components, a quarter circle in an element indicates that the
corner basis function is present over the element.

For a corner point on ∂Ω, it is trivial to examine the possibilities, as depicted in
Fig. 3.2. If the corner point is also a corner of the domain, there is only one element
containing the corner point and no modification is needed. Otherwise the corner
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point is part of two elements, and modification is required only if the elements are
of different types, and then only to the Darcy element, and only to the component
normal to ∂Ω (i.e., tangential to Γ). Thus only Pattern 5 in Fig. 3.2 is modified.

�
�

�
�

× ×(a− x1)P2(x2) + x1P2(x2)

�
�
�

× ×(a− x1)P1(x2) + x1P2(x2)

�
�

× ×(a− x1)P0(x2) + x1P2(x2)

� �
× ×(a− x1)P1(x2) + x1P1(x2)

�
�

× ×(a− x1)P1(x2) + x1P1(x2)

�
× ×(a− x1)P0(x2) + x1P1(x2) × ×(a− x1)P0(x2) + x1P0(x2)

Fig. 3.3. The 7 elements (up to symmetries) for the x1 velocity components, on R = (0, a) ×
(0, b), in the modified space Vh. The quarter circles represent corner nodal values, and the edge
crosses represent normal fluxes (or, equivalently, nodal values).

We have a grand total of 16 types of elements for each velocity component, de-
pending on which of the 4 corners are affected. Removing symmetries, we are left
with the 7 distinct types depicted in Fig. 3.3. Each of these elements has degree 0,
1, or 2 on the left and right vertical edges. On R = (0, a)× (0, b), with Pj(ξ) denot-
ing polynomials in ξ of degree up to j, the polynomial spaces for x1-components are
(a − x1)Pi(x2) + x1Pj(x2), i, j = 0, 1, 2 (and for the x2-components the spaces are
Pk(x1)(b − x2) + P`(x1)x2, k, ` = 0, 1, 2). Note that in the most reduced case, the
element becomes the lowest order space due to Raviart and Thomas [20].

Denote by Vh ⊂ V the modified finite element space. Note that no global basis
function disappears (we always have an unmodified Stokes element near Γ). Of course,
the finite element method is to find (uh, ph) ∈ Vh×Wh such that (2.12)–(2.13) holds
for test functions (v, w) restricted to Vh ×Wh. It is trivial to verify that there is a
unique solution.

In a computer code, in the matrix assembly routines, one needs to check the type
of element (Stokes or Darcy) to decide which of two forms is used: 2µ(Du, Dv)s or
µ(K−1u,v)d. On a Darcy element, we need to check the nearest neighbors to decide
on the local basis. When we are in contact with Γ, we also include the interface term
µ〈αK−1/2us ·τ,vs ·τ〉. Moreover, when in contact with Γ, for x1 velocity components,
we need to check the two lower corners to see if either or both are checkerboard corners
(Pattern 5 of Fig. 3.1) and modify the local basis accordingly (we check, say, the
two left-most corners for x2 velocity components). Since the number of global basis
functions is determined a priori by the number of corner points and edges, the global
matrix problem has a regular sparsity pattern.

In closing this section, we note that for checkerboard corners, we could instead
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remove the corner nodal value altogether. However, two issues then need to be ad-
dressed. First, if a larger checkerboard pattern of Stokes and Darcy elements were
to arise, so that we have an edge with checkerboard corners on both ends, then the
polynomial space would drop to a constant along that edge. This would be insufficient
to approximate the Stokes equations. We conclude that omitting checkerboard corner
nodal values is acceptable only if such edges do not arise in the finite element par-
tition. Second, if we indeed omit a nodal value, the sparsity structure of the matrix
problem changes. Since checkerboard corner points will likely not occur in nature, it
is not particularly important how we handle them. In our computer code, in fact, we
ignored the issue and used the strategy that Pattern 5 of Fig. 3.1 is left unmodified,
and only the other two Patterns 2 and 4 were treated in a special way.

4. A π operator for the velocity. We now define an important operator that
will be used heavily in the next section to analyze the approximation error. For
the unmodified space Ṽh, the operator has been defined in, e.g., [3, 15]. Let π̃ :
(H1(Ω))2 → Ṽh denote this unmodified operator. We have the following properties
[3], where PW : L2(Ω) → Wh denotes the L2 projection operator and | · |j,ω is the
usual Hj(ω) Sobolev seminorm,

|ψ|2j,ω =
∑

α,|α|=j

∫
ω

∣∣∣∣∂αψ(x)
∂xα

∣∣∣∣2 dx ,
where the sum is taken over all jth order derivatives (i.e., α runs over all multi-indices
of order j). Later we will also need the usual Hj(ω) Sobolev norm ‖ · ‖j,ω, which is

‖ψ‖2
j,ω =

j∑
k=0

|ψ|2k,ω .

We omit ω if ω = Ω, and write s or d in place of Ωs or Ωd.
Lemma 4.1. Assume that v ∈ (H1(Ω))2. There exists some constant C indepen-

dent of h, so that the following hold.
(a) The linear operator π̃ is bounded on (H1(Ω))2 independently of h.
(b) For R ∈ Th and v ∈ (Hr(R′))2,

|π̃v − v|j,R ≤ C|v|r,R′hr−j
R , 1 ≤ r ≤ 2, j = 0, 1 ,

where R′ is the union of R and its four nearest neighbor elements that share
edges with R, and hR = diam(R).

(c) For v ∈ (Hr(Ω))2,

|π̃v − v|j ≤ C|v|rhr−j , 1 ≤ r ≤ 2, j = 0, 1 .

(d) PW∇ · v = PW∇ · π̃v.
By definition [3], π̃ is defined locally, element by element, as essentially the in-

terpolant of the finite element degrees of freedom (3.1)–(3.2) (where the edge degrees
of freedom must be understood as the average normal velocity component, not the
midpoint nodal value). The only problem is that corner values are not defined for
functions in H1(Ω), so the corner nodal values are set using the Scott-Zhang op-
erator [24]. This operator defines corner point values through integration over an
adjoining edge of the finite element partition. The above results are proved by using
the Trace Theorem locally to relate edge integrals to area integrals. Thus in (b), R′ is
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larger than R and only needs to include for each corner point the element over which
the area integral is computed. (We note in passing that π̃ is actually a projection,
because of the way the Scott-Zhang operator is defined.)

We now modify π̃ locally near Γ wherever the space Ṽh has been modified to form
Vh. We must begin by making a specific choice regarding the use of the Scott-Zhang
operator. We apply the operator to x1- and x2-components of the velocity indepen-
dently. Since tangential velocity components may be discontinuous across Γ, we need
to define point values only using edges on which the given velocity component is con-
tinuous. Thus we require that horizontal, x1-component point values be defined only
on vertical edges, and similarly x2-components use only horizontal edges. Moreover,
we insist that the edge chosen for the integration borders both a Darcy and a Stokes
element, so the Trace Theorem analysis can be taken entirely in either Ωd or Ωs, as
needed. The only exception is when this is not possible, in which case we take the
edge that borders two Stokes elements.

To illustrate the ideas, we refer to Fig. 3.1 and consider only x1-components. We
may choose any edge in the first and last (seventh) pattern, since these do not involve
Γ. We must choose a vertical edge for the other five patterns. Patterns 2 and 6 require
the lower edge, and Patterns 4 and 5 require the upper edge. We can choose either
vertical edge in the third pattern.

The definition of π : (H1(Ω))2 → Vh is now immediate: it is the interpolant
of the modified finite element degrees of freedom of Vh (3.1)–(3.2), using the Scott-
Zhang operator to define corner points, using edges as noted above near Γ to avoid
discontinuities in the tangential velocity.

Lemma 4.2. Let R ∈ Th and hR = diam(R). Suppose that R ⊂ Ω`, where ` is
either s or d. Let R′ be the union of R and its nearest neighbor elements that are also
in Ω`. There exists some constant C independent of h, so that the following hold.
(a) If either R ⊂ Ωs or R̄ ⊂ Ωd, and v ∈ (Hr(R′))2, then

|πv − v|j,R ≤ C|v|r,R′hr−j
R , 1 ≤ r ≤ 2, j = 0, 1 .

(b) If R ⊂ Ωd and ∂R ∩ Γ 6= ∅, and v ∈ (H1(R′))2, then

‖πv − v‖0,R ≤ C‖v‖1,R′hR .

(c) For v ∈ V such that vs ∈ (H2(Ωs))2 and vd ∈ (H1(Ωd))2,

‖πv − v‖1,s + ‖πv − v‖0,d ≤ C{‖v‖2,s + ‖v‖1,d}h .

(d) PW∇ · v = PW∇ · πv.
Proof. Result (c) follows from (a) and (b). Result (d) follows from the edge flux

degrees of freedom (3.2) and a simple application of the divergence theorem:∫
R

∇ · v dx =
∫

∂R

v · ν ds =
∫

∂R

πv · ν ds =
∫

R

∇ · πv dx .

It remains only to show (a) and (b).
Suppose element R ∈ Th is unmodified from that in the space Ṽh. Since π̃ and π

agree on unmodified elements, we have (a) and (b) by Lemma 4.1(b). The restriction
of R′ to Ωs or Ωd follows by treating the Scott-Zhang operator analysis from the
appropriate side of each chosen edge, as discussed above and illustrated in Fig. 3.1.

Suppose now element R ∈ Th is modified from that in the space Ṽh. Let π̃R be
the unmodified Stokes operator defined above, except that at corner points where a
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basis function was removed from R when forming Vh, π̃R should be defined using
an appropriate edge of R, so that it is defined over Ω`. We illustrate by referring to
Fig. 3.1 and x1-components. If ` = d and a Pattern 2 modification arises, we use the
top vertical edge to define π̃R for the purposes of this proof. If ` = d and a Pattern 4
or 5 modification arises, or if ` = s and a Pattern 5 modification arises, then we need
to take the lower edge to define π̃R for the purposes of this proof, so π̃R maps onto
Ṽh.

Note that

v − πv = (v − π̃Rv) + (π̃Rv − πv) ,
= (v − π̃Rv) + ((π̃Rv)− πR(π̃Rv)) ,

where πR is the same as π except that the Scott-Zhang operator is not used. For
Darcy elements, by Lemma 4.1, we need only show the result (b) for the operator
πR and for v = vh ∈ Vh(R) = Q1,2(R) × Q2,1(R). But πR is a linear projection on
the finite dimensional space Vh(R), so it is bounded in the L2(R)-norm. Moreover,
a scaling analysis shows that it is bounded independently of h. Since πR preserves
polynomials of degree 0, we have (b) by the Bramble-Hilbert Lemma [7, 12]. For the
modified Stokes elements, we have that πR preserves polynomials of degree 1, so (a)
follows. This completes the proof.

5. A Convergence Analysis. We now present an a priori analysis of the ap-
proximation error. The analysis on Ωd is relatively delicate, and follows the ideas
in [3]. Let V̂h be the lowest order Raviart-Thomas space, and let π̂ : (H1(Ωd))2 → V̂h

be the usual Raviart-Thomas projection operator [20, 11]. Among other properties,
∇ · π̂ = PW∇·. Let PV̂ : (L2(Ωd))2 → V̂h be (L2(Ωd))2 projection. The following
lemma is shown in [3].

Lemma 5.1. If v ∈ Ṽh, then π̂v = PV̂ v.

Take v ∈ Vh and substitute π̂v = PV̂ v for v in (2.11) to obtain

µ(PV̂(K−1u),v)d − (PW p,∇ · v)d − 〈PΛ̂pd,v · ν〉 = (PV̂f,v)d , (5.1)

where PΛ̂ is the projection onto piecewise constants over the interface grid of rectangle
edges, since π̂v · ν is piecewise constant. Now combine this equation with (2.10) and
(2.13), and subtract the finite element method (2.12)–(2.13) posed over the space
Vh ×Wh with w ∈Wh to obtain

2µ(D(u− uh), Dv)s + µ〈αK−1/2(us − uh,s) · τ,vs · τ〉
+ µ(K−1(u− uh),v)d − (PW p− ph,∇ · v)

= (PV̂f − f,v)d + µ(K−1u− PV̂(K−1u),v)d

+ (p− PW p,∇ · v)s − 〈pd − PΛ̂pd,v · ν〉 , (5.2)
(∇ · (u− uh), w) = 0 . (5.3)

Let us take v = πu − uh ∈ Vh and w = PW p − ph ∈ Wh. The sum of the
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equations leads to

2µ(D(u− uh), D(u− uh))s + µ〈αK−1/2(us − uh,s) · τ, (us − uh,s) · τ〉
+ µ(K−1(u− uh), (u− uh))d

= (PV̂f − f, πu− uh)d + µ(K−1u− PV̂(K−1u), πu− uh)d

+ (p− PW p,∇ · (πu− uh))s − 〈pd − PΛ̂pd, (πu− uh) · ν〉
+ 2µ(D(u− uh), D(u− πu))s

+ µ〈αK−1/2(us − uh,s) · τ, (us − πus) · τ〉
+ µ(K−1(u− uh), (u− πu))d . (5.4)

Since |∇·v| ≤ |Dv|, for some ε > 0 as small as we like and C > 0, it is straightforward
to estimate

‖D(u− uh)‖2
0,s + ‖(us − uh,s) · τ‖2

0,Γ + ‖u− uh‖2
0,d

≤ C
{
‖PV̂f − f‖2

0,d + ‖K−1u− PV̂(K−1u)‖2
0,d

+ ‖p− PW p‖2
0,s + ‖pd − PΛ̂pd‖2

0,Γ

+ ‖D(u− πu)‖2
0,s + ‖u− πu‖2

0,d + ‖(us − πus) · τ‖2
0,Γ

}
+ ε‖πu− uh‖2

1,s . (5.5)

We require a Korn inequality for V.
Lemma 5.2. If ω is a Lipschitz domain and v ∈ (H1(ω))2, then there is some

constant C such that

‖v‖1,ω ≤ C
{
‖Dv‖0,ω + ‖v · τ‖0,∂ω

}
.

Proof. We use a relatively standard proof by contradiction technique for proving
this variant of Korn’s inequality (see, e.g., [10, Proof of Thm. 9.2.16]). The proof is
based on the direct sum decomposition

(H1(ω))2 = H ⊕R ,

where

H =
{
v = (v1, v2) ∈ (H1(ω))2 :

∫
ω

v dx =
∫

ω

(
∂v1
∂x2

− ∂v2
∂x1

)
dx = 0

}
are the rotation free vectors and

R = span
{ (

1
0

)
,

(
0
1

)
,

(
−x2

x1

) }
are the infinitesimal rigid motions.

Following the standard proof (as in [10, Proofs of Thm. 9.2.16 and Cor. 9.2.22]),
we are led to the following requirement: If v ∈ R and v · τ = 0, then v = 0. Since
v = (c1 − bx2, c2 + bx1), Stokes Theorem immediately implies that b = 0. But then v
is constant, and the result is trivial.

Thus, we can bound the left side of (5.5) from below by a multiple of ‖u−uh‖2
1,s+

‖u − uh‖2
0,d. Applying standard approximation results for the various projection

operators, we are led to the error estimate

‖u−uh‖1,s + ‖u−uh‖0,d ≤ Ch
{
‖f‖1,d + ‖u‖2,s + ‖u‖1,d + ‖p‖1,s + ‖pd‖1,Γ

}
. (5.6)
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We also prove an estimate for the pressure. Let v ∈ (H1(Ω))2 satisfy ∇·v = p−ph

and ‖v‖1 ≤ C‖p− ph‖0; such a v exists by [4]. Substitute πv ∈ Vh as test function
in (5.2), and note that PW∇ · πv = PW p− ph. We are led to the estimate

‖p− ph‖2
0 ≤ C

{
‖u− uh‖1,s + ‖u− uh‖0,d + ‖PV̂f − f‖2

0,d

+ ‖K−1u− PV̂(K−1u)‖2
0,d + ‖p− PW p‖2

0 + ‖pd − PΛ̂pd‖2
0,Γ

}
+ ε

{
‖πv‖2

1,s + ‖πv‖2
0,d

}
, (5.7)

where again ε > 0 is as small as we wish. Now π is bounded on (H1(Ωs))2, so

‖πv‖1,s ≤ C‖v‖1,s ≤ C‖p− ph‖0 ,

and

‖πv‖0,d ≤ ‖v‖0,d + ‖v − πv‖0,d ≤ ‖v‖0,d + Ch‖v‖1,d ≤ C‖p− ph‖0 ,

so we can remove the last two terms on the right side of (5.7) and apply standard
approximation results. Collecting this estimate, (5.6), and using (5.3), we have the
following theorem.

Theorem 5.3. There is some constant C such that

‖u− uh‖1,s + ‖u− uh‖0,d + ‖p− ph‖0

≤ Ch
{
‖f‖1,d + ‖u‖2,s + ‖u‖1,d + ‖p‖1,s + ‖p‖1,d + ‖pd‖1,Γ

}
.

Moreover, PW∇ · uh = PW q.

6. Some Numerical Results. We present some simple test cases involving
smooth solutions to verify the convergence rates. Additional numerical examples
related to simulation of flow in vuggy porous media can be found in [1]. For simplicity,
in all our examples, Ω is the unit square and α = µ = K = 1.

6.1. A remark on the solution procedure. As noted earlier in §3, the result-
ing linear system is symmetric and has a completely regular structure. However, the
matrix is quite ill-conditioned; moreover, it has a saddle point structure. We briefly
remark on our solution strategy, which is very effective for problems up to grid sizes
of perhaps 128×128. We chose to implement a solver for the scheme using an inexact
Uzawa technique [8, 9]. For a rectangular grid with nx × ny elements, the matrix
problem is of the form Axx Axy Bx

AT
xy Ayy By

BT
x BT

y 0

ux

uy

p

 =

fx

fy

q

 ,
where ux represents the (nx + 1)(2ny + 1) nodal values of the x1 velocity components
vx

i , uy represents the (2nx + 1)(ny + 1) nodal values of the x2 velocity components
vy

i , and p represents the nxny nodal values of the pressure.
Except for modification for boundary conditions,

Axx,ij = 2µ(Dvx
i , Dvx

j )s + µ〈αK−1/2vx
s,i · τ,vx

s,j · τ〉+ µ(K−1vx
i ,v

x
j )d ,

Ayy,ij = 2µ(Dvy
i , Dvy

j )s + µ〈αK−1/2vy
s,i · τ,v

y
s,j · τ〉+ µ(K−1vy

i ,v
y
j )d ,

Axy,ij = 2µ(Dvx
i , Dvy

j )s ,
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so both Axx and Ayy are positive definite. Since these submatrices arise from a two
dimensional rectangular grid, they are banded with a reasonable band size, so direct
factorization is feasible for problems not too large.

The inexact Uzawa procedure starts with an initial guess for the solution, say
p0 = 0, u0

x = 0, and u0
y = 0, and then for ` = 1, 2, ..., it defines iteratively

u`
x = A−1

xx (fx −Axyu`−1
y −Bxp

`−1) , (6.1)

u`
y = A−1

yy (fy −AT
xyu

`−1
x −Byp

`−1) , (6.2)

p` = p`−1 + βM(BT
x ux +BT

y uy − q) , (6.3)

where β > 0 is the Uzawa parameter and M is some preconditioner for the system.
A relatively good preconditioner is needed. We took

M =
[(
BT

x BT
y

) (
A−1

xx 0
0 A−1

yy

) (
Bx

By

)]−1

, (6.4)

which is invertible (after modification for the compatibility condition that p is defined
only up to a constant). This computation is quite expensive, since the matrix is
full, but, again, direct factorization is feasible for problems not too large. (For larger
problems, some inexact inverse could be used.) This preconditioner is exact when
Axy = 0 and β = 1. We found that the Jacobi preconditioner given by inverting
only the diagonal of (6.4) performed very poorly, requiring sometimes hundreds of
thousands of iterations to converge, and worsening greatly with the size of the problem.
On the other hand, M solved problems on grids of size 8× 8 up to 64× 64 using only
around 100 iterations (the worse case took under 500 iterations).

This preconditioner is very expensive for larger problems, and more research is
needed to improve the linear system solution methodology.

6.2. Some simply constructed examples. In our first set of examples, Ωs =
(0, 1/2) × (0, 1), Ωd = (1/2, 1) × (0, 1), and Γ is the line x = 1/2. It is difficult to
construct solutions that satisfy the entire Darcy-Stokes system (2.1)–(2.9). If u and p
are chosen somehow, we can easily satisfy (2.1)–(2.4) by defining f and q appropriately.
Moreover, rather than requiring the solution to satisfy the outer boundary conditions
(2.8)–(2.9), we can simply allow for a more general and nonhomogeneous set; again,
the nonhomogeneous terms are defined from the solution.

The difficulty is finding a solution satisfying the interface conditions (2.5)–(2.7).
In this subsection, we simply use the same trick of generalizing the equations to
include a nonhomogeneous term. That is, we replace (2.6)–(2.7) by

2ν ·Dus · τ = −αK−1/2us · τ + g1 on Γ , (6.5)
2µν ·Dus · ν = ps − pd + g2 on Γ . (6.6)

The construction is now clear: choose u satisfying (2.5), and then define f , q, g1, g2,
and the outer boundary conditions from the solution. These test cases are summarized
in Table 6.1. The variational form for this modified system has only a small change:
(2.12) now includes the two terms 〈g2,v · ν〉+ µ〈g1,vs · τ〉 on the right side.

If we use the unmodified finite element space Ṽh of Fortin [13, 3], we see poor
convergence results in Table 6.2. This is due to the fully continuous approximation
of the velocity. However, our constructed solutions have a discontinuity in u · τ on Γ.
The modified space Vh defined in §3 corrects this defect, as seen by the convergence
rates in Figs. 6.3 and 6.4.
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Table 6.1
The numerical Test Cases 1–4.

Case p us ud

1 0
(

0
1
2 − y2

) (
0
0

)
2 ex sin(x+ y)

(
cos(xy)
ex+y

) (
cos(xy)

0

)
3 cos(x2y)

(
sin(x2y)
cos(x2y)

) (
sin(x2y)
ex+y

)
4 −y4ex

(
y4ex

ey cos(2x)

) (
y4ex

4y3ex

)

In Table 6.3, we have used uniform grids of size 8 × 8, 16 × 16, 32 × 32, and
64× 64. In Table 6.4, we have randomly perturbed the points of the uniform grid by
plus or minus one quarter of the uniform cell spacing, except that the center lines have
been unperturbed so as to resolve Γ. We clearly see at least O(h) convergence for the
pressure and velocity as measured in the L2-norm, and at least O(h) convergence for
the gradient of the velocity on Ωs, as proved in Theorem 5.3. In fact, we see more
from these computational results. It appears that there is some superconvergence of
order perhaps O(h3/2) for the error PW p− ph in the L2-norm, although it is not the
usual O(h2) that mixed methods often produce. Moreover, on uniform grids only, we
see perhaps O(h1/2) convergence in the L2-norm of ∇(u − uh) over all of Ω. Such
convergence was observed for the unmodified elements when solving Darcy systems
on uniform grids (see [3]). Finally, we see convergence in the L2-norm of ∇ · (u−uh)
of order perhaps O(h) on uniform grids and O(h1/2) in general.

Table 6.2
Observed convergence rates using the unmodified space Ṽh for the errors Ep = p − ph and

Eu = u− uh for test cases 1–4 on a uniform grid.

Case ‖Ep‖0 ‖PWEp‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇ · Eu‖0

1 1.2081 1.2081 0.5084 -0.4986 0.5298
2 0.9997 0.9690 0.4982 -0.5032 0.5196
3 1.0082 1.0780 0.5003 -0.5054 0.5174
4 0.9961 1.0161 0.5618 -0.4743 0.6228

Table 6.3
Observed convergence rates using the modified space Vh for the errors Ep = p− ph and Eu =

u− uh for Test Cases 1–4 on a uniform grid.

Case ‖Ep‖0 ‖PWEp‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 2.004 2.004 2.001 1.000 1.000 1.000
2 1.001 1.509 1.431 0.431 1.258 0.975
3 1.060 1.610 1.431 0.419 1.002 0.982
4 1.038 1.703 1.437 0.412 1.037 0.965
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Table 6.4
Observed convergence rates using the modified space Vh for the errors Ep = p− ph and Eu =

u− uh for Test Cases 1–4 on a randomly perturbed grid.

Case ‖Ep‖0 ‖PWEp‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 1.983 1.983 1.963 0.988 0.988 0.988
2 0.987 1.458 1.137 0.114 1.239 0.616
3 1.038 1.596 1.157 0.114 0.999 0.682
4 1.006 1.664 1.173 0.159 1.024 0.781

6.3. Some smooth examples with corners. In our second set of examples,
we take Γ =

(
{1/2} × (0, 1/2]

)
∪

(
[1/2, 1) × {1/2}

)
. That is, Γ has a corner and

separates off the lower right quarter of the square (1/2, 1)× (0, 1/2), which will be Ωd

in test case 5 and Ωs in test case 6. Note that Test Case 6 uses a modified element
near the central corner (see Fig. 3.1, Pattern 2). Overall, these two cases require all
modification patterns depicted in Fig. 3.1, except for the checkerboard Pattern 5.

In this set of examples, we fully satisfy the system (2.1)–(2.7). We handle the
equations (2.1)–(2.4) by defining f and q and the external boundary conditions (2.8)–
(2.9) as above, once u and p are fixed. We first choose some us satisfying (2.6), and
then take pd constant and find some ps that satisfies (2.7). Finally, ud is chosen to
satisfy (2.5). Our test cases are summarized in Table 6.5.

Table 6.5
The numerical Test Cases 5–6.

( 1
2 , 1)

Case ps pd us ud ×(0, 1
2 )

5 e−2xy − 1
2e

−1/2 0
(
xe−y + 1

2e
−x

ye−x + 1
2e

−y

) (
x(e−2xy + e−x)
y(4y2e−x + e−y)

)
Ωd

6 2e−y 0
(

(2x+ 1)e−y

−2e−y

) (
2e−2xy

(y − 1
2 )3e−x − 2e−1/2

)
Ωs

From Table 6.6, we see very good convergence. Actually, the L2 and H1-errors
for u − uh are somewhat better than expected. We see clearly from these two test
cases that there is no convergence difficulty with modifying the basis over a Darcy
element.

Table 6.6
Observed convergence rates using the modified space Vh for the errors Ep = p− ph and Eu =

u− uh for Test Cases 5–6.

Case ‖Ep‖0 ‖PWEp‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0 Grid

5 1.000 2.066 2.005 1.007 1.033 1.004 uniform
6 1.001 1.895 1.993 1.007 1.005 1.000 uniform
5 1.000 1.988 2.006 1.011 1.004 1.011 perturbed
6 1.000 1.771 1.983 1.003 0.999 1.000 perturbed

6.4. Some simple layered examples. In our last set of examples, Ωs = (0, 1)×
(0, 1/2), Ωd = (0, 1)×(1/2, 1), and Γ is the line y = 1/2. We use the analytical solution
of [2]. These test cases are summarized in Table 6.7.
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Table 6.7
The numerical Test Cases 7–8.

Case ps pd us ud

7 0 0
(

1
4 (−2y2 + y + 1)

0

) (
1
0

)
8 y 1− y

(
0
2

) (
0
2

)

Test Case 7 has a solution (p,u) that is in the finite dimensional space Vh, so
it is solved exactly up to rounding error. The solution to Test Case 8 is not in the
space, and only ph = PW p is computed exactly. However, as shown in Table 6.8, the
convergence is as good as or better than that expected from the earlier test cases.

Table 6.8
Observed convergence rates using the modified space Vh for the errors Ep = p− ph and Eu =

u− uh for test case 8.

Case ‖Ep‖0 ‖PWEp‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0 Grid

8 1.000 — 2.415 1.424 1.424 2.000 uniform
8 0.988 — 2.482 1.449 1.449 1.977 perturbed

7. A lower dimension modification. In this section we further modify Vh

so that extra tangential continuity is removed from the Darcy side of the space.
That is, remove the corner degrees of freedom (3.1) whenever the corner has Darcy
elements surrounding it (see Fig. 3.1—we modify only Pattern 1). Call the resulting
space V̄h. The effect is to use Raviart-Thomas elements V̂h strictly inside Ωd, the
full Fortin Stokes elements Ṽh strictly inside Ωs, and our modified elements Vh as
transition elements near Γ. We may lose some global basis functions, and therefore
also the regular sparsity structure of the matrix (although this regular structure can
be recovered with some so called “slave nodes” that are set to zero, if desired).

The definition of the operator π̄ : (H1(Ω))2 → V̄h is defined analogously as to
that in §4, and a similar error estimate to Lemma 4.2 holds. Moreover, an a priori
error analysis will yield a result analogous to Theorem 5.3.

Table 7.1
Observed convergence rates using the modified space V̄h for the errors Ep = p− ph and Eu =

u− uh for Test Cases 1–6 and 8 on a uniform grid.

Case ‖Ep‖0 ‖PWEp‖0 ‖Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 2.004 2.004 2.001 1.000 1.000
2 1.000 1.936 0.994 1.262 0.801
3 1.009 1.950 1.000 1.002 0.971
4 1.011 1.925 0.998 1.054 0.914
5 1.006 1.787 0.993 1.037 0.739
6 1.001 1.920 0.969 1.005 0.560
8 1.000 —– 2.415 1.424 2.000

In Figs. 7.1 and 7.2 we show the convergence of this modified scheme. These test
cases are the same as in the previous section, but note that we omit the H1-errors
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Table 7.2
Observed convergence rates using the modified space V̄h for the errors Ep = p− ph and Eu =

u− uh for Test Cases 1–6 and 8 on a randomly perturbed grid.

Case ‖Ep‖0 ‖PWEp‖0 ‖Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 1.983 1.983 1.963 0.988 0.988
2 0.986 2.041 0.971 1.243 0.802
3 0.996 2.141 0.986 0.998 0.962
4 0.982 1.935 0.975 1.042 0.903
5 1.006 1.712 0.990 1.008 0.740
6 1.001 1.812 0.955 1.000 0.567
8 0.988 —– 2.482 1.449 1.977

on Ω, since now there are discontinuities in Ωd and no convergence can be expected.
We also do not show convergence rates for Test Case 7, because it is essentially
solved exactly up to rounding error. We see the expected convergence rates of at
least O(h) for the pressure and velocity as measured in the L2-norm, and at least
O(h) convergence for the gradient of the velocity on Ωs, as proved in the analogue to
Theorem 5.3. It appears that there is some superconvergence of order perhaps O(h2)
for the error PW p − ph in the L2-norm. Finally, we see convergence in the L2-norm
of ∇· (u−uh) of order perhaps only order O(h1/2) in general. There does not appear
to be any advantage to using a uniform grid.

These rates are consistent with those from the previous scheme using Vh, except
that previously the PW p−ph error only converged at the rate O(h3/2). The magnitude
of the pressure errors in the L2-norm were very comparable. However, the velocity and
divergence errors are a bit better for the previous scheme. This would be expected,
since the velocity polynomial space of Vh is somewhat richer on Ωd than that of V̄h.
The solution time of the two schemes is also very comparable. Thus, although the
modification of the finite element space V̄h in this section results in a smaller space
and is simple to implement, it does not appear to be better than the previous space
Vh.
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