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Abstract We describe a novel and general framework for solving advection-diffusion
equations using finite volume weighted essentially non oscillatory (WENO) tech-
niques on general computational meshes. Such techniques are able to handle advec-
tive and (degenerate) diffusive behavior, even when the solution develops shocks
or steep fronts. We discuss a robust procedure for producing accurate stencil poly-
nomial approximations and a recently developed multilevel WENO (ML-WENO)
reconstruction. It combines stencil polynomials of various degrees (e.g., more than
two degrees and including constant polynomials) defined on any set of stencils (e.g.,
not hierarchically arranged). The nonlinear weighting biases the reconstruction away
from both inaccurate oscillatory polynomials crossing a shock or steep front and
smooth polynomials of low degree, thereby selecting the smooth polynomial(s) of
maximal degree of approximation. We apply these ideas to develop a preliminary
finite volume scheme for solving the Richards equation, which models unsaturated
flow in porous media. Numerical tests of rainwater infiltration show the advantages
of using higher order finite volume methods and multilevel WENO reconstructions.

1 Introduction

Discontinuous Galerkin (DG) and finite volume (FV) methods are popular choices
for the approximation of advection-diffusion equations

𝑢𝑡 + ∇ · [ 𝑓 (𝑢) − 𝐷 (𝑢)∇𝑢] = 𝑞(𝑢), x ∈ Ω ⊂ R𝑑 , 𝑡 > 0, (1)

for the unknown 𝑢(x, 𝑡), especially when the equation is advection dominated (i.e.,
𝐷 is small). The pure advection equation (i.e., 𝐷 = 0) often has solutions exhibiting
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discontinuities. Numerical methods must carefully approximate the solution on the
interfaces between mesh cells or elements. DG places many degrees of freedom
(DoFs) inside each mesh element 𝐸 to understand the solution behavior on 𝜕𝐸 , while
FV places one DoF inside each mesh element, and looks outside 𝐸 to determine the
behavior of the solution on 𝜕𝐸 .

FV methods have many advantages; we mention three. First, they use only one
degree of freedom per mesh element in any space dimension and for any degree
of approximation. Second, they maximize the mesh resolution. That is, compared
to finite element and DG methods using a similar number of DoFs, the mesh is
significantly finer for FV methods. This is important in some applications, such as
porous media, where permeability and porosity are generally taken to be constant on
each mesh element. Third, the mesh needs no special properties.

In this paper, we discuss a FV scheme approximating (1) involving a recently
introduced weighted essentially non-oscillatory (WENO) technique [1]. We then
give a preliminary application to Richards equation, which arises in the field of
hydrology.

2 The Finite Volume Framework

Let Tℎ be a quasi-uniform computational mesh of elements of maximal diameter
ℎ > 0 over the bounded domain Ω ⊂ R𝑑 . We will take 𝑑 = 2 in this paper, but the
ideas extend to higher dimensions. The average of 𝑢(x, 𝑡) over the mesh element
𝐸 ∈ Tℎ is

𝑢̄𝐸 (𝑡) =
1
|𝐸 |

∫
𝐸

𝑢(x, 𝑡) 𝑑x , (2)

where |𝐸 | is the area of 𝐸 . The differential equation (1) can be averaged over 𝐸 as
well. After applying the Divergence Theorem, we find

𝑢̄𝐸,𝑡 +
1
|𝐸 |

∫
𝜕𝐸

(
𝑓 (𝑢) − 𝐷∇𝑢

)
· 𝜈𝐸 𝑑𝑆(x) =

1
|𝐸 |

∫
𝐸

𝑞(𝑢) 𝑑x . (3)

A numerical flux function for the advective term is needed both to stabilize com-
putations by adding numerical diffusion and to account for potential discontinuities
in the solution. We use the Lax-Friedrichs numerical flux

𝑓𝐸 (𝑢− , 𝑢+) =
1
2
[
( 𝑓 (𝑢−) + 𝑓 (𝑢+)) · 𝜈𝐸 − 𝛼LF (𝑢+ − 𝑢−)

]
, (4)

where 𝑢− and 𝑢+ are left and right limits of the solution at the interface 𝜕𝐸 and
𝛼LF = max

𝑢

��𝜕 𝑓 /𝜕𝑢�� is the maximum wave speed. Thus

𝑢̄𝐸,𝑡 +
1
|𝐸 |

∫
𝜕𝐸

[
𝑓𝐸 (𝑢− , 𝑢+) − 𝐷 (𝑢)∇𝑢 · 𝜈𝐸

]
𝑑𝑆(x) = 1

|𝐸 |

∫
𝐸

𝑞(𝑢) 𝑑x . (5)
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Time is evolved using standard implicit or explicit Runge-Kutta methods, such as
the explicit forward Euler, the implicit backward Euler, or the explicit three stage,
third order SSP method. These methods approximate at time levels 0 = 𝑡0 < 𝑡1 <
𝑡2 < · · · , so that 𝑢̄𝑛

𝐸
≈ 𝑢̄𝐸 (𝑡𝑛) for each 𝑛 > 0. We also need to approximate 𝑢± (x)

and 𝐷 (𝑢)∇𝑢 · 𝜈𝐸0 (x) on 𝜕𝐸0 for each 𝐸0 ∈ Tℎ, given only {𝑢̄𝐸}.

3 Construction of Stencil Polynomials

Given a mesh stencil 𝑆 = {𝐸 𝑗 ∈ Tℎ, some 𝑗} of contiguous mesh elements, we can
define its stencil polynomial of degree 𝑟 − 1,

𝑃(x) =
∑︁
𝛼<𝑟

𝑐𝛼

(x − x𝑆
ℎ𝑆

)𝛼
, (6)

by matching the averages over each 𝐸 ∈ 𝑆, i.e.,

1
|𝐸 |

∫
𝐸

𝑃(x) 𝑑x = 𝑢̄𝐸 ⇐⇒ 𝐴c = u , (7)

for some 𝑀 × 𝑁 matrix 𝐴. This generally requires least-squares fitting [6], since the
number of polynomial coefficients 𝑁 is usually not the number of stencil elements𝑀 .

We find the SVD decomposition and the 𝑚 = rank(𝐴) singular values

𝐴 = 𝑈Σ𝑉𝑇 , 𝑠1 ≥ 𝑠2 ≥ · · · ≥ 𝑠𝑚 > 0 . (8)

If the matrix 𝐴𝑇 𝐴 is nonsingular (𝑚 = 𝑀), we can solve for the polynomial co-
efficients c = (𝐴𝑇 𝐴)−1𝐴𝑇u = 𝑉Σ−1𝑈𝑇u. However, one actually selects a target
element 𝐸0 ∈ 𝑆 and constrains c to match (7) on 𝐸0 [6]. In [1], it was shown how to
determine when one obtains a reliable approximation of 𝑢 and its derivatives. The
result proved there is stated below.

Theorem 1 If the mesh is quasiuniform, then there is 𝐶 ≥ 0 such that for x ∈ 𝐸0,

|D𝛼 (𝑢(x) − 𝑃(x)) | ≤ 𝐶ℎ𝑟−|𝛼 | ∀ |𝛼 | ≤ 𝑟 , (9)

where 𝐶 depends on the condition number of the matrix 𝐴𝑇 𝐴.

If the condition number (𝑠1/𝑠𝑀 )2 is much larger than one (say greater than 108),
we should reject the stencil polynomial. We could then try to add elements to the
stencil, but in dimensions greater than one, it is not clear which elements should
be added. Moreover, a larger stencil is undesirable, since it is more likely to cross
a shock. An alternative is to decrease the degree 𝑟 − 1 of the polynomial to 𝑟 − 2
and try again [1]. This option is practical in multidimensions, and the algorithm will
terminate at least with 𝑟 = 1 (i.e., a constant polynomial). In other words, we fix the
stencil and find the best polynomial approximation it supports.
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We must also reliably detect a shock or steep front. For polynomial 𝑃(x) targeting
element 𝐸0, its smoothness indicator is 𝜎𝑃 [7, 5]. It satisfies 𝜎𝑃 = 𝐷0ℎ

2
0 + O(ℎ3) if

𝑢 is smooth on the stencil (for some constant 𝐷0 ≥ 0), and is O(1) if 𝑢 has a jump
discontinuity on the stencil.

4 ML-WENO Reconstructions

The general philosophy of ENO and WENO reconstructions is that they should
involve approximations that do not cross a shock. They do so by considering many
stencil polynomials 𝑃ℓ of degree 𝑟ℓ −1 for target element 𝐸0 ∈ Tℎ and taking a linear
combination

𝑅(x) =
∑︁
ℓ

𝜔̃ℓ𝑃ℓ (x) . (10)

Most current WENO techniques are unsuitable for general approximation in mul-
tidimensions. They require polynomials of only two degrees, or stencils arranged
hierarchically. Moreover, they generally require non-constant polynomials. An excep-
tion is the multilevel WENO (ML-WENO) reconstruction presented in [1]. Choose
linear weights 𝜔ℓ > 0 (such as 1, although it is perhaps better to use 10−4 when
weighting constant polynomials), and then define the nonlinear weights

𝜔̃ℓ =
𝜔̂ℓ∑
𝑘 𝜔̂𝑘

where 𝜔̂ℓ =
𝜔ℓ

(𝜎𝑃ℓ + 𝜖0ℎ2)𝑟ℓ
. (11)

Here 𝜖0 > 0 is a small parameter (such as 10−2 or 10−6). This weighting biases the
reconstruction to emphasize the stencil polynomials of highest order of accuracy
that do not cross a shock. The result proved in [1] is stated below.

Theorem 2 There is some 𝐶 > 0 such that for all x ∈ 𝐸0 (the target element),

|𝑢(x) − 𝑅(x) | ≤ 𝐶ℎ𝑟max , (12)

where 𝑟max = max
ℓ

{𝑟ℓ : 𝑢 is smooth on the ℓth stencil}.

Returning to (5), we use the reconstruction 𝑅 to evaluate 𝑢± on the boundary
of the target element 𝐸0. We also evaluate the normal derivative 𝐷 (𝑢)∇𝑢 · 𝜈𝐸 by
evaluating 𝑅 on the line normal to an edge of 𝐸0, interpolating the results, and
differentiating the resulting polynomial, as was discussed in [2].

5 Preliminary Application to Richards Equation

As a preliminary investigation of the use of ML-WENO in solving problems in
porous media, we consider solving a rainwater infiltration problem. The two-phase
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air-water system in hydrology is generally governed by Richards equation [3]. The
system is modeled assuming that the air phase is infinitely mobile and connected
to the surface, so the air pressure is fixed at atmospheric pressure, taken as zero.
The unknown solution then consists of only the water saturation 𝑠, pressure 𝑝w, and
velocity vw. The equations can be written as

𝜙𝑠𝑡 + ∇ · vw = 𝑞(𝑠) , (13)
vw = −𝜆w (𝑠) 𝐾 (∇𝑝w − 𝜌w g) , (14)

𝑝c (𝑠) = −𝑝w ≤ 0 , (15)

where 𝜙 is the porosity, 𝐾 is the permeability, 𝜆w is the relative mobility, 𝜌w is the
water density, g is the gravity vector, 𝑝c (𝑠) is the (macroscopic) capillary pressure
function, and 𝑞 models the external wells appearing in the domain.

We can simplify the system by defining the Kirchhoff Transformation [4]

𝐷 (𝑠) = −
∫ 𝑠

0
𝜆w (𝑆)𝑝′c (𝑆) 𝑑𝑆 , (16)

which implies that

∇𝐷 (𝑠) = −𝜆w (𝑠)∇𝑝c (𝑠) = 𝜆w (𝑠)∇𝑝𝑤 . (17)

We eliminate 𝑝w = −𝑝c (𝑠) and vw = −𝐾∇𝐷 (𝑠) + 𝜌w 𝜆w (𝑠) 𝐾 g to obtain the single
equation

𝜙𝑠𝑡 − ∇ ·
(
𝐾∇𝐷 (𝑠)

)
+ ∇ ·

(
𝜌w 𝜆w (𝑠) 𝐾 g

)
= 𝑞(𝑠) . (18)

In finite volume form over the mesh element 𝐸 , the equation is

𝜙𝑠𝐸,𝑡 −
1
|𝐸 |

∫
𝜕𝐸

𝐾∇𝐷 (𝑠) · 𝜈 𝑑𝑆(x)

+ 1
|𝐸 |

∫
𝜕𝐸

𝜌w 𝜆w (𝑠) 𝐾 g · 𝜈 𝑑𝑆(x) = 1
|𝐸 |

∫
𝐸

𝑞(𝑠) 𝑑x .
(19)

The terms on the left hand side model accumulative, (degenerate) diffusive, and
advective processes. The third term requires a numerical flux (4).

5.1 Numerical Implementation

We assume a single rock type and a constant porosity, so 𝑠 is smooth but may exhibit
steep fronts. We present a simple algorithm based on advancing the saturation
through time.

Time is advanced from 𝑡𝑛 to 𝑡𝑛+1 by an explicit Runge-Kutta method with ℓmax
stages. Set 𝑠𝑛,0 = 𝑠𝑛. For each stage ℓ = 0, 1, . . . , ℓmax − 1, advancement of 𝑠𝑛,ℓ to
𝑠𝑛,ℓ+1 can be represented as
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𝑠𝑛,ℓ
ML-WENO−−−−−−−−−−→ 𝑅𝑛,ℓ

point evaluation
−−−−−−−−−−−−−−→ (𝑠𝑛,ℓ , 𝑝𝑛,ℓw , v𝑛,ℓw )

transport
−−−−−−−−→ 𝑠𝑛,ℓ+1 . (20)

The first step in (20) is to use ML-WENO to reconstruct 𝑅𝑛,ℓ ≈ 𝑠𝑛,ℓ over each
element of the mesh. The second step uses the reconstructions to find the required
point evaluations of 𝑠𝑛,ℓ , 𝑝𝑛,ℓw , and v𝑛,ℓw needed in the approximation of (19). The
third step results in the new value of 𝑠𝑛,ℓ+1 after solving the finite volume transport
equation (19). Finally, after all Runge-Kutta stages, we set 𝑠𝑛+1 = 𝑠𝑛,ℓmax .

We have chosen to reconstruct the saturation. However, we should expect that
reconstruction of 𝑝w would be more accurate than reconstruction of 𝑠, since in
general the variable 𝑝w is smoother than 𝑠. If we did so, we would need to take the
finite volume unknowns to be 𝑝𝑛w,𝐸 . The advancement of 𝑝𝑛,ℓw to 𝑝𝑛,ℓ+1

w would then
require an additional step, which would follow the procedure

𝑝𝑛,ℓw
ML-WENO−−−−−−−−−−→ 𝑅𝑛,ℓ

point evaluation
−−−−−−−−−−−−−−→ (𝑠𝑛,ℓ , 𝑝𝑛,ℓw , v𝑛,ℓw )

transport
−−−−−−−−→ 𝑠𝑛,ℓ+1 transform−−−−−−−−→ 𝑝𝑛,ℓ+1

w .

(21)

The approximation of the differential equation (19) would still lead to transport of
𝑠𝑛,ℓ+1 on each element, and these would need to be transformed into values for
𝑝
𝑛,ℓ+1
w on each element. It is an open problem as to how to effectively define this

transformation while maintaining accuracy.

5.2 Numerical Test of Water Infiltration

We consider a 100 m × 10 m groundwater domain with continuous infiltration of
water on a portion of the top boundary, as shown in Figure 1. The initial saturation is
otherwise in gravitational equilibrium. The figure also shows the randomly generated
but correlated heterogeneous permeability, which varies from about 0.1 to 1 Darcy.
We use van Genuchten capillary pressure and water mobility curves [8] as shown in
Figure 2 (generated from the parameters 1/𝛼 = 5 psi, 𝑚 = 0.5, and 𝑛 = 2).

We impose a 100 × 50 mesh of quadrilaterals over the domain (see Figure 1).
We use the explicit forward Euler time stepping method, although the third order
explicit SSP Runge-Kutta method gives similar results. The time step is taken to be
Δ𝑡 = 0.001 days, and we compute 6000 steps (6 days).

We show the results of using low order methods in Figure 3. Displayed is the
saturation at times 0.2, 1, 2, 4, and 6 days. The ML-WENO(1) method simply uses a
constant polynomial over each target element as the reconstruction, and amounts to
a standard first order accurate upwind finite volume method. The ML-WENO(2,1)
method combines a linear polynomial defined over a stencil of five elements sharing
an edge with the target element, and a constant polynomial; that is, it is second order
in smooth regions but drops to first order near a steep front. These two results are
fairly similar. Not shown are the results using ML-WENO(3,1), which are similar to
the other two. The quadratic polynomial in ML-WENO(3,1) is defined on a stencil
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Fig. 1 The groundwater domain, showing the initial saturation 𝑠 (x, 0) and permeability 𝐾 .
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Fig. 2 The van Genuchten capillary pressure 𝑝c (in MKS units) and water mobility curves 𝜆w.

of nine elements that share a vertex with the target element. These three methods all
drop to first order near the steep front, which limits the accuracy of the solution.

The results of using third order methods is shown in Figure 4. The ML-
WENO(3,2) and ML-WENO(3,2,1) results are similar to each other, but differ sig-
nificantly from the low order methods. The third order methods show a sharper front
and a faster infiltration of water. Near the steep front, the ML-WENO(3,2) method
drops to a linear approximation, while the three level, ML-WENO(3,2,1) method
usually drops to a linear approximation but sometimes to a constant approximation
(the relative linear weight for the constant polynomial is taken to be 10−4 for ML-
WENO(3,2,1)). Overall, ML-WENO(3,2) gives a bit sharper front, but at the expense
of the solution being negative near the front, as can be seen at 0.2 and 1 day. Adding
the constant polynomials into the reconstructions alleviates this problem.
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Day 0.2 Day 0.2

Day 1 Day 1

Day 2 Day 2

Day 4 Day 4
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Fig. 3 Saturation computed using the ML-WENO(1) and ML-WENO(2,1) reconstructions.
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Fig. 4 Saturation computed using the ML-WENO(3,2) and ML-WENO(3,2,1) reconstructions.
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Higher order methods come at a cost in run time. The results were run on a 2016
Intel Xenon E5-2609 chip rated at 1.7 GHz. The timings are displayed in Table 1.
The low order methods are about 2.4 to 3.8 times faster than the third order methods.
Given the increase in resolution, this cost seems justified. Moreover, the addition of
constants to the third order method adds a minor amount to the run time (about 6%).

Table 1 Run time for the simulations.
Explicit Euler Explicit RK-SSP3
Run time (s) Run time (s)

Method user system total user system total
ML-WENO(1) 32.86 0.13 33.02 — — —
ML-WENO(2,1) 49.55 0.19 49.77 — — —
ML-WENO(3,1) 83.62 0.51 1:24.19 — — —
ML-WENO(3,2) 117.27 0.43 1:57.71 351.35 0.35 5:51.91
ML-WENO(3,2,1) 124.10 0.49 2:04.62 369.10 0.78 6:09.99

The Richards equation is a degenerate advection-diffusion equation. Often people
treat the equation numerically as if it were a well-behaved parabolic problem, in
which case some additional regularization is required. Such is not the case here. The
equation is approximated as if it were hyperbolic, treating the advective terms as if
they might dominate the behavior of the solution. The degenerate diffusion terms are
also approximated, but they simply provide an extra stabilizing effect. The numerical
examples of this section demonstrate the effectiveness of our approach.
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