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Abstract. We present a locally mass conservative scheme for the approximation of
two-phase flow in a porous medium that allows us to obtain detailed fine scale solu-
tions on relatively coarse meshes. The permeability is assumed to be resolvable on
a fine numerical grid, but limits on computational power require that computations
be performed on a coarse grid. We define a two-scale mixed finite element space and
resulting method, and describe in detail the solution algorithm. It involves a coarse
scale operator coupled to a subgrid scale operator localized in space to each coarse
grid element. An influence function (numerical Greens function) technique allows
us to solve these subgrid scale problems independently of the coarse grid approxi-
mation. The coarse grid problem is modified to take into account the subgrid scale
solution and solved as a large linear system of equations posed over a coarse grid.
Finally, the coarse scale solution is corrected on the subgrid scale, providing a fine
grid representation of the solution. Numerical examples are presented, which show
that near-well behavior and even extremely heterogeneous permeability barriers and
streaks are upscaled well by the technique.

Keywords: upscaling, subgrid, numerical Greens functions, porous media, hetero-
geneity

1. Introduction

In a typical subsurface flow simulation, one is confronted with the prob-
lem of resolving extremely small scale features in the system or solution
over very large spatial domains and over long time intervals. Direct
simulation of all the relevant fine scale details is generally avoided as
being too computationally expensive. Rather, some large scale averag-
ing [27, 14] or homogenization [1, 16] of the fine scale system replaces it
by an equivalent (in some sense) coarse scale model. Such an upscaling
of information from the fine to the coarse scale smears out the solution
so that one looses fine scale details. This is reasonable in certain cases,
but in others it completely obscures the solution.

More recently, attempts have been made to capture the fine scale
behavior of the solution directly on coarser grids. The multiscale finite
element method [17], the residual free bubble techniques [18, 19, 9], cer-
tain domain-decomposition techniques [26, 31], and a-posteriori mod-
eling techniques [21, 22] are examples of this idea. Each can be viewed
as a subgrid technique in the sense that each attempts to resolve scales
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2 Todd Arbogast

below the coarse grid scale, by doing a significant amount of local work
that contributes to a global problem defined only on a coarse grid.

In [6] and [3] a new approach to upscaling an elliptic partial differ-
ential equation was introduced that involves the decomposition of the
solution operator into two pieces. In these two papers, the method is
described in general terms, and numerical tests are given that demon-
strate the overall speed and convergence properies of the method. Ap-
plications to groundwater contaminant transport and petroleum simu-
lation are given in [4, 5], wherein it is shown that the method has great
potential to resolve fine scale effects in practical problems.

We pursue this numerical upscaling technique in this paper by dis-
cussing in rather complete detail its implementation. A straightforward
implementation of the method would give rise to certain computa-
tional complexities; however, as we show below, these can be easily
avoided. Additional and more stringent numerical tests are presented
by applying the technique to two-phase problems with significant het-
erogeneity. Moreover, the modeling of wells using a standard Peaceman
approach [24, 25] is discussed in this paper. A significant advantage of
the subgrid technique is that we need make no assumptions about the
physics; rather, we use data provided on the fine scale directly in our
computation, and we use the fine scale representation of the solution
in the evaluation of nonlinear functions.

A brief outline of the paper follows. In the next section, we formulate
a model elliptic problem that we use to discuss our upscaling technique,
and cast it in a mixed variational form so that the mass conservation
equation is retained. Our mixed finite element spaces are carefully de-
fined in the third section, involving a two-scale definition of the basis
functions. One part is defined on a coarse computational grid, and the
rest defined on the fine scale within the coarse elements themselves (this
is the subgrid part of the functions). In the fourth section we define our
mixed finite element method on the global fine scale grid. This is merely
for conceptual purposes, as it cannot be solved efficiently, but it does
show clearly that mass is conserved locally. In Section 5, we discuss
in detail our two-scale decomposition and an efficient implementation
algorithm. We first impose the scale separation inherent in our finite
element spaces. Next we show how to solve the subgrid portion of the
solution independently of the coarse scale, by using numerical Greens
functions or influence functions. This results in a series of small local
problems, one for each coarse element. They are easily solved (and
parallelize naturally). We follow this by a modification of the coarse
scale problem, which leads us to our upscaled equation defined on the
coarse computational grid. Combining the coarse and subgrid parts of
the solution leads us to our final solution defined on the fine scale.
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In Section 6, we show how to apply our algorithm to two-phase
immiscible, incompressible flow in a porous medium. We consider the
system as a pressure equation coupled to a saturation equation. We
need upscale only the former equation. Also discussed are fixed rate
wells and the Peaceman well model [24, 25]. In Section 7 we give
three numerical examples illustrating the performance of the upscal-
ing technique on near-well behavior, permeability barriers, and high
permeability streaks or fractures. These are three of the more diffi-
cult phenomena to model accurately on coarse grids. The final section
summarizes our conclusions.

2. A Model Elliptic Equation

It is easier for exposition to consider a model problem: we modify it
later to obtain an application to the equations describing two-phase
flow. Let 2 C R? be a connected polygonal domain that represents the
spatial extent of the porous medium, and consider the model elliptic
problem for the pressure p and Darcy velocity u

ap+V-u=>b inQ, (1)
u=-d(Vp—¢) inQ, (2)

wherein we have the scalars a > 0 and b, vector ¢, and second order
positive definite tensor d. These should be sufficiently nice functions
so that the method can be defined. Decompose 92 as 9Q = I'y UTg,
where 'y UT'gr = (), and let v be the unit outer normal vector. To this
differential problem we add the boundary conditions

u-v =gy onI'y, (3)
oau-v=p—gr onlpg, (4)

representing Neumann and Robin (and Dirichlet, if @ = 0) conditions
for suitably nice functions gy, gr, and a > 0. We assume that a unique
and sufficiently regular solution to this system exists.

One special case arises. If a vanishes identically on all of €2, which
we express by writing a = 0, and if Ty = 9Q (i.e., g = (), then it
is well-known and follows from the divergence theorem that solvability
requires the compatibility condition

[ vards = [ gn(w)ds() (5)
Q 0
In this case, we obtain p only up to an arbitrary constant. In practice,

this special case arises, and we must be careful to differentiate it and
apply the compatibility condition and normalize the pressure.
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Our method is based on a mixed variational form, so that we can
maintain local conservation of mass. Let

H(div;Q) = {v € (L*(Q))® : V-v € L*(Q)}
denote the usual space, and let
HI(div; Q) ={v e H(div;) : v-v=gon Iy} .

We denote by (-,-),, the L?(w) inner-product (i.e., integration over w),
where in the notation we suppress w when it is €.

The mixed variational problem corresponding to (1)—(4) is to find
u € H9V(div; Q) and p € L%(Q) such that

(ap,w) + (V- u,w) = (b,w) for all w € L?(Q) , (6)
(d'u,v) + (cu-v,v-v)r, — (p,V-V)
= (¢,v) — (9r, V- V)1 for all v e H(div; Q) . (7)

Note that (3) is imposed as an essential condition and (4) is imposed
weakly as a natural boundary condition. We can now describe our
numerical upscaling approximation.

3. The Finite Element Spaces

In a mixed finite element method, finite element basis functions are
used to approximate both the pressure p and the velocity u. For our
upscaling procedure, in principle we can use any set of appropriate
mixed spaces. However for efficiency and accuracy, it appears that there
is a natural choice, to which we restrict our attention. We use the
lowest order Raviart-Thomas space, RT0 [28] to approximate on the
subgrid level, and we approximate on the coarse level with the first
order Brezzi-Douglas-Duran-Fortin space, BDDF1 [10], defined for 3
dimensional elements (in 2 dimensions, the space is the Brezzi-Douglas-
Marini space, BDM1 [11]). We remark that we could use RT0 on the
course scale; however, the results would not be as impressive (see [6]).

To construct our two-scale mesh, first decompose 2 into a coarse
conforming mesh 7z (Q) of tetrahedra or rectangular parallelepipeds of
maximal element diameter H. We assume that no coarse element face
intersects both I'y and I'p. Next, we further decompose each coarse
element E. into a subgrid conforming mesh 73 (E,) of tetrahedra and /or
rectangular parallelepipeds of maximal element diameter h. Then the
fine mesh is
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Note that the fine mesh 7}, (£2) need not conform across coarse element
boundaries, and that the element shapes can vary from one coarse
element to the next. In 2-D, we can even mix triangles and rectangles.
Moreover, by using the Piola transform, one can include tri- or bi-
linearly distorted rectangular parallelepipeds [30, 12].

In both the BDDF1 and RTO spaces, the pressure is approximated
by a piecewise discontinuous constant function. That is, the pressure is
approximated on each coarse element by a constant value, no matter
whether the element is a tetrahedron or a rectangular parallelepiped.
We recall the definition of the velocity basis functions below, beginning
with the definitions on a single mesh element.

3.1. THE VELOCITY BASIS FUNCTIONS ON A TETRAHEDRON

The velocities are easily defined for BDDF1 on a tetrahedron (or tri-

angle for BDM1) as the full set of vectors with linear polynomial

components. This gives a 12 dimensional space (or 6 in 2-D). The

normal component on each face of these vector functions is clearly

linear, so there are 3 basis functions per face (or 2 per edge in 2-D).
The velocities of the RT0 spaces comprise the subset

v =(c1x 4+ co,c1y + ¢3,c12+ ¢4)

where each ¢; is an arbitrary constant. These functions have a constant
normal component v-v on each face [28], and they form a 4 dimensional
space (In 2-D, simply omit the third component, leaving a 3 dimensional
space.)

We choose a local basis for BDDF1 (or BDM1 in 2-D) and RTO0
such that the normal component vanishes on every face but one of the
tetrahedron.

3.2. THE VELOCITY BASIS FUNCTIONS ON A RECTANGULAR
PARALLELEPIPED

Now consider the standard unit cube [0, 1]3. There are 6 velocity basis
functions common to RT0 and BDDF1, which have a constant, nonzero
divergence, given by

\712(1—.%)61, frgzxel,
vi=(1-yles, Vi=vyes,
\75:(1—2)63, \76:263.

There is one function for each face of the element, and each represents
a unit flow either into or out of the element across that face, and no
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flow across the other faces. The BDDF1 spaces have 12 additional basis
functions, each with vanishing divergence, given by

2

=(1-=2)2y — Der + (y* —y)ez, Vs =x(2y — )er + (y — y°)ez,
a:Q—x)el-i-(l—y) 2x—1)e2,v10_(x—x)e1+y2 1)es,
)e37

2

(

= ( ( (
Vi1 = (22 —z)e; + (1 — 2)(2z — 1)es, vz = (z — 2?)e; + 2(2z —

= (* (
=(1- ( ( €3,

—z)(22 — 1)e; + (2° — 2)es, Vig = 2(22 — 1)e; + (z — 2%)es,
( ) )

z-—z)ez, vig=y(2z —1l)es + (z — 2
Vir=(y* —ylea + (1 - 2)(2y — L)es, Vis = (y — y*)ez + 2(2y — 1)ey.

These basis functions represent no net flow across the element faces;
they merely redistribute flow across the face from one side to the other.
(The BDM1 spaces omit v, Vg, and Vi1 to Vig, leaving only 8 total
basis functions.)

For an arbitrary rectangular element [0, k1] X [0, ho] X [0, h3], we
translate and scale these functions. The scaling is to simply replace z by
z/h1, etc., except for the terms involving a square in v7 to V5. These
latter basis functions must be scaled so that the divergence remains
zero. For example, V7 becomes

v = (1—2/h1)(2y/hs — 1)e1 + ((y/h2)* — y/ho)ha/h1es .

Improper scaling can result in serious mass balance and approximation
errors [4].

3.3. THE VELOCITY BASIS FUNCTIONS ON {)

The element basis functions are paired across element faces so that the
normal velocity is continuous. For example, two rectangular elements
that share an x face would have v5 on the left and v; on the right,
or vg on the left and v7 on the right. Thus there are 3 basis functions
per element face for BDDF1 (or 2 per edge in 2-D), and 1 for RT0, no
matter whether the adjoining elements are tetrahedra or rectangular
parallelepipeds.

Let Vi C H(div; Q) and Wy € L?(Q) denote the BDDF1 mixed
finite element space described above defined over Ty ().

For each coarse element E, € Ty (), let 6V} (E,) C H(div; E,)
and Wj,(E.) € L*(E.) denote the RT0 space defined over Tj(E,).
These spaces do not piece together in a conforming way without addi-
tional conditions; however, to make them conforming would prevent us
from localizing the subgrid approximation later. We therefore disallow
normal fluxes on the subgrid element faces that are contained in 0F,:

OVp(E.) ={vedV;(E.) : v-v=0o0n JE.} .
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Now extend elements of each dV,(E,.) to all of Q by zero and let

Vo= P Vi(E)
E.€Tu ()

be the direct sum of the subgrid spaces over all coarse elements. Fur-

thermore, let W}, be the direct sum of the Wy (E,), i.e., the space of

piecewise discontinuous constants defined over the fine mesh 75(2).
Finally, let

Vurh=Vu®iVy, (8)

which is easily seen to be a direct sum (i.e., the basis functions are
linearly independent). Our finite element space defined over our com-
posite fine mesh 75,(12) is given by Vy ; x W), which is a mixture of
BDDF1 and RTO0 basis functions. As illustrated in the 2-D rectangular
mesh of Fig. 1, the velocity has 2 fluxes on each coarse element face
representing flow between the elements that varies linearly over the
edge, and a single constant flux across fine grid edges that lie within
the coarse elements.

& & & & & &
P ot exexox e Pokoekokex o Pokekokex 8
SO SR S S SR S S S SR SR SR S S SR
P ot exoexeox e Pokokokox e Pokekokex 8
RS RS R A B R SR A A

Figure 1. A 2-D mesh of 15 x 8 fine grid elements decomposed into a 3 X 2 coarse
grid with 5 x 4 subgrid elements per coarse element. The dots represent the pressure
values, one per fine element. The crosses represent the edge velocity fluxes. The
circled crosses apply to the coarse grid edges, and represent linear flux variation.
The other crosses represent constant fluxes across the subgrid edges internal to the
coarse elements.

In essence, the RT0 subgrid approximating spaces have homoge-
neous Neumann boundary conditions on the coarse element boundaries.
This localizes the subgrid problems, making them disjoint from each
other (but not the coarse scale problem). All net flux across a coarse
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element face goes through the coarse scale functions. To compensate for
the coarseness of this restriction, higher order accurate basis functions
have been employed. Thus we have achieved both good resolution and
localization of the subgrid basis functions.

4. The Mixed Finite Element Method

To impose the boundary conditions (3)-(4), we assume that no coarse
element face intersects both I'y and I'g. Moreover, we define the trace
space on 0f) by

IXH'ZZ‘JH'-V ZZ‘JHJZ-V,
which are simply piecewise discontinuous linear polynomials. Now de-
fine the orthogonal L%-projection operator Py, : L2(9§2) — Ay by

(Pang — 9,V -v)on =0 forallveVy,
and let

Vi ={veVyg :v.-v=Py,gonTyn},

V?{,h:{VGVH,h cvev=Py,gonTy}.

That is, on each element face of I'y, v - v is the L2-projection of ¢ into
the linear polynomials.

Our finite element method is analogous to (6)—(7): Find U € V%\” h
and P € W}, such that

(aP,w) + (V-U,w) = (b,w) for all w € W, , 9)
(d'U,v) + (@U-v,v-v)r, — (P,V-v)
=(c,v) — (9r, V- )1y for all v € V?{,h . (10)

Note that the conservation equation (9) is retained in the system, and
that w € W}, enforces conservation locally over each fine element.

Theorem 4.1. Ifa #0 or 'y # 0, then there is a unique solution to
the finite element scheme (9)—(10). Moreover, ifa =0 and T = () and
the compatibility condition (5) holds, then there is again a solution, and
U 1is unique and P is unique up to a constant.

In the latter case, P is unique provided we also impose a normaliza-
tion condition such as

/ P(z)dz =0 . (11)
Q

Before presenting the proof, we need two lemmas. The first is well
known.
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Lemma 4.1. Suppose that w C R? is a connected domain with a con-
forming mesh T of tetrahedra or rectangular parallelepipeds, and V x W
1s the RT0 space defined over T . Suppose also that v C Ow, no element
of T intersects both v and its complement, and

Vi={veV:v.-v=0o0n7v}.
Given w € W, there is a v € VO such that
V-v=w,
provided that if v = Ow, the average of w vanishes on w.
Lemma 4.2. If 'y # 09, then
V-V, =W,.
If 'y = 092, then

V-V%}h:W,?E{wEWh : /w(x)dx:()} .
Q

Proof. Clearly by construction
V- VUH,h C Wh 3

and, if [y = 09, V'V?{,h C W). It remains to show that given w € W},
(or W) when 'y = 09), there is v € V?—Lh such that V - v = w. This
follows from the previous lemma as follows. First construct wy € Wy
by defining wy on each coarse element E,. as the average of w:

wHg = PWHw s

where we define the orthogonal L2-projection operator Py, : L4(Q) —
Wy by
(Pw,g—9,6) =0 forall & € Wy .

Then Lemma 4.1 gives v, in the RT0 part of VY, C V%,yh defined over
the coarse mesh 7x such that
V-ve=wy =Pwyw .
Next we define
ow=w—wy ,

and note that on each coarse element E., dw has zero average value.
Thus Lemma 4.1 gives us v in RT0 defined over the mesh 7, (£.) with
vanishing normal component such that V-dv = Jw. Adding the pieces
together gives v =v,+ v € V%,h such that V- v = w. U
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Proof of Theorem 4.1. The proof follows from the equivalence of ex-
istence and uniqueness for a square finite dimensional linear system.
Uniqueness follows from uniqueness at zero, so set gy, gr, b, and ¢
to zero in (9)-(10) and substitute for (v,w) any solution (U, P) €
V%,h X Wy, The sum of the two equations is

(aP,P) + (d7'U,U) + (aU -, U -v)p, = 0. (12)

Since ¢ and « are nonnegative, and d, and thus also d~', is positive
definite, we conclude that U = 0.
We return to (10), which in our case is simply

(P,V-v)=0 for allvEV%,h,

and select by Lemma 4.2 a test function v € V?—Lh such that V-v =P
if'r #0and V-v = P— P if ' = (), where P is the average
of P over ). In the former case, we conclude that P = 0. In the
latter case, we conclude only that P = P is constant. If a #Z 0, our
previous estimate (aP,P) = 0 from (12) verifies that indeed P = 0;
otherwise, the normalization condition (11) is applied and gives the
same conclusion.

Thus in all cases we have uniqueness at zero, and so the theorem
follows. O

5. Implementation

If the finite element method is implemented as stated in the previous
section, there is no computational advantage, since it is essentially de-
fined as a fine scale problem. We need to reorganize the computation so
that it upscales from the subgrid scale to the coarse scale, by exploiting
the two-scale decomposition (8).

5.1. SCALE SEPARATION
Since Vi p = Vg @ 0Vy, we can decompose U uniquely into
U=Ug+46U0, (13)

where Uy € Vg and §U € 6Vy,.
We remark that Wy and W}, are not linearly independent (in fact,
Wg C Wp,). We could rectify this problem by defining

oW, :WIEIL :{w e Wy : (w,wH) =0 forallwy € WH} .
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Then indeed
Wi, =Wy @& Wy, .

While this is a conceptually useful construction, it turns out that it is
computationally inconvenient, since each dw € W}, is supported on at
least two subgrid elements. Thus we will continue to use the full space
W}, and deal with the nonuniqueness another way.

For future reference, note that V-0V, = 6W,, = Wﬁ by Lemma 4.1.
That is, we have the orthogonality

(V-ov,wg) =0 forall v € §V;, and wy € Wy . (14)

5.2. THE SUBGRID SCALE

If we restrict to the subgrid scale test functions in (9)-(10) and use the
decomposition (13), we obtain the series of subgrid problems, one for
each coarse element F,

(aP7 w)Ec + (V : 5U’ w)Ec

= (b,’UJ)EC — (V . UH,QU)EC for all w € Wh(Ec) s (15)
(d='6U,6v)p, — (P, V- 0v)g,
= (¢,6v)p, — (d *Up,év)g, for all v € SV, (E.) . (16)

5.2.1. The subgrid scale operator when a # 0 on E,
We continue the development assuming that a is positive on some part
of the coarse element E..

Lemma 5.1. Suppose that Uy € VY is given. If a # 0 on E,, then
there is a unique solution (§U, P) € 6V (E.) x Wy(E,) to (15)-(16).

The proof is similar to that for Theorem 4.1, and so it is omitted.

Thus we have a well-defined subgrid solution operator taking V4
to 0V}, x Wp,. This operator is affine: it can be represented as the
sum of a constant operator and a linear one. Moreover, the operator
is locally defined; that is, it is the sum of operators defined on each
E.. These local operators are defined on the low dimensional space
V1 (FE,), which has dimension 18 on a rectangular parallelepiped and
12 on a tetrahedron. We can exploit this special structure to upscale the
problem and thereby obtain a computationally efficient scheme. This is
because we need only understand the action of the operator on a basis
of Vg (E.). Let {v;};>1 be a basis for Vg (FE.).
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Define (0Uy, Py) € dV,(E.) x Wp(E,) satistying
(an,w)EC + (V . 5U0,’w)EC = (b,w)Ec for all w € Wh(EC) , (17)
(d~16Uq,0v)p, — (Po,V - 0v)E,
= (¢,0V)g, for all ov € 0V (E,) . (18)

This is the constant part of our subgrid solution operator. Next, for
each basis function v; € Vg (E,), let (6U;, Pj) € 0V,(E.) x Wi(E,)
satisfy

(aPj,w)g, + (V-0U;,w)E,

= —(V : vj,w)EC for all w € Wh(Ec) , (19)
(d'6U;,0v)p, — (P;,V -6V,
= —(d"'v;,6v)E, for all v € 6V, (E,) . (20)

This gives the action of the linear part of our subgrid solution operator
acting on the basis of our space Vg (E,).

In general, for any Uy € Vg, Up restricted to E, is simply the
linear combination

Ugle. =Y Bvj , (21)
J

for some coefficients 3;. Moreover, it is easy to verify that the solution
to (15)-(16) is

0U = Zﬁj(SUj +dUg , (22)
J
P= Zﬁij + P . (23)

J

That is, the subgrid solution operator is decomposed into the constant
piece (0Uy, Py) and a small linear combination of the (6Uj, P;).

We remark that (0Uj, P;) is the solution to the unit disturbance
v, to the system, where “unit” is defined with respect to the finite di-
mensional domain of the operator. Since any solution can be generated
from these, we can consider these special solutions as numerical Greens
functions. They are also called influence functions.

5.2.2. Renormalization of the subgrid scale operator when a #Z 0 on E,
For consistency with the a = 0 case, and for ease of implementation
later, we renormalize P; as 0P; € Wy (E,). Let |E,| denote the volume
of |E.| and define

1

(SPOZPO—W 5
C c

Py(z)dz (24)
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and define
/ a(z)Py(z) dz
0P; = Pj — == ,j=12... (25)
/ a(z) dz
Let
§P =Y Bj0P;+ 6P, (26)

J

and note that on E,
P =Py + 6P (27)

for some Py € Wy.
For future reference, our normalization makes the following integrals
vanish:

(0Py, wy) = (adPj,wy) =0 forallwy € Wy, j=1,2,.... (28)

5.2.3. The subgrid scale operator when a =0 on E,
When a = 0 on the coarse element F., there may be no solution to
(15)-(16) since the compatibility condition may fail to hold. Thus we
must modify our approach.

For the constant part of the subgrid operator, define (0Uy,0P)) €
IVh(E:) x Wp(E,) satisfying

(V- 8Ug,w)p, = (b— P, b,w)p, for all w e Wy(E,) , (29)
(d™16Uqg, 6v) g, — (6P, V - 6V)p,
= (¢, 0V)p, for all ov € 0V, (E,) , (30)
/ dPy(z)dz =0 . (31)
Q

For each basis function v; € Vy(E,), let (6U;,0P;) € 6V (E,) x
Wh(E,) satisty

(V : 6Uj,w)Ec =0 for all w € Wh(EC) , (32)
(d1o6U;,6v) i, — (6P;,V - 6V) g,
= —(d tv;, V), for all 6v € 6V (E,) , (33)
/ dPj(z)dr =0 . (34)
Q
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Because of the homogeneous Neumann boundary condition imposed
on the space V,(E,), we see that there is a redundancy in (29) and
(32); that is, any constant test function w,. gives the tautology (V -
ov,we)p, = 0. To maintain a square linear system, we therefore re-
place any single such equation by our normalization condition on the
pressure.

Lemma 5.2. Suppose that Uy € VY is given. Then (29)—(31) and
(32)—(34) have unique solutions.

Again the proof is similar to that for Theorem 4.1 and omitted.
If we define §U by (22) and 6P by (26), and if we recall (21), then
we see that (0U,0P) € 6V, (E.) x W (E,) satisfy

(V . (SU-7 UJ)EC = (b — PWH b, UJ)EC for all w € Wh(Ec) ,
(d 16U, 0v), — (6P, V - 6v)p,
= (C, 6V)EC — (d_lUH, (5V)EC for all ov € 5Vh(EC) .

However, if we restrict to w € Wy in (9), take a = 0, and recall the
orthogonality (14), then we see that in fact

V-Ug = Pw,b,

so, given Uy and Py, (60U, P) is the solution to (15)-(16), with (27)
defining P.

5.3. THE UPSCALED EQUATION

We return to the coarse scale. Restrict to coarse scale test functions in
(9)-(10) and use the decomposition (13) and (27) to obtain

(a(Pg 4+ 6P),wg) + (V- Ug,wg)

= (b, ’LUH) for all wy € Wy s (35)
(dil(UH + 5U),VH) + (aUH -V, Vy - V)I‘R — (PH + 5P,V . VH)
=(¢,vu) — (9r, VH - V)rp for all vy € V% , (36)

wherein we used the orthogonality (14) to remove a term in the con-
servation equation.

Substituting (26) into (35) and exploiting our normalization (28) if
a Z 0, we obtain

(aPr,wp)+ (V- -Ug,wg) = (b— adPy,wg) for all wy € Wy ,
(37)

paper.tex; 11/02/2002; 12:44; p.14
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which only involves the coarse unknowns Py and Uy, since 6P is
fixed. Our task now is to simplify the Darcy equation, since it involves
implicitly the basis coefficients of Uy through the terms U and dP.

We need to introduce some additional notation relating global and
local indexing. Let £ = 1,2, ... index the coarse vector basis functions
of Vy, so that

Uy =) Bive (38)
¢

for some coefficients [y. Except near €2, each v, is supported on two
coarse elements, E! and E2, for which the normal flux of vy is associated
with the common face OE! N OE?. Then we have that

Up =Y Be(velpr + velgz) -
7

Now vy| i gives rise to a subgrid numerical Greens function 6U ;°on
c

E! for each i = 1,2. Given the coefficients 8, we construct U € 6V,
globally as

SU = §Ug + 3 BulsUL + 5U) |
¢
Let us define .
E}! E?
0U, = 5ch +5ch €ovy .,

so that we can write more simply

§U =6Ug+ Y _ Bi6U, . (39)
Y4

Similarly, we construct

SP=0Py+ Y _ BidP;, (40)
Y4

where ) )
0P, = 6P + 6P/ .

5.3.1. The nonsymmetric upscaled problem
Substituting the expansion (38), (39), and (40) into (36), and using
(28) and restricting to test functions in our basis results in

Zﬁg{(d_l(w +0Uy), Vi) + (v - v, Vi - V)1,
l

—(0P;,V -vin)} = (P, V - Vi)

= _(diléUﬂavm) + (C, Vm) - (gRavm ' I/)FR
forallm=1,2,.... (41)
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16 Todd Arbogast

5.3.2. The symmetric upscaled problem
Our model problem is symmetric. We symmetrize our matrix problem
next, possibly for use with a conjugate gradient solver. We do this by
adding some of the subgrid equations; equivalently, we could return to
(10) and use test functions v, + dU,,. Assume that a # 0, since the
other case is easier.

In (20), substitute the test function Jv = 6U,, to obtain that

(d'(v; +6U;),0U,,) — (6P;,V - 0U,,) = (P; — 0P}, V - 6Up,) =0,
by (14). Next, replacing j by m in (19) and testing with w = 0P; gives
((SP]', A\ (Vm + 5Um)) = —(ade, Pm) = —(a(st, (SPm) s

using (28). Replace j by ¢, multiply by f;, and add to (41) to obtain
the result

Zﬂg{(d_l(Vg +0Uy), vin + 0Up) + (avy - v, v - V)FR
l

+ (adPy, 0Py)} — (Pu,V - vp)

= —(dil(SUo,Vm) + (Ca Vm) - (gRavm ' V)FR
forallm=1,2,..., (42)

which is symmetric. If a = 0, the same result is obtained from (32)—(34).

5.3.3. The upscaled problem when a > 0 on €

When a > 0 on €, or more generally when it is known that a # 0
on each coarse element F., we need neither the renormalization step
nor (37), since P is fully defined implicitly by Uy. This case arises for
strictly parabolic equations. The same equations (41) and (42) result,
if we merely replace Py by Py and each JF; by F;.

5.4. THE SOLUTION ALGORITHM

We summarize the solution algorithm outlined above. It has three steps.

5.4.1. The case when a =0 on at least one coarse element
Assuming a = 0 on at least one element £, we cannot solve for all of
P in the subgrid step.

Step 1-Subgrid scale. We loop over the coarse elements E.. We
obtain in this step 6% and the numerical Greens functions 0P}, j =
1,2, ..., as follows. If a # 0 on E,, we solve (17)-(18) and (19)-(20), and
renormalize via (24)—(25). If a = 0 on E,, we instead solve (29)—(31)
and (32)—(34).
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Numerical Subgrid Upscaling 17

These problems generate the same finite element matrix, and vary
only in their “right-hand-side” vector. They are also relatively small
linear systems, so a direct solver can be used here effectively. A unique
solution exists by Lemmas 5.1 and 5.2. Moreover, this step parallelizes
naturally.

Step 2—Coarse scale. Because we allow for the possibility that
a = 0 on a coarse element, we could not determine P completely from
the subgrid computation. Thus we must solve the coarse scale conser-
vation equation (37). This is combined with the Darcy Law equation,
either the nonsymmetric (41) or the symmetric (42). When Sy is associ-
ated with a face on I' v, we use Py, gn to set its value. Then this system
has a unique solution (Ug, Py) € V¥ x Wy, by Theorem 4.1, since the
subgrid is well defined. We are essentially solving a Shur complement
problem extracted from the full fine scale problem (9)-(10).

This step is essentially equivalent in work and complexity to a non-
upscaled coarse problem, similar in form to (9)—(10), albeit solved using
the BDDF1 mixed finite element spaces. The main difference is in the
finite element matrix related to Uy, for which the (m,#) entry is, in
the symmetric case,

(d™ " (ve + 0Uy), vin + 0U) + (ave - v, Vi - V)1 + (a0 Py, 6Ppy)
rather than simply
(d™ 'V, vin) + (Ve - v, Vi - V)1 -

This requires a change to the element integration routine. The only
other modifications are to the coefficient ¢, which becomes ¢ — d~'§Uj,
and the function b, which becomes b—ad Py. Of course, the finite element
integrations must be performed on the fine scale.

Mixed finite element methods result in linear systems of saddle point
form, with both positive and negative eigenvalues. One can use the
Lagrange multiplier solution procedure [8] to avoid the saddle-point
problem.

We use the symmetric system (42) transformed by the introduction
of Lagrange multipliers [8] to obtain a symmetric, positive definite
system, and then solve it via a conjugate gradient iterative procedure.
A domain decomposition procedure [15] could be used to parallelize
this computation.

Step 3—Fine scale. One advantage of our technique is that we
recover a fine scale representation of our solution. The last step is to
construct U € V%\,’h through (39) and (13), and P € W), through (40)
and (27).
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18 Todd Arbogast

5.4.2. The case when a > 0 on €
When a > 0 on € (or a # 0 on each E.), we have a somewhat simpler
procedure.

Step 1-Subgrid scale. We loop over the coarse elements F., and
solve (17)—(18) and (19)-(20) for Py and the numerical Greens functions
PLji=12,...

Step 2—Coarse scale. We solve only the Darcy equation, since the
subgrid fully determines P. We solve the equations (41) or (42), wherein
we replace Py by Py and each § P; by F;, and set any 5y determined by
PAugN-

Step 3—Fine scale. We construct U € V3, by (39) and (13),
and P € W), by (23).

5.5. A REMARK ON NONLINEAR PROBLEMS

Noulinear problems can be numerically upscaled after applying New-
ton linearization. To illustrate, suppose that instead of the variational
problem (6)—(7) we have the nonlinear version

(a(p)p, w) + (V- u,w) = (b(p), w) ,

(@ (P)u,v) = (p, V- v) = (c(p), V) ,
wherein for simplicity of exposition we assume homogeneous Neumann
boundary conditions. Under appropriate hypotheses on the nonlineari-
ties, we obtain a solution from an initial guess (p’, u") by iterating on
k to find pF*t! = p* + ¢* and uf*t! = uf + ¢* after solving for (¢, y*)
satisfying the linearized equations

((a(p") + Da(@*)p" — Db(p*))¢", w) + (V- 9*, w)
= (b(p*) = a(p)p* — V- u*,w) |
(@~ (P")9",v) = (@, V - v) + (DA™ (p")u* — De(p®))q", v)
= (c(@*) — d~ (p")u*,v) + (5, V- v)
This linearized system has the same form as (6)-(7), with modified

coefficients, except for the introduction of the nonsymmetric third term
in the second equation of the form

(ep7 V) ~ (ephuv) = (e(pH + 6p)7vc + 5V) .

A similar upscaling approximation can be constructed for this system.
It includes one additional numerical Greens function per coarse element
corresponding to the coarse degree of freedom for py, i.e., for the pres-
sure basis function w,.. Of course the final system is now nonsymmetric.
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We remark that since this is an iterative technique, one could save some
computation by using the pseudo-Newton method that makes use of
the numerical Greens functions from a previous iterate.

6. Application to Two-Phase Immiscible, Incompressible
Flow

The derivation of the governing equations of two-phase immiscible,
incompressible flow is given in many references (such as [23, 13, 20]).
Two differential equations (and the capillary pressure relation) result.
The equations express conservation of the wetting and nonwetting fluid
components, each of which is constrained to a single phase; thus, the
saturation s; is also the volumetric concentration of the jth species.

The sum of the two phase conservation equations results in a nearly
second order elliptic pressure equation. For this equation, we use the
standard global pressure formulation of Chavent [13]. When the fluids
are incompressible, as we assume, the global pressure form gives a some-
what simpler equation, as it reduces the apparent coupling between the
two equations.

The second equation, the saturation equation, is the one expressing
counservation of the wetting phase. We simplify its mathematical struc-
ture by using a Kirchhoff transformation [2, 7] of the diffusive terms.
The saturation equation is nearly first order hyperbolic.

Let us fix notation. We let & denote the absolute permeability of
the porous medium, ¢ the porosity, and g the gravitational constant
vector. One of our two immiscible fluids contacts the solid surfaces
of the porous medium and is called the wetting phase (w), and the
other is the nonwetting phase (n). Denote by s = s,, the wetting and
sp, = 1—s the nonwetting phase saturations. Actually, we define these as
the reduced saturations, which are linearly rescaled so that the residual
saturations vanish. That is, our saturations lie between 0 (its residual
value) and 1 (for which the other saturation is at its residual value).

For phase j = w,n, let p; be the constant phase density, p; the
pressure, u; the Darcy velocity, A;(s) the relative mobility equal to the
phase relative permeability divided by the phase viscosity, and A(s) =
Aw(8) + An(8). The macroscopic capillary pressure P,(s) = p, — Py 18
assumed as usual to be given as a function of the saturation. The source
and sinks, i.e., wells, are described by the functions ¢;, j = w,n.

Often the medium is assumed to be incompressible, so ¢ is constant.
If not, one usually assumes slight compressibility, so

¢(pw) = d0 + cr(Pw — po) , (43)
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for some counstants ¢g, ¢, > 0, and pg.

6.1. THE PRESSURE EQUATION

Let p denote the global pressure, a saturation dependent intermediate
pressure between the phase pressures defined as

p=pt [ ()@ do=p- [ (FE) s, @

and let u = u, + u, denote the total velocity. The pressure equation
is the sum of the two phase conservation equations, and it expresses
counservation of total mass. It takes the form

IP(puw
¢gz)+v-u=q, (45)

u=—kA(s)[Vp — p(s)g] . (46)
where ¢ = q,, + g, and

p(s) =

)\w(s) )\n(s)
Ns) Pr TN P

If the medium is incompressible, the time derivative of ¢ vanishes
in (45), and the equation is elliptic. Otherwise it is parabolic.

6.2. THE SATURATION EQUATION

The saturation equation expresses conservation of the wetting fluid,
written in terms of the total velocity u and p defined above. It is

200 L (1) = o) (4
b= KVQLs) (49
where
o) = e 2 (49)
a =- [ 2y 0)do (50

Here, 7(s) is the convective flux, 9 is the diffusive flux, and Q(s) is the
Kirchhoff transformation that relates saturation gradients to .
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6.3. WELL MODELS

6.3.1. Fized rate wells

Perhaps the simplest well model is to impose a fixed rate of total fluid
injection g > 0 or extraction ¢ < 0. For injection, we can independently
specify g, > 0 and g, > 0. For extraction, we can only specify the total
rate g. It is often assumed that the flow separates into phases according
to the relative mobilities; that is, when ¢ < 0,

Aj(s)
/\J(S) g

g(s) = j=w,n . (51)

6.3.2. The Peaceman bottom-hole pressure well model
Especially in the petroleum industry, it is common to adjust the pres-
sure of the well at some fixed location, such as its bottom. The flow rate
is then unknown and determined by an additional system of equations
modeling the well.

For a given well, we define a well phase pressure pyer, ; and a coeffi-
cient x5, j = w,n. Then the well rate is given by

q; = —kK;j(Pj — Pwellj) - (52)

For a vertical well, we specify pppp ; at depth zpp;,, and then

Dwell,j = Pbhp,j T Pwell |&](Zdepth — ZTbhp) (53)

where Zgeptn is the depth and pyen is the average fluid density in the
well, assumed to be partitioned according to the flow rate as

25 ) pigj
Zj / qj ’
where we integrate over depth. Thus, ¢; = ¢;(pj, pwen) and we add the

latter equation to our system. Peaceman gives a formula for «; [24, 25]
relating the grid block size and permeability to the well bore radius.

Pwell = (54)

6.4. DISCRETIZATION AND SUBGRID UPSCALING

We solve the system sequentially in time. In this technique, one first
solves the pressure equation, and then solves the saturation equation us-
ing the previous pressure solution (possibly extrapolated in time). After
discretization of the time derivative using a backward time difference,
and linearizing the equations as in a Newton procedure, both equations
take the form of (1)—(2). Since this is a well-established process, we omit
most of the details.
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Unless bottom-hole pressure wells are used, the pressure equation
is linear in p and u. If the porous medium is incompressible, a = 0 in
most of the domain, being nonzero only in the vicinity of wells. Thus,
the algorithm of Subsection 5.4.1 is applied. Otherwise, the compress-
ibility of the porous medium means that a > 0, so the algorithm of
Subsection 5.4.2 can be used instead. For flexibility between the two
cases, the former algorithm was chosen in our code.

The time derivative term of the saturation equation enforces a > 0
everywhere, so the algorithm of Subsection 5.4.2 can be used. However,
generally convection dominates diffusion and dispersion, so the equa-
tion is nearly hyperbolic. It is therefore of marginal value to use the
upscaling technique on the saturation equation, which applies only to
the diffusion and dispersion part of the operator. Moreover, since we
use a higher order method, the maximum principle is violated; that is,
s can fail to lie in [0, 1], which can lead to unphysical flows and/or
mass balance errors. We thus solve the saturation equation on the
fine grid and upscale only the pressure equation. We stress that the
time consuming part of the computation is the solution of the pressure
equation, so this choice is not computationally costly; upscaling the
saturation equation saves little time in most applications, but upscaling
the pressure equation is of great value.

7. Numerical Examples

We simulate in this section three of the more difficult phenomena
to model accurately on coarse grids: near-well behavior, permeability
barriers, and high permeability streaks or fractures.

7.1. SIMULATION OF WELLS

We simplify the analysis of wells by restricting to a single phase, and
compute pressures near the well-bore. It is well known in the petroleum
literature that the Peaceman model gives accurate simulation of pres-
sure fields near the well bore on relatively coarse grids that do not
resolve the well-bore, at least when the rock properties near the well
are nearly homogeneous. In this section we consider simulation of wells
using the Peaceman model, and compare and contrast simulations with
grids that fully resolve the well-bore and coarser grids.

Our model two-dimensional domain is a 200m square horizontal
domain with a standard 5 spot well pattern of 4 equal injectors at the
corners and a bottom-hole Peaceman production well at the center. The
injection rate is 0.002m?/day per well, and the production well has a
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radius of 0.099991n, just shy of 0.1m. The medium is incompressible, so
the porosity does not affect the equations, and homogeneous Neumann
boundary conditions are imposed.

The grids are graded in each coordinate direction, so that the wells
are better resolved than the rest of the domain. We use a simple grading
in each direction: for n points we fix £, = 0, &1, and &, = 50, and then
compute & = ¢ 1¢;, where ¢ = (50/&,)Y/", for i = 2,3,...,n — 1. This
gives a quarter of the grid, which is then reflected twice so as to cover
the domain.

7.1.1. Simulation of wells in a homogeneous permeability field

In this subsection we consider upscaling of the well position only, so
we take a homogeneous permeability field. In this case, the Peaceman
model is known to work well. To obtain perfect symmetry at the pro-
duction well, we simulate the full 5 spot pattern, but display only the
upper right quarter of it. In Fig. 2 (left), we see pressure contours with
a fine grid of size 199 x 199 with & = 0.1, so the 0.2m square well-bore
is fully resolved. Upscaling to 40 x 40 and 20 x 20 coarse grids shows
excellent matches. The 10 x 10 grid begins to show a bit of degradation
in the quality of the match with the fine scale solution, but in this case
the coarse grid cells are approximately 20 x 20, so the upscaling factor

is about 400.
AR\
\ &
N

\\§

A\

Figure 2. Pressure contours on a quarter of the domain. Left: The graded 199 x 199
mesh with the well-bores fully resolved. The solid lines are the fine scale solution.
The dashed lines are upscaled to 40 x 40, the dashed-dot lines to 20 x 20, and the
dotted lines to 10 x 10. Center: A graded 27 x 27 mesh, with the well grid cell 2m
square. The dashed lines are the fine scale solution, and the dotted lines are upscaled
to 3 x 3. Right: A graded 15 x 15 mesh, with the well grid cell 4m square. The dashed
lines are the fine scale solution, and the dotted lines are upscaled to 3 x 3. In all
figures, the solid lines are the 199 x 199 fully resolved fine scale solution.

In Fig. 2 (center), we consider a 27 x 27 mesh that does not fully
resolve the well-bores. The grid cell containing the bottom-hole pressure
well is 2m square. The fine scale solution displays the efficacy of the
Peaceman model, as the match with the fully resolved 199 x 199 solution
is excellent, considering that we went from 39,601 elements to 729, a
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coarsening factor of about 54. A fine scale 3 x 3 simulation, not shown,
fails miserably to resolve the pressure field, as we would expect for a
coarsening factor of 4,400. However, when we upscale from the 27 x 27
grid to a 3 x 3 coarse grid of a mere 9 elements, we see that accuracy is
maintained. The Peaceman model accounts for the grid not resolving
the well-bore, and the upscaling accounts for the excessively coarse
grid. As a comparison, one could fully resolve the well-bore and obtain
a similar quality of solution merely by upscaling the 199 x 199 grid to
20 x 20. That is, the Peaceman well model and the upscaling technique
are comparable in their ability to resolve well-bores on coarse grids with
homogeneous permeability fields. Similar results are seen for a 15 x 15
grid in Fig. 2 (right).

7.1.2. Simulation of wells in a heterogeneous permeability field

While the Peaceman well model works well provided the permeability
field is nearly homogeneous near the well-bore, one might expect the
upscaling technique to perform well in the heterogeneous permeabil-
ity case; that is the subject of our next example. We consider a five
spot well pattern as in the homogeneous case, but impose a log nor-
mally distributed, but mildly correlated, permeability field as shown
in Fig. 3A. The permeability varies over 3 orders of magnitude on a
uniform 100 x 100 mesh covering the 200m square domain.

In Figs. 3B-D, we see the 100 x 100 fine scale pressure contours
and the result of upscaling to 20 x 20 and 10 x 10 grids. Unlike the
homogeneous case, there is no symmetry in this problem, so the full
five spot pattern is shown, with the Peaceman well at the center. The
20 x 20 upscaling matches the fine scale solution relatively well, but the
coarsening factor is only 25. For the 10 x 10 upscaling, coarsening factor
100, the match is reasonable, but noticeably different. To improve the
match, we graded the coarse grid in each coordinate direction by using
a distribution of 3, 9, 26, 9, 3, 3, 9, 26, 9, and 3 fine elements in each
coarse block. The result is shown in Fig. 3E.

To compare these results with the Peaceman model alone, we took
a 10 x 10 grid. The question then arises as to what averaging technique
should be used on the permeability field. For our first attempt, we used
on each coarse n, x n, = 10 x 10 block the 1/2 power averaging rule

[29], in which
. 1 12\

Ny 4=

The results showed a pressure field similar to that in Fig. 3F, but with
pressures approximately 6 times too low. We then tried the composite
harmonic-arithmetic averaging rule, which results in a diagonal but
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A. Log of the permeabil- B. 100 x 100 fine scale C. 20 x 20 upscaled pres-
ity. pressure. sure.

> N ”/ A\

) e N /e

D. 10 x 10 upscaled pres- E. 10 x 10 upscaled pres- F. 10 x 10 pressure us-
sure. sure on a graded coarse ing composite harmonic-
grid. arithmetic permeability
averaging. Contour levels

are about half of B-E.

Figure 3. The five-spot heterogeneous well example.

nonscalar permeability. We use harmonic averaging in the flow direction
and arithmetic averaging in the transverse direction. For example,

1 1 1\7!
Fig. 3F shows the pressure contours, except that the scale of pressure
values has been changed to about half that in the previous four figures.
This indicates that we do not have the correct average value, and leads
us to our original problem of upscaling the permeability! However, even
if we had found the correct average permeability, it is clear that the
well is incorrectly located on the coarse grid.

7.2. SIMULATION OF A BROKEN PIPE NEAR A SHALE BARRIER

We return now to the two-phase problem. We remind the reader that
our upscaling method is applied only to the pressure equation; the
saturation equation is always solved on the fine grid. The saturation
distribution is always well resolved, but since its governing equation
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depends on the total velocity, we see the effect of upscaling indirectly
in the saturation.

In this subsection we consider a DNAPL spill scenario. The do-
main is a two-dimensional vertical region of size 6m square, with a
natural permeability field taken from outcrop measurements of Lawyer
Canyon in Texas. The permeability data is anisotropic on a 30 x 30
uniform mesh, and depicted in Fig. 4. We have modified the data by
placing a horizontal permeability barrier near the center of the domain
of permeability 6 x 107 '°md. Otherwise the permeability varies from
3.6 x 1072md to 1.5 x 10*md. The porosity is assumed to be constant
at 0.25, and the rock and fluids are incompressible.

Horizontal component. Vertical component.

Figure 4. Log of permeability for a cross-section of Lawyer Canyon. High perme-
ability is lighter in color.

The DNAPL is 20% more dense than water and 4 times more vis-
cous. As if to simulate a broken underground pipe, DNAPL is injected
just above and to the left of the permeability barrier at a leak rate
of 6m?/yr. A background flow of water from left to right is assumed,
of speed 4m/yr on the left and 5m/yr on the right side, with no flow
on the top and bottom. These are not quite physically appropriate
boundary conditions, as the DNAPL cannot exit the domain. Thus the
physical relevance of the simulation breaks down as DNAPL contacts
the boundary.

As shown in Fig. 5, the DNAPL diffuses due to a high level of
capillary pressure, and tends to the right and downward with time.
Moreover, it must clearly go around the permeability barrier. We see
good agreement with the simulations with upscaled global pressure to
5 x b and even 3 x 3 coarse meshes in Figs. 6-7. An analysis of the
total velocity in Fig. 8 reveals why the match is so good: the upscaled
velocity is very well resolved on the 30 x 30 grid, even though the
pressure equation is solved on a very coarse mesh.

Since the upscaled velocity is second order accurate, we might spec-
ulate that the upscaling is not the deciding factor in the quality of the
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Figure 5. DNAPL saturation contours on the fine 30 x 30 mesh.

' )

20 days 50 days 120 days

Figure 6. DNAPL saturation contours with global pressure upscaled to a 5 x5 mesh.

. . -~

20 days 50 days 120 days

Figure 7. DNAPL saturation contours with global pressure upscaled to a 3 x 3 mesh.
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Figure 8. Total velocities for the DNAPL spill scenario example.
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previous results. The final diagram in Fig. 8 shows the coarse 3 x 3
second order accurate velocity field without using upscaling. It clearly
fails to resolve the velocity, as the barrier prevents flow into the central
grid element. When used to solve the 30 x 30 saturation equation,
tremendous mass loss is observed. On each time step, the fine saturation
equation injects the requisite amount of DNAPL; however, it is not
transported away from the broken pipe as fast as the physics would
dictate. Thus the saturation rises above 1, and is lost when it is cut
off. Thus we conclude that a straightforward mixing of fine and coarse
grids for the pressure and saturation equations is not appropriate near
wells and spill sources. Our upscaling corrects the problem nicely, as
the pressure equation is accurately approximated on the scale of the
fine saturation grid.

7.3. SIMULATION OF A VERY HIGH PERMEABILITY STREAK

Perhaps the most difficult challenge is simulating flow in a fracture. We
consider next a very high permeability streak, akin to a fracture, but
much wider. The horizontal domain is 6m square and has a uniform
30 x 30 fine grid. It is oil filled, and water is injected at a rate of
0.04m? /day at the lower left corner. An equal strength producer is at
the upper right corner. The permeability in uniform at 100md, except
for an “L”-shaped high permeability streak of magnitude 1 x 10?md
and thickness equal to a single grid goes through the center of the
domain and makes a 90° turn toward the injector. (The streak in clearly
visible in Fig. 10.) Again the porosity is uniform at 0.25. Capillary
pressure is 10 times less than in the previous broken pipe example.
From Fig. 9, we see that the pressure field is not well represented on
an upscaled 5 x 5 mesh; however, from Fig. 10 we see that the velocity
field is relatively good. The coarseness of the 5 x 5 mesh is visible in
the upscaled velocity, but it does generally follow the high permeability

streak.
>

%

Figure 9. High permeability streak example. Contours of the pressure. The solid
lines are the fine scale pressure, and the dotted lines are upscaled to 5 x 5.
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30 x 30 fine scale Upscaled to 5 x 5
Figure 10. Total velocities at 80 days. The high permeability streak is clearly visible.

TITIIIIIEYY

30 x 30 fine scale at 40 days

gmf?‘

R

Upscaled to 5 x 5 at 40 days Upscaled to 5 x 5 at 80 days

Figure 11. Water velocities at 40 and 80 days. The increase with time of the water
relative permeability is easily observed.

The water velocity is also quite accurate, as depicted in Fig. 11.
The nonlinear nature of the two-phase system is visible in this figure,
as with time the water velocity increases downstream from the injector
due to an increase in its relative permeability. This phenomena is well
resolved even in the upscaled simulation.

Finally in Fig. 12 we show the fine saturation contours. The 30 x 30
fine solution is noticeably different from that using a total velocity
upscaled to 5 x 5; however, considering the difficulty of the problem,
the match is remarkable.
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30 x 30 fine scale at 40 days 30 x 30 fine scale at 80 days

Upscaled to 5 x 5 at 40 days Upscaled to 5 x 5 at 80 days

Figure 12. Water saturation at 40 and 80 days. Fluid clearly travels through the
high permeability streak.

8. Conclusions

We presented a numerical subgrid upscaling approach that allows most
of the computational work to be confined to an upscaled problem de-
fined on a coarse grid. The method results in a fine scale representation
of the solution that is locally conservative on the fine scale. The method
involves a coarse grid scale operator coupled to a subgrid scale operator.
The numerical Greens function technique allows us to solve the subgrid
part of the problem independently of the coarse grid.

The method can be applied to the system of equations governing
two-phase flow in a porous medium. One advantage of the method
is that we use data provided on the fine scale directly. Therefore, no
assumptions are made about the physics or the expected directions of
flow, and no effective permeabilities or pseudo-functions result.

Our numerical examples show the performance of upscaling the pres-
sure equation when coupled to a fully resolved saturation equation.
We considered three difficult numerical examples involving near-well
behavior, permeability barriers, and high permeability streaks or frac-
tures. We found remarkably good agreement between fully resolved fine
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scale solutions and solutions upscaled to very coarse grids with factors
of upscaling around 100.
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