NUMERICAL SUBGRID UPSCALING OF
TWO-PHASE FLOW IN POROUS MEDIA
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Abstract

We present an approach and numerical results for scaling up fine
grid information to coarse scales in an approximation to a nonlinear
parabolic system governing two-phase flow in porous media. The tech-
nique allows upscaling of the usual parameters porosity and relative
and absolute permeabilities, and also the location of wells and cap-
illary pressure. Some of these are critical nonlinear terms that need
to be resolved on the fine scale, or serious errors will result. Upscal-
ing is achieved by explicitly decomposing the differential system into
a coarse-grid-scale operator coupled to a subgrid-scale operator, which
we localize by imposing a closure assumption. We approximate the
coarse-grid-scale operator with a mixed finite element method that
has a second order accurate velocity coupled implicitly to the subgrid
scale. The subgrid-scale operator is approximated locally by a first
order accurate mixed method. A numerical Greens influence function
technique allows us to solve these subgrid problems independently of
the coarse-grid approximation. No explicit macroscopic coefficients
nor pseudo-functions result. The method is easily seen to be optimally
convergent in the case of a single linear parabolic equation.
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1 Introduction

In many physical problems, there are scales that are too fine to resolve on
any reasonable computational mesh. The objective of upscaling or homoge-
nization is to replace the governing equations by a simpler set of equations
for which the solution can be resolved on a reasonable coarse-scale mesh and

approximates the average behavior of the solution of the governing equations.
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In its simplest form, one replaces the coefficients of the governing equations
with an effective or macroscopic coefficient [5]. This works well in certain
situations [9, 1], but not so well in others. Often it is necessary to change the
form of the governing equations to obtain a suitable coarse-scale model [3];
there is no a priori reason to expect otherwise. Such is especially the case
when nonlinearities are present, since it is well known that a function of an
average is not the average of the function. Various techniques are used in
this case, including homogenization [1, 10], the definition of pseudo-functions
(altered forms of the nonlinear functions that appear in the governing equa-
tions), the use of renormalization methods [8], and many other techniques.

In terms of the simulation of flow and transport in a porous medium,
our goal for nonlinear upscaling in this paper will be to resolve some of the
finer scales in the solution directly, so that no loss of accuracy due solely to
averaging will result. We will then be able to incorporate directly into the
simulation relative and absolute permeability, porosity, capillary pressure,
and well location information on scales smaller than the computational grid.
That is, our nonlinear functions such as relative permeability and capillary
pressure need not be modified, since the fine scales have been sufficiently re-
solved. Our technique is based on numerics. We assume that a fine grid fully
represents the important physical scales, and that our computational grid is
somewhat coarser. That is, perhaps some other homogenization technique
has elevated the problem to a reasonable fine scale, but this fine scale is still
too fine to compute over.

We present our ideas by considering first a problem representing incom-
pressible, single-phase flow in a porous medium in the absence of gravity:

Vo=,
u=-KVp,
where p is the pressure, K is the permeability divided by the fluid viscosity, u

(1)

is the Darcy velocity, and f represents the wells. For simplicity, set u-v =0
on the external boundary.

As an outline of the paper, we present in §2 a derivation of the upscaled
equations for single phase flow, including a definition of our closure assump-
tion. In §3 we give a mixed finite element approximation of the equations
that is compatible with the closure assumption. A solution technique based
on the computation of numerical Greens functions is given in §4. The accu-
racy of the method is discussed in §5. Finally in §6, we present briefly the
two-phase problem, followed in §7 by some numerical results.
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2 Derivation of the Upscaled Equations

We rewrite (1) in variational form as: Find p € W = L? andu € V = H(div)
such that

SV uwde = [ fwdz Ywe W,

2
JKu-vde=— [Vp-vde= [pV-vda YveV, @)

where H(div) = {v € (L*)® : V-v € L?,v-v = 0 on the external boundary}.
Let W, and V. be the computationally resolvable parts of W and V, and
6W and 0V the remainders. That is,
W =W, & oW, V=V.gdV,
p=pc+opeW.& W, u=u.+0éueV.piVv.

2.1 Separation of scales

Separate the fine and d-scales by restricting to appropriate test functions in
the variational formulation. For the coarse scale, we have
J V- (u+ou)w.de = [ fwdx Yw, € W, 3
JK 1 (u.+6u) vedz = [(p. +0p) V- v.da Vv.€V,

and for the J-scale,

JV-(u.+d6u)dwdz = [ féwdx Vow € 6W,

J K™ (u.+6u)-dvde = [(p. +0p)V-d6vds  VéveV.
If we were to ignore the J-scales (i.e., perform no upscaling), then we would
simply set du = 0, Jp = 0, and use only the coarse equation (3). Upscaling
concerns the treatment of these other terms and (4).

Given (u.,p., f), we can solve for

du = &, (uc,pe, f) and op = ®y(uc, pe; f), (5)
where @ is a multi-linear operator. Thus (3) becomes

IV'(UC+(I’u(uc>pcaf))wcdx:ffwcdx Yw. € W,
fKil (uC + q)u(umpc;f)) -vedr (6)
Zf(pc+‘1)p(uc;pc;f))v'Vcd$ Vv. €V,

posed only on the coarse scale. We remark that no approximation has been
made yet; all scales are fully resolved by (4)—(6). However, these two equa-
tions are intrinsically coupled, since @ is a nonlocal operator.
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2.2 Closure assumption (localization approximation)

Define a coarse computational grid and assume that
oV-rv=0 on OF. (7

for each coarse element E.. Then @ (i.e., (4)) becomes a local operator:

Jp. V- (ue +0u)dwdz = [, fowdz Voéw € W |g,,

Jp Kt (ue+0u)-dovdz = [, (p. +0p)V-dvder  VévedV]g,.
(8)
Condition (7) is our closure assumption. We have assumed that all net flux

between coarse elements occurs only on the coarse scale.

3 Mixed Finite Element Approximation

We assume that nested fine and coarse computational grids are used, and
let h and H be the grid spacings, respectively. The fine grid is assumed to
be essentially what is needed to fully resolve the physical scales. Generally
speaking, we envision H/h as a moderate integer (4 to 10, say).

We approximate (5)—(8) by a mixed finite element method. Other dis-
cretizations could be employed; however, the local conservation of these meth-
ods make them attractive for porous media simulation [12]. They approxi-

mate both the pressure and Darcy velocity directly.

N

N

o

Coarse BDDF; velocities d-scale RTy velocities

Fi1G. 1. The degrees of freedom of the approximating spaces.

As depicted in Fig. 1, we approximate the coarse equation (6) on the
coarse grid with BDDF; spaces (BDM; in 2-D) [6, 7]. These spaces have
1 degree of freedom per coarse element for the pressure approximation, W,
and 3 degrees of freedom per coarse element face (2 per edge in 2-D) for
the velocity, V.. They are second order accurate in H for the velocity and
first order for the pressure. The fine grid is used for the J-equation (8).
We use within each coarse element RTy spaces [11]. These have one degree
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of freedom per fine element for the pressure approximation, W, subject
to the requirement of orthogonality to W, that the average over the coarse
element vanishes, and RT( has one degree of freedom per fine element face
for the velocity, 6V, subject to the closure assumption (7). They are first
order accurate in h for both the pressure and velocity for pressures with zero
average over coarse elements and velocities with zero normal components on
coarse element boundaries.

We remark that pressure is resolved fully on the fine scale, and formally
approximated to first order in h. The fact that the BDDF; space approxi-
mates velocity to second order compensates for the closure assumption, which
assumes all net flow between coarse elements is on the coarse scale. Without
this choice, the results degrade significantly [4].

4 Solution by Numerical Greens Functions

We present now a technique to solve the system of equations efficiently. Before

we elaborate, the outline of the technique is as follows.

1. Pre-solve for the influence of the coarse scale on the d-scale. These
are small disjoint problems, one for each coarse element, by (7). These
pre-solutions are numerical Greens functions for the J-problems (8).

2. Solve the coarse scale problem (6), accounting for the pre-solution re-
sponse of the d-scale to the coarse scale in (5).

3. Post-solve to combine results to form the fine-scale solution.

Integrals over coarse elements of the form W, xdW vanish by orthogonality.
Since V-V, =W, and V-0V = §W, integrals of V-§V « W, and V-V x W

also vanish; thus, several terms in the equations below vanish.

4.1 Pre-solution

Locally on each coarse element E., let v.; € V. have flux only at a single
degree of freedom (i = 1,...,18 in 3-D and ¢ = 1,...,8 in 2-D). Then

U= aive,. 9)
i
Solve the following problems for the numerical Greens functions.
Nonhomogeneous terms. Find dug € 6V and dpy € 0W such that

SV dugdwde = [ fowde Vow € 0W|g,,
J K oug-dvde = [dpy V- dvda Vov edV|g,.
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Influence of v. ;. For each 4, find du; € 6V and dp; € 6W such that
JV-éu;dwdx =0 Vow € 6Wlg,,

11
J K (vei+0w) - dvde = [0p; V-dvdz Vv € dV|g,. (1
Note that the combinations
oug + > . a; du; = Py (ue, f) = du,

6po + 22, @i p; = @p(ue, f) = dp
depend linearly on the (as yet unknown) nodal values of u. and on the nu-
merical Greens functions and give du and dp solving (8).

4.2 Coarse Solution

Given the numerical Greens functions and the implicit representation of the
upscaling operator (12), we can now reformulate (6) as a problem for the

course unknowns only. We find u. € V. and p. € W, such that
SV uw.de = [ fw.dz Vw. € W,

13

J K (u. + @, (uc, f)) - vedz = [p.V-v.dz Vv.€ V.. (13)
We rewrite this system with v. = v; using that

u=1u.+6u=20duy+ ) a(ve;+ou), 14

P =pc+0p=pe+0po+ ) aidpi,
and using (10)—(11) with év = du; and orthogonality as
Y [V (vei+ow)w.de = [ fw,de,

Zi [e7] IK_l(VCﬂ' + 5111) . (VCJ‘ + 511]‘) dx (15)
= [(pe +0po) V - (ve,j + 6uj)de — [ K toug - (ve,; + ouy) da.

Thus the method is similar to an “optimal test function” method where we

replace v, by v, ; + du;; however, we also add some nonhomogeneous terms

that improve the accuracy over such “optimal” methods.

4.3 Post-solution

Given u., p., and the numerical Greens functions, compute (14) on the fine

scale to obtain a “fully resolved” approximation of the true solution.

5 Accuracy

Denote by || - || the L?-norm, and by Pw,, Pw,, and Psw the L*-projections
into W,, the full fine grid space Wy = W, @ dW, and dW, respectively.
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If we solve the entire problem (2) for (uy,ps) € RT( over the entire fine
mesh or for (u.,p.) € BDDF; (or BDM; in 2-D) on the coarse mesh, we see
the following error estimates [11, 6, 7], where (u, p) is the true solution.

Theorem 5.1 For RTy with no upscaling on the fine mesh, for v.€ Vy such
that V-v = Py, f,

|K=12(u—uy)|| <infy ||[K='/2(u—v)|| < Ch,
llp — psll < Ch.

For BDDF; (or BDM;) with no upscaling on the coarse mesh, for v € V,
such that V-v = Py, f,

|K-2(u—nu.)|| <infy [|[K/2(u—v)|| < CH?,
llp — pell < CH.

The upscaling technique displays elements of both estimates above. It is

easy to prove the following error estimate.

Theorem 5.2 For BDDF, (or BDM,;) upscaled with the RTy subgrid ap-
prozimation, for v.€ V. + 0V such that V -v = Py, f, v. € V. such that
V-v.= Pw.f, and v € §V such that V - §v = Psw f,

[1K="/2(a — (. + 6u))|| < infy [|[K~12(u—v)]|
< infgv, v {12 (@ = vo)l| + [K7/2(a—a—ov)|]},

lp = pell < CH.

While it is difficult to interpret the velocity error, we should expect better
bounds than in Theorem 5.1; that is, we should expect the velocity error to
be second order. Our numerical results suggest that this is indeed the case,
and that the error has in fact no simple form (as indicated in the theorem).
We consider two test cases in which K = 1 on a unit square domain and
we use Dirichlet boundary conditions and f defined from the imposed true
solution p(z,y) = xy® + 22y cos(zy) or 1/(1 + exp(10x + 10y? — 3y — 5)),
respectively.

It is readily apparent from the data in Table 1, that if H/h is fixed, the
error in pressure is O(H) = O(h), and the error in velocity is O(H?) =
O(h?), as we would expect. However, if H/h is not fixed, the results are
much less predictable. For the tests reported and a few more conducted,
the best fit of the L?-error in u is E} = 150H? + 360H"/?h3/? and E? =
1000H? + 8000H/4h"/*, respectively for the two cases, and for the pressure
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p, the error is E}) = 0.36h + 0.0003H and Ez = 0.4h + 0.0006H'-"h~07,
respectively. Thus the error depends in a complicated way on the solution
and probably on H/h, but p is first order and u is second order accurate.

It is interesting to note from Table 1 that the error in the pressure is

dominated by the fine mesh size, nearly independently of the coarse mesh.

Case 1 Case 2
1/h | 1/H | Pressure | Velocity || 1/h | 1/H | Pressure | Velocity
10 | 10 0.0359 3.63 10 10 0.0438 173.64
20| 20 0.0180 1.42 20 20 0.0219 47.08
40 | 40 0.0090 0.36 40 40 0.0109 12.03
80 | 80 0.0045 0.16 80 80 0.0055 3.03

10 2 0.0359 46.79 10 2 0.0440 413.35
20 4 0.0180 11.14 20 4 0.0220 185.70

40 8 0.0090 2.76 40 8 0.0109 43.25
80 | 16 0.0045 0.69 80 16 0.0055 10.82
160 4 0.0023 8.97 80 2 0.0095 273.92
160 8 0.0022 2.26 80 4 0.0060 159.92
160 | 16 0.0022 0.60 80 8 0.0055 36.50
160 | 32 0.0022 0.18 80 16 0.0055 10.82
10 2 0.0359 46.79 10 2 0.0440 413.35
20 2 0.0180 41.09 20 2 0.0230 310.56
40 2 0.0091 39.39 40 2 0.0134 281.47
80 2 0.0046 38.94 80 2 0.0095 273.92

Table 1. Some L2-errors for Cases 1 and 2.

6 Two-phase Immiscible, Incompressible Flow

We now turn to a nonlinear problem describing the flow of two immiscible,
incompressible fluids in a porous medium, such as oil and water. For phase
Jj = w,o (i.e., water and oil), let s;, u;, and p; be the phase saturations,
Darcy velocities, and pressures. Let s = s, = 1 — s,, ¢ be the porosity,
K the absolute permeability, g the gravitational constant, and z the depth.
The mobilities are related to the relative permeabilities and fluid viscosities
as Aj(s) = kyj(s)/p; and A(s) = Au(s) + Ao(s), and P.(s) = p, — py is the
capillary pressure. Conservation of mass of each phase gives the governing
equations. After reformulation, we obtain the following (see, e.g., [2]).
Pressure equation:
Vou=f=fu+tfo

(16)
u=—KX\s)(Vp—p(s)Vz),
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where the global pressure and density are

* Aw(o) o) Aw(s) (s)
=p, — P d d =
p Po /0' A(O’) c(a) o an p(S) (S) pw + A(S) pO
Saturation equation:
98+ V-uy = fuls), a7
u, = —KVq(s) +7(u, s),
where the “complementary” potential and y are
a(s) = — Jy =527 Pl(0) do,
Y(u,8) = Ffhu = K2l (p, — pu)gVe.

We use sequential time splitting, a backward Euler time discretization,
and integration-by-parts (3 times) to obtain the following variational form
and time approximation for At > 0 and time levels t" = nAt.

Pressure equation:

JV-u"wde = [ frwde,

JO("HEK) " - vde = [p"V-vdz + [ p(s"!)Vz - vdz.
Saturation equation: (wherein w € Wy = W, @ dW)

(18)

fEf Sn_Astnfl wd:n—l—fEf V-¢"wdm+f6Ef y(u, sip) - vwds
= [y, fa(sm was, 19
K" vde = [q(s")V -vdz,

where ¢ = —KVq(s™), ull, = " +~(u™, s"), and we use one-point upstream
weighting on the term involving ~.

As in the single-phase case, we separate the solution into coarse and fine
scales V. ® 6V or W, @ W

VvV =V, + v, u=u, + du, P = Y. + 0, (20)
w = w, + 0w, P = pc+ 0p.

Because the saturation equation is parabolic, it turns out that we do not
need to decompose s € Wy.

The pressure equation is linear and independent of the saturation equa-
tion, given s” 1. We can solve for the upscaled u” and p” as above.

We linearize the saturation equation with Newton-Raphson, and solve
for changes in s” and 9", given u”, using numerical Greens functions as in
the linear case above. Upstream weighting on the fine scale destroys our
localization assumption. To circumvent this, we simply use the old Newton

result for the upstream value when it traces out of a coarse element.
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7 Some numerical examples

We present two 2-D examples to illustrate our upscaling technique. In both,
we have a square domain with uniform rectangular grids. The initial water
saturation is 0.2. An injection well is placed in the lower left corner injecting
water at a rate of 0.2m?/day, and a production well is in the adjacent corner.
Time steps vary from 1 day initially to 25 days near the end of the simulations.
The porosity is 0.25, but the permeability is heterogeneous.

7.1 Example 1

In this example, we have a 40 meter by 40 meter domain with a 40 x 40 fine
grid. The base 10 logarithm of the permeability field is shown in Fig. 2.
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FiG. 2. The log of the permeability field for Example 1.
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FiG. 3. Fine-scale saturation at 100 and 500 days for Example 1.

As can be seen in Figs. 3-4, the upscaling procedure approximates the
saturation quite well. Here we use a 5 x 5 coarse grid, so on each coarse block,
we have an 8 x 8 subgrid for the J-problems. The coarse solution (Fig. 5)
completely fails to resolve the flow and location of the wells.
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Fic. 4. 5 x 5 Upscaled saturation at 100 and 500 days for Example 1.
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FiG. 5. Coarse-scale saturation at 100 and 500 days for Example 1.

In Figs. 6-7, we show the results of upscaling with 2 x 2 and 8 x 8 coarse
grids (20 x 20 and 5 x 5 subgrids). Both perform quite well. The coarsest
example does a very good job near the well, but the performance degrades
later in time a bit as the flow reaches the middle of the domain.

The number of degrees of freedom used in these examples is given in
Table 2. The coarse solution is woefully inadequate; however, for the cost of
a global problem of the same size, we can upscale to a very reasonable level
of resolution.

Coarse grid

2x2|5x5|8x%x8
Coarse Velocity 8 80 224
Upscale Velocity | 3048 | 2880 | 2784
Fine Velocity 6240 | 6240 | 6240
Coarse Pressure 4 25 64
Upscale Pressure | 1600 | 1600 | 1600
Fine Pressure 1600 | 1600 | 1600

Table 2. Number of degrees of freedom for Example 1.
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FiG. 6. 2 x 2 Upscaled saturation at 100 and 500 days for Example 1.
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FiG. 7. 8 x 8 Upscaled saturation at 100 and 500 days for Example 1.

7.2 Example 2

In the second example, we have a 24 x 24 meter domain with a 24 x 24 fine
grid and a 4 x 4 coarse grid. The base 10 logarithm of the permeability is
depicted in Fig. 8. It has two high permeability streaks, akin to fractures.
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FiG. 8. The log of the permeability field for Example 2.
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Fig. 9 shows that the saturation is very difficult to resolve. The upscaling
technique does a reasonable job following the flow into the first high per-
meability streak. The coarse solution in Fig 10, however, completely misses
the high permeability streaks. It shows an overall tendency to flow right to
left rather than the proper direction down to up. The number of degrees of
freedom used in this example is given in Table 3.
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FiG. 9. Fine-scale and 4 x 4 Upscaled saturation at 20 days for Example 2.
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FiG. 10. Coarse-scale saturation at 20 days for Example 2.

| Velocity | Pressure

Coarse 48 16
Upscale 1008 576
Fine 2208 576

Table 3. Number of degrees of freedom for Example 2.

Some timing results are given in Table 4. The pressure equation is solved
with Jacobi preconditioned conjugate gradients, the saturation equation by
Jacobi preconditioned orthomin, and the upscaling numerical Greens func-
tions by a direct solver. The time to compute the 24 x 24 fine scale solution
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is quite high, since the problem is very poorly conditioned. In contrast, the
4 x 4 coarse problem is solved easily. In this example, the upscaled problem
takes about as long to solve as the coarse problem; computing the numerical
Greens functions takes little extra time and gives a much improved solution.

Steps | Fine | Upscale | Coarse
1 2:03 0:10 0:08
2 1:48 0:09 0:08
3-10 | 11:32 1:10 1:05
11-20 | 13:29 1:28 1:21

21-36 2:21 2:13
37-48 | 35:47 2:02 1:52
49-58 1:42 1:33
59-65 | 30:26 1:21 1:14
66-72 1:21 1:14

73-76 | 19:22 0:46 0:42
7784 | 38:48 1:34 1:25

Table 4. Some timing results for Example 2.

8 Conclusions

Our upscaling approach improves the resolution of the computed solution. It
allows recovery of fine-scale pressure, velocity, and saturation, so it incorpo-
rates fine-scale information and nonlinearities directly, thereby circumventing
the need to define pseudo-functions. The technique resolves positions of wells
within grid blocks, is efficient to compute, has good convergence properties,
can be applied at each time step of a time dependent problem, and can be

applied to a nonlinear problem during a Newton linearization step.
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