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We develop and analyze a mixed finite element and a cell-centered finite difference
method for groundwater flow in an irregular, heterogeneous, multi-block aquifer
domain. The methods are designed to handle full tensor hydraulic conductivity
with possible discontinuities. The domain can be divided into a series of smaller,
non-overlapping sub-domain blocks of irregular geometry. Each is covered by a
logically rectangular grid; these are not required to match on the interface so
that we can model faults, local refinements, and other internal boundaries, such
as interfaces where the conductivity is discontinuous. After continuously map-
ping each sub-domain to a rectangular reference sub-domain, all computations
can be performed in a simple rectangular context. Standard mixed finite ele-
ment spaces are used for the local sub-domain discretization. A “mortar” finite
element space is introduced to accurately approximate the pressure along the
sub-domain interfaces. Quadrature rules are employed to transform the mixed
finite element method into cell-centered finite differences for the pressures. Theo-
retical and computational results show that the scheme is highly accurate. Super-
convergence for both pressure and velocity is obtained at certain discrete points.
Three dimensional numerical examples using an efficient parallel domain decom-
position solver are also presented.



1. Introduction.

Natural aquifers are of irregular shape and contain rock strata and possi-
bly faults. Numerical techniques for the simulation of groundwater flow and
transport need to accurately and efficiently treat such irregularities and het-
erogeneities. Local grid refinement to provide additional spatial resolution
of complex local phenomena is also necessary in many cases.

To address these concerns, we present an approximation scheme for
groundwater flow in a d = 2 or 3 dimensional, multi-block aquifer domain
Q equal to the union of N non-overlapping sub-domain blocks ;, 1 <
1 < N. Each sub-domain block is covered by a logically rectangular grid;
however, unlike other numerical techniques, we do not require that adjacent
grids match on the interfaces between sub-domains. This provides great
flexibility in the construction of sub-domain grids. In this way we can
model irregularly shaped domains, faults, and other internal boundaries,
such as the boundaries of locally refined regions or the interfaces between
rock strata where there are large discontinuities in the conductivity tensor.

We base our method on the expanded mixed finite element method on
logically rectangular grids, since this method is known to be accurate, effi-
cient, and locally mass conservative for flow problems with full tensor coef-
ficients on geometrically general domains when there is a single sub-domain
[5, 2]. Moreover, if the RTy mixed finite element approximating spaces [8]
are used, and if the trapezoidal quadrature rule is used to approximate some
of the finite element integrals, the expanded method reduces to a simple
cell-centered finite difference method for the pressure unknowns [5, 2, 4, 3].
Computational and theoretical results demonstrate that, if the coefficients
and grids are smooth, the approximate pressure and velocity is convergent
to the true solution at the optimal rate; moreover, super-convergence (i.e.,
convergence at better than the optimal rate) is attained at certain points.

When there are interfaces across which the coefficients are discontin-
uous or the grid is not smooth, the cell-centered approximate pressures
must be supplemented with face-centered (Lagrange multiplier) pressures
along the interface. This gives the enhanced cell-centered finite difference
method [2]. Herein we consider a similar, macro-hybrid form of the ex-
panded mixed method (see also [1, 10]) that introduces an explicit approx-
imation of the pressure on the interfaces between sub-domains. If the grids
match, we may use the usual face-centered pressure Lagrange multipliers
on the interface. If the grids do not match, we need to approximate the
interface pressure in a special finite element space, called a “mortar” space,
using terminology of a similar technique for Galerkin finite elements [6].

An attractive feature of our method is that it can be implemented
easily and efficiently. In a preprocessing step, each sub-domain block is
continuously mapped to a reference, rectangular sub-domain block. The
expanded mixed method or its cell-centered finite difference approximation



is defined on the reference sub-domains in a rectangular context. A non-
overlapping domain decomposition algorithm [7] is used to tie the blocks
together and to solve the resulting linear system. Finally, a post-processing
step maps the computed solution back to the physical domain. This imple-
mentation is well suited to parallel computers.

2. The numerical technique.

To illustrate our numerical technique, we consider a time discrete, simplified
system for the pressure p and the Darcy velocity u, satisfying

ep+V-u=q, (2.1)
u=—KVp,

where c¢ is related to the rock compressibility, A is related to the hydraulic
conductivity tensor, and ¢ is the source term. Furthermore, we assume
no-flow boundary conditions.

We assume the existence of a continuous piece-wise smooth mapping
F of Q onto the aquifer domain ), where Q is the union of rectangular
computational blocks QZ, 1 <1< N and F takes Q; onto Q;. Given a
partition of Q; into a rectangular grid of elements T .« of maximal diameter
h, I defines a smooth, logically rectangular, curved grid 7, on ;. Let
DF = (0F;/0%;) be the Jacobian matrix of F, and J = |det(DF)| be its

Jacobian.

2.1. The mixed finite element spaces.

The RTy spaces [8] are defined on a rectangular reference element E by

Vh(E) = {(oqz1 + b1, 0229 + Ba, asrs + 53)T g, B € RY,
Wh( ) {a a R}

(delete the last component in Vh(E) if d = 2). Then, for each O,
\A/—hﬂ» = {V = (v1,v9,03) 1 V| € Vh(E) for all £ € ﬁ,m and each v, is

continuous in the [th coordinate direction},

Wi = {t: |z € Wi(E) for all E € T5,}.
Let Qo = Q, and let I';; = 092, N9, 0 <1 < 7 < N, with similar

definitions in the computational domain.

If 7A7H and 7A7L7j do not match on fij, we introduce a logically rectangular

grid 72” on the d — 1 dimensional surface f” This interface grid need not
match with either of the adjacent sub-domain grids. Later we impose a mild
condition on 72” to guarantee unique solvability of the numerical scheme.
We define our mortar space on a reference element € € 72” by

AZ(é) = {055152 + 651 + 752 + 5 : a767775 € R}7



where £, are the coordinate variables on é (the terms involving & should
be deleted if d = 2). Then, for each I';;, we give two possibilities for our
mortar space, a discontinuous and a continuous version, as

e A7(&) for all ¢ € Tr4;},
: € AZ(é) for all ¢ € 7272']‘, i is continuous on f”}

AZ,Z']‘ = {M L fi]e
Z,Z'j = {M DL

It 7A7H and 7A7L7j match on fij, we may proceed as above, or we may
take 7p,; to be the trace of the sub-domain grids on I';;. This latter case
includes the case where I';; C 9Q. We define

Awu {a:a € R},
Ao =Jji: ple € AP(&) for all € € Trij )

We denote by /A\Mj any choice of /A\iﬂ»j, /A\fw»j, or AZ”U (when possible).
To complete the definition of the reference finite element spaces, let

N N
V=V, W= W, M= & A
i=1 i=1 0<i<j<N
We now define the finite element spaces Vj, W),, and A on the physical

domain (2 as follows (see also [2, 9]). For each v € Vi, o € W, and ji i€ Ay,
we define v € V. w € Wy, and p € Ay, for x € Q by

v(z) = iﬁpﬂ@ﬁ@% (2.3)
w(x) = (1), (2.4)
plx) = f(a), (2.5)

where © = F(1), & € (. The Piola transformation (2.3) preserves the
normal component of the velocity across the element boundaries.

2.2. The expanded mixed method.

Following [2], we introduce the adjusted pressure gradient
=—-G"'Vp,

where G = J(DF~1)TDF~! is a symmetric positive definite matrix. This
choice of (¢ leads to a greatly simplified computational problem on 0.

We define the following macro-hybrid formulation of the expanded
mixed method for approximating (2.1)—(2.2). Find u, € Vy, @, € Vy,
pr € Wy, and A, € Ay, such that, for 1 <: < N,

/cphd:zj—l—/v-uhdx:/qu, EeT, (2.6)
E E E



/Gﬁh-vdx:/ oV - vdr — AV - vdo, v eV, (27
Q; Q;

A
/ Guy, - vde = / GKGRy, - v de, vev, (28)
Q Q
N
Z/ uy, - vpdo =0, pe N, (29)
i=1 YOl

Mass is conserved element-by-element by (2.6), and weakly across each inter-
face I';; by (2.9). Existence and uniqueness of a solution (with the pressure
determined up to a constant) is shown in [1, 10], provided that:

(H1) For any ¢ € Ay, if Qni0=0,1<: <N, then ¢ =0,

where Q; : L*(0%;) — Vi, - v]sq, is a projection defined for any ¢ €
Lz(aﬂz) by

/ (¢ — Qpid)v-vdo=0, forallveVy,.
A

The hypothesis (H1) is not very restrictive. It requires only that the mortar
space be not too fine compared to the traces of the velocity spaces (which
are piece-wise discontinuous constants).

A transformation through (2.3)-(2.5) leads to the following problem
on the union of computational rectangular blocks Q.

/A &Jpy di + / Vi di = / aJ dé, EeTn, (2.10)
E E E

[ ﬁh-vd@:[ BN Vdi— [ Av-pde, VeV (211)
€2 €2 L

[ﬁh-0d£ :[JDF‘llx’(DF‘l)Tﬁh-Odi, Y eV (212)
19} €2

N A

Z/A Q-0 fpds =0, pehn (213)
— Ja{,

The computational problem is similar to the original with G' = [.

All computations are performed on the rectangular grids of the Q.. To
further simplify the scheme, we employ the trapezoidal quadrature rule for
approximating the three integrals involving a vector-vector product. This
allows for a direct elimination of ﬁh and 1 on a sub-domain, leading to
a finite difference scheme for p;, at the cell centers and averages of j\h at
the centers of the faces on the sub-domain boundary. The stencil in a sub-
domain is 9 points if d = 2 and 19 points if d = 3. A detailed description
of the finite difference scheme can be found in [5, 3]. Additional implemen-
tation details are given in §4.

3. Theoretical convergence results.

Let || - || denote the L?-norm; that is, for a scalar or vector function ¢,



1/2
el = {/ |<,o(:1;)|2d:1;} . Let ||| - |||a denote the L?*morm approximated
Q

by the midpoint quadrature rule over our mesh on ). The proof of the
following theorem is given in [1, 10].

Theorem. Under appropriate hypotheses including especially (H1), there
exists a constant C depending on the smoothness of F', K, ¢, and the
solution on a sub-domain, but independent of the maximum grid spacing h,
such that

Ju—w| + |G-l < Ch,  [|[u—wp|llar + |[|[& — Tl |ar < O,
lp — prll < Ch, lp = pulllme < CR?,
V- (u—uy)| < Ch, IV - (u = up)|lar < CR2

4. Some computational results.

The method described above has been implemented in a code designed to
run efficiently on massively parallel, distributed memory machines. It uses
a non-overlapping domain decomposition algorithm [7] for solving the re-
sulting discrete linear system. It involves finding the solution to the rectan-
gular, reference sub-domain problems, and solving an interface problem for
pressure Lagrange multipliers. The original algorithm used the Lagrange
multiplier space AZ”U for matching grids; however, it extends naturally to
our other mortar spaces.

Our first example exhibits the theoretical convergence rates. We solve
a problem with ¢ = 0 and a known analytic solution and mapping

2 for z <1/2,
p(z,y) = { szr (x —1/2)(y +1/2) for z >1/2,

2 1
(1 2) for v < 1/2,

K =
(2, y) L0 e
01 or x ,

(gyc):F(;):(nyr%fm(%))'

The computational domain is the unit square. The boundary conditions
are Dirichlet on the left edge and Neumann on the rest of the boundary.
The domain is divided into two sub-domains with an interface along the
x = 1/2 line. The non-matching grids are initially 4 x 8 on the left and
4 x 11 on the right. Continuous mortars on a grid of 7 elements with 8
degrees of freedom or discontinuous mortars on a grid of 3 elements with 6
degrees of freedom are introduced on the interface. Convergence rates for
the test case are given in Table 1. The rates were established by running



Continuous mortars Discontinuous mortars

L/h e = palllae | e —wp{llae | e = palllae | [0 — wp]l[ar
8 5.97E-3 3.62E-2 5.97E-3 3.62E-2
16 2.07E-3 1.58E-2 2.07E-3 1.58E-2
32 6.11E-4 5.50E-3 6.11E-4 5.51E-3
64 1.65E-5 1.86E-3 1.65E-5 1.87E-3
128 4.26E-5 6.34E-4 4.26E-5 6.39E-4
levels 1-5 O(hl.SO) O(h1'48) O(hl.SO) O(h1'47)
levels 4-5 O(h195) O(h15) O(h193) O(h155)

Table 1: Discrete norm errors and convergence rates for the first example
with a known analytical solution.

the test case for 5 levels of grid refinement and computing a least squares fit
to the error. The slight degradation from the theoretical convergence rates
is due to only approximate computation of the derivatives of the map and
the cell centers of the true cells, where the error is computed. The relative
importance of this approximation becomes negligible for fine enough grids
and the theoretical rates are reached asymptotically.
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Figure 1: Computed pressure (shade) and velocity field (arrows) for the
more practical example.

Our second example shows a more practical application. We model
flow through a three dimensional aquifer with a vertical fault cutting the
domain near its middle. A vertical cross-section, perpendicular to the fault,
of the computed pressure and velocity field is shown in Fig. 1. The injection
well on the left and the production well on the right penetrate through
half the aquifer depth; no flow is specified on the boundary and gravity is
neglected. The aquifer is divided into four sub-domains. The fault coincide
with two sub-domain boundaries, and the grid is refined around the wells
for a better approximation of the velocities.
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