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Multiscale mortar mixed methods for heterogeneous elliptic
problems
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Abstract. Consider solving a second order elliptic problem when the elliptic
coefficient is highly heterogeneous. Generally, a numerical method either uses
a very fine computational mesh to resolve the heterogeneities and therefore
becomes computationally inefficient, or it performs efficiently on a coarse mesh
but gives inaccurate results. Standard nonoverlapping domain decomposition
using mortar spaces to couple together the subdomains efficiently handles these
equations in parallel, but the issue of heterogeneity is not directly addressed.

We define new mortar spaces that incorporate fine scale information obtained
from local cell problems, using the theory of homogenization as a heuristic
guide to limit the number of degrees of freedom in the mortar space. This
gives computational efficiency in parallel, even when the subdomain problems
are fully resolved on a fine mesh. In the case of an elliptic coefficient satisfying
the two-scale separation assumption, the method is provably accurate with
respect to the heterogeneity. Formally first and second order mortar space
approximations are constructed explicitly in two dimensions. Numerical tests
are presented for one medium with the two-scale separation assumption and
two without it. The results show that these new homogenization based mortar
spaces work much better than simple polynomial based mortar spaces, and
that generally the second order spaces work better than the first order ones.

1. Introduction

We consider a second order elliptic problem with a heterogeneous coefficient
(i.e., one that is highly variable or oscillatory in space) that models, for example,
the single phase flow of fluid in the Earth’s subsurface according to Darcy’s Law.
In mixed form [BF91,RT91,BS94], the problem is

u = −aε∇p in Ω,(1.1)

∇ · u = f in Ω,(1.2)

u · ν = 0 on ∂Ω,(1.3)
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where Ω ⊂ R
d, d = 2 or 3, is the problem domain, ν is the outer unit normal,

aε(x) is a symmetric, uniformly positive definite tensor coefficient with L∞(Ω)
components representing the permeability, f ∈ L2(Ω) is the source or sink term,
and the unknowns are pressure p(x) and velocity u(x). The homogeneous Neumann
boundary condition is considered for simplicity.

Domain decomposition for mixed methods [GW88] has been developed as a
divide and conquer strategy to increase parallelism in computations and to handle
interdomain multiphysics. In a nonoverlapping domain decomposition approach, a
relatively small mortar finite element space [BMP94,ACWY00,APWY07] can
be introduced to reduce coupling between subdomains. Let Ωi, i = 1, 2, . . . , n, be
nonoverlapping subdomains of Ω, let pi and ui be the pressure p and velocity u
restricted to Ωi, and let νi be the outer unit normal to ∂Ωi. We rewrite (1.1)–(1.3)
in a domain decomposition setting as

u = −aε∇p in Ωi,(1.4)

∇ · u = f in Ωi,(1.5)

pi = pj on ∂Ωi ∩ ∂Ωj ≡ Γij ,(1.6)

ui · νi + uj · νj = 0 on Γij ,(1.7)

u · ν = 0 on ∂Ω.(1.8)

Accurate approximation of (1.1)–(1.3) or (1.4)–(1.8) is difficult when the per-
meability coefficient aε is a highly varying function, where ε is some measure of
the correlation length of the medium. When ε � 1, the medium is highly het-
erogeneous, and its resolution requires a fine computational mesh (see, e.g., the
error estimate Theorem 2.1 and (2.7)–(2.8)). This is reasonable for the subdomain
problems, since they can be computed independently in parallel without the need
for communication. The mortar interface problem is not so easily solved in parallel,
but it can be made computationally efficient if it is small in size.

Recently, one of the current authors in [Arb11a,Arb11b] suggested a new
multiscale finite element space based on the homogenization microstructure theorem
(see Theorem 3.1) to handle the heterogeneity. More recently, two of the current
authors in [AX12] adapted the idea to define a new multiscale mortar space and
numerically tested a formally first order mortar space approximation with only
three degrees of freedom on each subdomain interface. In this paper, we extend the
idea to give a formally second order multiscale mortar space approximation with
five degrees of freedom on each subdomain interface.

Briefly, the idea is to efficiently sample the microstructure by solving local cell
problems. Heuristically, homogenization theory tells us that these local solutions
can be used implicitly to reconstruct the pressure p in terms of a fixed operator and a
smooth homogenized function p0 (see (3.6)). Rather than approximating p directly,
we approximate p0 by a polynomial (see (4.7)), which gives an efficient multiscale
mortar space with only a few degrees of freedom per subdomain interface.

We close this introduction by outlining the paper. We first give a brief review of
the domain decomposition mortar method and homogenization theory in Sections 2
and 3, respectively. Then in Section 4, we define the first and second order mortar
space approximations based on solutions to a localized cell problem as in homog-
enization theory. We also note that in the case of an elliptic coefficient satisfying
the two-scale separation assumption of periodic homogenization [BLP78,JKO94],
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the method is provably accurate with respect to the heterogeneity, and we show
that our new mortar method can be viewed as an implicitly defined multiscale finite
element method. In Section 5, three numerical examples are given. Although our
new mortar space was designed based on homogenization theory, which requires a
locally periodic coefficient, our numerical tests on nonperiodic permeability fields
show that the new method performs well for problems with general heterogeneities.

2. Mortar domain decomposition mixed method

Throughout, let Γ =
⋃

i,j Γij and Γi = ∂Ωi

⋂
Γ denote interior subdomain

interfaces. For any ω ⊂ Ω and γ ⊂ Γ, let (·, ·)ω and 〈·, ·〉γ denote the L2(ω) and
L2(γ) inner products, respectively.

2.1. The variational form. Define the function spaces

Vi = {v ∈ H(div; Ωi) : v · ν|∂Ω∩∂Ωi
= 0}, V =

n⊕
i=1

Vi,

Wi = L2(Ωi), W =
{
w ∈ L2(Ω) :

∫
Ω

w dx = 0
}
,

M = H1/2(Γ).

The variational form of (1.4)–(1.8) is: Find u ∈ V, p ∈ W , and λ = p ∈ M such
that for 1 ≤ i ≤ n,

(a−1
ε u,v)Ωi

− (p,∇ · v)Ωi
+ 〈λ,v · νi〉Γi

= 0 ∀v ∈ Vi,(2.1)

(∇ · u, w)Ωi
= (f, w)Ωi

∀w ∈ Wi,(2.2)
n∑

i=1

〈u · νi, μ〉Γi
= 0 ∀μ ∈ M.(2.3)

2.2. The Finite element approximation. Let Th,i be a conforming, quasi-
uniform, finite element partition of Ωi with maximum element diameter hi. Let
h = maxi hi and Th =

⋃n
i=1 Th,i be the finite element partition over the entire

domain Ω. Let Vh,i×Wh,i ⊂ Vi×Wi be any of the usual inf-sup stable mixed finite
element spaces [BF91,RT91,BS94] defined over Th, and set Vh =

⊕n
i=1 Vh,i and

Wh =
⊕n

i=1 Wh,i/R. Denote by TH,ij a quasi-uniform finite element partition of Γij ,
with maximal diameter of Hij and H = max1≤i,j≤n Hij . Let MH,ij ⊂ L2(Γij) be
the local mortar finite element space we will define later, and letMH =

⊕
i �=j MH,ij .

In mixed finite element approximation of (2.1)–(2.3), we find uh ∈ Vh, ph ∈
Wh, and λH ∈ MH such that for 1 ≤ i ≤ n,

(a−1
ε uh,v)Ωi

− (ph,∇ · v)Ωi
+ 〈λH ,v · νi〉Γi

= 0 ∀v ∈ Vh,i,(2.4)

(∇ · uh, w)Ωi
= (f, w)Ωi

∀w ∈ Wh,i,(2.5)
n∑

i=1

〈uh · νi, μ〉Γi
= 0 ∀μ ∈ MH .(2.6)

If our mixed finite element spaces give approximation of order O(hk) for u
and O(h�) for p, and if we use a mortar space MH of piecewise continuous or
discontinuous polynomials of degree m− 1 over each TH,ij , then from [APWY07]
we have the following a-priori estimates.
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Theorem 2.1. There exists C, independent of h and H, such that for 1 ≤ r ≤
k, 0 ≤ s ≤ �, and 0 < t ≤ m,

‖∇ · (u− uh)‖0 ≤ C‖f‖shs,

‖u− uh‖0 ≤ C
{
‖u‖rhr + ‖p‖t+1/2H

t−1/2 + ‖u‖r+1/2h
rH1/2

}
,

‖p− ph‖0 ≤ C
{
‖p‖shs + ‖p‖t+1/2H

t+1/2

+ ‖f‖shsH + ‖u‖rhrH + ‖u‖r+1/2h
rH3/2

}
.

To be computationally feasible, we usually assume that h < ε < H. However,
recall that the gradients of the solution (u, p) also depend on ε, i.e.,

‖∇p‖0 = O(ε−1) and ‖Dkp‖0 = O(ε−k),

and similar for u. Thus Theorem 2.1 implies

‖u− uh‖0 ≤ C
{
(h/ε)r + (H/ε)t−1/2/ε+ (h/ε)r(H/ε)1/2

}
,(2.7)

‖p− ph‖0 ≤ C
{
(h/ε)s[1 +H] + (H/ε)t+1/2 + (h/ε)r[1 + (H/ε)1/2]H

}
.(2.8)

The approximation is poor when h < ε < H, so multiscale techniques are required.

3. Resolving heterogeneities using homogenization theory

Homogenization is a classic mathematical theory to resolve heterogeneities in
porous media [BLP78,JKO94]. The key assumption in periodic homogenization
theory is the two-scale separation of aε(x), that is,

(3.1) aε(x) = a(x, x/ε),

where a(x, y) is periodic in y in the unit cell Y = [0, 1]d. Now a(x, y) is assumed
to vary slowly in x ∈ Ω, and these variations can be resolved by H, but as ε → 0,
y = x/ε varies more and more rapidly (i.e., aε becomes more heterogeneous).

The homogenized problem is formulated as

u0 = −a0∇p0 in Ω,(3.2)

∇ · u0 = f in Ω,(3.3)

u0 · ν = 0 on ∂Ω.(3.4)

The true solution (u, p) of (1.1)–(1.3) converges to the homogenized solution (u0, p0)
as ε → 0. Here, the homogenized coefficient tensor a0(x) is given by

a0,ij(x) =

∫
Y

a(x, y)
(
δij +

∂ωj(x, y)

∂yi

)
dy, i, j = 1, . . . , d,

where ωj(x, y), for each fixed x ∈ Ω, is the y-periodic solution of the cell problem

(3.5) −∇y ·
[
a(x, y)

(
∇yωj(x, y) + ej

)]
= 0 in Ω×Y, j = 1, . . . , d,

with ej ∈ R
d being the jth Cartesian unit vector. We can further correct the

homogenization solution (u0, p0) to first order expansion [JKO94,MV97,AB06].

Theorem 3.1. Let ω = (ω1, . . . , ωd)
T and define the first order corrector by

(3.6) p1ε(x) = p0(x) + εω(x, x/ε) · ∇p0(x).

If p0 ∈ H2(Ω), then there is some constant C, depending on the solutions to the
cell problems but not on ε, such that

‖p− p1ε‖0 ≤ Cε‖p0‖2.(3.7)
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Moreover, if p0 ∈ H2(Ω) ∩W 1,∞(Ω), then

(3.8) ‖∇(p− p1ε)‖0 ≤ C
{
ε‖∇p0‖1 +

√
ε ‖∇p0‖0,∞

}
.

4. A multiscale mortar space based on homogenization

We remark that the two-scale assumption (3.1) is used above for theoretical
analysis and error estimation. It is not used in this section to define our multiscale
mortar space (which follows the construction in [AX12]).

4.1. Interface error in the mortar method. Let the weakly continuous
velocities [ACWY00] be

(4.1) Vh,0 =
{
v ∈ Vh :

n∑
i=1

〈v|Ωi
· νi, μ〉Γi

= 0 ∀μ ∈ MH

}
,

and reformulate (2.4)–(2.6) as: Find uh ∈ Vh,0 and p ∈ Wh such that

(a−1
ε uh,v)−

n∑
i=1

(ph,∇ · v)Ωi
= 0 ∀v ∈ Vh,0,(4.2)

n∑
i=1

(∇ · uh, w)Ωi
= (f, w) ∀w ∈ Wh.(4.3)

Subtracting (4.2)–(4.3) from (2.1)–(2.2), we obtain equations for the error (re-
calling p = λ on Γ)

(a−1
ε (u− uh),v)Ω −

n∑
i=1

[
(p− ph,∇ · v)Ωi

− 〈p,v · ν〉Γi

]
= 0 ∀v ∈ Vh,0,(4.4)

n∑
i=1

(∇ · (u− uh), w)Ωi
= 0 ∀w ∈ Wh.(4.5)

The non-conforming error term 〈p,v · ν〉Γi
arises because although p is continuous,

it is not weakly continuous. However, v is in the weakly continuous space, so

(4.6) 〈p,v · ν〉Γi
= 〈p− μ,v · ν〉Γi

∀μ ∈ MH ,

leads to coarse H-level approximation error. We next use results from the homog-
enization theory heuristically as a guide to improve the approximation of p in MH .

4.2. Formal first and second order approximations. From Theorem 3.1,
we should expect that although the solution p of (2.1)–(2.3) is not smooth, it is a
fixed operator of a smooth function p0. Thus we should approximate

λ(x) = p(x) ≈ p1ε(x) =
(
1 + εω(x, x/ε) · ∇

)
p0(x)(4.7)

≈
(
1 + εω(x, x/ε) · ∇

)
q(x),

where q(x) is a piecewise polynomial.
Since we may not in general have a local period Y for aε(x), we may also have

no cell problem (3.5) defining εω(x, x/ε). We approximate the local microstructure
near each Γij on Ωi ∪ Ωj by finding the periodic solution to

(4.8) −∇ ·
[
aε(x)

(
∇ω

Γij

k (x, y) + ek
)]

= 0 in Ωi ∪ Ωj , k = 1, . . . , d.

Let Γ∗
ij to be an extension of Γij in the normal direction into Ωi ∪ Ωj , and let

Pm−1(T ∗
H,ij) to be the piecewise (continuous or discontinuous) polynomials of degree
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m − 1 defined over the interface mesh TH,ij and extended in the normal direction
of the same degree. Then we define [AX12]

MH =
{
λ ∈ L2(Γ) : λ

∣∣
e
=

(
1 + ωΓij · ∇

)
q
∣∣
e
, q ∈ Pm−1(T ∗

H,ij), e ∈ TH,ij

}
,

wherein the extended polynomials were restricted back to Γ.
In a two dimensional example, suppose we use only a single finite element over

each interface Γij . We linearly map an interface Γij and its neighboring strip in
both normal directions to a master rectangle [−η, η]× [0, H], where x = 0 gives the
restriction to Γij . If we choose q to be a linear polynomial as in [AX12],

q(x, y) = a+ bx+ cy,

then

p(x) ≈ (1 + ωΓij (x, y) · ∇)(a+ bx+ cy)

= a+ b
[
x+ ω

Γij

1 (x, y)
]
+ c

[
y + ω

Γij

2 (x, y)
]
,

and the formally first order mortar approximation on {0} × [0, H] is

λH(y) = a+ b ω
Γij

1 (0, y) + c
[
y + ω

Γij

2 (0, y)
]
.

Similarly, we could choose q to be a quadratic polynomial,

q(x, y) = a+ bx+ cy + dx2 + exy + fy2,

and then we have the formally second order mortar approximation

λH(y) = a+ b ω
Γij

1 (0, y) + c
[
y + ω

Γij

2 (0, y)
]

+ e y ω
Γij

1 (0, y) + f
[
y2 + 2y ω

Γij

2 (0, y)
]
.

Notice that we have three, not two, degrees of freedom for first order approximation
on the one dimensional interface. Similarly, we have five, not three, degrees of
freedom for second order approximation.

4.3. Implicitly defined multiscale finite elements. Define the bi-linear
form dH : MH ×MH → R and linear functional gH : MH → R by

dH(λ, μ) = −
n∑

i=1

〈u∗
h(λ) · νi, μ〉Γi

,

gH(μ) =

n∑
i=1

〈ūh · νi, μ〉Γi
,

where (u∗
h(λ), p

∗
h(λ)) ∈ Vh ×Wh solves (wherein λ is given, f = 0)

(a−1
ε u∗

h(λ),v)Ωi
− (p∗h(λ),∇ · v)Ωi

= −〈λ,v · νi〉Γi
∀v ∈ Vh,i,

(∇ · u∗
h(λ), w)Ωi

= 0 ∀w ∈ Wh,i,

and (ūh, p̄h) ∈ Vh ×Wh solves (wherein λ = 0, f is given)

(a−1
ε ūh,v)Ωi

− (p̄h,∇ · v)Ωi
= 0 ∀v ∈ Vh,i,

(∇ · ūh, w)Ωi
= (f, w)Ωi

∀w ∈ Wh,i.

The equivalent coarse variational problem is [GW88]: Find λH ∈ MH such that

dH(λH , μ) = gh(μ) ∀μ ∈ MH .(4.9)
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Let {μ�} be a basis for MH = span{μ�}. Define v� = u∗
h(μ�), w� = p∗h(μ�), and

Nh,H = span
{
(v�, w�)

}
= span

{(
u∗
h(μ�), p

∗
h(μ�)

)}
⊂ Vh ×Wh.

It is easy to show that dH(λ, μ) = (a−1
ε u∗

h(λ),u
∗
h(μ)). Then we can reformulate the

coarse variational problem (4.9) as: Find (uh, ph) ∈ Nh,H + (ūh, p̄h) such that

(a−1
ε uh,v) = (f, w) ∀(v, w) ∈ Nh,H .

The discrete space Nh,H incorporates fine-scale information, and is thus a multiscale
finite element space [EH09]. In this sense, the multiscale mortar method can be
viewed as a multiscale finite element method, with the subdomains being coarse
elements [Arb11b,AX12]. This is a very unusual multiscale mixed finite element,
in that each basis function has weakly zero flow, but not zero flow, on all of its
element edges, and pressures and velocities are intrinsically coupled together.

4.4. A-priori error estimates. Under certain technical conditions [AX12],
we have the following bounds on the velocity and pressure errors.

Theorem 4.1. Suppose the two-scale separation assumption (3.1) holds. Then
there exists a constant C, independent of h, H, L (the maximal diameter of the
subdomains), and ε, such that for 1 ≤ r ≤ k, 0 ≤ s ≤ �, and 0 < t ≤ m,

‖∇ · (u− uh)‖0 ≤ C‖f‖shs,(4.10)

‖p− ph‖0 ≤ ‖p̂− ph‖0 + C‖p‖shs,(4.11)

‖u− uh‖0 + ‖p̂− ph‖0 ≤ C
{[
‖u‖r + ‖u‖r+1/2((H + ε)/L)1/2

]
hr(4.12)

+Ht−1(H + ε)(Lh)−1/2‖p0‖t+1/2 + ε‖p0‖2 + ε1/2‖∇p0‖0,∞
}
,

‖u− uh‖0 + ‖p̂− ph‖0 ≤ C
{
‖u‖r((H + ε)/L)1/2hr−1/2(4.13)

+Ht−1(H + ε)(Lh)−1/2‖p0‖t+1/2 + ε‖p0‖2 + ε1/2‖∇p0‖0,∞
}
.

Here we can see that the error is small whenever h < ε < H ≤ L.

5. Numerical results

In the previous section, we noted theoretically that our new mortar method
works well under the two-scale separation assumption (3.1). Here we first verify
the theory with a test using a streaked permeability field with a locally periodic
microstructure. We then present numerical results for permeability fields aε that
do not possess an obvious two-scale structure.

For simplicity, all of our numerical tests are conducted on rectangular grids with
rectangular subdomains. The subdomain problems are approximated inVh,i×Wh,i,
which we take to be the lowest order Raviart-Thomas space RT0 [RT77], for which
k = � = 1. We take one element per interface Γij = Ω̄i ∩ Ω̄j (so H = L). Four
mortar spaces MH are tested for each example, they are:

(1) P1M, linear polynomial mortars with 2 degrees of freedom per edge;
(2) P2M, quadratic polynomial mortars with 3 degrees of freedom per edge;
(3) MS1, formally first order multiscale mortars based on homogenization

with 3 degrees of freedom per edge;
(4) MS2, formally second order multiscale mortars based on homogenization

with 5 degrees of freedom per edge.
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All test examples use a rectangular domain with a quarter five-spot well pattern
for f , that is, injection in the lower left corner and extraction (or production) in
the upper right corner. For each interface Γij , the cell problem is defined over
the region Y = Ωi ∪ Γij ∪ Ωj , as described above and in [Arb11a,AX12]. We
compare our numerical results with the reference fine-scale RT0 solution, since the
true solution is not known analytically.

5.1. A streaked permeability. We first test a streaked permeability field
as shown in Fig. 1, where a locally periodic structure can be observed. Also notice
that this is a strongly anisotropic permeability field. From Table 1, we observe that
by increasing the order of the polynomial space from P1M to P2M, the performance
does not improve at all. On the other hand, we obtain a immediate improvement
when turning to the homogenization side by using MS1, and we can further improve
the performance by applying MS2. A similar performance can be found in the
multiscale finite element method [Arb11a], where anisotropic problems are better
handled with a homogenization-based element.

Table 1. Streaked permeability. Relative errors in the pressure
and velocity for the mortar spaces relative to the 20× 20 reference
RT0 solution, using a 2× 2 coarse grid and 10× 10 subgrid.

Pressure error Velocity error
Method �2 �∞ �2 �∞

P1M 0.5964 0.1741 0.6357 0.7889
P2M 0.5615 0.1588 0.6656 1.0684
MS1 0.1755 0.0792 0.4095 0.3595
MS2 0.0305 0.0195 0.1491 0.2264

5.2. A moderately heterogeneous permeability. The permeability field
of our second example is moderately heterogeneous, being locally isotropic and
geostatistically mildly correlated. It is depicted in Fig. 2 on a logarithmic scale
ranging over four orders of magnitude. The domain is 40 meters square and the
fine grid is uniformly 40× 40.

From Fig. 2, we can see that generally the MS1 and MS2 velocities are closer
to the fine-scale RT0 velocity than P1M and P2M. Recall that P2M and MS1 use
mortar spaces with the same number of degrees of freedom. Therefore, we can
reduce the relative �2-velocity error from 25.6% to 10.7% without increasing the
complexity of the interface problems by using our new mortar space. Moreover,
although two more degrees of freedom per edge are introduced in MS2, we can get
a 0.15% �2-pressure error and a 4.1% �2-velocity error in return, which is quite
accurate.

5.3. A channelized permeability from SPE10. Finally, we test the 80th
layer of the Tenth Society of Petroleum Engineers Comparative Solution Project
(SPE10) [Chr01], which is shown in Fig. 3. Obviously, the permeability does
not fulfill the two-scale separation assumption (3.1). In Fig. 3, one can see that
the velocities of P1M and P2M exhibit extreme inaccuracies that resemble points of
singularity, making these methods perform poorly (see Table 3). On the other hand,
MS1 and MS2 control the �2-velocity error within a reasonable range. Although
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Permeability Fine RT0 P1M

P2M MS1 MS2

Figure 1. Streaked permeability. The permeability, on a 20× 20
grid, has only two values 1 and 200. Velocities are computed by
RT0 on the fine grid, and by the mortar methods on a 2× 2 coarse
grid of subdomains with a 10× 10 subgrid. Color depicts speed on
a log scale from 0.001 (blue) to 1 (red). Arrows show velocities.

Permeability Fine RT0 P1M

P2M MS1 MS2

Figure 2. Moderate heterogeneity. The 40 × 40 permeability is
shown on a log scale from about 0.32 to 3200 millidarcy. Velocities
are computed by RT0 on the fine grid and by mortars on a 4 × 4
grid of subdomains with a 10 × 10 subgrid. Color depicts speed,
on a log scale from 0.6 to 0.0006. Arrows show velocities.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

18 TODD ARBOGAST, ZHEN TAO, AND HAILONG XIAO

Table 2. Moderate heterogeneity test. Relative errors in the pres-
sure and velocity for the mortar spaces relative to the 40 × 40
reference RT0 solution, using a 4×4 coarse grid and 10×10 subgrid.

Pressure error Velocity error
Method �2 �∞ �2 �∞

P1M 0.1989 0.1452 0.4157 0.8042
P2M 0.0431 0.0353 0.2564 0.5267
MS1 0.0111 0.0137 0.1072 0.1432
MS2 0.0015 0.0020 0.0410 0.0688

Table 3. SPE10-80 test. Relative errors in the pressure and ve-
locity for the mortar spaces relative to the 60× 220 reference RT0
solution, using a 3× 11 coarse grid and 20× 20 subgrid.

Pressure error Velocity error
Method �2 �∞ �2 �∞

P1M 0.0846 0.0452 0.6584 2.0868
P2M 0.0437 0.0204 0.5287 2.0156
MS1 0.0127 0.0090 0.1459 0.4860
MS2 0.0093 0.0066 0.1143 0.5985

MS2 gives a better �2-error than MS1, it is a marginal improvement; moreover,
MS2 shows somewhat greater �∞-velocity error.

6. Conclusions

Nonoverlapping domain decomposition using mortar spaces to couple together
the subdomains is an efficient way to numerically solve second order elliptic prob-
lems (1.1)–(1.3) in parallel. Heterogeneity in the elliptic coefficient aε can be han-
dled within the mortar space by using ideas from homogenization theory. Local cell
problem can be solved, which then allow implicit reconstruction of the pressure p in
terms of a fixed operator and a smooth homogenized function p0 through (3.6). Ap-
proximation of p0 by a polynomial, as in (4.7), gives a multiscale mortar space with
only a few degrees of freedom per subdomain interface, resulting in computational
efficiency in parallel. In the two-scale separation case, we have good approximation
properties (Theorem 4.1).

In two space dimensions, formally first order mortar spaces were constructed
in [AX12] and reviewed here, and the formally second order mortar spaces were
constructed explicitly here. We can generally expect more accurate numerical re-
sults when using homogenization based mortar spaces in domain decomposition,
even without a two-scale microstructure. Usually the formally second order mortar
approximation based on homogenization (MS2) give a better result than the first or-
der mortars (MS1), and both generally perform much better the simple polynomial
mortar space approximations (P1M and P2M).
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Permeability Fine RT0 P1M

P2M MS1 MS2

Figure 3. SPE10-80 test. The permeability is given on a 60 ×
220 grid plotted using a log scale from 1.9e-11 (red) to 1.0e-18
(blue) m2. The fine-scale RT0 speed and velocity are plotted on a
log scale from 1.3 (red) to 1.0e-3 (blue). The mortar results use a
3× 11 coarse grid with a 20× 20 subgrid.
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