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ABSTRACT

We consider an expanded mixed finite element formulation
(cell centered finite differences) for Darcy flow with a tensor
absolute permeability. The reservoir can be geometrically
general with internal features, but the computational do-
main is rectangular. The method is defined on a curvilinear
grid that need not be orthogonal, obtained by mapping the
rectangular, computational grid. The original flow problem
becomes a similar problem with a modified permeability on
the computational grid. Quadrature rules turn the mixed
method into a cell-centered finite difference method with a 9
point stencil in 2-D and 19 in 3-D.

As shown by theory and experiment, if the modified per-
meability on the computational domain is smooth, then the
convergence rate is optimal and both pressure and velocity
are superconvergent at certain points. If not, Lagrange mul-
tiplier pressures can be introduced on boundaries of elements
so that optimal convergence is retained. This modification
presents only small changes in the solution process; in fact,
the same parallel domain decomposition algorithms can be
applied with little or no change to the code if the modified
permeability is smooth over the subdomains.

This Lagrange multiplier procedure can be used to extend
the difference scheme to multi-block domains, and to give
a coupling with unstructured grids. In all cases, the mixed
formulation is locally conservative. Computational results
illustrate the advantage and convergence of this method.

1. INTRODUCTION

We develop a numerical scheme for Darcy flow with a tensor

References at end of paper

permeability on a geometrically general domain Q in R?
(d = 2 or 3). Although our results generalize to multiphase
problems, for simplicity we consider the single phase flow
problem in which we solve for the pressure p and the veloc-
ity u satisfying

V-u=yg, in Q, (1.1a)
u=-—KVp, in Q, (1.1b)
u-v=0, on 0%, (1.1¢)

where K is the absolute permeability tensor divided by vis-
cosity and v denotes the unit normal to the domain bound-
ary, 0f). Tensor permeabilities frequently arise from homoge-
nization or in up-scaling of displacement processes in hetero-
geneous reservoirs. Qur techniques apply to problems with
more general boundary conditions, as well.

Our numerical scheme is based on mixed finite element
methods, because they conserve mass locally and give a good
approximation of the flux variable. However, mixed meth-
ods can be difficult to implement directly. In particular, the
algebraic system that arises is a saddle-point problem which
involves solving simultaneously for pressure and velocities.

By using special quadrature rules for evaluating the in-
tegrals, Russell and Wheeler [1] showed that the standard
cell-centered finite difference method was equivalent to the
lowest order, RTy mixed method [2] on strictly rectangular
grids provided that the permeability is diagonal. Thus, the
RTy mixed method can be easily implemented as a five or
seven point finite difference method. Weiser and Wheeler
[3] obtained superconvergence results for this scheme; that
is, if A is the maximum grid spacing, both the pressure and
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velocity are approximated to order h? at certain points. A
Galerkin method will approximate the velocity only to or-
der h.

To solve the flow problem with a tensor coefficient on a
fairly geometrically general domain, we need to develop a
new scheme. We will not sacrifice the ease of implementa-
tion, the accuracy, or the local mass conservation property
of the approximation. We present in the next section the
expanded mixed finite element method that is the basis of
our scheme [4, 5, 6]. Extensions to the expanded hybrid
formulation are also discussed. The hybrid formulation in-
volves introducing Lagrange multipliers on the boundaries
of elements or subdomains on which the components of the
tensor are discontinuous. This is an important modification
to obtain higher order accurate fluxes.

Our main requirement is that there be a smooth mapping
F of a rectangular, computational domain Q) onto the reser-
voir domain €. Given a rectangular grid T, on €, F defines
a smooth, logically rectangular, curvilinear grid 73 on € (see
Fig. 1). The Jacobian matrix of F is DF = (9F;/dz;), and
the Jacobian of the mapping is J = |det(DF)|. (Mapping
techniques have been employed in the aerospace industry for
many years [7]. Sophisticated software packages are com-
mercially available for creating F' and its Jacobian matrix.)
Our work here differs from [8] in that we do not require the
mesh to be orthogonal.
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Fig. 1. The computational domain Q
and the physical domain 2.

We derive our finite difference procedure [4, 6] in Section 3,
and summarize our convergence results [4, 5] in Section 4.
Computational experiments are given in Section 5, includ-
ing experimental convergence results for tensor coefficient
problems, an example of a parallel domain decomposition
substructuring algorithm for solving the expanded hybrid
formulation, and a tracer calculation on a general domain.
Extensions to multi-block grids, coupling with unstructured
grids, and conclusions are discussed in Section 6.

2. THE EXPANDED AND EXPANDED HYBRID
MIXED FINITE ELEMENT METHODS ON GEN-
ERAL GEOMETRY

We first define the expanded mixed finite element method.
Following [4] and [5], we introduce an unknown u, called the
adjusted pressure gradient, such that

Mua=—-Vp,
u= KMnu, (2.1b)

where M = J(DF~HTDF~1. Note that M is a symmet-
ric, positive definite matrix. It is introduced to simplify the

(2.1a)

computations significantly, after mapping to the rectangular
grid on Q.

To define the RTy mixed space on the curvilinear grid, we
need first the standard definition of this space on rectangles
[2]. Let Vs, and Wy be the velocity and the pressure space,
respectively. On any rectangular element Ee ’ZA}L,

Vi(E) = {(on@1 + Br, aszo + B2, 0323 + 83)7 1y, B € R},
Wh(E) = {a:aeR}

(where the last component of f/h(E) should be deleted if
d = 2). Then,

Vy = {{, = (v1,v2,v3) 1 V|p € Vh(E) for all £ € Ty,
and each v; 1s continuous 1In

the 7th coordinate direction},

W, = {w:wlze Wi(E) for all E € ']A'h},

thus, if 7 denotes the unit normal direction, v - v 1s a well
defined constant on the edges (if d = 2) or faces (if d = 3) of
each element E , and w 1s piecewise discontinuous constant.
We use the standard nodal basis, where for Vj, the nodes
are at the midpoints of the edges or faces of the elements,
and for Wh, the nodes are at the midpoints of the elements
(cell-centers).

To properly incorporate the boundary condition (1.1c¢), we
need to introduce Lagrange multiplier pressures along 0%2;
thus, on any element edge or face €, let

Ah(é) = {a o € R}
and then define

AY = {p:plee Ap(é) for all edges or faces
¢ of E € T, contained in 89}.

The nodal points are the centers of the edges or faces.

Let Vi, Wy, and Ag be the RTy spaces on 73, defined as
follows [9, 10]. For each v € Vi, w € Wy, and ji € [Xg, we
define v € V,, w € Wy, and u € Af at F(x) =x € Q by

v(x) = ﬁmﬂ(x)v(x), (2.2a)
w(x) = (%), (2.2b)
p(x) = (). (2.2¢)

The velocity space is defined by the Piola transformation; it
preserves the normal component of the velocity across the el-
ement boundaries and is therefore locally mass conservative.
The key property is that V-v = %@ V.
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We have the following mixed formulation for approximat-
ing the flow equation (1.1). Find up € V4, up € Vi, pp € Wh,
and Ap € Ag such that

v uhdx:/ qdz, EeTy,, (2.3a)
E E

Muy, - vdzx

Q

:/phv-vdx—/ Apv-vds, vEV,  (2.3b)

Q Fily)

/Muh-vdx:/MKMﬁh-vdx, v E Vg, (2.3¢)
Q Q
/ up - vpdr =0, peA] (2.3d)
Fily)

The existence and uniqueness of a solution is shown in [4, 5].

We now transform (2.3) to the rectangular, computational
domain by the map F'. The Piola transform (2.2a), (2.2b),
(2.2¢), and the definition of M (2.1) imply that

/Vﬁhd;@:/qd:p:/yd:@, EeT, (24a)
E E B
/ﬁh-{rdj
Q
:/phvvdj—/ Mv-vds, vEVE (2.4b)
Q a
/ﬁh-{rdj
Q
:/JDF‘lf((DF_l)Tﬁh-Odj, VEVL, (240
Q
/Aﬁhq}ﬂd:izo, peA],  (24d)
o0

where ¢(x) = ¢(F(x)). Note that (2.4) is similar to the
original problem (2.3) with M = I and the modified tensor
coefficient
K =JDF'K(DF YT, (2.5)
All computations are performed on the rectangular grid of
Q; we recover the true pressure and velocity on €2 using (2.2).
The expanded hybrid method involves adding additional
Lagrange multipliers on internal element edges or faces, and
relaxing the continuity constraints on V,. We define the
fullest case, where Lagrange multipliers are added to every
element edge or face. Let

AhD = {\7 = (v1,v2,v3) : V[p € Vh(E) for all ' € ']A'h},
n= {ﬂ Dl € Ah(é) for all edges or faces é of E € ’]A'h},

=

and then define V; and A, analogously by (2.2a) and (2.2¢).
Equation (2.3) is modified by requiring that V;, and A? be
replaced by V;P? and Ay, respectively, and (2.3b) and (2.3d)
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be replaced by

/ Muy, - vdzx
E

:/phV-vdx—/ Apv-vds, v eEVR(E), (2.3b)
E E

Z / up -vpuds =0,
OE

FEeT;,

peA,  (23d)

The latter equation insures continuity of the internal fluxes;
thus, although for symmetry we ask only that u € V2, in
fact, u € V4. Equation (2.4) is modified analogously.

In practice, Lagrange multipliers should be introduced
only on a coarse grid or on the boundaries of subdomains.
As shown in Section 5, employing Lagrange multipliers is
useful in treating flow problems in which components of the
tensor permeability are discontinuous and in applying non-
overlapping or substructuring domain decomposition linear
solvers. In the former case it should be noted that if K is
not smooth on é of £ € ’ZA}L, then u - v = —@]3 - v 1s also
not smooth there. Hence 1 should be approximated in the
discontinuous space V;P near é.

3. THE CELL-CENTERED FINITE DIFFERENCE
METHOD

To simplify the finite element method (2.4), we use special
quadrature rules to approximate the integrals. The four di-
vergence and boundary integrals can be computed exactly,
since the divergence and normal component of any v € V), are
piece-wise constants. The trapezoidal rule is used for eval-
uating the three integrals over 2 involving a vector-vector
product. This enables us to express up and Q, in terms
of pp and ;\h, and therefore obtain a single equation for
the pressure. Herein, we describe this stencil for d = 2; a
straightforward generalization gives the stencil for d = 3.

We need some relatively standard cell-centered finite dif-
ference notation. Denote the grid points by

(£i+1/2agj+1/2)a iIO,...,Nl, ij)"')NZa

and define, for i =1,...,Nyand j = 1,..., Ny,
Ui = (U172 + Yj—1/2),

hy = Tip1/2 — Ti_1/2, h? =Yit1/2 = Yj-1/2-

& = 2(Zig1/2 + Zim10),

We write v = (v%,v?) for v.€ R2. For any function g(z,y),
let g;; denote g(Z4,9;), git1/2,; denote g(Z;41/2,9;), ete.

As illustrated in Fig. 2, the finite difference stencil is con-
structed as follows. If v in (2.4b) is the basis function at an
interior node (¢ 4+ 1/2,j) or (4,5 4+ 1/2), then

& Dhiit1,j — Phyij

Up,ig1/2, = S 1a (3.1a)
! s(h? +hp,
2 DPhyij+1 — Phiij (3.1b)

Unij+1/2= "1 339 | 39 )
§(hj + hj+1)
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which is a finite difference approximation of a= —Vp (at

the boundary, A, replaces py—see (3.4) below). The same
choice of v in (2.4¢) gives

~F
Yh,it1/2,5

1 &
=3 [(K11)it1/2,5-1/2+ (K11)igt1/2,5+1/2] Upit1)2,)

1

+ —
2(h + ki,

A9
{ [(KlZ)i+1/2yj—1/2uhyz’+1y]’—1/2

ig T
+(]C12)i+1/2yj+1/2uhyi+1y]’+1/2} hiy

+ [(]C12)i+1/27j—1/2{222'7]'—1/2

+(]C12)i+1/2}j+1/2ai}i}j+1/2} ilf}) (3.2)

with a similar expression for ﬂiyw +1/2 (slightly modified by
dropping a few terms near 0%); this is a finite difference
approximation of u = Ku. Finally, for F = E;; in (2.4a), we
have

& o o oY
Ynitr/2 ~ Yni-1/25 | Ymag41/2 T Yhig-1/2 a9
i * i hihs

:/ (dei:/
B E

&
2

o
[

qdzx. (3.3)

iy

® = uyp and uy,

(a)

X = uy only

® = pp

(b)

(c)

Fig. 2. Nodal points for the standard

basis functions (d = 2).

(a) Stencil for the dependence of @y, on py,.
(b) Stencil for the dependence of up, on ay.
(c) Stencil for the pressure py,.

The combination of (3.1), (3.2), and (3.3) gives our cell-
centered finite difference stencil for the pressures p and A
approximating the elliptic equation —V -KVp = ¢J. This
in turn is an approximation of the original problem (1.1)
through (2.2). The stencil is 9 points in two dimensions and
19 points in three dimensions.

The hybrid formulation involves modifying (3.1) by re-
placing p i41,; OF Pri j+1 by the appropriate Lagrange mul-
tiplier. For example, we now have both a left and right value

of ﬁz at an interior node (¢ + 1/2, ), and

2 thi—l—l/Zyj - ﬁhym'

Up,(i+1/2)= — — 1) ’ (3.42)
37

& _ Pnivlg = Mtz

R =TT T
2% +1 B

Again, a finite difference stencil results, but it 1s now a com-
bination of cell-centered and face-centered pressures. In fact
pr can be eliminated in terms of :\h, leaving only the face-
centered pressures.

4. SOME CONVERGENCE RESULTS

Let || - || denote the L?-norm; that is, for a scalar or vector
function ¢,
lell =/ [ otz dz.
Q
Let ||| - |||a,s, where S is a subset of ©Q, denote the L2-

norm approximated by the midpoint quadrature rule over
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the mesh on S defined either directly or as induced by F
from the computational domain. The proof of the following
theorem is given in [4] and [5]. This result holds for general
boundary conditions, including mixed or Robin conditions.

Theorem. Let Q* be a fized, closed domain strictly con-
tained in Q. For the cell-centered finite difference scheme
(3.1)-(3.3), there exists a constant C' depending on the solu-
tion and the smoothness of F' and K, but independent of the
mazimum grid spacing h, such that

[ — gl + [ — ] < Ch,
1= wnlllare + [l — Galllara < CH/2,

[lle = walllar,0x + [[[3 = anlllar - < CH?,

lllp = palllare < R,
IV - (u—wp)l| < Ch.

This theorem implies optimal order convergence in the L?-
norms, and superconvergence in L? for the computed pres-
sure and velocity at the cell-centers. The velocity exhibits
better superconvergence away from the boundary of the do-
main. Furthermore, the normal component of the flux at the
midpoints of the edges or faces is also superconvergent in the
interior of the domain (see [4]).

Tests show that the predicted rates of convergence are ob-
tained by the method, including the superconvergence [4, 5].

5. SOME COMPUTATIONAL RESULTS

In this section we present numerical results which demon-
strate (1) experimental rates of convergence, (2) a scalable
parallel domain decomposition algorithm for solving the ex-
panded hybrid mixed finite element method, and (3) a tracer
problem on a real field site.

5.1. Some experimental rates of convergence. In ex-
hibiting experimental rates of convergence, we present two
examples. The first is a two dimensional case similar to
[11; Fig. 7], but using a logically rectangular mesh of quadri-
laterals rather than triangles. The mesh is shown in Fig. 3.
As in [11], the mesh conforms to a low permeability streak
in which a full tensor coefficient K is chosen so that flow is
reduced along the streak and sharply reduced perpendicular
to the streak. K is chosen to be the identity tensor out-
side the streak. The streak i1s only one mesh element wide.
We 1impose no flow boundary conditions along the top and
bottom of the unit square, and unit flow in through the left
boundary and out through the right.
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Fig. 3. Mesh of quadrilaterals.

“Weather-vanes” of the resulting velocity field, approxi-
mated by the mixed finite element method on 256 elements,
is shown in Fig. 4. If the streak were absent, the veloc-
ity would be uniformly equal to (1,0)%. Subtracting this
constant vector from the computed velocity field shows the
perturbation caused by the streak, illustrated in Fig. 5, in
which the residual vectors have been magnified by a factor
of 5 compared to Fig. 4. Relatively little fluid can cross the
low permeability streak, but conservation of mass and the
constant flow rate per unit length of boundary require some
fluid which enters below the streak to migrate into the top
region. Fluid in the top layer must speed up so that enough
can get through the large outflow boundary. In the bottom
layer, fluid must slow down since there is less room for it to
exit. This creates the circular pattern in Fig. 5.
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Fig. 4. Velocity field.
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Fig. 5. Residual velocity field magnified 5 times.

Our other convergence example 1s in three spatial dimen-
sions. We present a convergence study in a situation with
a known analytic solution. The domain is the union of the
unit cube and its reflection into negative x values; that is,
[1,1] x [0,1] x [0,1]. We define K to be the identity for
negative z and

5 4 4

K=14 5 4

4 4 5
for positive z. We constructed a pressure solution that is
quadratic on each sub-cube, continuous at # = 0, and has

continuous normal component of flux at z = 0. We then
solved

-V - (K(x)Vp(x)) = f(x),

where f is a different constant in each of the two sub-cubes,
and used pressure boundary conditions matching the con-
structed target solution.

We repeatedly refined the mesh and calculated pressure
and velocity, and compared them to the target values. Ta-
ble 1 presents the discrete L? norms of the errors evaluated
at the element centers. We see that both pressure and veloc-
ity are super-convergent. The maximum error in the normal
fluxes is shown in the final column; it converges like O(h).
These results use the expanded mixed method with Lagrange
multipliers along the interface x = 0.

Table 1. Pressure and velocity errors.

to visual accuracy, the results without Lagrange multipliers
seem reasonable when viewing plots of the solution and the
flux in a corresponding 2-D example. This shows the impor-
tance of checking the convergence rate of numerical methods
used in non-smooth contexts by comparison to known ana-
Iytic solutions.

Table 2. Errors without interface Lagrange multipliers.

1/h | [llp=palllare | lla=unlllae | [[u—uanfle

2 0.5031 9.50 20.4

4 0.2691 5.84 23.0

8 0.1340 3.51 24.9

16 0.0648 2.12 26.0
Rate 1.3h 20 h075 o(1)

1/h | llp=palllare | l[la—unlllare | [0 -l

2 0.1070 1.089 2.52

4 0.0272 0.409 1.31

8 0.0069 0.141 0.66

16 0.0017 0.048 0.33
Rate 0.7 h? 4.3p15 6.6h

If the Lagrange multipliers are removed, the L? errors
grow substantially and the maximum normal flux error fails
to converge, as seen in Table 2. It is interesting to note that

5.2. A domain decomposition algorithm for the ex-
panded mixed method. To solve the linear system that
arises in the discretization, we employ a substructuring or
domain decomposition algorithm which was introduced by
Glowinski and Wheeler [12]. The method requires solving
only local problems and is in fact a hybrid formulation over
subdomains.

In addition to its advantage on parallel machines; this
method allows one to handle accurately problems with a dis-
continuous permeability tensor. In such a case, the gradient
of the pressure u is also discontinuous. Approximating it
with a continuous function does not give good results; how-
ever, accuracy 1is retained if the hybrid form of the expanded
mixed method is used. In that case, the pressure is also com-
puted on the edges or faces of the elements and its gradient is
approximated in an element by element discontinuous space.

The domain decomposition method introduces pressure
unknowns (Lagrange multipliers) along the subdomain in-
terface and is equivalent to a partial hybridization of the
original method. Therefore it is very accurate if the discon-
tinuity of the coefficient lies along a subdomain boundary.
To efficiently solve the interface problem on a distributed
memory, parallel computer system, the balancing precondi-
tioner defined by Cowsar, Mandel, and Wheeler [13] has been
employed. (Theoretical and computational results exhibiting
the almost linear scalability of this preconditioner are given
in [13].) Numerical tests are presented below.

We solve a problem on the unit cube in 3D. The perme-
ability and the true pressure field are chosen such that the
normal flux is continuous:

K- Ky, 0<z<0.5
T | Ko, 0b<a<l,
14/9 7/9 0 1 1/2 0
Ki={7/9 2 0}, Ke=|1/2 2 0],
0 0 2 0 0 2

_{1—3@3, 0<z<0.5,
P=lza-?, 05<z<1.
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ified on any part of the boundary. For this test we specify

pressure on the faces z = 0 and # = 1 and flux on the rest of
the boundary. The domain decomposition is 2 x 1 x 1 (two

subdomains in the z-direction). The pressure and velocity

error as well as the estimated least squares convergence rates

are given in Table 3. Since the solution is constant in y and z,

direction. Quadratic

convergence is observed for both variables. (We suspect that

the mesh has been refined only in the =

the velocity convergence is

)

since p does not vary in y or z
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such as in the pre-

vious subsection.) If no domain decomposition is used, the

somewhat better than is usually observed,
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Fig. 6. The true grid with

convergence deteriorates due to a loss of accuracy along the

the low permeability region.

discontinuity. The results are presented in Table 4.

Table 3. Errors with domain decomposition.
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Table 4. Errors without domain decomposition.

A uniform pressure drop occurs from the back face (Haw
Ridge) to the front face (White Oak Lake and Copper Ridge);

no-flow 1s specified across the other faces.

Pressure con-

tours are given in Fig. 8. Tracer concentration fronts at four
equally spaced times are shown on Fig. 9. The flow through

the low permeability region is very slow; also the streamlines

along the left edge are longer then in the rest of the domain

so the flow 1s slower there.
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ability is isotropic but discontinuous.

the rest of the domain. Fig. 67 show the true grid and the

computational grid with the low permeability streak.

Fig. 8. Pressure contours.
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Fig. 9. Tracer concentration fronts with
the low permeability region.

6. EXTENSIONS AND CONCLUSIONS

We have presented a cell-centered finite difference mixed
method that is locally mass conservative and highly accu-
rate, especially for the velocity. General geometry can be
handled by a multi-block approach. The physical domain 1is
divided into a union of subdomains. Each of the subdomains
is mapped smoothly to a rectangle; their union constitutes
the computational domain. This is a standard technique in
the aerospace industry (so many commercial gridding codes
are available).

The equations are then mapped from the physical to the
computational domain. The net result is a simple transfor-
mation of the tensor permeability and the multiplication of
certain other terms by the Jacobian factor. A rectangular
grid is put on the computational domain, but the physical
grid need not be orthogonal. The scheme is easily imple-
mented, since the data structures need only reflect the rect-
angular, computational grids.

Lagrange multiplier pressures must be introduced on the
common boundaries of adjacent rectangles in the multi-block
case. This approach can also be used to couple structured
and unstructured grids (see [16]), and to handle grid refine-
ments.

Theoretical results including superconvergence have been
established in the case of single phase flow, a single rectan-
gular computational domain, and a smooth map and per-
meability. Theoretical analysis of the multi-block case 1is
currently under investigation. Computational results ver-
ify these theoretical results. Moreover, we observed that the
introduction of Lagrange multiplier pressures on boundaries
where either the map or the permeability is not smooth re-
covers convergence and even some of the superconvergence.

Scalable and efficient, parallel domain decomposition al-
gorithms such as described in [13, 17] have been formulated
that are applicable for solving the resulting finite difference
equations.

Extensions of these finite difference mixed method tech-
niques to multiphase flow are straight forward. One of the
authors, Wheeler with C. Dawson, C. San Soucie, and H. Klie

are currently applying this approach to a black oil simulator.
These techniques have also been extended to triangles [16].

NOMENCLATURE

d Spatial dimension (2 or 3)
DF  Jacobian matrix of F.
ds Differential of surface length (if d=2) or area
(if d=3)

dx  Differential of area (if d=2) or volume (if d=3)
Edge (if d=2) or face (if d=3) of a finite element
Finite element
Mapping between the computational and phys-
ical domains
Maximum grid spacing
Index in z-direction
Index in y-direction
Absolute value of the determinant of the Jaco-
bian of F'.

Permeability tensor divided by the viscosity
The transformed permeability tensor divided
by the viscosity

Mapping dependent adjustment to the negative
pressure gradient

Pressure

e

e, e, D

S

External well sources and sinks
Set of real numbers
RTy The lowest order Raviart-Thomas mixed finite
element function space
Ty, Grid partition into elements
u Darcy velocity
u Adjusted pressure gradient
v Velocity test function
Vi Velocity finite element function space
VhD The discontinuous flux, velocity finite element
function space
w  Pressure test function
W Pressure finite element function space
x  Spatial point
(z,y,2z) Spatial point
(21, 22,23) Spatial point

OF Boundary of the finite element F
02 Boundary of the reservoir
A Lagrange pressure
Ay Lagrange pressure finite element function space
A?  Lagrange pressure finite element function space
on the boundary only
Lagrange pressure test function
OQuter unit normal vector
Reservoir domain

=< SN

Dexw

>

Quantity as seen on the computational domain
-n Discrete quantity
[[-]l  L? (root mean square) norm
[Il-|llar Discrete L? norm approximated by the mid-
point rule
[l ]lec Maximum norm



SPE 29099
ACKNOWLEDGMENTS

This work was supported in part by the Department of En-
ergy, the State of Texas Governor’s Energy Office, and the
National Science Foundation.

REFERENCES

[1] Russell, T.F., and Wheeler, M.F.: “Finite element and
finite difference methods for continuous flows in porous
media,” in The Mathematics of Reservoir Simulation,
Frontiers in Applied Mathematics 1, Ewing, R.E.| ed.,
Society for Industrial and Applied Mathematics, Phila-
delphia (1983) Chapter 11, pp. 35-106.

[2] Raviart, R.A., and Thomas, J.M.: “A mixed finite ele-
ment method for 2nd order elliptic problems,” in Math-
ematical Aspects of the Finite Element Method, Lecture
Notes in Math. 606, Springer-Verlag, New York (1977)
pp- 292-315.

[3] Weiser, A., and Wheeler, M.F.: “On convergence of
block-centered finite-differences for elliptic problems,”
STAM J. Numerical Analysis, v. 25 (1988) pp. 351-375.

[4] Arbogast, T., Dawson, C., Keenan, P., Wheeler, M.F .,
and Yotov, I.: “Implementation of mixed finite element
methods for elliptic equations on general geometry” (in
preparation).

[5] Arbogast, T., Wheeler; M.F., and Yotov, I.: “Mixed
finite elements for elliptic problems with tensor coef-
ficients as cell-centered finite differences” (in prepara-
tion).

[6] Arbogast, T., Wheeler, M.F., and Yotov, I.: “Logi-
cally rectangular mixed methods for groundwater flow
and transport on general geometry,” in Computational
Methods in Water Resources X, Vol. 1, Peters, A., et
al., eds., Kluwer Academic Publishers, Dordrecht, The
Netherlands (1994) pp. 149-156.

[7] Thompson, J., Warsi, Z.U.A., and Mastin, C.W.: Nu-
merical Grid Generation, North Holland (1985).

[8] Sharpe, H.N.: “Validation of an Adaptive, Orthogonal,
Curvilinear Gridding Procedure for Reservoir Simula-
tion,” SPE 25262, 12th Symposium on Reservoir Simu-
lation, New Orleans (1993) pp. 333-343.

[9] Thomas, J.M.: “Sur I’analyse numérique des méthodes
d’éléments finis hybrides et mixtes,” These d’Etat, Uni-
versité Pierre et Marie Curie (1977).

[10] Brezzi, F., and Fortin, M.: Mixed and hybrid finite
element methods, Springer-Verlag, New York (1991).

[11] Durlofsky, L.J.: “Accuracy of mixed and control vol-
ume finite element approximations to Darcy velocity
and related quantities,” Water Resources Research, v.
30 (1994) pp. 965-973.

[12] Glowinski, R., and Wheeler, M.F.: “Domain decom-
position and mixed finite element methods for ellip-
tic problems,” in the Proceedings of the First Interna-
tional Symposium on Domain Decomposition Methods
for Partial Differential Equations, Glowinski, R., et al.,

T. ARBOGAST, P.T. KEENAN, M.F. WHEELER, AND I. YOTOV 9

eds., Society for Industrial and Applied Mathematics,
Philadelphia (1987).

Cowsar, L.C., Mandel, J., and Wheeler, M.F.: “Balanc-
ing domain decomposition for Mixed Finite Elements,”
Mathematics of Computation (in press).

Arbogast, T., and Wheeler, M.F.: “A characteristics-
mixed finite element method for advection dominated
transport problems,” STAM J. Numerical Analysis (in
press).

Arbogast, T., Chilakapati, A., and Wheeler, M.F.: “A
characteristic-mixed method for contaminant transport
and miscible displacement,” in Computational Meth-
ods in Water Resources IX, Vol. 1: Numerical Methods
in Water Resources, Russell, T.F., et al, eds., Com-
putational Mechanics Publications, Southampton, U.K.
(1992) pp. 77-84.

Arbogast, T., Dawson, C.N., and Keenan, P.T.: “Effi-
cient mixed methods for groundwater flow on triangu-
lar or tetrahedral meshes,” in Computational Methods
in Water Resources X, Vol. 1 Peters, A., et al., eds.,
Kluwer Academic Publishers, Dordrecht, The Nether-
lands (1994) pp. 3-10.

Cowsar, L.C., Weiser, A., and Wheeler, M.F., “Paral-
lel multigrid and domain decomposition algorithms for
elliptic equations”, Fifth Symposium on Domain De-
composition Methods for Partial Differential Equations,
Keyes, D, et al., eds., Society for Industrial and Applied
Mathematics, Philadelphia (1991) pp. 37-386.



