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Abstract. Motivated by possible generalizations to more complex multiphase multicomponent
systems in higher dimensions, we develop an Eulerian–Lagrangian numerical approximation for a
system of two conservation laws in one space dimension modeling a simplified two-phase flow prob-
lem in a porous medium. The method is based on following tracelines, so it is stable independent of
any CFL constraint. The main difficulty is that it is not possible to follow individual tracelines inde-
pendently. We approximate tracing along the tracelines by using local mass conservation principles
and self-consistency. The two-phase flow problem is governed by a system of equations representing
mass conservation of each phase, so there are two local mass conservation principles. Our numerical
method respects both of these conservation principles over the computational mesh (i.e., locally),
and so is a fully conservative traceline method. We present numerical results that demonstrate the
ability of the method to handle problems with shocks and rarefactions, and to do so with very coarse
spatial grids and time steps larger than the CFL limit.
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1. Introduction. We consider the problem of numerical approximation of a
system of two conservation laws modeling a simplified two-phase flow problem in
a one-dimensional porous medium. We develop an Eulerian–Lagrangian traceline
method with particular attention given to local mass conservation principles and
stability independence of any CFL constraint [20], so that large time steps can be
used, only subject to accuracy concerns. The two-phase flow problem is governed by
a system of two equations representing mass conservation of each phase [5, 21, 8],
so there are two local mass conservation principles, one for each phase. Numerical
methods should respect both of these conservation principles over the computational
mesh (i.e., locally). The main difficulty for traceline methods is that it is not possible
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to follow individual tracelines independently. We achieve approximate tracing along
the tracelines by using both local mass conservation principles and self-consistency.

Eulerian numerical methods based on fixed grids, such as Godunov’s method [20],
are locally mass conservative for each phase by design, since the volumes of the fixed
grid elements do not change in time. However, they are subject to the CFL constraint.

Lagrangian methods, such as moving mesh and characteristic methods, have been
developed to approximate single-phase, linear transport problems without the need
to enforce any CFL constraint. These problems have two miscible fluids, a tracer and
the ambient fluid. Like our two-phase problem, they are governed by two conservation
principles. The Eulerian–Lagrangian methods use Lagrangian ideas to advance the
solution in time, but the solution is projected back to a fixed Eulerian frame each time
step. Among such methods, Douglas and Russell introduced the Modified Method of
Characteristics in 1982 [14, 15, 11] (see also [22]), but it violates both local mass
constraints. Methods that conserve the tracer fluid locally appeared in the early
1990s [7, 1, 4, 10, 12, 29, 30, 28], but these methods violate the local mass constraint
for the ambient fluid. Two-phase versions were also developed (see, e.g., [13, 16]), but
fail to conserve both fluids locally.

The volume corrected characteristics-mixed method (VCCMM) was introduced
in [2] by two of the current authors. Very briefly, VCCMM computes the mass dis-
tribution on the Eulerian computational mesh at a time level tn+1 by three main
steps. Step 1 is to trace (approximately) each grid element E back in time to the
previous time tn along the Lagrangian characteristics or tracelines of the flow. Step 2
is then to correct the volume of the trace-back elements Ě so each agrees with the
volume of E (of course maintaining the property that the entire corrected trace-back
mesh tessellates space). Finally, Step 3 is to sum the tracer mass in each Ě, which
is assumed transported to the original grid element E at time tn+1. Step 3 ensures
local mass conservation of the tracer. Because the volume of the trace-back element
is corrected in Step 2, the sum of ambient and tracer mass is conserved, and so the
overall method conserves locally the mass of both fluids.

In this paper we generalize VCCMM to handle a simple model two-phase flow
problem in a one-dimensional porous medium by defining a fully locally conservative
Eulerian–Lagrangian traceline method. Compared to the linear case, there are many
difficulties associated with the nonlinear two-phase problem. First, tracelines and
characteristic traces are not the same curves. Normally one traces characteristics,
since these are straight lines (at least until characteristics collide). However, in our
method, we transport mass over a time step, so we must follow the tracelines of the
flow, since these are the particle paths [25, 16]. Thus, we do not follow characteristics.
The second complication is that the saturation changes along the tracelines, which
therefore follow nonlinear trajectories. Third, the tracelines of the two phases differ.
Fourth, shocks and rarefactions may form. Finally, and most importantly, it is not
possible to trace an individual traceline independent of knowledge of the nearby satu-
ration through time (see (3.3)–(3.5)), unlike characteristic tracing. As we will see, we
achieve approximate tracing along individual tracelines using both of the local mass
conservation principles and self-consistency of the saturation values.

The method developed here is designed with more complex systems in mind than
those considered in this paper. For the simple two-phase problem in one dimension,
classical methods that eliminate an unknown and solve a single conservation law can
obviously be more efficient. However, this advantage is restricted to model problems
and cannot be extended to systems such as compositional petroleum reservoir models.
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Our formulation does not depend on any special properties of the model problems.
In the next section we define the two-phase flow problem as it arises in flow in

porous media and abstract it to the model two-phase problem we consider. In sec-
tions 3–4, we discuss tracing along tracelines and the two local mass constraints. Our
new method is defined in section 5, and numerical results are presented in section 6,
including some comparisons to a fifth-order central weighted essentially nonoscillatory
(CWENO) scheme. Our new traceline method performs well on problems with shocks
and rarefactions, and it does so on very coarse spatial grids and with time steps larger
than the CFL limit. We close the paper with some conclusions in the last section.

2. The two-phase flow problem. For simplicity, we assume that the flow is
incompressible; this is not essential for our new method. With s(x, t) the saturation
of the wetting fluid, we have that [5, 21, 8]

(2.1) φst + uw,x = qw and − φst + unw,x = qnw,

where subscript t or x is partial differentiation with respect to time or space, respec-
tively, φ(x) is the porosity, uα is the phase velocity for the wetting fluid (α = w) or
the nonwetting fluid (α = nw), and qα(x, t, s) models the wells. Darcy’s law governs
the phase velocity and pressure pα, so, ignoring gravity,

(2.2) uα = −λαk pα,x, α = w, nw,

where k(x) is the (absolute) permeability, and λα(s) is the phase mobility, i.e., relative
permeability divided by the phase viscosity. The capillary pressure relation

(2.3) pc(s) = pnw − pw

completes the description of the overall system of equations. This is a system of two
nearly hyperbolic flow equations.

By a rearrangement of (2.1)–(2.3), we can separate it into two systems, one elliptic
and one nearly hyperbolic. With the total velocity u = uw + unw and total mobility
λ = λw + λnw, the pressure equation is

ux = q ≡ qw + qnw,(2.4)

u = −k[λwpw,x + λnw pnw,x] = −k[λ pw,x + λnw pc,x] = −k[λ pnw,x − λw pc,x],(2.5)

and the saturation equation is one of the two equations in (2.1). If we choose the first,
for the wetting fluid, we obtain

(2.6) φst + f(s)x = qw,

where the wetting flux function is

(2.7) f(s, x) = uw =
λw

λ
u+ k

λwλnw

λ
pc,x.

However, we could equivalently choose the second equation in (2.1), for the nonwetting
fluid, which is

(2.8) φ (1− s)t + F (1− s)x = qnw,

with

(2.9) F (1− s, x) = unw =
λnw

λ
u− k

λwλnw

λ
pc,x.
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We now describe the model problem considered in this paper, which is fairly
commonly used to describe two-phase flow in the petroleum literature [21, 20, 8]. We
assume appropriate boundary conditions so that we can take q = qw = qnw = 0, and
then u is a known constant solved from (2.4). We also assume that φ ≡ 1 and the
flux functions depend explicitly only on s, i.e., not on x (or t). Thus, in terms of the
nonwetting saturation z,

st + f(s)x = 0,(2.10)

zt + F (z)x = 0,(2.11)

s+ z = 1,(2.12)

f(s) + F (z) = u.(2.13)

Since u is known, this system is redundant, and only one of (2.10) and (2.11) is needed.
However, we will use both equations numerically, for the reasons outlined in section 1.
For simplicity, we will assume that the phases travel to the right. That is, we assume
that each of f , f ′, F , and F ′ is nonnegative. This is not essential to the method;
countercurrent flow, in which the two phases move in opposite directions, could be
treated. If the domain of interest is (0, 1), we require the following boundary and
initial conditions:

s(0, t) = sB(t) (and z(0, t) = zB(t) = 1− sB(t)),(2.14)

s(x, 0) = s0(x) (and z(x, 0) = z0(x) = 1− s0(x)),(2.15)

where 0 ≤ sB(t) ≤ 1 and 0 ≤ s0(x) ≤ 1.

3. Tracelines. Suppose we have a sequence of time levels 0 = t0 < t1 < · · · <
tN at which we wish to compute the solution. In one time step tn to tn+1, the
characteristic lines of (2.10) describe the curves (i.e., lines) on which the saturation is
constant. The characteristic trace-back x̌c(t) = x̌c(x; t) = x̌n+1

c (x, t) passing through
(x, tn+1) satisfies the differential equation

dx̌c

dt
= f ′(s(x̌c, t)), tn ≤ t ≤ tn+1,(3.1)

x̌c(t
n+1) = x.(3.2)

Since the saturation is constant along each characteristic, individual curves can be
traced trivially as straight lines, and the only complication occurs at rarefactions
and shocks, where characteristics rarefy or collide. Moreover, since the saturation is
constant, both the wetting and nonwetting fluids have the same characteristics.

The wetting tracelines x̌w(x; t) satisfy a more difficult differential equation (see
[13, 25, 16] or section 4), although the advantage is that tracelines fill space and do
not cross each other (they move physical mass, hence are always well defined; the
particle velocity does not depend explicitly on f ′). In this paper, we work only on the
interval (tn, tn+1) and trace backward in time (at least until we reach the boundary
x = 0), so we have that

dx̌w

dt
=

f(s(x̌w, t))

s(x̌w, t)
, tn ≤ t ≤ tn+1,(3.3)

x̌w(x; t
n+1) = x,(3.4)
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on which the saturation šw(t) = šw(x; t) = s(x̌w(x; t), t) changes as

(3.5)
dšw
dt

= sx(x̌w, t)
dx̌w

dt
+ st(x̌w, t) = sx(x̌w, t)

(
f(šw)

šw
− f ′(šw)

)
,

using (3.3) and (2.10). Similarly, the nonwetting tracelines satisfy

dx̌nw

dt
=

F (z(x̌nw, t))

z(x̌nw, t)
, tn ≤ t ≤ tn+1,(3.6)

x̌nw(x; t
n+1) = x,(3.7)

on which the saturation žnw(t) = z(x̌nw(x; t), t) changes as

(3.8)
džnw
dt

= zx(x̌nw, t)

(
F (žnw)

žnw
− F ′(žnw)

)
.

Note that (3.5) and (3.8) imply that individual tracelines cannot be traced in-
dependently of knowledge of the solution in a neighborhood of the traceline itself.
That is, we require knowledge of the space (or, equivalently, time) derivative of the
saturation.

4. Local mass constraints. Let the domain (0, 1) be partitioned by grid points
0 = x0 < x1 < · · · < xN = 1 into elements (i.e., subintervals) T = {Ei = (xi−1, xi) :
i = 1, 2, . . . , N}. Let E ∈ T be an element, and define the space-time trace-back
region of E from time tn+1 back to tn as

EE,w =
{
(x̌, t) ∈ (0, 1)× [tn, tn+1] : x̌ = x̌w(x, t) for some x ∈ E

}
.

Orienting ourselves with time advancing upwards, the “top” of the region is E, the
“bottom” is the trace-back region

(4.1) Ěw =
{
x̌ ∈ (0, 1) : x̌ = x̌w(x, t

n) for x ∈ E
}
= EE,w ∩ {tn},

and the “side”

SE,w =
{
(x̌, t) ∈ ∂EE,w : x̌ = x̌w(x; t) for x ∈ ∂E

}
is the space boundary of the space-time region EE,w.

Notice that (2.10) can be rewritten as the space-time divergence

(4.2) ∇t,x ·
(

s
f(s)

)
= 0.

Applying the divergence theorem gives

(4.3)

∫
∂EE,w

( s
f(s)

)
· νt,x dσ =

∫
SE,w

( s
f(s)

)
· νt,x dσ +

∫
E

sn+1 dx−
∫
Ěw

sn dx = 0,

where νt,x is the unit outward normal vector to ∂EE,w and we use the superscript n
to denote a time-dependent function evaluated at time tn. The traceline traces are
defined precisely by (3.3) so that

(4.4)
( s
f(s)

)
· νt,x = 0,
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at least when the tracelines are within the domain (0, 1). Thus when E = Ei =
(xi−1, xi), the local wetting mass constraint is

(4.5)

∫
Ei

sn+1 dx =

∫
Ěi,w

sn dx+

∫ tnw,i−1

tnw,i

f(sB) dt,

where tnw,j = tn unless the traceline from xj traces to x = 0, in which case tnw,j is
the greatest time at which this occurs. Similarly, we have the local nonwetting mass
constraint

(4.6)

∫
Ei

zn+1 dx =

∫
Ěi,nw

zn dx +

∫ tnnw,i−1

tnnw,i

F (zB) dt.

The sum of the two gives what we call the local volume constraint

(4.7) |Ei| =
∫
Ěi,w

sn dx+

∫
Ěi,nw

zn dx +

∫ tnw,i−1

tnw,i

f(sB) dt+

∫ tnnw,i−1

tnnw,i

F (zB) dt,

where |Ei| = xi−xi−1 is the length of the interval. The Eulerian–Lagrangian traceline
method is defined by (4.5) once we define the traceline trace-back regions Ěw as
in (4.1).

5. The numerical method. We present our traceline method in this section.
Since there is no physical reason to prefer one fluid over the other, we require that
the numerical method is in no way biased toward either the wetting or nonwetting
fluid, as motivated in section 1. Such a bias can hide difficulties that will emerge in
more complicated problems. For instance, in the classical Buckley–Leverett problem
considered in section 6, the nonwetting tracelines are substantially less smooth than
the wetting tracelines. Methods that eliminate an unknown and solve only for the
wetting saturation will have an advantage in the model problem, but will have to deal
with the nonwetting-phase behavior in more general situations.

We approximate the saturation s in three different ways. First, we assume that s
is a piecewise discontinuous constant in each grid element of the partition T . We use
the notation snE and znE = 1 − snE for the constant approximate average wetting and
nonwetting saturations in the element E ∈ T at time tn. The method—see (5.3)—
will set these piecewise constants in a locally mass conservative way (i.e., according
to (4.5)).

However, to trace backward in time the boundary of each element E = (xi, xi+1) ∈
T , we will need an approximation to the saturation s at the grid points. Therefore, our
second approximation of the saturation will be to compute pointwise approximations
si to s(xi) for each grid point xi. These saturations will not satisfy the local mass
constraint, and so can be viewed as auxiliary approximations that are not otherwise
used.

Finally, our third and last approximation of s is given by postprocessing the
average element saturations sE , using the grid saturations si, to improve our overall
approximation. The postprocessed saturation s̃(x) is piecewise discontinuous linear.
Since it is locally mass conservative over the grid and higher order, it should be
considered our final and most accurate approximation of the saturation function s(x).
We describe this postprocessing step next.
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5.1. Saturation postprocessing. It is a standard practice to postprocess a
piecewise constant approximation to construct a piecewise discontinuous linear poly-
nomial in each grid element of the partition T . It must be appropriately slope-limited
to avoid local extrema and maintain saturations between 0 and 1. The result is a
higher order approximation away from shocks (see, e.g., [6, 4]). We present the post-
processing we use; however, there are many choices, since these techniques are fairly
well established and many slope limiters are available.

Our postprocessing is local. On E = (xi−1, xi) ∈ T , we are given the element
saturation snE and saturations sni−1 and sni at the grid points xi−1 and xi, respectively.
We define our piecewise discontinuous linear function s̃n(x) such that the average mass
over each element remains fixed and the function tilts to the grid value requiring the
least slope (in absolute value), unless a local extremum would result, in which case a
zero slope is assumed. That is, on E, we define the slopes

σn
i−1 =

snE − sni−1
1
2 (xi − xi−1)

and σn
i =

sni − snE
1
2 (xi − xi−1)

,

σn
E =

⎧⎪⎨
⎪⎩
0 if σn

i−1 and σn
i have opposite signs,

σn
i−1 if not the case above and |σn

i−1| ≤ |σn
i |,

σn
i otherwise,

and then

(5.1) s(x, tn) ≈ s̃n(x) = snE + σn
E

(
x− 1

2 (xi + xi−1)
)

for x ∈ E.

Trivially we define znE = 1 − snE and z̃n = 1 − s̃n for any n and E. Note that the
definitions could instead be stated equivalently for the nonwetting fluid, defining z̃n

similar to the construction above and then defining s̃n = 1− z̃n. That is, there is no
bias to the wetting fluid in this postprocessing step.

5.2. Time-step advance. Initially we define for all E ∈ Th

(5.2) s0E =
1

|E|

∫
E

s0(x) dx

and postprocess using the values s0(xi) to obtain s̃0(x). It is simple to advance in
time from tn to tn+1 on E = Ei ∈ Th using the local mass constraint (4.5) as

|Ei| sn+1
Ei

=

∫
Ěi,w

s̃n dx+

∫ tnw,i−1

tnw,i

f(sB) dt(5.3)

=
∑
F∈T

∫
Ěi,w∩F

s̃n dx+

∫ tnw,i−1

tnw,i

f(sB) dt.

It remains to determine Ěi,w, perhaps t
n
w,i−1 and tnw,i, and the grid saturations for the

postprocessing step. This will complete the definition of the numerical method.
We use the notation x̌w,i(t) = x̌w(xi; t). We begin with x = x0 = 0, which, by

our assumptions on the flow direction, immediately traces out of the domain. Thus

(5.4) x̌n
w,0 = x̌n

nw,0 = 0 and tnw,0 = tnnw,0 = tn+1 for all n.

We work sequentially to define x̌n
w,i and x̌n

nw,i, and possibly tnw,i and/or tnnw,i, for

i = 1, 2, . . . , N . Then Ěw,i = (x̌n
w,i−1, x̌

n
w,i) and Ěnw,i = (x̌n

nw,i−1, x̌
n
nw,i).
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5.3. Numerical tracing along tracelines. Exact tracing of the tracelines de-
fined by (3.3)–(3.5) is not possible, as noted in section 3. We will therefore solve a
local minimization problem to find each needed trace-back point x̌w(x, t

n). The min-
imization problem is given in the next subsection (see (5.13)) and it will be subject
to the constraints of mass conservation, which is a strong constraint on the numerics.
For each fixed grid point x = xi, we will set up a function F(sg, δ) of two parameters,
which are guesses of the wetting saturation sg at x (a grid point) and its space deriva-
tive δ = sx at the advanced time tn+1. In terms of these two parameters, we can
trace (approximately) from time tn+1 both the point and the (grid) saturation back-
ward in time to tn along the traceline. The function F will measure the discrepency
between the saturation found through tracing backward in time and the saturation
previously computed by the method up to the time tn. These two should agree if we
have consistency within the method.

In this subsection, we describe the tracing of the fixed grid point x = xi back
to x̌w(x, t

n), assuming sg and δ are given. To simplify notation, we drop the subscript i
from the following tracing description. We simplify the computational effort by using
a Taylor approximation for x̌w(x; t). Clearly, a simple Taylor approximation to the
traceline itself would be inadequate, especially near shocks. However, we do not
need the entire trajectory of the traceline, but only its trace-back position x̌w(x, t

n),
which is determined by the two parameters sg and δ. In the next subsection we
determine the correct choices of these parameters so as to satisfy the local mass
conservation principles and self-consistency. These physical principles, and not the
Taylor approximation, determine the location of the trace-back points x̌w(x, t

n). The
numerical results of section 6 will show the adequacy of our approximate tracing
procedure.

The first derivative of x̌w is given by (3.3), and so the second derivative is

d2x̌n+1
w

dt2
=

1

sg

(
f ′(sg)−

f(sg)

sg

)
dšn+1

w

dt
= − 1

sg

(
f(sg)

sg
− f ′(sg)

)2

sn+1
x ,

using (3.5). With Δt = tn+1 − tn, we have that

x̌w = x̌w(x; t
n) ≈ x− dx̌n+1

w

dt
Δt+

1

2

d2x̌n+1
w

dt2
Δt2(5.5)

≈ x− f(sg)

sg
Δt− 1

2sg

(
f(sg)

sg
− f ′(sg)

)2

δΔt2.

If we determine that x̌w < 0, we set x̌w = 0 and define the time of exit tnw from

(5.6) 0 = x− f(sg)

sg
(tn+1 − tnw)−

1

2sg

(
f(sg)

sg
− f ′(sg)

)2

δ (tn+1 − tnw)
2;

otherwise, tnw = tn.
The nonwetting fluid is similar. The values of nonwetting saturation zg = 1− sg

and spatial slope −δ follow from (2.12). The Taylor approximation is therefore

(5.7) x̌nw = x̌nw(x; t
n) ≈ x− F (zg)

zg
Δt+

1

2zg

(
F (zg)

zg
− F ′(zg)

)2

δΔt2,

with tnnw = tn, unless x̌nw < 0, in which case we set x̌nw = 0 and define the time of
exit tnnw from

(5.8) 0 = x− F (zg)

zg
(tn+1 − tnnw) +

1

2zg

(
F (zg)

zg
− F ′(zg)

)2

δ (tn+1 − tnnw)
2.
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We approximate the wetting saturation at the trace-back point (x̌w, t
n) by another

Taylor approximation

(5.9) šng = sg −
(
f(sg)

sg
− f ′(sg)

)
δ (tn+1 − tnw),

using (3.5). Similarly, at (x̌nw, t
n),

(5.10) žng = zg +

(
F (zg)

zg
− F ′(zg)

)
δ (tn+1 − tnnw).

5.4. The volume constraint and consistency. As stated above, without the
correction step of this subsection, the use of the local wetting mass constraint in (5.3)
is biased to the wetting phase. By definition, the wetting fluid is locally conserved;
however, the nonwetting fluid most likely is not locally conserved. That is,

(5.11) |Ei| zn+1
Ei

= |Ei| (1− sn+1
Ei

)
?
=

∫
Ěi,nw

z̃n dx+

∫ tnnw,i−1

tnnw,i

F (zB) dt

most likely does not hold for every element Ei ∈ Th. In fact, it holds if and only if
the local volume constraint (4.7) is satisfied by the numerical solution:

(5.12) |Ei| =
∫
Ěi,w

s̃n dx+

∫
Ěi,nw

z̃n dx+

∫ tnw,i−1

tnw,i

f(sB) dt+

∫ tnnw,i−1

tnnw,i

F (zB) dt.

Since we must not bias the method to prefer one fluid over the other, we require
that the numerical local volume constraint be satisfied. This will improve the overall
approximation of the system, and in particular the trace-back points, by finding the
best choice for sg and x̌n

w and x̌n
nw.

We correct our approximate tracings (i.e., determine (sg, δ)) so as to satisfy (5.12).
However, there is an ambiguity: a larger Ěw can be paired with a smaller Ěnw, main-
taining the constraint. Thus we also impose a consistency condition for each grid point
x = xi. On the one hand, starting at time tn+1 from our guess of the grid saturation
sg and slope δ, sg evolves back in time directly according to (3.5), approximated by
(5.9), to give the saturation value šng . On the other hand, x = xi itself traces back
from time tn+1 to tn to the point x̌w, where we know the previous saturation, namely
s̃n(x̌w). These two saturations should agree, and give us a consistency condition that
should be met, at least approximately. There is also a similar consistency for the
other phase.

We solve the following minimization problem. We seek (sg, δ) to minimize

(5.13) F(sg, δ) =
(
s̃n(x̌w)− šng

)2
+
(
z̃n(x̌nw)− žng

)2
subject to the volume constraint (5.12) and the range constraint

(5.14) 0 ≤ sg ≤ 1.

Recall that s̃n and z̃n are known from the previous time step or initial condition;
moreover, from the previous element, we have the traces x̌w,i−1 and x̌nw,i−1 (these
are 0 for the first element, i = 1). Thus we define x̌n

w,i(sg, δ), x̌
n
nw,i(sg, δ), t

n
w,i(sg, δ),

and tnnw,i(sg, δ) from (5.5)–(5.8), Ěw = (x̌w,i−1, x̌w), Ěnw = (x̌nw,i−1, x̌nw), and šng
and žng come from (5.9)–(5.10).
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Once the minimization problem is solved, so that x̌n
w,i, x̌

n
nw,i, t

n
w,i, t

n
nw,i, s

n+1
g,i , and

δn+1
i are known, we advance the wetting saturation using (5.3), which is equivalent
to advancing the nonwetting saturation by (5.11), so the method is unbiased. Finally,
we have the grid saturations sn+1

g,i−1 from the previous element (or the boundary value

sB) and sn+1
g,i , allowing us to postprocess the piecewise constant solution to form s̃n+1

and z̃n+1. The description of the method is complete.
As shown through the numerical results of the next section, the proposed method

gives an accurate solution even in the presence of shocks. This may be expected
in regions where the solution is smooth, since the Taylor approximations used in
defining the method should give an accurate approximation of the entire traceline
(5.5) and trace-back saturation (5.9). Near an isolated shock, however, the traceline
is continuous, but it has a slope discontinuity. Even though the Taylor approximated
traceline is inaccurate, the trace-back points x̌n

w and x̌n
nw can still be approximated

accurately by a careful choice of the parameters sg and δ, which are set to respect the
physics by solving the minimization problem (5.13). In fact, the method can handle
nonisolated shocks as well, as Example 8 of the numerical results will show.

In practice, we find it helpful to also constrain δ to some reasonable range:

(5.15) δmin ≤ δ ≤ δmax.

This modification allows us to more easily and robustly solve the minimization prob-
lem. We may continue to allow δ to vary freely by taking extremely liberal limits.
Moreover, monotonicity can be achieved by using the previous grid point’s δ value as
one bound for δ at the current grid point (e.g., if it is known that the saturation is
convex or concave).

We close this section with a brief remark on a possible modification to the min-
imization procedure (5.13). At first glance, it might seem prudent to try to detect
if we are at a shock by, for example, noting when s changes rapidly and |δ| is very
large. In this case, instead of tracing along the traceline using (5.5) and (5.7), we
might instead trace at the Rankine–Hugoniot shock speed [20]; that is, in essence,
we may trace the characteristic (3.1) rather than the traceline, using the fixed shock
saturation value. Although this seems like a reasonable strategy, we found that it
was unnecessary. We obtained good results without adding this extra knowledge of
the shock. In fact, all of our numerical results to be given in the next section, except
the first, use neither analytic knowledge of the shock structure nor any explicit shock
detection strategy.

6. Some numerical results. In our examples, we plot the wetting saturation.
However, since the method treats both phases identically, every numerical example
actually computes two results. That is, a numerical example of the wetting phase
saturation s, using flux function f , initial condition s0, and boundary condition sB,
will also cover the numerical example for z = 1 − s, using flux function F = u − f ,
initial condition z0 = 1 − s0, and boundary condition zB = 1− sB. One need simply
consider the plot of 1 − s. So, for example, shock propagation with the left state sL
greater than the right state sR also demonstrates the case of shock propagation with
the state magnitudes reversed. Similarly, a convex flux function example in which
f ′′ > 0 is paired to a concave example with F ′′ = −f ′′ < 0.

We also compare our numerical results with the fifth-order CWENO (CWENO-5)
scheme [23]. The CWENO-5 results were obtained from a code provided by the Com-
putational Fluid Dynamics Laboratory [9]. We used the publicly available software
package FFSQP [19, 31] to solve our minimization problem.
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6.1. The Buckley–Leverett equation. We begin with four test examples in-
volving the classic Buckley–Leverett problem, defined by

st + f(s)x = 0, x ∈ (0, 1), t ∈ (0, 1),(6.1)

zt + F (z)x = 0, x ∈ (0, 1), t ∈ (0, 1),(6.2)

where s+ z = 1 and the wetting fractional flow is

(6.3) f(s) =
s2

s2 + (1− s)2
.

The nonwetting fractional flow is F (z) = u − f(s), where u is the constant total
velocity of the system. Since “particles” at zero saturation should have zero velocity
(or, equivalently, traceline velocities F (z)/z should remain bounded as z → 0), we
require that u = f(1) = 1 in this case. Thus

(6.4) F (z) = 1− f(1− z) =
z2

z2 + (1− z)2
.

These flux functions are neither convex nor concave (they are S-shaped).
The maximal characteristic speed is f ′(0.5) = 2, so, in general, the CFL time step

limit for a uniform grid of spacing h using time step Δt is Δt ≤ h/2.

6.1.1. Example 1. In the first numerical example, we assume the Buckley–
Leverett problem with initial and boundary conditions

(6.5) s(x, 0) = s0(x) = 0 and s(0, t) = 1.

Initially, this is a pure shock; however, in time the solution also develops a rarefaction
behind the shock. The shock occurs when the characteristic and traceline velocities
agree; that is, when

f ′(sshock) =
f(sshock)

sshock
,

which gives sshock = 1/
√
2 = 0.7071 as the saturation at the (trailing edge of the)

shock. The Rankine–Hugoniot condition implies a shock speed of

ushock =
f(sshock)− f(0)

sshock − 0
= 1.2071.

The CFL limit for this particular problem is a little better than the general case, and
it is given by

ΔtCFL =
h

1.2071
.

Since we are merely testing the method, in this example, we will use our analytic
knowledge of the shock position for all time. Moreover, we trace points back in time
according to (5.5) only until we hit the shock. That is, for those points that trace into
the shock, we trace from time tn+1 back only to time t̃ > tn, until we advance to the
shock position, and then assume the saturation changes discontinuously at the shock
appropriately. We then trace using the true saturation and arrive at the previous
time tn.
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Fig. 6.1. Ex. 1. The exact solution at time
0.5 is the solid line, and the approximate so-
lution values are shown using 8 elements (h =
1/8) and Δt = 1/4, which is 2.4 times the CFL
limit. The open squares and circles give the av-
erage saturation in the element (plotted at the el-
ement center) with δ unbounded and constrained
to be increasing, respectively. The open dia-
monds and traingles give the grid values with
δ unbounded and constrained to be increasing,
respectively.
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0

Fig. 6.2. Ex. 1. The actual values of sx in
solid squares versus the values of δ actually com-
puted in open symbols. The diamond symbols
show results with δ constrained to be increasing;
square symbols are used for unbounded δ.

In Figure 6.1, we show the results at time t = 0.5 on a uniform grid of 8 elements
(h = 1/8). We use a time step Δt = 2h = 1/4, which is 2.4 times the CFL time
step. The red curve is the true solution. The green symbols give the grid values that
we compute in the algorithm, while the solution itself (the average saturation in the
element, plotted at the element center) is shown in blue. Two results are shown. The
diamond symbols show results with δ being constrained to be increasing (see (5.15)),
while square symbols are used for the results allowing unbounded δ. In Figure 6.2,
we plot the computed δ values and the true sx values at the grid points.

As the results show, we have correctly approximated the rarefaction. Moreover,
we have done so on an extremely coarse mesh: by time 0.5, we have used only five
points to resolve the rarefaction. The computed values of δ are also in line with the
correct values.

We have used analytic knowledge of the shock structure in this first example. In
each of our remaining examples, we will not use any such information (e.g., we will
not assume the shock position, speed, or saturation). Instead we will let the method,
with its use of both local mass conservation principles and self-consistency, determine
the shock and rarefaction structures by itself. As we will note, our only input will be
in the constraints used in the minimization problem, i.e., in (5.14)–(5.15).

6.1.2. Example 2. This example is identical to Example 1, except that no shock
information is assumed in the computation. For our new scheme, we use h = 1/25
and Δt = 1/42, and we compare to CWENO-5 using a finer grid h = 1/40 and
Δt = 1/240, which is 0.2 times the general CFL time step. Our time step is 5.7 times
larger than that used by the CWENO-5 scheme.

The results at time t = 0.5 are given in Figure 6.3. Compared to CWENO-5, our
scheme better follows the rarefaction up to right before the shock, and better captures
the right foot of the shock. However, it is worse than CWENO-5 near and to the left
of the shock; some oversmoothing is observed.

6.1.3. Example 3. In this example, we show shock formation. We base the
initial condition on the true solution of the previous Buckley–Leverett problem at
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Fig. 6.3. Ex. 2. The exact solution at time 0.5 is the solid line, and the approximate solution
values are shown using 25 elements (h = 1/25) and Δt = 1/42. The open diamonds give the grid
values, and open squares give the average saturation in the element (plotted at the element center).
The solid squares and black dashed line give the CWENO-5 results using h = 1/40 and Δt = 1/240.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 6.4. Ex. 3. Shock formation for
h = 1/20 and Δt = h. The open symbols show
the initial condition (t = t0), and solid symbols
show the concentration at t = t0 + 0.1, which
is just before the shock has formed. Diamond
symbols stand for grid values and squares for
average element values.
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Fig. 6.5. Ex. 3. Shock formation for h =
1/20 and Δt = h. The open and solid symbols
show the concentration at t = t0 + 0.2 and t =
t0 + 0.3, respectively. Note that the shock has
formed and propagates. Diamond symbols stand
for grid values and squares for average element
values.

time t = t0 = 0.414213, so the shock is at x = 0.5. We take the true solution for
x ≤ 0.5, extend the shock saturation sshock = 1/

√
2 for x > 0.5, and finally multiply

by the approximate Heaviside function

H(x) =
1

1 + exp(40(x− 0.5))
.

This produces a smooth initial condition (see Figure 6.4) that relatively quickly forms
a shock. We impose a monotonicity constraint on the solution at the advanced time
level (see (5.14)), which on the element E = (xi, xi+1) is

(6.6) s(xi) ≤ sE ≤ s(xi+1),

where s(xi) and s(xi+1) are the grid saturation values at time tn+1, and s(xi) was
computed from the previous element and s(xi+1) and sE are being computed from
the minimization problem for the current element E.

First, we choose h = 1/20 and Δt = h = 1/20. We show the initial condition at
time t = t0 and results at t = t0 +2Δt = t0 +0.1 in Figure 6.4 and at t = t0 +4Δt =
t0+0.2 and t = t0+6Δt = t0+0.3 in Figure 6.5. Again, green symbols stand for grid
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values, and the blue symbols for the average element concentrations. The triangles
are the earlier time, and squares represent the later time. The shock is almost formed
at time t = t0 + 2Δt. There is only a single average element value at the jump. The
shock fully forms and propagates for the later two times. This shows that our scheme
is capable of handling shock formation.
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Fig. 6.6. Ex. 3. Shock formation for
h = 1/10 and Δt = h. The concentration is
at t = t0 + 0.1, with diamond symbols stand-
ing for grid values and squares for average el-
ement values. For comparison, the solid curve
is obtained by linking the 20 grid values and 20
average element values from Figure 6.4 (where
Δt = h = 1/20).
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Fig. 6.7. Ex. 3. Shock formation for
h = 1/10 and Δt = h. The concentration is
at t = t0 + 0.2, with diamond symbols stand-
ing for grid values and squares for average el-
ement values. For comparison, the solid curve
is obtained by linking the 20 grid values and 20
average element values from Figure 6.5 (where
Δt = h = 1/20).

We next show results for a bigger time step, Δt = 1/10, but we also coarsen
the grid to h = 1/10 so we maintain the same ratio Δt/h = 1. Our new results
(Δt = 1/10) are compared to our previous results (Δt = 1/20) from Figures 6.4–6.5.
In Figure 6.6, we show the result at time t = t0 + 0.1, where green symbols stand for
grid values and blue symbols for average element values. The red curve is obtained
by linking the 20 grid values and 20 average element values from our previous results
in Figure 6.4. Similarly, Figures 6.7–6.8 show results at t = t0 + 0.2 and t = t0 + 0.3,
respectively. The results show that we can attain good results on a fairly coarse grid.

Finally, we ran the test with h = 1/20 and a time step much larger than the CFL
limit, Δt = 2h = 1/10. Results are shown in Figures 6.9–6.11, at the same three times
as before. In these figures, the red curves and red squares are the average element
values from the first series of runs when Δt = h = 1/20 and blue squares are our
new results with Δt = 1/10 and h = 1/20. The figures indicate that our scheme can
handle relatively large time steps. We do note, however, that in this test we relaxed
the monotonicity constraint (6.6) to

s(xi) + ε ≤ s(xi+1/2) ≤ s(xi+1)− ε

for some small ε > 0 (we used ε = 1e–4). The reason is that otherwise we could
not get a feasible solution to the minimization problem from the code we used. This
relaxation can be seen in Figures 6.9 and 6.11 (but not in Figure 6.10), where the
blue value at the shock is slightly larger than the one to its left.
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Fig. 6.8. Ex. 3. Shock formation for
h = 1/10 and Δt = h. The concentration is
at t = t0 + 0.3, with diamond symbols stand-
ing for grid values and squares for average el-
ement values. For comparison, the solid curve
is obtained by linking the 20 grid values and 20
average element values from Figure 6.5 (where
Δt = h = 1/20).
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Fig. 6.9. Ex. 3. Shock formation for
h = 1/20 and Δt = 2h at t = t0 + 0.1. The
open squares show the average element concen-
trations. For comparison, the solid curve and
open triangles are the average element values
from Δt = h = 1/20.
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Fig. 6.10. Ex. 3. Shock formation for
h = 1/20 and Δt = 2h at t = t0 + 0.2. The
open squares show the average element concen-
trations. For comparison, the solid curve and
open triangles are the average element values
from Δt = h = 1/20.
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Fig. 6.11. Ex. 3. Shock formation for
h = 1/20 and Δt = 2h at t = t0 + 0.3. The
open squares show the average element concen-
trations. For comparison, the solid curve and
open triangles are the average element values
from Δt = h = 1/20.

6.1.4. Example 4. In this final example involving the Buckley–Leverett prob-
lem, we show a complex interaction of shocks and rarefactions. The initial condition

(6.7) s0(x) =

⎧⎪⎨
⎪⎩
1− 20x for 0 ≤ x ≤ 0.05,

0.5 for 0.25 ≤ x ≤ 0.4,

0 otherwise

represents two separated regions, each initially occupied by a pulse of the wetting
fluid. Both pulses propagate to the right. The initial pulse over [0, 0.05] is sus-
tained by the boundary condition at x = 0, and it travels faster than the other pulse
at [0.25, 0.4].

In Figure 6.12, we plot the solution at four times. The true solution (i.e., a finely
discretized CWENO-5 solution with h = 1/1280 and Δt = 1/15360) is shown in red.
Two traceline method solutions are shown. These are the average element concen-
trations (we do not show the grid concentration values derived by the minimization
procedure in this figure). The red diamonds are the result of using h = 1/40 = 0.025
and Δt = 1/80. The blue squares are the traceline result using h = 1/80 = 0.0125 and
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t = 0.1, shock and rarefaction formation
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t = 0.2, the initial pulse catches the advanced pulse
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t = 0.3, the two pulses merge
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t = 0.5, the two pulses are fully merged

Fig. 6.12. Ex. 4. A complex Buckley–Leverett problem with the initial condition of two pulses
given in (6.7). The solid line is the reference solution, given by CWENO-5 with a very small
h = 1/1280 and Δt = 1/15360. The traceline method results are shown as average element values
(but no grid values), using open diamonds for h = 1/40 and Δt = 1/80, and using open squares
for h = 1/80 and Δt = 1/160. For comparison, the solid squares are the CWENO-5 results using
h = 1/80 and Δt = 1/480.

Δt = 1/160. For comparison, the black symbols show the CWENO-5 results using
h = 1/80 = 0.0125 and a much finer Δt = 1/480. These time steps were chosen since
for larger Δt, CWENO-5 becomes unstable and the traceline method shows decreased
accuracy.

One can see in Figure 6.12 that by t = 0.1, a shock and rarefaction has formed on
the first pulse, while the second pulse has developed a trailing rarefaction. By t = 0.2,
the initial pulse has caught up to the advanced pulse. At t = 0.3, the two pulses are
continuing to merge. The traceline method solution is a bit low on the initial rarefac-
tion, and therefore mass conservation requires a somewhat smeared shock near x =
0.4. However, the two pulses merge smoothly into a single monotonic pulse by t = 0.5.

For the coarsest discretization, h = 1/40 = 0.025 and Δt = 1/80, the shock at
t = 0.3 and x = 0.4 is quite smeared. This is due possibly, at least partly, to the very
coarse discretization used. Note that in this case only two elements resolve the initial
downward sloping pulse of the initial condition over [0, 0.05], and only six elements
resolve the square pulse at [0.25, 0.4]. In our experience, even for linear convection-
diffusion problems, Eulerian–Lagrangian methods have typically needed three to four
elements to resolve the shape of a steep front accurately.

The L1 errors are given in Table 6.1. For the same spatial resolution h = 1/80, the
traceline and CWENO-5 solutions are of similar accuracy, even though the traceline
method uses a time step three times larger. Overall, it should be expected that
the traceline method, which is formally only second order accurate, is worse than
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Table 6.1

Ex. 4. L1 errors at various times for the traceline and CWENO-5 methods, and the total CPU
time in seconds.

Time Traceline Traceline CWENO-5
h = 1/40 h = 1/80 h = 1/80
Δt = 1/80 Δt = 1/160 Δt = 1/480

0.1 0.0159 0.0101 0.0098
0.2 0.0202 0.0089 0.0077
0.3 0.0175 0.0085 0.0100
0.4 0.0223 0.0132 0.0094
0.5 0.0154 0.0096 0.0091

CPU Time 7.86E-02 1.95E-01 4.40E-03

CWENO-5 on this example, since CWENO-5 is fifth order. Despite the traceline
method being low order accurate, it shows comparable numerical diffusion (note the
especially good approximation at the trailing edge of the rarefaction at t = 0.1 around
x = 0.25). A formally higher order version of the type of scheme presented here for
the linear transport system has been developed [24, 17]. We expect to be able to
extend the ideas to the nonlinear traceline method.

It is true that the traceline method requires more computation time. It is a matter
of further research to speed up the computation. Nevertheless, we have achieved our
main objective of using long time steps.

6.2. Burgers’ equation. In the second set of numerical tests, we study the
propagation of jump discontinuities for the classic Burgers’ equation

st + f(s)x = 0, x ∈ (0, 1), t ∈ (0, 1),(6.8)

zt + F (z)x = 0, x ∈ (0, 1), t ∈ (0, 1),(6.9)

where s+ z = 1 and

(6.10) f(s) =
s2

2

is a convex flux function. Again, F (z) = u−f(s) and F (0) = 0 implies u = f(1) = 1/2,
so

(6.11) F (z) =
1

2
− (1 − z)2

2
=

2z − z2

2
,

which is concave. In this example, the characteristic speed is f ′(s) = s, while the
wetting traceline speed is only f(s)/s = s/2. The maximal characteristic speed is
f ′(1) = 1, so the general CFL time step limit is

ΔtCFL = h.

6.2.1. Example 5. In this example, we study Burgers’ equation with an ini-
tial shock with left state sL less than the right state sR. More precisely, the initial
condition is given as

s =

{
sL = 0.5 if x < 0.55,

sR = 1.0 if x ≥ 0.55,

where the jump is at x = 0.55. In this case, a rarefaction forms.
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Fig. 6.13. Ex. 5. Burgers’ equation rar-
efaction formation with h = 1/20 and Δt = 2h.
The open diamonds are the grid concentration
values, the open squares are the average element
values, and the solid line is the true solution.
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Fig. 6.14. Ex. 6. Burgers’ equation shock
propagation with h = 1/20 and Δt = 5h. The
open diamonds are the grid concentration val-
ues, the open squares are the average element
values, and the solid line is the true solution.

We use only 20 grid elements, so h = 1/20, and Δt = 2h = 1/10 (twice the CFL
limit), and we plot the result at t = 3Δt = 0.3 in Figure 6.13. The green squares are
the grid concentration values, the blue squares are the average element values, and
the red line is the true solution.

Wetting particles to the right (where s = 1) travel with speed 0.5, while particles
to the left (where s = 0.5) travel only with speed 0.25, and thus a rarefaction forms.
However, the jump itself travels at characteristic speeds, and so the right side point,
where s becomes 1, travels as xR(t) = 0.55 + t = 0.85, and the left point, where s
changes from 0.5, travels as xL(t) = 0.55+ t/2 = 0.7. Even though we follow traceline
speeds and use no knowledge of the true solution, the method allows the rarefaction
to form properly.

6.2.2. Example 6. In this example, we study Burgers’ equation with a left state
sL greater than the right state sR; that is, with the initial condition

s =

{
sL = 1 if x < 0.2,

sR = 0 if x ≥ 0.2,

where the jump is now at x = 0.2. In this case, the shock persists in time.
Again we use h = 1/20 and Δt = 5h = 1/4, which is 5 times the CFL limited

time step. We run to t = 3Δt = 0.75. The shock speed is 1
2 (sR + sL) = 0.5, so the

shock will reach 0.2 + 0.5t = 0.575. We plot the result in Figure 6.14. The example
shows that our scheme can propagate the shock at the proper speed in Burgers’
equation. We emphasize that we have followed traceline speeds in the particle trace-
back computations, not characteristic speeds, and we used no knowledge of the true
solution in this example.

6.2.3. Example 7. We now study Burgers’ equation with a combination of a
shock and a rarefaction. The initial condition is given as

s =

⎧⎪⎨
⎪⎩
0.5 if x ≤ 0.3,

1.0 if 0.3 < x ≤ 0.75,

0.5 if x > 0.75.

The true solution gives a rarefaction between 0.3 + 0.5t and 0.3 + t and a shock at
0.75 + 0.75t.
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Fig. 6.15. Ex. 7. Burgers’ equation with both a rarefaction and shock. We use h = 1/20 and
Δt = 2h. The open diamonds are the grid concentration values, the open squares are the average
element values, and the solid line is the true solution.
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Fig. 6.16. Ex. 7. Burgers’ equation with
both a rarefaction and shock. We use h = 1/20
and Δt = 2h. The open diamonds are the grid
concentration values, the open squares are the
average element values, and the solid line is the
true solution. The solid squares and dashed line
are the CWENO-5 result with h = 1/20 and
Δt = 1/100 = 0.2ΔtCFL.
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Fig. 6.17. Ex. 7. Burgers’ equation with
both a rarefaction and shock. We use h = 1/20
and Δt = 2h. The open diamonds are the grid
concentration values, the open squares are the
average element values, and the solid line is the
true solution. The solid squares and dashed line
are the CWENO-5 result with h = 1/20 and
Δt = 1/50 = 0.4ΔtCFL.

Again we use h = 1/20 and Δt = 2h = 1/10. This time the results are given at
time t = 2Δt = 0.2 and shown in Figure 6.15. As can be seen, the method has no
trouble handling a complex shock-rarefaction structure.

We continue by comparing results to those produced by the CWENO-5 scheme.
We use the same h = 1/20 and Δt = 1/10 = 2ΔtCFL for our scheme in all tests.
For the CWENO-5 scheme we make four different tests. We use the same h = 1/20
and also h = 1/40, as well as much shorter time steps Δt = 0.2ΔtCFL = 0.2h and
Δt = 0.4ΔtCFL = 0.4h.

Results are shown in Figures 6.16–6.19. Clearly the new traceline method out-
performs CWENO-5 at the rarefaction edge (x ≈ 0.5). Both methods perform well
near the shock. Our new method is perhaps better when the spatial resolution agrees
(at h = 1/20, Figures 6.16–6.17), and the two methods are perhaps comparable
when CWENO-5 alone uses the finer resolution h = 1/40 (Figures 6.18–6.19). Even
though the traceline method is a low order method, it works well, especially on the
type of coarse grids one would expect to compute over in porous medium applica-
tions.
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Fig. 6.18. Ex. 7. Burgers’ equation with
both a rarefaction and shock. We use h = 1/20
and Δt = 2h. The open diamonds are the grid
concentration values, the open squares are the
average element values, and the solid line is the
true solution. The solid squares and dashed line
are the CWENO-5 result with h = 1/40 and
Δt = 1/200 = 0.2ΔtCFL.
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Fig. 6.19. Ex. 7. Burgers’ equation with
both a rarefaction and shock. We use h = 1/20
and Δt = 2h. The open diamonds are the grid
concentration values, the open squares are the
average element values, and the solid line is the
true solution. The solid squares and dashed line
are the CWENO-5 result with h = 1/40 and
Δt = 1/100 = 0.4ΔtCFL.

6.2.4. Example 8. In this example, we study Burgers’ equation on a problem
involving the merging of two shocks. The initial condition is

s =

⎧⎪⎨
⎪⎩
1 if x < 0.25,

0.5 if 0.25 < x ≤ 0.5,

0 if 0.5 ≤ x,

and so the first shock initially at x = 0.25 travels with speed 0.75, while the second
shock initially at x = 0.5 has speed 0.25. The two shocks merge at time t = 0.5 at
the position x = 0.625.

We use h = 1/20, and we compute the solution for two values of Δt, both larger
than the CFL limit value ΔtCFL = h. In the first test, we take Δt = (10/3)h = 1/6,
so that the two shocks merge at exactly step 3. We plot the result in Figure 6.20,
showing the initial condition, the first step before the shocks merge, the third step
as they merge, and the fourth step as they propogate as a single shock. The results
show an almost perfect match to the true solution, even though no direct knowledge
of the existence of shocks was used in the computation.

Similar results are seen in the second test using Δt = 3h = 0.15. In this test, the
merging of the shocks at t = 0.5 takes place between time step 3 (t = 0.45) and step 4
(t = 0.6). Nevertheless, the results shown in Figure 6.21 give again an almost perfect
match to the true solution.

6.2.5. Example 9. The final test involving Burgers’ equation uses a smooth
initial condition, namely

u(x, 0) = 0.75 + 0.25 sin(πx),

on the interval [0, 2]. A shock forms at time 4/π. The L1 and L∞ errors for several
test runs are given in Table 6.2 at time t = 1.0 < 4/π = 1.27 before the shock forms.
It is clear that our traceline scheme provides comparable results with CWENO-5 when
using coarse grids of size h = 2/20 and H = 2/10. The traceline time step is relatively
large, being 5 and 10 times the CFL limit of Δt = h or H .

Of course, the CWENO-5 scheme converges much faster than our scheme, since
it is formally a fifth order scheme in space while ours is only second order. It is also
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Fig. 6.20. Ex. 8. Burgers’ equation with two merging shocks, using h = 1/20 and Δt = (10/3)h.
The open diamonds are the grid concentration values, the open squares are the average element
values, and the solid line is the true solution. The shocks merge exactly at Step 3.
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Fig. 6.21. Ex. 8. Burgers’ equation with two merging shocks at t = 0.5, using h = 1/20 and
Δt = 3h. The open diamonds are the grid concentration values, the open squares are the average
element values, and the solid line is the true solution. The shocks merge between Steps 3 and 4.
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Table 6.2

Ex. 9. Errors for h = 2/20, H = 2/10 at time t = 1.0.

Method Time step L1 error L∞ error CPU time (sec.)
Traceline 5h 1.104E-02 3.143E-02 1.504E-03
Traceline 10h 2.050E-02 4.338E-02 7.611E-04
Traceline 5H 3.683E-02 7.602E-02 3.635E-04
CWENO-5 0.2h 1.116E-02 4.026E-02 3.487E-04
CWENO-5 0.1h 1.628E-02 5.038E-02 6.826E-04

difficult to compare run times obtained from disparate codes, since so many coding
issues affect the results. Nevertheless, we observe that the timings and accuracy for
this example are comparable between the two methods. Our method is more costly per
step, but it does allow for larger time steps that exceed the CFL limit. We maintain
hope that further developments can be found for the general traceline method to make
it more effective, such as the development of a higher order version (for work in this
direction, see, e.g., [24, 17]).

Currently, it is not clear whether the traceline method presented here could be
faster than CWENO-5 on this smooth example. However, the traceline method re-
alizes an advantage in terms of its application to nonsmooth problems and its use
in parallel computation. In general, it appears that the traceline method can allow
much coarser grids in the nonsmooth case (as the previous numerical results show, e.g.,
Figures 6.16–6.19). The combination of being free from CFL constraints and using
coarser grids implies that the traceline method can use a time step greatly exceeding
the time step of a CFL limited method that needs a fine spatial grid to get into the
asymptotic region of the convergence for nonsmooth problems. Traceline methods
therefore need less computer memory. CFL limited methods also suffer in parallel
computation, since time stepping is essentially a serial in time process. Our traceline
method beats the CFL limit and increases the amount of local computation. It can
therefore make more efficient use of additional processors in parallel computation.

6.3. A linear equation: Example 10. In our last example, we discuss ap-
proximation of the linear equation

st + sx = 0, x ∈ (0, 2), t ∈ (0, 1),(6.12)

zt + zx = 0, x ∈ (0, 2), t ∈ (0, 1),(6.13)

where s+z = 1. In this example, f(s) = s and F (z) = 1−s = z, so the characteristic
speed is f ′(s) = 1, and the wetting traceline speed is also f(s)/s = 1. The general
CFL time step limit is

ΔtCFL = h.

For a linear problem, the traceline method reduces to the characteristics-mixed
method [1, 4, 2]. There is no CFL constraint, the traceline is the characteristic,
it follows a straight line, and therefore the trace-back points are exact. As a con-
sequence, our traceline method provides the exact solution up to resolution of the
initial condition and projection back to the Eulerian grid. That is, the solution is a
series of projections and translates of the approximated initial condition. Wang and
Al-Lawatia [27] showed that Eulerian–Lagrangian methods outperform ENO/WENO
schemes in the context of linear problems, so we do not repeat such results here.

Furthermore, if we choose time steps so that grid points trace to grid points, there
is no projection error. In this case, our traceline method provides the exact solution
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up to resolution of the initial condition. It gives a translate of the approximated
initial condition at each time step. Obviously, in this case, our scheme is at worst
comparable to and at best outperforms any other scheme on a linear problem. For
example, interested readers can find less than perfect results for the WENO scheme
as applied to Shu’s linear test in [18]. Of course, WENO schemes were not designed
for linear problems. Rather, WENO naturally handles much more general problems
with complicated mathematical structure.

7. Conclusions. We developed a numerical approximation for a somewhat ide-
alized system of two conservation laws in one space dimension modeling a simplified
two-phase flow problem in a porous medium. The total fluid flow gives an overall
total velocity for the system, which we assume has been solved. Then, either one of
the original two equations provides the transport of one of the phases, such as the
wetting phase.

The method transports wetting fluid mass by tracing the particle tracelines, and
so no CFL constraint arises. The main difficulty, however, was that it is not possible
to follow individual tracelines independently. Instead, we approximately trace along
tracelines using local mass conservation principles and self-consistency.

A major thesis of this work has been that the two-phase flow problem actually
contains two mass conservation principles, one for each phase. Even though we need
approximately only one of the two original equations, we still must respect both
conservation principles. Our numerical method does so over the computational mesh
(i.e., locally), and so is a fully conservative Eulerian–Lagrangian traceline method.

This conceptual framework generalizes in principle to more complex multiphase
multicomponent systems in higher dimensions; we expect that the fully conservative
property will be crucial in accurate traceline-based approximations of such systems.
For example, we mention two possible approaches to handling the multidimensional
problem. First is the possible use of a standard Strang splitting [26] in space, ac-
counting first for the x-velocity transport and then the y-velocity transport (and
then z, in three dimensions). Such an approach decouples the problem into the type
of one-dimensional problems treated in this paper. Second, two of the authors plus
a collaborator have investigated a stream-tube approach for the linear transport sys-
tem, which requires only one-dimensional solutions along the tube [3]. We expect to
investigate extensions of this approach to the two-phase system.

The numerical results demonstrate the ability of the method to handle accurately
problems with shocks and rarefactions, and to do so on very coarse spatial grids and
with time steps larger than the CFL limit.

Acknowledgments. The authors thank Professor Jianxian Qiu for helpful dis-
cussions regarding the CWENO scheme, and for providing the source code of his
implementation of CWENO-5 [9].
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