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MIXED FINITE ELEMENT METHODS
ON NON-MATCHING MULTIBLOCK GRIDS*
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Abstract. We consider mixed finite element methods for second order elliptic equations on
non-matching multiblock grids. A mortar finite element space is introduced on the non-matching
interfaces. We approximate in this mortar space the trace of the solution, and we impose weakly
a continuity of flux condition. A standard mixed finite element method is used within the blocks.
Optimal order convergence is shown for both the solution and its flux. Moreover, at certain dis-
crete points, superconvergence is obtained for the solution, and also for the flux in special cases.
Computational results using an efficient parallel domain decomposition algorithm are presented in
confirmation of the theory.
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1. Introduction. Mixed finite element methods have become popular due to
their local (mass) conservation property and good approximation of the flux variable.
In many applications the complexity of the geometry or the behavior of the solution
may warrant using a multiblock domain structure, wherein the domain is decomposed
into non-overlapping blocks or subdomains with grids defined independently on each
block. Typical examples include modeling faults and wells in subsurface applications.
Faults are natural discontinuities in material properties. Locally refined grids are
needed for accurate approximation of high gradients around wells.

In this work we consider second order linear elliptic equations that in porous
medium applications model single phase Darcy flow. We solve for the pressure p and
the velocity u satisfying

u=-KVp inQ, (1.1)
V-u=f in Q, (1.2)
p=yg on 09, (1.3)

where 0 C R%, d = 2 or 3, is a multiblock domain and K is a symmetric, uniformly
positive definite tensor with L>(£2) components representing the permeability divided
by the viscosity. The Dirichlet boundary conditions are considered merely for sim-
plicity. To more clearly present our ideas, we also suppose that the problem is at least
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H3/?*<_regular, for some € > 0. We have H?-regularity, for example, if f € L?(),
g € H3/2(Q), the components of K € C%'(Q), and Q is convex or 9 is smooth
enough (see [21, 22, 19]). (Strictly speaking, this simplification excludes point or line
sources and discontinuous K.)

A number of papers deal with the analysis and the implementation of the mixed
methods applied to the above problem on conforming grids (see, e.g., [28, 26, 25, 8,
6, 7, 10, 14, 24, 29, 15, 17, 2, 1] and [27, 9]). Mixed methods on nested locally refined
grids are considered in [16, 18]. These works apply the notion of “slave” or “worker”
nodes to force continuity of fluxes across the interfaces. The results rely heavily on
the fact that the grids are nested and cannot be extended to non-matching grids.

In the present work we employ a partially hybridized form [4, 9] of the mixed
method to obtain accurate approximations on non-matching grids. We assume that
 is a union of non-overlapping polygonal blocks, each covered by a conforming,
affine finite element partition. Lagrange multiplier pressures are introduced on the
interblock boundaries [4, 9, 20]. Since the grids are different on the two sides of
the interface, the Lagrange multiplier space can no longer be the normal trace of
the velocity space. A different boundary space is needed, which we call a mortar
finite element space, using terminology from previous works on Galerkin and spectral
methods (see [5] and references therein). As we show later in the analysis, the method
is optimally convergent if the boundary space has one order higher approximability
than the normal trace of the velocity space. Moreover, superconvergence for the
pressure and, in the case of rectangular grids, for the velocity is obtained at certain
discrete points. (See also [3] for a similar technique that avoids the use of a mortar
space, at the expense of losing strict mass conservation.)

We allow the mortar space to consist of either continuous or discontinuous piece-
wise polynomials and obtain the same order of convergence in both cases. The method
using discontinuous mortars provides better local mass conservation across the inter-
faces, but numerical observations suggest that this may lead to slightly bigger numer-
ical error.

The method presented here has also been considered in [30] in the case of the
lowest order Raviart-Thomas spaces [26, 25]. Here we take a somewhat different
approach in the analysis, which allows us to relax a condition on the mortar grids
needed to obtain optimal convergence and superconvergence. The relaxed condition
is easily satisfied in practice.

An attractive feature of the scheme is that it can be implemented efficiently in
parallel using non-overlapping domain decomposition algorithms. In particular, we
modify the Glowinski-Wheeler algorithm [20, 13] to handle non-matching grids. Since
this algorithm uses Lagrange multipliers on the interface, the only additional cost is
computing projections of the mortar space onto the normal trace of the local velocity
spaces and vice-versa.

The rest of the paper is organized as follows. The mixed finite element method
with mortar elements is presented in the next section. In Section 3 we construct a
projection operator onto the space of weakly continuous (with respect to the mortars)
velocities and analyze its approximation properties. Sections 4 and 5 are devoted
to the error analysis of the velocity and the pressure, respectively. In Section 6 the
method is reformulated as an interface problem. A substructuring domain decompo-
sition algorithm for the solution of the interface problem is discussed in Section 7.
Numerical results confirming the theory are presented in Section 8.
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2. Formulation of the method. A weak solution of (1.1)—(1.3) is a pair u €
H(div; ), p € L?(Q2) such that
(K, v) = (p,V-v) = {9,V -v)oa, V€ H(div;Q), (2.1)
(V : u,w) = (f;w)a w € LZ(Q)a (22)
It is well known (see, e.g., [9, 27]) that (2.1)—(2.2) has an unique solution.
Let Q = U ;€); be decomposed into non overlapping subdomain blocks 2;, and

let FL]‘ = 891 N an, I' = U?’j:lfiy]‘, and Fi = 692 NI = 692\69 denote interior
block interfaces. Let

Vi = H(div; (), V=®Vz';
i=1

W; = L3(Q), W =W =L*Q).
i=1

If the solution (u, p) of (2.1)—(2.2) belongs to H (div; Q) x H(f2), it is easy to see that
it satisfies, for 1 <i < mn,

(K™, v)o, = (p,V - V), — (0, v-vidr, — (9. V - vidaar, v E Vi,  (2.3)
(V : ll,’lU)Qi = (f;w)ﬂu w € Wi: (24)

where v; is the outer unit normal to 9€Q; (see also [9, pp. 91-92]). We will further
assume that these problems posed over each ); are at least H3/2+E—regular.

Let Tr,; be a conforming, quasi-uniform finite element partition of €;, 1 <4 <n,
allowing for the possibility that 7 ; and 75 ; need not align on I'; ;. Let 7;, = Ui Th.s.
Let

Vh7z' X Whﬂ' CV; xW;

be any of the usual mixed finite element spaces, (i.e., the RTN spaces [28, 26, 25];
BDM spaces [8]; BDFM spaces [7]; BDDF spaces [6], or CD spaces [10]). We assume
that the order of the spaces is the same on every subdomain. Let

V) = @Vh,ia Wy = @ Wh.i.
=1 =1

Although the normal components of vectors in Vj, are continuous between elements
within each block €2;, there is no such restriction across I'. Recall that

V V=W,

and that there exists a projection II; of (H'/?(Q;))?N'V; onto V,; (for any € > 0),
satisfying amongst other properties that for any q € (H'/?*(Q;))*NV;,

(v . (qu - q)’w)Qi =0, w € Wh,i (25)
<(q — qu) “ Vi, V- Vi)@Q,- =0, vV € Vh,i- (26)

Note that, since q € (H'/?>T¢(Q;)), q - v|. € H¢(e) for any element face (or edge) e;
therefore II;q is well defined.
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REMARK 2.1. Our H3/?*<_regularity assumption insures that we can apply II;
to the flux arising from our elliptic problem. We note in passing that Mathew [23]
shows that if g € (H®(£;))%, 0<e < 1, and V -q = 0, then II;q is well defined and

ILallo.0: < Cllall-.q: (2.7)
ITLia — allo.e; < Ch7[dll,q:;

where || - ||, is the H"-norm. His argument, given for Raviart-Thomas spaces, can be
trivially extended (see also [21], Section 1.5) to show that, for any of the mixed spaces
under consideration, I1;q is well defined for any q € (H?(£2;))¢ N V; and

Iiallo.0; < Clllall-: + IV - dllo.a:)- (2.9)

Thus we could reduce our regularity requirements, at the expense of greatly increasing
technical aspects of the analysis largely unrelated to those of the mortar element
techniques.

Let the mortar interface mesh 7}, ; ; be a quasi-uniform finite element partition of
I'; ;. Denote by Ay ;; C L*(T';;) the mortar space on I'; j, containing at least either
the continuous or discontinuous piecewise polynomials of degree k+1 on 7 ; ;, where
k is associated with the degree of the polynomials in Vy, - v. More precisely, if d = 3
and e is a triangle of the mesh, we take Ay ; jle = Pr1(e), the set of polynomials of
degree less than or equal to k on e. If e is a rectangle, we take Ay ; jle = Qr+1(e), the
set of polynomials on e for which the degree in each variable separately is less than
or equal to k. Now let

Ap = @ Apij

1<i<j<n

be the mortar finite element space on I'. In the following we treat any function u € Ap,
as extended by zero on 09). An additional assumption on the space Aj, and hence
Th,i,; will be made below in (2.14) and (3.18). We remark that 7 ; need not be
conforming if a discontinuous space is used.

In the mixed finite element approximation of (2.1)—(2.2), we seek u, € Vy, pp €
Wh, An € Ay, such that, for 1 <4 <mn,

(K "un,v)o, = (0n, V- V), — (An, V- vidr; — (9,V - Vi)aor, V € Vi, (2.10)

(V-up,w)e, = (f,w)e;, w € Wi, (2.11)
Z(uh : Vi,ﬂ)Fi =0, m e Ap. (212)
i=1

Strictly within each block €2;, we have a standard mixed finite element method, and
(2.11) enforces local conservation over each grid cell. Moreover, since uy, - v is con-
tinuous on any element face (or edge) e ¢ I' U 012, we have local mass conservation
across interior element faces. From (2.3) we see that A\, approximates the pressure
p on the block interfaces I'. Equation (2.12) enforces weak continuity of flux across
these interfaces (weakly with respect to the mortar space Ay).

For each subdomain §;, define a projection Qy, ; : L*(T;) = Vi v;
for any ¢ € L*(T;),

r; such that,

(¢ — Qn,id,v-v)r, =0, v EV; (2.13)
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Let, for ¢ € LX(T), Quop = D, Qn.i6.
LEMMA 2.1. Assume that for any ¢ € Ay,

Q0 =0, 1<1i<n, implies that ¢ = 0. (2.14)

Then there exists a unique solution of (2.10)—(2.12).

REMARK 2.2. Condition (2.14) says that the mortar space cannot be too rich
compared to the normal traces of the subdomain velocity spaces. A richer Ay gives
a better local mass conservation across I', by (2.12); however, if the space is too rich,
i.e., too much local mass conservation across I' is demanded, unique solvability is lost.
(See also Remark 3.1 below.)

Proof. Since (2.10)—(2.12) is a square system, it is enough to show uniqueness.
Let f =0, g = 0. Setting v = up, w = pp, and p = —\p, adding (2.10)—(2.12)
together, and summing over 1 < ¢ < n, implies that u, = 0. Denote, for 1 <i <mn,

1 / -
Phi= 757 | Prdz, OhiAh = = Qn,iAn ds,
Clul e, ' 0] Joq, "
and consider the auxiliary problem
-V -V =pn —Dh; in €1,

- Vg v=— (Qh,i)\h — Qh,i/\h) on 0,

where A, = 0 on 02N 0f);. Note that the problem is well posed and regular with ¢;
determined up to a constant. Setting v = —II;Vy; in (2.10), we have

(PhyPh — P + (Qnidns Qhidn — Qh,Mh)BQi =0,
implying

Q = Dhyi»  2nhidn = Qn,iAn-

Pn

Since now (2.10) is
Pl (1, V- v)a, — Qnidn(l,v-v)aq, =0,

the divergence theorem implies pplo, = Qn,iAn-
Since A, = 0 on 99, prla; = Qn,iAn = 0 for those domains i with Q; N N # (.
For any j such that 0Q; N0Q; =T ; # 0, (2.13) implies that

1
0= Qnirnlr;; = ﬁ/r Ands = QpjAnlr; ;-
(2% i

We conclude that Qp A, = 0 for all 1 < ¢ < n; hence, p, = 0 and A, = 0 by the
hypothesis of the lemma. 0

REMARK 2.3. This proof could be simplified by using the Il projection operator
defined in the next section.

3. The space of weakly continuous velocities. We first introduce some pro-
jection operators needed in the analysis. Let P} be the L?(I') projection onto Ay
satisfying for any v € L?(I),

<1/} - PM/J;M)F = Oa JAS Ah-
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For any ¢ € L%(9), let ¢ € W}, be its L?(2) projection satisfying
(p—dw) =0, we W

These projections and II and Qj ; defined earlier have the following approximation
properties, wherein [ is associated with the degree of the polynomials in Wp:

14 = Proll s, < Cllllrr, ;272 0<7r<k+2 0<s<k+2, (3.1)

e = &llo < Cllellrh", 0<r<i+1, (3.2)

la — Widallo,e; < Cllallro.h" 1<r<k+1, (3.3)

IV - (a=ILg)ll.e; < CIIV-qllroh",  0<r<I+1, (3.4)

1 — Qnitbll=s,r., < ClWllrr, BT, 0<r<k+1,0<s<k+1, (3.5

I(a—TLq) - vil|—sr;; < Cllallrr, ;h7°, 0<r<k+1,0<s<k+1, (3.6)

where || - || is the H"-norm and || - [|—s is the norm of H~#%, the dual of H*® (not Hf).
Moreover, from (2.5)—(2.6),

V-Iiq=V -q, (3.7)

(ILiq) - vi = Qun.i(q - vi). (3.8)

Bounds (3.1),(3.2), and (3.4)—(3.6) are standard L>-projection approximation results
[11]; bound (3.3) can be found in [9, 27]. We use the nonstandard trace theorem

llgllrr:; < Cllalls1/2,0,
in this paper; it can be found in [21, Theorem 1.5.2.1].
Let

n

Vh70 = {V € Vy : Z(V

i=1

Q Vi, r, =0V MGAh}

be the space of weakly continuous velocities, with respect to the mortar space. Then
the mixed method (2.10)—(2.12) can be rewritten in the following way. Find uy €
Vo0, b € Wy such that

n

(K_luhav) = Z(phav . V)Qi - (g,V : V)BQa \AS Vh,Oa (39)
i=1

> (Vo w)e, = (f,w), w € Wh. (3.10)

i=1

The above form of the scheme will be used for analysis only. It is not necessarily suit-
able for computing, since it is difficult to construct a basis for the weakly continuous
velocity space Vi, g.

Our goal for the rest of this section is to construct a projection operator Iy onto
V5.0 with optimal approximation properties such that, for any q € (H*()),

(V-(Mgq —q),w)o =0, we W,. (3.11)
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By an abuse of notation, define

Vi v ={(¢r,0r) € L*(T') x L*(T) : ¢r,
SRIr:; € Vaj-v; V 1<i<j<n}

r;; € Vv and

and

Vio-v={(¢r,6r) € L*(T) x L*(T) : Iv € V¢ such that
¢L F1]:V|QJUJV1SZ<]STL}

Henceforth, for any ¢ = (¢1,, ¢r) € (L*(T))?, we write @p, ; = (¢;,¢;), 1 <i < j<n.
Define a projection Qp 0 : (L*(T'))? = V0 - v such that, for any ¢ € (L*(T))?,

Py = VI Vi and ¢g

n

> ($i = (Qnod)i, &), =0, €€ V- (3.12)

i=1

LEMMA 3.1. Assume that (2.14) holds. For any ¢ € (L*(T))%, there exists
An € Ay such that on Ty 5, 1 <i < j<mn,

On,idn = Qhn,iti — (Qn.09)i, (3.13)
QA = Qn,j0; — (Dno9);, (3.14)
</\h7 1>Fi‘j = %((ﬁz + ¢ja ]‘>ri,j . (315)

Proof. Consider the following auxiliary problem. Given ¢ € (L?(I))2, find ¢y, €
V- v and A\, € Ap, such that

> $i =i — A, i), =0, € Vy-v, (3.16)
i=1
Z(d’muﬂ)n =0, M E Ap. (3.17)
i=1

To show existence and uniqueness of a solution of (3.16)—(3.17), take ¢ = 0, & = ¥y,
and u = \p, to conclude that 1, = 0. Now (3.16) and (2.14) imply that A\, = 0.
With £ € Vi - v in (3.16) we have

n

Z<¢i — Yn,i, &) = 0.

i=1

Also, from (3.17), ¢y € V0 - v. Therefore ¢, = Qp0¢. Equation (3.16) now implies
(3.13) and (3.14). Since any constant function is in Vy ; - v, Vi, j - v;, and Ay 5, we
have

2<Aha ]-)Fi,]‘ = <Qh,i)‘ha I)Fi,j + <Qh7j)\h7 1>Fi‘j

=(Qn,i%i — (Ln,09)i, 1. ; +(Qn,jd; — (Lro9)j, Dr.
=(Qn,i%i; r;; +(Qn,j95, r,
=

¢i + ¢j; 1>ri)j7

and (3.15) follows. O
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The next lemma shows that, under a relatively mild assumption on the mortar
space Ay, Qp 0 has optimal approximation properties for normal traces:

¢p=(u-vj,u-vj) =(u -y, —u-y).
LEMMA 3.2. Assume that there exists a constant C, independent of h, such that
ledlor:; < CUILn.ipllor:; +11Qngullox: ;) Ve Ap, 1<i<j<n. (3.18)

Then, for any ¢ such that ¢
of h, such that

r.; = (¢i, — i), there exists a constant C, independent

1/2

> Qnidi — (Qnod)il*er,, | <C > iller, B

1<i<j<n 1<i<j<n
0<r<k+1, 0<s<k+1. (3.19)

REMARK 3.1. Condition (3.18) implies the solvability condition (2.14), which is
simply (3.18) wherein we allow C' to vary with h. So (3.18) strengthens (2.14) so
that it holds uniformly as h tends to zero. This is not a very restrictive condition,
and it is easily satisfied in practice. It can be shown [30] that (3.18) holds for both
continuous and discontinuous mortar spaces, if the the mortar grid on each interface
is a coarsening by two in each direction of the trace of either one of the subdomain
grids. This choice is reminiscent of the one in the case of standard or spectral finite
element subdomain discretizations [5].

Proof. By Lemma 3.1, there is a Ay, € Ay, such that

Qn,idn = Qn,ihi — (Qn,00)i- (3.20)
Since 31 ((Qr0®)i, An)ry = 2oi g (b, An)r; =0,

Do lQnidulig e, =D (Quidns An)r,
i=1 =1

= Z(Qfm(ﬁi — ¢4, An)r;

=1
n /2 ;. 1/2
< (Z |Qh,ithi — ¢i||%71“i> (Z ||/\h||(2),1“i>
l:1n 1/2l:1n 1/2
<C (Z 1Qn,ii — ¢i||g7ri> (Z ||Qh,i>\h||37ri> ,
i=1 i=1

by (3.18), and (3.19) with s = 0 follows from (3.20) and (3.5).
On any interface I'; ; take any p € H*(T'; ;), 0 < s < k + 1, and write

(Qh,i/\h7p>Fi,j = </\hv Qh,ip - p>Fi,j + (Ah:p>Fi,]‘
< C“/\hHO,Fi,]‘hs”p |S,Fi,j + </\h7p>Fi,j- (3'21)
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The last term is

Any Py = Anyp— 2(Qniip + Qnjp))rs,
+3(An, Qnyip + Qnjp)r, (3.22)
< Cldnllor: ;22 Nlpllsr.; + 5, Qnip + Qnjp)r. ;-
Using Lemma 3.1, for the last term in (3.22) we have
(Ans Qn,ip + Qnjp)r,
=(Qn,irn, QhiP)r:; + (QnjAn; Qnjp)r:
=(0i — (2r,00)i, Cn.ip)r;; +(bj — (Ln.00)j, LnjpP)T: ;
= (i — (@n,00)i, Qn,ip — Prp)r:; +{0j — (2n,09);, Qn.jp — Prp)r:,
S Ch|gillrr. ;P2 Nlpllsrs ;s O<7r <k+1. (3.23)

Combining (3.21)-(3.23) with (3.18), we obtain (3.19). O
We are now ready to construct our projection. For any q € (H'/?%¢(€;))1NV;
define

Hoqlo, = Hi(q+ dq,),

where dq; solves

6q; = =V in Q;, (3.24)
V-éq; =0 in Q,, (3.25)
0q; - v; = —Qpid - Vi + (Qnoq - V)i on I';, (3.26)
0q; - v; =0 on 99; N AN, (3.27)

wherein, on any I'; j, q - v|r,; = (q-vi,q-vj). Note that the Neumann problems
(3.24)—(3.27) are well posed, since (3.15) and (3.13) imply that

(Qn,iq - vi — (Qnoq-v);, L), =0.

Also, note that the piece-wise constant Neumann data is in H'/?7%(8%;), so éq; €
(H"(£2;))?, where 7 = 1 — ¢ if we have enough regularity but at least r > 1/2 + ¢;
thus, II; can be applied to dq;.

We first notice that by (3.8),

n n

> ((Moq) - vi, v, = D ((Qnoa-v)ismr; =0, Vp € Ap;

i=1 i=1
therefore Iloq € V}, 9. Also, by (3.7),
(V-loq,w)q, = (V- -Iq,w), + (V- -ILiq, w)e, = (V- q,w)q,, Yw € Wp;.
It remains to estimate the approximability of IIy. Since on €;
loq — q = II;q — q + Iidq;,

with (3.3) we need only bound the correction II;dq;. By elliptic regularity [21, 22],
for any 0 < s <1/2

16cill1/2—s.0, < CY_N1Qnia-vi — (Qnoa - v)ill—ar ;- (3:28)
J
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We now have
[I1L;6q5]|0,0; < [1TL0q; — dqsllo,o; + |[0qs]|o,0;
< ChM2)|8q|y 2,0, + oo,
<O {l1Qnia-vi — (Qnoa- )illor. k>
J

+Qh.iqi - vi — (Lroa - V)ill—1/2,r: ;) (3.29)

using an estimate by Mathew [23] for any divergence free vector v
i) = ¥llo.0; < Ch°[[Y]le,qis 0<e <1

Note that the result in [23] is for Raviart-Thomas spaces, but can be trivially extended
to any of the mixed spaces under consideration. Together with Lemma 3.2, (3.29) gives

IToq — Mallo < > lallrp1z.0.h™ 72 0<r<k+1, (3.30)

i=1

and, with (3.3),

n
IToa —allo < CY_llallneh”, 1<7<k+1. (3.31)

i=1

4. Error estimates for the velocity. We start this section with a lemma
needed later in the analysis.
LEMMA 4.1. For any function v € Vy;,

v vllo,00, < Ch2|Iv]lo.q;-

Proof. All spaces under consideration admit nodal bases that include the degrees
of freedom of the normal traces on the element boundaries. Since for any element F
and any of its faces (or edges) e, |e] < Ch™!|E|, the lemma follows. O

4.1. Optimal convergence. Subtracting (3.9)—(3.10) from (2.3)—(2.4) gives the
error equations

n

(K_l(u_uh)av) :Z((p_phav'v)ﬂi _<p7V'Vi)Fi) A\ th,O; (41)

Z(V (u—uy),w)n, =0, w € W, (4.2)
i=1
We first notice that (4.2) implies that
V- -(Ilpu—up) =V (Iu—uy) =0. (4.3)

We now take v = Ilju — uy to get

(K1 (Ipu — uy), Iou — up)
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Il

(Prp — p, Mgu — up) - v)r, + (K~ (Ilpu — u), Hou — uy)

i=1

I

< 1P — pllo.r: |(Mou — wp) - willo,r, + (K~ (ou — u), Myu — uy)

=1

n n
<C (Z [Pl r+1,0.2" /2| Tou — upllo,0,h /2 + Z s, 2" [lou — llh||0> )

i=1 =1

1<r<k+1, (4.4)

where we used (3.1), Lemma 4.1, and (3.31) for the last inequality. With (4.3)-(4.4),
(3.4), and (3.31) we have shown the following theorem.

THEOREM 4.2. For the velocity uy, of the mized method (2.10)—(2.12), if (2.14)
holds, then there exists a positive constant C independent of h such that

IV-(u=up)lo <CD IV -ulp0h, 1<r<i+1

i=1

Moreover, if (3.18) holds,

n
e = wallo < € S (pllrs1.0; + lullog)h7, 1<r<k+1.

i=1

4.2. Superconvergence. In this subsection we restrict to the case of diagonal
tensor K and RTN spaces on rectangular type grids. In this case superconvergence
of the velocity is attained at certain discrete points. To show this we modify the last
inequality in (4.4). In particular, (3.1) gives, for 1 <r <k +1,

n n
> NPwp = pllo.r: [(Mow = wp) - villor, < C D Ipllrsaje. b |[Mou — upllo.0.h~" 2,

i=1 i=1

and (3.30) gives, for 1 <r <k+1,

n
(K~ (Tlou — M), Mou — 1) < C Y |lulfpp1/2.0,2" [ Mou — wp]lo,

i=1
which, combined with the estimate (see [24] and [15, Theorem 3.1])
(K~ (u — ), Tou — up)q, < Cllullrpr 0™ Mou — uplloe, 0<r<k+1,

implies

[ITou — uplfo < CZ(||p||r+3/2,Qi +l[ullgrp0)h 2 1<r<k+1. (4.5)
i=1
This estimate implies superconvergence along the Gaussian lines. Consider (for d = 3)
an element E = [a1,b1] X [a2,bs2] X [a3,bs]. Denote by g{,...,g,iﬂ, i =1,2,3, the
Gaussian points on [a;, b;], i.e., the roots of the Legendre polynomials of degree k + 1
on [a;,b;]. Asin [17, 15], for a vector q = (q1, g2, ¢3) define

k+1 k+1 b1

NallBe =3 Asbs —a2) 3 Ajy (bs — a3) / a1 (@162, 6%)|P der,

Jo=1 Jjz=1 a1
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k+1 k+1 bo

gl =Y Aj(br —ar) Y Ajy(bs — GB)/ |g2(9j, > %2, 93, )| da2,
j1=1 Jjz=1 a2
k+1 k+1 b3

Masll5 = Y Aj(br —a1) > Aj,(ba — a2)/ g3 (95, 97, x3)|” das,
Jj1=1 Jj2=1 as

where Aj;, j; = 1,...,k + 1 are the coefficients of Gaussian quadrature in [-1,1].
Define

3
Malll®> =" > lllailll? -
i=1 E€Th

Note that, for g € Vy, |||q||| is equal to the L?>-norm of q.

THEOREM 4.3. Assume that the tensor K is diagonal and the mized finite element
spaces are RTN on rectangular type grids. For the velocity uy of the mized method
(2.10)—(2.12), if (3.18) holds, then there exists a positive constant C independent of h
such that

n
[[[u —uplf| < CZ(||p||r+3/27Qi +lallprjz0)h™ 2 1<r<k+1.
i=1
Proof. By the triangle inequality,
[[a = ||| < [[[a — Mul|] + [|[TTu = Tou||| + [[|Tlou — ux|]|.
The theorem follows from (3.30), (4.5), and the bound (see [15])

Ila ~ Iulllg, < Cllullsrh™, 1<r<k+1.

5. Error estimates for the pressure. In this section we use a duality ar-
gument to derive a superconvergence estimate for p — p,. We will assume full H>-
regularity of the problem on  for simplicity (reduced superconvergence is obtained
for reduced regularity, as can be seen in the argument below). Let ¢ be the solution
of

-V-EVy=—(p—py) inf,
Y= 0 on 0Of).
By elliptic regularity,

llell2 < C1lp = prllo- (5.1)
Take v =T( KV in (4.1) to get

n

1p = palls =D (6 —pn, V- ThKVp)g,

i=1

=Y (K '(u—w),KVe)o, + (p = Pup, oK Ve - vi)r,). (5.2)
i=1
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The first term on the right can be manipulated as

n

D (B (u - uy), T K Ve)q,

=1

((K_l(u - uh)a HOKVQO - KV(p)Qi + (u — Up, V‘to)Qi)

Il

i=1

(K™ (u—un), KV — KVg)g,

I
NE

1

.
I

+(V-(u—un), ¢ = @lo; — (w—an) - vi, o = Pro)r;) (5.3)

<0y (lu—wsllogh+11V - (u—=un)logh+ ll(u—un) - villor,h*?)ll¢llz0;

i=1
using (3.31), (3.2), and (3.1) for the last inequality with C' = C(max; ||K||1,00,0:)-
The last term on the right is

(= up) - willo,r h*/
(I = Ta) - villo,r, + [|(Ton — ) - villo,r, ) A%/

C(h™ > Mallpr,; + 22T — gl o,) 2/
j

<
<

= C(Y_ lhallnr, b7 4 Tu = wplloo, k), 0<r<k+1, (54)
i

using (3.6) and Lemma 4.1.
For the second term on the right in (5.2) we have

(p = Prp, MoKV ¢ - vi)r,
= (p — Pup, oKV —IL;KVy) -v; + (II;KVp — KV¢) -v; + KV¢ - v)r,

<D Ml = Pupllors; (8K V)i - villor,, + (LK Ve = KV) - villor, ;)
i

+ Z ||p - Ipth*l/?,Fi,]‘
J

|Kv§0 ' Vi||1/2,Fi,j'

With (3.1), (3.26), (3.19), and (3.6) we have

||p - PthO,Fi,j S C||p||r+1/2,ri,]‘hr+l/2a 0 S r S k+ 15
lp = Pupll=1/2,0.; < Cllpllrs1jor 27 0<r <k+1,
16(E V)i - villor; < Cllellz:h'/?,
(K'Y — KV) - villor, < Cllgllao.h'/;
therefore,
(p = Pup, oKV - vi)r, < ChHpllrtr e llellzg, 0<r <k+1. (5.5)

A combination of (5.1)—(5.5), Theorem 4.2, and (3.3) gives the following theorem.
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THEOREM 5.1. For the pressure py of the mized method (2.10)—(2.12), if (3.18)
holds, then there exists a positive constant C, independent of h, such that

n
1= allo < C (P10, + l[ullng, + IV - ullng B,

i=1
n
lp = pallo < C Y (pllrrg. + llallpg, + IV - ullna )R,
i=1
where 1 <r <min(k + 1,1+ 1).

6. An interface operator. In this section we introduce a reduced problem
involving only the mortar pressure. This reduced problem arose naturally in the work
of Glowinski and Wheeler [20] on substructuring domain decomposition methods for
mixed finite elements and is closely related to the inter-element multiplier formulation
of Arnold and Brezzi [4]. The reason to consider the interface operator is twofold.
First, we use it to derive a bound on the error in the mortar space. Second, it is the
basis for our parallel domain decomposition implementation.

6.1. The reduced problem. Define a bilinear form dj, : L?(T') x L*(T) - R
for A\, € L*(T) by

n

dn(\s p) = Zdh’io"u) == () - vi, s,

i=1
where uj (A) is a component of the solution (uj (X), pj (X)) € Vi x W), of, for 1 <i <n,
(K_luz(/\)av)ﬂi = (p;(/\)a V- V)Qi - </\7V ’ Vi>Fi7 v E Vh7i7 (61)
(V : ll;;(/\),’w)Q. =0, w e Wh,i- (6.2)

i

Define a linear functional gy : L?(T') — R by

n

gn(p) = Zgh,i(ﬂ) = Z(ﬁh “Viy )T 5

i=1
where (,Dr) € Vi, x Wy, solve, for 1 <i < n,

(K~ "ip, v)a, = (P, V- V)a, — (9,V - vi)agar, ¥ € Vi, (6.3)
(v : ﬁhaw)Qi = (f, w)Qia w e Wh,i- (64)

It is straightforward to show (see [20]) that the solution (un,pn, An) of (2.10)—(2.12)
satisfies

dn(An, 1) = gn(p), 1 € An, (6.5)
with
up = wy(Ap) + s, pr= D (An) + Dh- (6.6)

LEMMA 6.1. The interface bilinear form dy(-,-) is symmetric and positive semi-
definite on L*(T). If (2.14) holds, then dy(-,-) is positive definite on Ay.
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Proof. With v = uj (p) in (6.1) for some p € L*(T'), we have

dpi(p A) = = (A u (1) vidr, = (K g (A), wh (1)a, = dai(A, p), (6.7)
which shows that dj(-,) is symmetric and
dpi(p, 1) = (K ~"aj (1), wj (1)e, > 0. (6.8)

For p € Ay, if (2.14) holds, the argument from Lemma 2.1 shows that dp,(p, 1) = 0
implies = 0. O

6.2. Error estimates for the mortar pressure. Denote by || - ||4, the semi-
norm induced by dp(+,-) on L*(T), i.e.,

llla, = dn (s )2, pe LX),

THEOREM 6.2. For the mortar pressure A\, of the mized method (2.10)-(2.12), if
(3.18) holds, then there exists a positive constant C, independent of h, such that

o= Millan <O (pllrsrs + lullpg)h”s 1<r <k+1, (6.9)
i=1

1Prp = Anllan < C Y (Ipllr+r.00 +ullng)b”, 1<r<k+1.  (6.10)

i=1
In the case of diagonal tensor K and RTN spaces on rectangular type grids,
Ip = Anllan < C Y (Ipllrrsjpa + lallgrp0)h 2, 1<r<k+1, (6.11)
i=1

n
1Prp = Anllan < C Y (lpllrss/2,0, + lallys1/2.0)h" 2 1 <r < k+1(6.12)
i=1

Proof. With (6.8) we have
1P = Anlla, < Cllug(p) — g, (An)llo, (6.13)
using that uj(-) depends linearly on its argument. Define, for p € L*(T),
wp(p) = wj () +@n,  palp) = ppp) + pr,
and note that (ux(p),pr(p)) € Vi, x Wy, satisty, for 1 <i <n,
(K™ un(p), v)e, = (pa(p), V- v)a, — (1, v - v)r,
— {9,V - V)aa.\rs v € Vi, (6.14)
(V ’ uh(/”)aw)Qi = (f,w)Q,-, w € Wh7i' (615)

We now have

[l (p) — i (An)llo = [[an(p) —an(An)llo
= [[un(p) — unllo
< [Jan(p) —ullo + [Ju —anllo (6.16)
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Bound (6.9) now follows from (6.13), (6.16), Theorem 4.2, and the standard mixed
method estimate for (2.3)—(2.4) and (6.14)—(6.15) [28, 26, 14]

lun(p) —ulloo; < C(pllr+1.0: +[ullre)h”, 1<r<k+1
To show (6.11), we modify (6.16) as
lurn(p) — urllo < [[un(p) — Mullo + [[TTu — Houllo + [[TTou — uplo. (6.17)

Bound (6.11) now follows from (6.13), (6.17), (3.30), (4.5), and a superconvergence
estimate for the standard mixed method [15] (see also [24, 17])

[un(p) — Maullo,0; < Cllullpyr,0h™, 1<r<k+1.
To prove (6.10) and (6.12), note that, by (6.1),

(K=" (Pup — p), uj(Pup — p))a; = —{(Prp — p,u},(Prp — p) - V)1,

< Z ||Php _p”O,Fi,]‘ |11;;('Php _p) . V”O,Fi,]‘
J

< CZ Hp”r,Fi,J‘hTHUZ(Php _p)HO,Qihilﬂa 0<r<k+2,
J

using (3.1) and Lemma 4.1 for the last inequality. Therefore, with (6.8),

1Pap = pllan < C Y Npllrssjpe k™2 0<r <k+1. (6.18)

i=1

Bounds (6.10) and (6.12) follow from (6.9) and (6.11), respectively, using the triangle
inequality and (6.18). O

REMARK 6.1. In the case of the lowest order RTN spaces, it is proven in [12]
that, for any ¢ € Ay, dn.i(¢,¢) is equivalent to |Z9% Qh,i(ﬁﬁ/gﬁﬂi, where 79% is
an interpolation operator onto the space of continuous piece-wise linears on 0f;.
Therefore || - ||4, can be characterized as a certain discrete H'/2-semi-norm on I' (see
[30]). This is also in accordance with the numerically observed O(h?) convergence for
the mortars in a discrete L?-norm (see Section 8).

7. A substructuring domain decomposition algorithm. In this section
we discuss implementation of a parallel domain decomposition algorithm for solv-
ing the resulting linear system. We apply a substructuring algorithm by Glowinski
and Wheeler [20] to the lowest order RTN discretization on non-matching multiblock
rectangular type grids. In our case we solve an interface problem in the space of mor-
tar pressures. We use the conjugate gradient method to solve the interface problem
(6.5). Note that Lemma 6.1 guarantees convergence of the iterative procedure in Ay.

Every iteration of the conjugate gradient requires an evaluation of the bilinear
form dp(-,-), and therefore, solving subdomain problems (6.1)-(6.2) with a given
Dirichlet data in the mortar space A. Because of the property

dh,i(A, 1) = dni(Qn,i, Qhjitt),

the subdomain solves only use projections of the mortar data onto the local spaces.
Therefore, no change in the local solvers is needed for the implementation. Moreover,
the conjugate gradient is performed in the space

{(6r,0r) € (L*(D)*: ¢rlr,,; € Qn,iAn and ¢r|r,, € QnjAn, 1<i<j<n}
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The conjugate gradient residual is the jump in the fluxes across subdomain boundaries.
The jump is computed after projecting the local boundary fluxes onto the mortar
space, as indicated by

n n

dn(h ) = = S () i), = = S (Paub(N) vior,, A € An

i=1 =1

Therefore the only additional computational cost compared to the case of matching
grids is computing the projections Qp ; : Ap = Vi ;- v; and Pp - Vi - v; — Ay,

8. Numerical results. In this section we present three numerical tests confirm-
ing the theoretical convergence rates. All examples are on the unit square, use only
the lowest order RTN spaces on rectangles (so k =1 = 0), and use a diagonal K.

In the first example we solve a problem with known analytic solution

ple,y) = 2°y" + 2% + sin(zy)cos(y)

and tensor coefficient

(0

The boundary conditions are Dirichlet on the left and right edge and Neumann on
the rest of the boundary. The domain is divided into four subdomains with interfaces
along the z = 1/2 and y = 1/2 lines. The initial non-matching grids are shown in
Figure 8.1. We test both continuous and discontinuous mortars. The initial mortar
grids on all interfaces have 4 elements with 5 degrees of freedom in the continuous
case and 2 elements with 4 degrees of freedom in the discontinuous case, therefore
satisfying the solvability condition (2.14).

Convergence rates for this test case are given in Table 8.1. The rates were estab-
lished by running the test case and 4 levels of grid refinement (we halve the element
diameters for each refinement) and computing a least squares fit to the error. We ob-
serve numerically convergence rates corresponding to those predicted by the theory.
The pressure error, |||p — pxl||, is the discrete L?-norm induced by the midpoint rule
on Tp,. Tt is O(h?)-close to ||p — pullo, which itself is superconvergent of O(h?) from
Theorem 5.1. The discrete velocity error |[|u — uy||| is superconvergent of O(h*/?)
by Theorem 4.3. Finally, the discrete interface pressure error |||p — Apl|| is actually
computed by summing over blocks i the discrete L?-norm of p — Qp ;A\, induced by
the midpoint rule on the traces of Ty ; on 9; N T'. This is essentially the L*-norm,
and thus we might expect it to be 1/2 power of h better than |[p — Ap||a, , since the
latter is essentially an H'/2-semi-norm by Remark 6.1. Since Theorem 6.2 implies
that |[p — Apllg, is superconvergent of O(h*/?), we might expect to see ||[p — Anl]|
converging as O(h?); indeed we do.

The computed pressure and velocity with continuous and discontinuous mortars
on the first level of refinement are shown in Figure 8.2. Although both solutions look
the same, Table 8.1 indicates that they differ. This can also be seen in Figure 8.3,
where the magnified numerical error is shown. The error in the continuous mortar
case is concentrated at the cross-points, where the only discontinuities in the mor-
tar space occur. The error in the discontinuous mortar case is distributed along the
interfaces and is somewhat larger. We should point out, however, that the discontin-
uous mortars provide flux continuity in a more local sense, as indicated by the flux
matching condition (2.12).
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Fic. 8.1. Initial non-matching grids for Example 1.

Continuous mortars Discontinuous mortars
L/h | llp = palll | e —wanlll | [llp = Anlll | lllp = palll | [l —wanll] | [llp = Anlll

8 9.62E-03 2.95E-02 1.31E-02 9.52E-03 4.12E-02 1.36E-02
16 2.41E-03 8.54E-03 3.31E-03 2.40E-03 1.36E-02 3.45E-03
32 6.04E-04 2.42E-03 8.30E-04 6.03E-04 4.55E-03 8.68E-04
64 1.51E-04 6.66E-04 2.08E-04 1.51E-04 1.54E-03 2.19E-04
128 | 3.91E-05 1.88E-04 5.39E-05 3.75E-05 9.29E-04 9.35E-05

rate O(hl.QQ) O(h1.83) O(hl.QQ) O(h2'00) O(h1'57) O(h2'00)
TABLE 8.1
Discrete norm errors and convergence rates for Ezample 1.

In the second example we test a problem with a discontinuous coefficient. We
choose K =1 for 0 <z <1/2 and K =10« [ for 1/2 < z < 1. The solution

(2.9) 22y + cos(zy), 0<z<1/2,
T,y) = .
PETTU (359" +cos (35%),  1/25e<,

is chosen to be continuous and have continuous normal flux at z = 1/2. The domain
has two subdomains with an interface along z = 1/2. The initial grids are 4 x 8 on
the left and 4 x 11 on the right. Continuous mortars on a grid of 7 elements with 8
degrees of freedom or discontinuous mortars on a grid of 4 elements with 8 degrees of
freedom are introduced on the interface. Convergence rates for the test case are given
in Table 8.2; again they agree with the theory, even though K is mildly discontinuous.

In the third and last example we compare the mortar element mixed method
on locally refined grids to the “slave” or “worker” nodes local refinement technique
[16, 18]. In the latter, the fine grid interface fluxes within a coarse cell are forced
to be equal to the coarse grid flux. We note that this scheme can be recovered as a
special case of the mortar element method with discontinuous mortars, if the trace of
the fine grid is a refinement by two of the interface grid. Indeed, in this case the flux
matching condition (2.12) becomes a local condition over two (four if d = 3) fine grid
boundary elements and forces all fine grid fluxes to be equal to the coarse grid flux.
Our theory also recovers the convergence and superconvergence results derived by
Ewing and Wang [18]. In the mortar method, however, the flux continuity condition
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Fia. 8.2. Computed pressure (shade) and velocity (arrows) for Ezample 1.
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F1G. 8.3. Pressure and velocity error for Example 1.

Continuous mortars
e = palll | [lw—wan|l] | I[P = Anlll

Discontinuous mortars

[[lp — palll

llu —usl]] | |

[lp = Anlll

16
32
64
128

3.20E-04 1.60E-02 3.32E-04
8.38E-05 4.27E-03 8.18E-05
2.12E-05 1.18E-03 2.01E-05
5.35E-06 3.41E-04 4.89E-06
1.38E-06 1.05E-04 1.15E-06

3.38E-04
8.55E-05
2.14E-05
5.34E-06
1.35E-06

3.27E-02
1.13E-02
3.93E-03
1.37E-03
4.82E-04

1.22E-03
3.17E-04
8.01E-05
2.01E-05
5.02E-06

rate

O(h1.97) O(hl.Sl) O(h2.04)
TABLE 8.2

O(h1.99)

O(h1'52)

O(h1.98)

Discrete norm errors and convergence rates for Ezample 2 (discontinuous K ).
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can be relaxed by choosing a coarser mortar space. In this case the fine grid fluxes are

not forced to be equal and approximate the solution better. Our numerical experience

shows that this may reduce the flux error on the interface by up to a factor of two.
We solve a problem on locally refined grids with solution and coefficient

p(z,y) = 2°y* +sin(zy) and K = < 10+ 5805(@) (1) > _

The domain is divided into four subdomains with interfaces along the z = 1/2 and
y = 1/2 lines. The domains are numbered starting from the lower left corner and
first increasing . The initial grids are 4 x 4 on Q;—Q3 and 16 x 16 on Q4. We use
discontinuous piece-wise linear mortars on the non-matching interface. We report the
numerical error on the grid and three levels of refinement for two cases. If the coarse
grid is n X n, we take a mortar grid with n — 1 elements in the first case and 2n
elements in the second case, which is equivalent to the “slave” nodes method. The
results are summarized in Table 8.3. The pressure and velocity error on the first level
of refinement are shown in Figure 8.4.

Discontinuous mortars “Slave” nodes

1/h | llp = palll | Il —unll] | Hllp = Anlll | Hllp = palll | [[la—unll] | [[lp — Asll|
8 1.12E-3 6.70E-2 3.80E-3 1.30E-3 1.45E-1 5.74E-3
16 2.67E-4 2.48E-2 1.03E-3 2.90E-4 5.00E-2 1.39E-3
32 6.57E-5 9.77E-3 2.72E-4 6.86E-5 1.74E-2 3.41E-4
64 1.64E-5 3.62E-3 6.93E-5 1.66E-5 6.09E-3 8.42E-5

rate O(h2.03) O(h1'40) O(h1.93) O(h2.09) O(h1'52) O(h2.03)

TABLE 8.3
Discrete norm errors and convergence rates for Example 3 (locally refined grids).
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A. Discontinuous mortars. B. “Slave” nodes.

F1G. 8.4. Pressure and velocity error for Ezample 3 (locally refined grids).
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